• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An effective method of reducing PAPR in FBMC system with carrier aggregation

    2016-11-07 00:44:15ZHUANGLingWENGHaitaoWANGGuangyu
    關(guān)鍵詞:郵電大學(xué)海濤時域

    ZHUANG Ling, WENG Haitao, WANG Guangyu

    (Chongqing Key Laboratory of Mobile Communication, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China)

    ?

    An effective method of reducing PAPR in FBMC system with carrier aggregation

    ZHUANG Ling, WENG Haitao, WANG Guangyu

    (Chongqing Key Laboratory of Mobile Communication, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China)

    In order to solve the much high PAPR(peak to average power ratio) problem in FBMC(filter bank multicarrier) system with carrier aggregation, this paper presents an improved method based on tone reservation (TR) to reduce PAPR in this system. Rather than applying the valid data subcarriers traditionally, we take the guard band (GB) subcarriers between component carriers (CC) in carrier aggregation utilized as the reserved subcarriers, which are filled with redundant data to reduce PAPR. To minimize the impact of overlapping factor, backward superimposition process between symbols is also used in this method against the regrowth of PAPR caused by the overlapping structure of symbols, which means that the signal is divided into different groups and each group completed will be added to next one for processing. Simulation results show that this method presented effectively improves the PAPR performance without affecting the basic transmission performance.

    filter bank multicarrier;carrier aggregation;peak to average power ratio;tone reservation

    Article ID:1673-825X(2016)05-0713-08

    1 Introduction

    As a candidate multi-carrier modulation technique for 5G mobile communication system, filter bank multicarrier (FBMC) has many advantages relative to orthogonal frequency division multiplexing (OFDM) used in current LTE system. FBMC is based on non-rectangular pulse of subcarrier forming[1-3], which adopts optimized prototype filter to accelerate the band attenuation to overcome the sensitivity of the frequency offset. Furthermore, FBMC does not need CP, which in many cases improves the spectrum utilization.

    The requirement of lager bandwidth and higher peak rate is the main driving force of carrier aggregation (CA) in E-UTRAN. In order to meet the requirement of larger bandwidth in LTE-A system, 3GPP proposed the carrier aggregation technology in Release 10[4]. By increasing the access bandwidth indirectly, system capacity and peak rate are improved by carrier aggregation.

    With the requirement of much higher peak rate in 5G mobile communication system, spectrum aggregation or carrier aggregation technology is also a candidate solution[5]. Therefore, we introduce carrier aggregation into FBMC modulation system in this paper. As a kind of multi-carrier system, FBMC system is also confronted with the PAPR problem inevitably[6]. What’s more, multiple component carriers in carrier aggregation will make the PAPR performance to be further deteriorated[7-8].

    There are few methods of reducing PAPR in the FBMC system at present. Alexandre Skrzypczak et al proposed the OSLM (overlapped SLM) method to reduce PAPR of the FBMC system based on the SLM method applied in the OFDM system in[9]. Krishna Chaitanya Bulusu et al in[10] proposed a scheme named as dispersive selective mapping (DSLM), which is an extended and generalized version of overlapped selective mapping (OSLM), and it still need too many times of searching to obtain a better PAPR performance. M.U. Rahim et al in[11] analyzed the clipping method applied in FBMC system to reduce PAPR, which indicates that the sidelobe of the spectrum would be significantly affected and the BER(bit error ratio) performance of the FBMC system would be greatly impacted. By analyzing the feature of FBMC symbols, the effect of the method on BER performance should be made into consideration significantly. That is to say, it is necessary to avoid the influence on the characteristics of low sidelobe in the FBMC system when PAPR is reduced.

    This paper presents an improved method based on tone reservation for reducing PAPR,which is suitable for the FBMC system with carrier aggregation. Because the guard band between component carriers is available to use in carrier aggregation, we take the guard band (GB) subcarriers between component carriers in carrier aggregation to be utilized as the reserved subcarriers. Redundant data is filled into these guard subcarriers to adjust the phase of symbols for reducing PAPR. For the feature of overlapping between symbols in the FBMC system with carrier aggregation, PAPR will regrow if symbols are processed separately like OFDM. Therefore, backward superimposition processing between symbols is also taken in this method to avoid the regrowth of PAPR in this system.

    2 System model

    This section will introduce the basic framework of FBMC system, the signal model of transceiver, the way to implement carrier aggregation respectively.

    2.1FBMC transceiver

    The FBMC modulation system is mainly composed of the synthesis filter bank (SFB) and analysis filter bank (AFB), the structure[12]is as shown in Fig.1.

    Fig.1 Filter bank multicarrier modulation system

    (1)

    (2)

    The signal obtained by processing of AFS in receiver is expressed as

    (3)

    2.2Implementation mode of carrier aggregation

    According to different spectrum scenarios, two basic implementation methods of carrier aggregation in physical layer are as follows[13]:

    1)For the easy scalability of IFFT(inverse fast Fourier transform), bandwidth of system is extended by large IFFT/FFT module. This method is suitable for carrier aggregation of intra-band, because the points of IFFT can’t be too large in reality. What’s more, for the carrier aggregation with non-contiguous component carriers in the same frequency band, some blank subcarriers should be reserved in the IFFT/FFT module.

