吳秋平,李延平,常 勇,2
(1.集美大學(xué)機(jī)械與能源工程學(xué)院,福建廈門 361021;2.集美大學(xué)工程訓(xùn)練中心,福建廈門 361021)
平底直動(dòng)推桿盤形凸輪機(jī)構(gòu)的可視映射尺寸綜合方法
吳秋平1,李延平1,常 勇1,2
(1.集美大學(xué)機(jī)械與能源工程學(xué)院,福建廈門361021;2.集美大學(xué)工程訓(xùn)練中心,福建廈門361021)
以平底直動(dòng)推桿盤形凸輪機(jī)構(gòu)為研究對(duì)象,給出機(jī)構(gòu)形態(tài)、基本/總體尺寸、尺寸綜合問題的準(zhǔn)確描述和求解基本思路與步驟,提出3項(xiàng)約束條件及解析表達(dá),構(gòu)建尺寸坐標(biāo)系O-r0βe、尺寸空間Ω(r0,β,e),建立面向“科學(xué)計(jì)算可視化”的數(shù)學(xué)求解模型,采取遍歷性方法,先得到單一約束的可視邊界、解域,繼而據(jù)多目標(biāo)規(guī)劃歸并約束,得到歸并約束邊界面/解空間,分析論證得到“最優(yōu)解/解區(qū)間/解集”、“非劣解區(qū)間/解域”和“谷底點(diǎn)”等重要規(guī)律,以及尺寸最優(yōu)解存在性特征,以一種行之有效的通用求解方法解決了對(duì)象機(jī)構(gòu)的尺寸綜合問題,為對(duì)象機(jī)構(gòu)基本尺寸的選擇與工程設(shè)計(jì)奠定了理論基礎(chǔ).
平底直動(dòng)推桿;盤形凸輪;可視映射;尺寸綜合;最優(yōu)解/解區(qū)間/解集;谷底點(diǎn)
平底推桿較滾子推桿在承載能力、潤(rùn)滑性能、使用壽命和高速性能等方面具有明顯優(yōu)越性,其設(shè)計(jì)問題長(zhǎng)期以來吸引了國(guó)內(nèi)外學(xué)者的濃厚興趣和廣泛關(guān)注[1-7].
機(jī)構(gòu)綜合中,性能評(píng)價(jià)和尺寸綜合是處于機(jī)構(gòu)學(xué)前沿、有挑戰(zhàn)性的重要課題.性能評(píng)價(jià),是機(jī)構(gòu)綜合的首要問題,核心是提出描述綜合性能的評(píng)價(jià)指標(biāo);尺寸綜合,旨在確定運(yùn)動(dòng)學(xué)參數(shù),目的是揭示多種性能與尺寸型間的映射規(guī)律.
以平底直動(dòng)推桿盤形凸輪機(jī)構(gòu)為研究對(duì)象,闡釋了形態(tài)構(gòu)成、基本尺寸參數(shù)、尺寸綜合問題的準(zhǔn)確描述以及求解基本思路與步驟;提出3項(xiàng)性能評(píng)價(jià)指標(biāo)及解析表達(dá);構(gòu)建了面向“可視化”問題求解模型,采取“遍歷搜索”思想方法,先解決單一約束下邊界線/解域、邊界面/解空間,繼之解決歸并約束下邊界線/解域、邊界面/解空間,成功實(shí)現(xiàn)了二維朝三維的可視映射.據(jù)此,揭示“最優(yōu)解/解區(qū)間/解集”、“非劣解區(qū)間/解域”和“谷底點(diǎn)”等的存在性、重要內(nèi)涵和相應(yīng)求解方法,為工程設(shè)計(jì)機(jī)構(gòu)尺寸綜合提供了一種行之有效的通用求解方法.
1.1對(duì)象機(jī)構(gòu)形態(tài)構(gòu)成、基本尺寸和總體尺寸
如圖1所示,平底直動(dòng)推桿盤形凸輪機(jī)構(gòu)由盤形凸輪1、平底推桿2和機(jī)架0組成.原動(dòng)凸輪1等速轉(zhuǎn)動(dòng),驅(qū)動(dòng)平底G1G2沿導(dǎo)路往復(fù)移動(dòng),實(shí)現(xiàn)預(yù)期運(yùn)動(dòng)輸出.