    2) Modulation on each component carrier could be implemented with each IFFT/FFT module independently. This scheme has more flexibility, but the disadvantage is that a larger number of IFFT/FFT modules are needed. Meanwhile, wireless channel characteristics such as path loss and Doppler frequency shift have different effect on different frequency band, so multiple RFs is needed. This is a disadvantage for the complexity and cost of implementation.

    It is necessary to point out that the implementation of carrier aggregation is similar between OFDM and FBMC system. The only difference is the IFFT/FFT modules in OFDM system should be transformed into the SFB/AFB modules in FBMC system. This paper makes research on continuous band carrier aggregation in FBMC system.

    3 PAPR of FBMC modulation system with carrier aggregation

    For the existence of overlapping factorK, the symbols of FBMC with carrier aggregation are overlapped in time domain. So the definition of PAPR in this modulation system can't use the definition existed in OFDM system. A new definition of PAPR in FBMC system with carrier aggregation will be introduced next.

    (4)

    wherel=0,1,…,K+L-1.

    Two component carriers in carrier aggregation is assumed in this paper, and the corresponding signal processing by the SFB module of FBMC system with carrier aggregation areS1(n) andS2(n). The output signal of the system is as follows:

    (5)

    The PAPR of the FBMC system with carrier aggregation is expressed as

    lM≤n≤lM+M-1

    (6)

    wherel=0,1,…,K+L-1,|S1(n)+S2(n)| represents the amplitude of the transmitted signal of FBMC system with carrier aggregation, max{·} indicates the maximum value andE{·} represents the expectation value of the signal in each interval. The expression of PAPR in dB is defined by

    PAPR(l)dB=10log(PAPR(l))

    (7)

    wherel=0,1,…,K+L-1.

    The cumulative complementary distribution function (CCDF) is an established method to PAPR in multicarrier systems[14]. It is defined as the probability of the PAPR in each symbol interval in FBMC system with carrier aggregation which exceeds a given thresholdγ:

    CCDF[PAPR(l)]=Pr(PAPR(l)>γ)

    (8)

    For the existence of overlapping factor, FBMC symbols are overlapped with each other. If the PAPR reducing processing is completed in each block separately, the peak value of power will regrow again when the symbols are overlapped. Therefore, traditional methods for reducing PAPR used in OFDM system are not suitable for FBMC system with carrier aggregation. Furthermore, carrier aggregation increases the number of subcarriers in multicarrier system essentially, which makes PAPR of the system deteriorated. Therefore, an effective method to reduce PAPR in the CA-FBMC system is proposed in this paper.

    4 An improved method to reduce PAPR for FBMC system with carrier aggregation

    This section presents an effective method of tone reservation for reducing PAPR in FBMC modulation system with carrier aggregation. Guard subcarriers between two component band carriers are acted as reserved subcarriers. Filling redundant data in reserved subcarriers and iteration clipping with backward superimposition are also used in this method. According to Fig.2, this method is described in this section.

    Fig.2 Description to the improved algorithm for FBMC system with carrier aggregation

    (9)

    whereRD1andRD2represent the set of data subcarriers in band 1 and 2 of the system respectively, andRCrepresents the set of reserved subcarriers to generate peak canceling signal.

    Thelthdata block of valid subcarriers for users which is composed of band 1 and band 2 is send to SFB module, and the corresponding output signal issl(n), i.e.

    (10)

    wheren∈[0,(K+1/2)M-1] andKrepresents the overlapping factor.

    (11)

    (12)

    (13)

    So the signalfl(n) to be clipped down from the original signal can be expressed as

    (14)

    wheren∈[0,(K+1/2)M-1].

    Since the clipping only relates to the firstMsignal points of the symbol interval, sofl(n)=0, wheren∈[M,M+1,…,(K+1/2)M-1].

    Signalfl(n) is sent into AFB module of system to obtain the data F(l) in frequency domain, where F(l)=[F0(l),F1(l),…,FM-1(l)]. Keep the data F(l) on the reserved subcarriers to be multiplied by the Amplification factorαand the data F(l) on other subcarriers are replaced by zero, so the signalCk(l) in frequency domain is obtained as follows, i.e.

    (15)

    (16)

    (17)

    wheren∈[0,(K+1/2)M-1].

    It is necessary to point out that,the data of each block on the reserved subcarriers is set to be zero initially.

    From the description of the method proposed,the specific procedure is as follows:

    Step 1Determine the basic parameters, including the component carrier bandwidth, the guard bandwidth, the type of prototype filterh(n), the amplification factorα, the clipping factorwand the number of iterationP, the default value ofPAPR0. The number of data blocks is set to beLands0(n)=0Twithlengthof(K+1/2)M .setl=1;

    Step 4fl(n) is sent into AFB module to obtain the frequency symbol F(l). Let F(l)corresponding to the reserved subcarriers (guard bandwidth) multiplied by the amplification factorα, the F(l) in other subcarriers position is set to zero, and assigns it as C(l);

    Step 5D1(l), D2(l) and C(l) are sent into SFB module, and updatessl(n). Calculate the PAPR for the firstMsignal points ofsl(n);

    Step 6Make a comparison between PAPR calculated in Step 5 and PAPR0. If PAPR0 is less than the PAPR value, jump to Step 8;

    Step 7Estimate whether the number of iterations completedpis less than the number of iterationPinitially, ifp

    Step 8Record the data D1(l),D2(l),C(l) andsl(n);

    Step 9Estimate whetherlis up to the number of data blockL, ifl

    Step 10End the algorithm.

    According to procedure of the algorithm, we can derive the complexity of this algorithm. The number of data blocks isLand the number of iteration times isP. Thelthdata block D1(l), D2(l), …,DN(l) represents data on each component carrier, whereNrepresents the number of component carrier. In this algorithm, data block on each component carrier need one times processing of SFB and AFB in each time of iteration and the complexity of SFB is the same as AFB. Therefore, it will need 2×L×P×Ntimes processing of SFB module. When the complexity of SFB module is defined asO(1), the complexity of this algorithm isO(L×P×N).

    5 Simulation results

    To evaluate the performance of the proposed method, the simulation results are presented in this section. The specific simulation parameters are shown in Tab.1.

    Tab.1 Simulation Parameters

    To evaluate the performance of the algorithm, three aspects including PAPR, average power of symbol and system BER performance by the processing of the algorithm proposed are simulated respectively. The comparison between original PAPR and the ones with different iteration numbers in this algorithm is shown in Fig. 3 by using CCDF.

    Fig.3 PAPR in different iteration times

    As is shown in Fig. 3, whenCCDF=10-3and the numbers of iteration are 3, 6 and 9 times, the performance gain of PAPR can be obtained with 1.5 dB, 2.1 dB and 2.3 dB respectively. With the increment of the iteration number, performance gain of PAPR is increased, but the increasing rate of the PAPR performance gain decreases. That is to say, with the increment of the iteration numbers, PAPR performance gain of the system begins to converge.

    To evaluate that reduction of peak value of symbol plays a definitely great part in the reduction of PAPR by using the proposed method, here comes a comparison of the variety rate about the average power with different iteration numbers.

    As is shown in Fig.4, average power of symbols in each interval increases slightly with the increment of iteration numbers. The increment is about 0.15 dB, compared with the original average power. According to the definition of PAPR in section 3, the variety of average power is quite small relative to the level of decrement in PAPR. That is to say, peak power reduction of signal plays a leading role in the decrement of PAPR, which evaluates that the proposed method can effectively reduce the peak power of the system.

    Fig.4 Variance rate of average power(dB) in different iteration times

    To evaluate the influence of the filled data in reserved carriers on transmission, the BER performance is presented here. The channel is multi-path channel provided by 3GPP TS 25.104 and simple ZF equilibrium is utilized. The simulation results of BER with different iteration times are shown in Fig.5.

    As is shown in Fig.5, the BER performance with different iteration times are basically the same as the original one. The reason is that the proposed algorithm does not change the symbol value in data subcarriers, and the value of data filled in the guard subcarriers is so small that the influence to the data subcarriers for users can be almost ignored actually.

    Fig.5 16QAM BER performance with different iteration times.

    The simulation results evaluate that the proposed method can effectively reduce the PAPR of this system without affecting to the BER performance, which proves the effectivity of this proposed method.

    6 Conclusions

    An effective method based on tone reservation for reducing PAPR in CA-FBMC system is presented in this paper. The guard subcarriers between component carriers are applied as reserved subcarriers to reduce PAPR. For the structure of overlapping between symbols in this system, we take the backward superimposition processing in the method proposed against the regrowth of PAPR. The simulation results indicate that performance gain of PAPR is improved effectively with several iteration times, and the BER performance are basically the same as original one, which proves the effectivity of this method.

    [1]FARHANG-BOROUJENY B. OFDM versus filter bank multicarrier [J].IEEE Signal Processing Magazine, 2011, 28(3): 92-112.

    [2]SCHAICH F, WILD T. Waveform contenders for 5G — OFDM vs. FBMC vs. UFMC[C] ∥2014 6th International Symposium on Communications, Control and Signal Processing. [s.l.]: IEEE, 2014: 457-460.

    [3]謝顯中. 第5代移動通信基本要求與新型多址復(fù)用技術(shù)[J].重慶郵電大學(xué)學(xué)報(bào):自然科學(xué)版,2015,27(4):434-440.

    XIE Xianzhong. Key requirements and multi-access multiplexing techniques for 5G[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2015, 27(4):434-440.

    [4]3GPP RP-091440.Work item description: carrier aggregation for LTE[S]. [s.l.]:3GPP, 2009.

    [5]BOGUCKA H, KRYSZKIEWICZ P, KLIKS A. Dynamic spectrum aggregation for future 5G communications[J]. IEEE Communication Magazine, 2015, 53(5): 35-43.

    [6]PHYDYAS:Physical layer for dynamic access and cognitive radio[EB/OL].[2015-04-21].http:∥cordis.europa.eu/pub/fp7/ict/docs/future-networks/projects-phydyas-factsheet_en.pdf.

    [7]ZHANG Shaoxin, ZHOU Jun, ZHU Hongbo, et al. Cubic metric improvement of aggregated carriers for downlink transmission in LTE-advanced[J]. The Journal of China Universities of Posts and Telecommunications, 2011, 18(1): 60-63.