圖1 平底直動(dòng)推桿盤形凸輪機(jī)構(gòu)Fig.1 Disc cams with translating flat-faced follower
基本尺寸:凸輪基圓半徑r0、平底夾角β和偏距e.
凸輪工作輪廓基圓半徑r0是首要基本尺寸.不僅決定橫向和縱向尺寸,而且決定凸輪尺寸、材耗和空間需求等.
平底夾角β是重要基本參數(shù).對(duì)機(jī)構(gòu)尺寸影響較小,但決定接觸應(yīng)力、承載能力和運(yùn)動(dòng)保真等,對(duì)動(dòng)力學(xué)性能亦有重要影響.
偏距e是另一重要基本尺寸.與r0不同,是相對(duì)位置參數(shù),通過與r0,β復(fù)雜的耦合關(guān)系,影響機(jī)構(gòu)橫向和縱向尺寸.
須強(qiáng)調(diào)的是:文中β是有向角.凸輪逆時(shí)針轉(zhuǎn)動(dòng),規(guī)定如下:如圖1所示,β=0,對(duì)應(yīng)G1G2‖O1y,β正向?yàn)轫槙r(shí)針方向,β∈(0°,180°).
1.2對(duì)象機(jī)構(gòu)尺寸綜合問題的準(zhǔn)確描述
對(duì)象機(jī)構(gòu)的尺寸綜合問題,準(zhǔn)確描述如下:
已知:推桿行程為h,往程、返程運(yùn)動(dòng)角為Φg,Φr,位移規(guī)律為sg=sg(φ),sr=sr(φ),近/遠(yuǎn)休止角為Φs和Φs′,往程、返程許用壓力角[α]g和[α]r,生產(chǎn)阻力Q=Q(φ),推桿-凸輪、推桿-機(jī)架摩擦系數(shù)為f,上、下支承面間跨距為lex,推桿寬度d,懸臂初始長(zhǎng)度l0,凸輪彈性模量E1、泊松比μ1,平底彈性模量E1、泊松比μ2,凸輪、平底凸輪接觸寬度b,往程/返程凸輪-平底許用接觸應(yīng)力[σH]g和[σH]r.
求解:凸輪基圓半徑r0、平底夾角β和偏距e.
1.3尺寸綜合問題求解的基本思路與步驟
求解基本思路與步驟,如下:
1)構(gòu)建尺寸坐標(biāo)系O-r0βe、尺寸空間Ω(r0,β,e),離散-網(wǎng)格化處理;2)提出約束條件Ⅰ,Ⅱ,Ⅲ,推演解析公式;3)采取遍歷方法,實(shí)現(xiàn)單一約束向O-r0βe,Ω(r0,β,e)映射,得到可視邊界線/解域、邊界面/解空間;4)實(shí)現(xiàn)歸并約束向O-r0βe,Ω(r0,β,e)映射,得到可視邊界線/解域、邊界面/解空間;5)根據(jù)多目標(biāo)規(guī)劃、可視映射,揭示最優(yōu)解存在性等重要結(jié)論.
研究發(fā)現(xiàn),尺寸綜合須滿足3項(xiàng)評(píng)價(jià)指標(biāo),或稱約束條件[8-12].
2.1約束條件Ⅰ——運(yùn)動(dòng)保真條件式中:ρ為凸輪理論輪廓曲率半徑;ρg,ρr分別為往程、返程凸輪理論輪廓曲率半徑;本文“║”表達(dá)“同時(shí)滿足”之意.引用文獻(xiàn)[4],ρ的計(jì)算式為
式(2)通用.式(1)等價(jià)于ρmin>0,即
取定r0,β和e,ρ=ρ(r0,β,e,s)轉(zhuǎn)化為φ的一元函數(shù).通過一維搜索,可解得ρgmin和ρrmin.
2.2約束條件Ⅱ——傳動(dòng)性能條件
式中,|α|g,|α|r和[α]g,[α]r分別為往程、返程壓力角絕對(duì)值和許用值.據(jù)文獻(xiàn)[4],有
2.3約束條件Ⅲ——接觸強(qiáng)度條件
式中,σHg,σHr分別為往程、返程接觸應(yīng)力,[σH]g,[σH]r分別為σHg,σHr許用值.式(6)等價(jià)于
式中,σHmaxg,σHmaxr為σHg,σHr最大值.引據(jù)文獻(xiàn)[5],平底曲率半徑近似無窮大,有
式(8)通用,F(xiàn)n為凸輪與平底間法向力.