    [8]ZHOU Yiqing, PAN Zhengang. CM/PAPR reduction for LTE-A downlink with carrier aggregation. U.S. 0261676 [P]. 2011-02-12.

    [9]SKRZYPCZAK A, SIOHAN P, JAVAUDIN J P. Reduction of the peak-to-average power ratio for OFDM-OQAM modulation[C]∥Proceeding of the International Conference on Vehicular Technology. Melbourne, Vic: IEEE, 2006:494-499.

    [10] BULUSU K C, SHAIEK H, ROVIRAS D, et al. Reduction of PAPR for FBMC-OQAM systems using dispersive SLM technique[C]∥Proceeding of the International Symposium on Wireless Communications Systems. Barcelona: IEEE, 2014:568-572.

    [11] RAHIM M U, STITZ T H, RENFORS M. Analysis of clipping-based PAPR-reduction in multicarrier systems[C]∥Proceeding of the International Conference on Vehicular Technology. Barcelona : IEEE, 2009:1-5.

    [12] VIHOLAINEN A, BELLANGER M, HUCHARD M. ICT-211887, PHYDYAS D5.1. WP5: prototype filter and filter bank structure[S]. [s.l.]:[s.n.], 2009.

    [13] YUAN Guang-xiang, ZHANG Xiang, WANG Wen-bo, et al. Carrier aggregation for LTE-advanced mobile communication systems[J]. Communications Magazine, IEEE, 2010, 48(2): 88-93.

    [14] N. van der NEUT, MAHARAJ B T, de Lange F H, et al. PAPR reduction in FBMC systems using a smart gradient-project active constellation extension method[C]∥2014 21st International Conference on Telecommunications. Lisbon: IEEE, 2014: 134-139.

    Biographies:

    ZHUANG Ling(1978-), female ,comes from Chongqinq. She is an Associate Professor of Chongqing University of Posts and Telecommunications, China. Her main research interests are multicarrier modulation technique for mobile communication, multi-rate digital signal processing and filter bank theory, and related topics. E-mail: Zhuangling@cqupt.edu.cn.

    WENG Haitao(1988-), male, comes from Anhui Province. He is an MSc student at Chongqing University of Posts and Telecommunications. His research interests are multicarrier modulation techniques for mobile communication and filter bank theory. E-mail: 806107807@qq.com.

    WANG Guangyu(1964-), male, comes from Guizhou Province. He is a Professor of the College of Communication and Information Engineering, Chongqing University of Posts and Telecommunication, and a researcher at the Lab of Mobile Communication Technology. His main research interests include high-speed signal processing and multi-rate filter bank theory.

    (編輯:魏琴芳)

    2015-09-29

    2016-06-12通訊作者:翁海濤806107807@qq.com

    一種基于預(yù)留子載波的CA-FBMC系統(tǒng)PAPR抑制算法

    莊陵,翁海濤,王光宇

    (重慶郵電大學(xué) 重慶移動通信重點(diǎn)實(shí)驗(yàn)室, 重慶 400065)

    針對引入載波聚合的濾波器組多載波(carrier aggregation-filter bank multicarrier,CA-FBMC)調(diào)制系統(tǒng)峰均功率比(peak to average power ratio,PAPR)進(jìn)一步升高的問題,基于預(yù)留子載波(tone reservation,TR)思想,提出一種適用于面向載波聚合的FBMC(filter bank multicarrier)系統(tǒng)降低PAPR的有效方法,利用分量載波間原有保護(hù)子載波充當(dāng)預(yù)留子載波成分,結(jié)合時域信號剪切的處理方法,在不改變原有信號子載波有效輸入數(shù)據(jù)的前提下,降低系統(tǒng)信號的PAPR。同時,由于重疊因子的存在,為克服系統(tǒng)符號重疊特性的影響,利用后向迭代的處理思想,對時域輸出信號進(jìn)行分組,針對每組信號分別進(jìn)行迭代剪切處理,并將處理完成的信號進(jìn)行后向疊加處理,從而避免符號重疊引發(fā)的峰值增生而導(dǎo)致PAPR回退的問題。仿真結(jié)果表明,該算法可在不影響系統(tǒng)基本傳輸性能的情況下有效降低系統(tǒng)的PAPR。

    濾波器組多載波(FBMC);載波聚合;峰均功率比(PAPR);預(yù)留子載波

    10.3979/j.issn.1673-825X.2016.05.016

    The Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1500435)

    TN929.5Document code:A

    猜你喜歡
    郵電大學(xué)海濤時域
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    羅海濤作品
    國畫家(2022年3期)2022-06-16 05:30:06
    西安郵電大學(xué)設(shè)計(jì)作品
    包裝工程(2022年10期)2022-05-27 05:17:12
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    基于時域信號的三電平逆變器復(fù)合故障診斷
    通過反思尋求最優(yōu)解
    重慶郵電大學(xué)學(xué)報(bào)( 自然科學(xué)版》2016年第28卷第1-6期總第114-125期
    基于極大似然準(zhǔn)則與滾動時域估計(jì)的自適應(yīng)UKF算法
    基于時域逆濾波的寬帶脈沖聲生成技術(shù)
    基于時域波形特征的輸電線雷擊識別
    電測與儀表(2015年2期)2015-04-09 11:28:50
    精品欧美国产一区二区三| 亚洲国产精品合色在线| 久久精品人妻少妇| 男人狂女人下面高潮的视频| 国产精品一区二区三区四区久久| 欧美激情久久久久久爽电影| 嘟嘟电影网在线观看| 哪里可以看免费的av片| 国产成人精品久久久久久| 亚洲av成人精品一区久久| 在线免费十八禁| 亚洲av成人av| 大型黄色视频在线免费观看| 伊人久久精品亚洲午夜| 精品日产1卡2卡| 国产成人精品婷婷| 日本黄大片高清| 中文字幕久久专区| 亚洲国产色片| 国产成人福利小说| 自拍偷自拍亚洲精品老妇| 中文在线观看免费www的网站| 国产精品日韩av在线免费观看| 别揉我奶头 嗯啊视频| 亚洲精品日韩av片在线观看| 内地一区二区视频在线| a级毛片a级免费在线| 亚洲电影在线观看av| 国产亚洲精品久久久com| 男人舔女人下体高潮全视频| 久久久久久久久久成人| 亚洲av免费高清在线观看| avwww免费| 欧美高清成人免费视频www| 午夜激情欧美在线| 日本免费a在线| 国产爱豆传媒在线观看| 国产日韩欧美在线精品| 亚洲欧美日韩高清专用| 九九久久精品国产亚洲av麻豆| 欧美最新免费一区二区三区| 亚洲欧美精品综合久久99| 黄色视频,在线免费观看| 久久久久久久久久久免费av| 色视频www国产| av免费在线看不卡| 欧美三级亚洲精品| 真实男女啪啪啪动态图| 一区二区三区四区激情视频 | 日韩成人伦理影院| 丝袜美腿在线中文| 2021天堂中文幕一二区在线观| 亚洲一区高清亚洲精品| 久久精品国产清高在天天线| 三级男女做爰猛烈吃奶摸视频| 特大巨黑吊av在线直播| 成人特级av手机在线观看| 国产精品久久久久久久电影| 成人二区视频| 听说在线观看完整版免费高清| 欧美日韩综合久久久久久| 女的被弄到高潮叫床怎么办| 99久久中文字幕三级久久日本| 国产精品野战在线观看| 在线观看午夜福利视频| 国产三级中文精品| 观看免费一级毛片| 最近视频中文字幕2019在线8| 看片在线看免费视频| 免费观看人在逋| 精品一区二区三区人妻视频| 免费在线观看成人毛片| 亚洲自偷自拍三级| 成人午夜精彩视频在线观看| 亚洲国产精品成人综合色| 99国产精品一区二区蜜桃av| 日本黄色视频三级网站网址| 嘟嘟电影网在线观看| or卡值多少钱| 亚洲精品久久久久久婷婷小说 | 国产精品免费一区二区三区在线| 欧美一区二区精品小视频在线| 国产精品久久久久久久久免| 成人特级av手机在线观看| 久久人人精品亚洲av| 日本黄大片高清| 日韩一区二区三区影片| 精品久久国产蜜桃| 中文字幕av成人在线电影| 直男gayav资源| 好男人视频免费观看在线| 色哟哟·www| 97人妻精品一区二区三区麻豆| 别揉我奶头 嗯啊视频| 午夜免费激情av| 国产私拍福利视频在线观看| 男女啪啪激烈高潮av片| 国产色爽女视频免费观看| 在线观看美女被高潮喷水网站| 欧美区成人在线视频| 国产精品一区二区三区四区免费观看| 亚洲va在线va天堂va国产| 亚洲一区二区三区色噜噜| 又黄又爽又刺激的免费视频.| 久久久色成人| 丰满乱子伦码专区| 色综合亚洲欧美另类图片| 国产一区二区激情短视频| 天美传媒精品一区二区| 亚洲av免费高清在线观看| 麻豆av噜噜一区二区三区| 精品99又大又爽又粗少妇毛片| 日韩欧美国产在线观看| 亚洲无线观看免费| 亚洲电影在线观看av| 国产 一区精品| 色吧在线观看| 国产黄色小视频在线观看| 亚洲四区av| 成年av动漫网址| 久久久久久久久中文| 人体艺术视频欧美日本| eeuss影院久久| 亚洲av男天堂| 一级毛片久久久久久久久女| 亚洲精品粉嫩美女一区| 校园人妻丝袜中文字幕| 国产精品一及| 九九热线精品视视频播放| av在线播放精品| 国产人妻一区二区三区在| 精品久久久久久成人av| 啦啦啦观看免费观看视频高清| 99久久精品一区二区三区| 国产精品1区2区在线观看.