Fn是與ρ,r0,β,e和s,s′(φ)等以及與凸輪、平底材料有關(guān)常量b,μ1,μ2,E1和E2等有關(guān)的復(fù)雜函數(shù),其解析公式推導(dǎo)如下:
如圖2(a)所示,β∈(0°,90°]形態(tài)時(shí),以推桿為對(duì)象,作受力分析.力平衡方程為:
式中:F為凸輪與平底間作用力;FR1,F(xiàn)R2為下、上支承處作用力;F∑為推桿受總載荷(包括生產(chǎn)阻力、推桿自重和彈簧壓力等);lex為上、下支承點(diǎn)間跨距;d為推桿寬度;φm為推桿、機(jī)架、平底凸輪間摩擦角;l0為懸臂初始長(zhǎng)度;s=s(φ)為推桿位移;L為接觸點(diǎn)K沿G1G2距推桿方位線的距離.
式中:f為推桿、機(jī)架、平底凸輪間摩擦系數(shù);s′(φ)為推桿速度.
推桿受總載荷為
式中,Q為工作阻力,mf為平底推桿質(zhì)量,ms為彈簧質(zhì)量,F(xiàn)s為彈簧力,a為推桿加速度.
聯(lián)立式(9)至(14),整理得法向力Fn解析式為
如圖2(b)所示,β∈(90°,180°)形態(tài)時(shí),同理,力平衡方程為:
聯(lián)立式(12)至(14)、(17)至(19),整理得
取定r0,β和e,σH=σH(r0,β,e,s)轉(zhuǎn)化為φ的一元函數(shù).一維搜索,可解得σHmax.
選取r0,β和e為三坐標(biāo)軸參數(shù),構(gòu)造尺寸坐標(biāo)系O-r0βe和尺寸空間Ω(r0,β,e),如圖3所示.
圖3 尺寸坐標(biāo)系O-r0βe、尺寸空間Ω(r0,β,e)構(gòu)建與離散-網(wǎng)格化Fig.3 Discretizing and gridding of the coordinate system O-r0βe and areaΩ(r0,β,e)of dimension
r0,β和e為基本機(jī)構(gòu)尺寸參數(shù).定義域:r0∈(0,+∞),β∈(0,180°)和e∈(-∞,+∞).故此,r0,β兩軸僅有正半軸,e軸有正、負(fù)半軸.
所謂Ω(r0,β,e)坐標(biāo)空間離散化,指分別沿r0,β和e軸對(duì)Ω(r0,β,e)進(jìn)行離散-網(wǎng)格化處理[13].
為清楚呈現(xiàn)邊界、解域形態(tài)特征,通常取r0,β和e上限:sup[r0]=(3~10)h,sup[β]=π(180°)和sup[e]=(1~3)h;e下限inf[e]=-(1~3)h,如圖3所示.
sup[r0],sup[e]和inf[e]具體取值需根據(jù)情況摸索確定.
沿r0,β和e軸,任意相鄰兩線皆取等間隔
式中,m=1,2,…,據(jù)精度要求定.
任一網(wǎng)格節(jié)點(diǎn)(r0i,βj,ek),有:
總共有imax·jmax·(2kmax)個(gè)網(wǎng)格節(jié)點(diǎn).
不難理解,將約束條件Ⅰ至Ⅲ映射到O-r0βe中,對(duì)應(yīng)3個(gè)邊界面SⅠ至SⅢ,將空間Ω(r0,β,e)劃分成:解空間ΩⅠ至ΩⅢ,非解空間ΩⅠun至ΩⅢun.
三維問題求解復(fù)雜棘手,故取截平面e=ek的“降維”方法,將三維問題簡(jiǎn)化為二維問題,如圖3(b)所示.
3.1單一約束條件下的約束條件I—運(yùn)動(dòng)保真條件
3.1.1邊界線?ΛI(xiàn)ek/解域ΛI(xiàn)Gek
遍歷網(wǎng)格節(jié)點(diǎn)(r0iek,βjek),滿足式(3)的標(biāo)示為淺灰色,不滿足的標(biāo)示為深灰色,得到約束邊界?ΛI(xiàn)ek,如圖3(a)所示.據(jù)此,可得:
1)邊界線?ΛI(xiàn)ek,形態(tài)特征:正弦曲線;
2)?ΛI(xiàn)ek將坐標(biāo)平面分為:解域ΛI(xiàn)Gek,非解域ΛI(xiàn)Rek,如圖4(a)所示.