| av在线蜜桃| 天堂中文最新版在线下载 | 看十八女毛片水多多多| 全区人妻精品视频| 国产三级中文精品| 久久久久久久久大av| 男女做爰动态图高潮gif福利片| www日本黄色视频网| 国产男人的电影天堂91| 精品久久国产蜜桃| 欧美激情在线99| 亚洲国产精品成人久久小说 | 久久久午夜欧美精品| 免费电影在线观看免费观看| 最近视频中文字幕2019在线8| 国产成人a∨麻豆精品| 好男人在线观看高清免费视频| 国产v大片淫在线免费观看| 中文在线观看免费www的网站| 免费av观看视频| 国产精品1区2区在线观看.| 只有这里有精品99| 18禁黄网站禁片免费观看直播| 中文精品一卡2卡3卡4更新| 国产高清有码在线观看视频| 狂野欧美白嫩少妇大欣赏| 中出人妻视频一区二区| 国产av一区在线观看免费| 欧美激情国产日韩精品一区| 永久网站在线| 3wmmmm亚洲av在线观看| 九九热线精品视视频播放| 直男gayav资源| 天堂网av新在线| 91狼人影院| 三级国产精品欧美在线观看| 精品国产三级普通话版| 99久久中文字幕三级久久日本| 亚洲精品影视一区二区三区av| 性色avwww在线观看| 国产在视频线在精品| 亚洲欧美成人精品一区二区| 两个人的视频大全免费| 亚洲精品成人久久久久久| a级毛片a级免费在线| 久久九九热精品免费| 亚洲天堂国产精品一区在线| 久久久久久久久久成人| 国产精品久久久久久亚洲av鲁大| 久久亚洲精品不卡| 久久久久久久午夜电影| 嫩草影院新地址| 美女内射精品一级片tv| 国产日本99.免费观看| 亚洲国产精品久久男人天堂| 亚洲成av人片在线播放无| 亚洲一区二区三区色噜噜| 亚洲一级一片aⅴ在线观看| 99九九线精品视频在线观看视频| 18禁裸乳无遮挡免费网站照片| 干丝袜人妻中文字幕| 中文字幕av在线有码专区| 欧美激情久久久久久爽电影| 亚洲精品乱码久久久久久按摩| 男女下面进入的视频免费午夜| 成年女人永久免费观看视频| 国产成人精品婷婷| 一本久久中文字幕| 精品久久久久久久久久久久久| 欧美高清成人免费视频www| 日本黄大片高清| 国产成年人精品一区二区| 一级毛片久久久久久久久女| 麻豆精品久久久久久蜜桃| 99久久成人亚洲精品观看| 黄色配什么色好看| 日本五十路高清| 亚洲一级一片aⅴ在线观看| 高清毛片免费观看视频网站| 桃色一区二区三区在线观看| 免费一级毛片在线播放高清视频| 免费看光身美女| 男人舔奶头视频| 免费不卡的大黄色大毛片视频在线观看 | 色5月婷婷丁香| 全区人妻精品视频| 菩萨蛮人人尽说江南好唐韦庄 | 看十八女毛片水多多多| 国产av在哪里看| 欧美性猛交黑人性爽| 国产精品嫩草影院av在线观看| 乱系列少妇在线播放| 真实男女啪啪啪动态图| 成年版毛片免费区| 亚洲成人精品中文字幕电影| 淫秽高清视频在线观看| 少妇熟女欧美另类| 人妻久久中文字幕网| 国产亚洲精品av在线| 亚洲电影在线观看av| 午夜a级毛片| 69人妻影院| 99热6这里只有精品| av黄色大香蕉| 亚洲在线自拍视频| .国产精品久久| 国产 一区精品| 床上黄色一级片| 春色校园在线视频观看| 尤物成人国产欧美一区二区三区| 一个人看视频在线观看www免费| 自拍偷自拍亚洲精品老妇| 综合色av麻豆| 国产亚洲精品久久久com| 天堂影院成人在线观看| 少妇熟女aⅴ在线视频| 亚洲精品乱码久久久久久按摩| 欧美一区二区国产精品久久精品| 成人性生交大片免费视频hd| 亚洲国产精品国产精品| 国产精品99久久久久久久久| 欧美又色又爽又黄视频| 一级毛片电影观看 | 亚洲欧美成人综合另类久久久 | 亚洲七黄色美女视频| 亚洲美女搞黄在线观看| 国产亚洲精品av在线| 午夜福利在线在线| 超碰av人人做人人爽久久| 成人二区视频| 人人妻人人看人人澡| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 热99在线观看视频| 日本av手机在线免费观看| 亚洲国产精品成人久久小说 | 国产精品人妻久久久影院| 国产高清有码在线观看视频| 中文字幕制服av| 欧美激情久久久久久爽电影| 亚洲欧洲国产日韩| 美女内射精品一级片tv| 国产乱人偷精品视频| 插逼视频在线观看| 欧美日韩精品成人综合77777| 精品国内亚洲2022精品成人| 日本成人三级电影网站| 少妇丰满av| 亚洲精品影视一区二区三区av| 天堂影院成人在线观看| 在线天堂最新版资源| www.色视频.com| av卡一久久| 在线播放国产精品三级| 小说图片视频综合网站| 26uuu在线亚洲综合色| 一区二区三区四区激情视频 | 最好的美女福利视频网| 岛国在线免费视频观看| 亚洲国产精品国产精品| 免费观看在线日韩| 久久精品影院6| 能在线免费观看的黄片| 欧美变态另类bdsm刘玥| 中文字幕av成人在线电影| 欧美性猛交黑人性爽| 又爽又黄无遮挡网站| 看免费成人av毛片| 日韩欧美精品v在线| 好男人视频免费观看在线| 在线播放国产精品三级| 亚洲人成网站在线播放欧美日韩| 精品一区二区免费观看| 亚洲四区av| 91精品一卡2卡3卡4卡| 日韩中字成人| 亚洲五月天丁香| 日韩欧美国产在线观看| 悠悠久久av| 舔av片在线| 国产精品久久久久久久久免| 黄色一级大片看看| 日韩制服骚丝袜av| 性色avwww在线观看| 热99re8久久精品国产| 真实男女啪啪啪动态图| 变态另类成人亚洲欧美熟女| 久久久久久九九精品二区国产| 成人特级av手机在线观看| 热99re8久久精品国产| 一个人看视频在线观看www免费| 少妇被粗大猛烈的视频| av视频在线观看入口| 亚洲国产精品久久男人天堂| 国产熟女欧美一区二区| 亚洲18禁久久av| 久久精品国产亚洲网站| 91精品一卡2卡3卡4卡| 国产精品av视频在线免费观看| 午夜老司机福利剧场| 99久久人妻综合| 国产白丝娇喘喷水9色精品| 国产精品久久久久久精品电影| 禁无遮挡网站| 成人欧美大片| 蜜臀久久99精品久久宅男| 日本av手机在线免费观看| 精品99又大又爽又粗少妇毛片| 亚洲中文字幕日韩| 九色成人免费人妻av| 国产视频内射| 国产av麻豆久久久久久久| 午夜福利在线在线| av在线播放精品| 99久久成人亚洲精品观看| 国产爱豆传媒在线观看| 我要搜黄色片| 亚洲精品乱码久久久v下载方式| 国产精品野战在线观看| 亚洲在线观看片| 18禁在线播放成人免费| 国产亚洲精品久久久久久毛片| 中文字幕免费在线视频6| 色综合站精品国产| 丰满的人妻完整版| 国产精品女同一区二区软件| 在线免费十八禁| 国产激情偷乱视频一区二区| 欧美日本亚洲视频在线播放| 国产精品三级大全| 非洲黑人性xxxx精品又粗又长| 搞女人的毛片| 色噜噜av男人的天堂激情| 一本久久精品| 直男gayav资源| 一个人看的www免费观看视频| 色综合亚洲欧美另类图片| 99久国产av精品国产电影| 亚洲三级黄色毛片| 亚洲av中文av极速乱| 国产av不卡久久| 日韩亚洲欧美综合| 18+在线观看网站| 亚洲精品成人久久久久久| 久久久久九九精品影院| 中文字幕av在线有码专区| 91av网一区二区| 国产黄色小视频在线观看| 99热这里只有是精品50| 亚洲av中文av极速乱| 免费大片18禁| 精品人妻一区二区三区麻豆| 在线观看av片永久免费下载| 免费人成视频x8x8入口观看| 日韩欧美在线乱码| 男女做爰动态图高潮gif福利片| 国产成人影院久久av| 国产激情偷乱视频一区二区| 色噜噜av男人的天堂激情| 午夜爱爱视频在线播放| 老熟妇乱子伦视频在线观看| 中文精品一卡2卡3卡4更新| 国产视频内射| 欧美激情久久久久久爽电影| 97超视频在线观看视频| 日本撒尿小便嘘嘘汇集6| 国语自产精品视频在线第100页| 久久精品影院6| 嘟嘟电影网在线观看| 日本-黄色视频高清免费观看| 深爱激情五月婷婷| 99久久成人亚洲精品观看| 最好的美女福利视频网| 一本久久精品| 一个人看视频在线观看www免费| av免费在线看不卡| 美女 人体艺术 gogo| 成年版毛片免费区| 国国产精品蜜臀av免费| 中文字幕免费在线视频6| 不卡一级毛片| 欧美高清成人免费视频www| 日本与韩国留学比较| 一个人观看的视频www高清免费观看| 亚洲av成人精品一区久久| 国产精品福利在线免费观看| 欧美成人一区二区免费高清观看| 亚洲成av人片在线播放无| 99热网站在线观看| 国产麻豆成人av免费视频| 三级经典国产精品| 中国国产av一级| 国产成人精品一,二区 | 精品人妻熟女av久视频| 免费av不卡在线播放| 床上黄色一级片| 精品99又大又爽又粗少妇毛片| 男女啪啪激烈高潮av片| 在线观看午夜福利视频| 久久亚洲国产成人精品v| 国产精品,欧美在线| 国产视频内射| 色哟哟哟哟哟哟| av在线播放精品| 少妇的逼水好多| 国产伦精品一区二区三区视频9| 51国产日韩欧美| 国产亚洲精品久久久久久毛片| 国产精品精品国产色婷婷| 日本三级黄在线观看| 日本五十路高清| 日本欧美国产在线视频| 免费无遮挡裸体视频| 听说在线观看完整版免费高清| 三级男女做爰猛烈吃奶摸视频| 此物有八面人人有两片| 美女cb高潮喷水在线观看| 欧美+日韩+精品| 国产男人的电影天堂91| 国产精品蜜桃在线观看 | 亚洲精品粉嫩美女一区| 级片在线观看| 五月伊人婷婷丁香| 麻豆精品久久久久久蜜桃| av.在线天堂| 18禁在线无遮挡免费观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人福利小说| 精品久久久久久久久久免费视频| 国产 一区精品| 99在线视频只有这里精品首页| 国产成人freesex在线| 色哟哟·www| 国产成人精品一,二区 | 别揉我奶头 嗯啊视频| av免费观看日本| 国产精品美女特级片免费视频播放器| 日本成人三级电影网站| 国产高清有码在线观看视频| 中文字幕av在线有码专区| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 欧美日韩在线观看h| 国产精品久久久久久精品电影小说 | 男女下面进入的视频免费午夜| 少妇人妻精品综合一区二区 | 99久久中文字幕三级久久日本| 精品99又大又爽又粗少妇毛片| 最好的美女福利视频网| 麻豆国产av国片精品| 在线天堂最新版资源| 亚洲婷婷狠狠爱综合网| 国产精品国产高清国产av| 午夜亚洲福利在线播放| 少妇的逼水好多| 有码 亚洲区| 国产探花在线观看一区二区| 国产精品人妻久久久影院| 在线播放国产精品三级| 26uuu在线亚洲综合色| 婷婷色av中文字幕| 久久人人精品亚洲av| 99热全是精品| 一区二区三区高清视频在线| 亚洲最大成人手机在线| 看片在线看免费视频| 久久精品综合一区二区三区| 亚洲av成人精品一区久久| 亚洲综合色惰| 久久精品国产亚洲av天美| 男人舔女人下体高潮全视频| 99热这里只有是精品在线观看| 午夜福利在线在线| 成人av在线播放网站| 熟女电影av网| 日韩欧美精品免费久久| 三级经典国产精品| а√天堂www在线а√下载| 国产探花极品一区二区| 偷拍熟女少妇极品色| av在线亚洲专区| 国产一区二区三区在线臀色熟女| 成人欧美大片| 天堂√8在线中文| 国产在线精品亚洲第一网站| 日韩欧美三级三区| 午夜久久久久精精品| 美女黄网站色视频| 亚洲久久久久久中文字幕| 少妇人妻一区二区三区视频| 干丝袜人妻中文字幕| 亚洲成人中文字幕在线播放| 欧美另类亚洲清纯唯美| 成人国产麻豆网| 麻豆乱淫一区二区| 午夜福利高清视频| 给我免费播放毛片高清在线观看| 你懂的网址亚洲精品在线观看 | 日韩欧美精品免费久久| 三级男女做爰猛烈吃奶摸视频| 欧美zozozo另类| 亚洲,欧美,日韩| 亚洲精品国产成人久久av| 国产成人午夜福利电影在线观看| 亚州av有码| 亚洲三级黄色毛片| 男女边吃奶边做爰视频| 精品国内亚洲2022精品成人| 亚洲国产欧美人成| 99久久精品一区二区三区| 狂野欧美激情性xxxx在线观看| 麻豆一二三区av精品| 亚洲无线在线观看| 午夜视频国产福利| 日韩强制内射视频| 97超碰精品成人国产| 99九九线精品视频在线观看视频| 午夜免费男女啪啪视频观看| 国国产精品蜜臀av免费| 免费av观看视频| 亚洲国产欧美人成| 中文字幕av在线有码专区| 久久久久久久午夜电影| 看黄色毛片网站| 高清日韩中文字幕在线| 高清毛片免费看| 美女国产视频在线观看| 乱码一卡2卡4卡精品| 亚洲av成人av| 99久久精品一区二区三区| av在线天堂中文字幕| 精品少妇黑人巨大在线播放 | 欧美一区二区亚洲| 黄色一级大片看看| 亚洲精品影视一区二区三区av| 成人亚洲欧美一区二区av| 日韩欧美精品免费久久| 身体一侧抽搐| 99热6这里只有精品| 99国产极品粉嫩在线观看| 亚洲欧美精品综合久久99| 日韩精品有码人妻一区| 国产乱人偷精品视频| 亚洲国产欧美在线一区| 青春草视频在线免费观看| 麻豆国产97在线/欧美| 99热精品在线国产| 丰满乱子伦码专区| 中国美白少妇内射xxxbb| 青青草视频在线视频观看| 色5月婷婷丁香| 天美传媒精品一区二区| 欧美激情久久久久久爽电影| 亚洲国产精品成人综合色| 欧美日韩综合久久久久久| 禁无遮挡网站| 午夜福利高清视频| 亚洲一区高清亚洲精品| 久久精品夜夜夜夜夜久久蜜豆| 在线播放国产精品三级| 国产精品人妻久久久影院| 可以在线观看毛片的网站| 最近视频中文字幕2019在线8| 亚洲在久久综合| 97热精品久久久久久| 永久网站在线| 能在线免费观看的黄片| 大型黄色视频在线免费观看| 成人鲁丝片一二三区免费| 少妇丰满av| 十八禁国产超污无遮挡网站| 国产精品一区二区三区四区久久| 天堂av国产一区二区熟女人妻| a级毛片免费高清观看在线播放| 尾随美女入室| 一个人免费在线观看电影| 三级经典国产精品| 久久国内精品自在自线图片| 边亲边吃奶的免费视频| 久久精品国产亚洲网站|