圖4 運(yùn)動(dòng)保真約束的邊界線/解域、邊界面/解空間Fig.4 The bounding line/solution area,bounding surface/solution space based on motion fidelity conditions
3.1.2邊界面SI={?ΛI(xiàn)ek}/解空間ΩI={ΛI(xiàn)Gek}
任取截平面e=ek(k=kmin,…,kmax),數(shù)“正弦曲線”堆積成“正弦曲面”——“邊界面SI”,即{?ΛI(xiàn)ek}.
SI將尺寸空間分為:解空間ΩI={ΛI(xiàn)Gek}、非解空間ΩIun={ΛI(xiàn)Rek},如圖4(b).
3.2單一約束條件下的約束條件II——傳動(dòng)性能條件3.2.1 邊界線?ΛI(xiàn)Iek/解域ΛI(xiàn)IGek
同理,據(jù)式(4)得兩約束邊界?ΛI(xiàn)Iek(1),?ΛI(xiàn)Iek(2),如圖5(a)所示,可知
1)邊界線?ΛI(xiàn)Iek(1),?ΛI(xiàn)Iek(2),形態(tài)特征:與β軸交點(diǎn)分別為π/2+[α],π/2-[α]的2條關(guān)于β=π/2對(duì)稱的水平線;
2)?ΛI(xiàn)Iek(1),?ΛI(xiàn)Iek(2)將坐標(biāo)平面分為:解域ΛI(xiàn)Gek,非解域ΛI(xiàn)IRek(1),ΛI(xiàn)IRek(2).
圖5 傳動(dòng)性能約束的邊界線/解域、邊界面/解空間Fig.5 The bounding line/solution area,bounding surface/solution space based on transmission behavior conditions
取不同[α],?ΛI(xiàn)Iek(1),?ΛI(xiàn)Iek(2)分布規(guī)律:[α]″<[α]′<[α],對(duì)應(yīng)邊界線對(duì)稱分布,逐漸向β=π/2逼近,如圖5(a)所示.
3.2.2邊界面SII={?ΛI(xiàn)Iek}/解空間ΩII={ΛI(xiàn)IGek}
如圖5(b)所示,堆積e=ek,數(shù)平行直線堆積成平行面SII(1),SII(2),即{?ΛI(xiàn)Iek}.
SII(1),SII(2)所夾空間是解空間ΩII={ΛI(xiàn)IGek},此外,非解空間ΩIIun(1)={ΛI(xiàn)IRek(1)},ΩIIun(2)={ΛI(xiàn)IRek(2)}.
3.3單一約束條件下的約束條件III——接觸強(qiáng)度條件
3.3.1邊界線?ΛI(xiàn)IIek/解域ΛI(xiàn)IIGek
據(jù)式(7)得到約束邊界?ΛI(xiàn)ek,如圖6(a)所示,可知
圖6 接觸強(qiáng)度約束的邊界線/解域、邊界面/解空間Fig.6 The bounding line/solution area,bounding surface/solution space based on tangency stress conditions
1)邊界線?ΛI(xiàn)IIek,形態(tài)特征:左端封閉、右端開口的“U”型曲線;
2)?ΛI(xiàn)IIek將坐標(biāo)平面分成兩部分:解域ΛI(xiàn)IIGek,非解域ΛI(xiàn)IIRek.
3.3.2邊界面SIII={?ΛI(xiàn)IIek}/解空間ΩIII={ΛI(xiàn)IIGek}
堆積e=ek,數(shù)“U”型曲線堆積“U”型曲面——“邊界面SIII”,即{?ΛI(xiàn)IIek}.
SIII內(nèi)、外:解空間ΩIII={ΛI(xiàn)IIGek}、非解空間ΩIIIun={ΛI(xiàn)IIRek},如圖6(b).
4.1邊界線/解域、邊界面/解空間
4.1.1邊界線?Λ∑ek/解域Λ∑upek
歸并約束下的邊界線(面)、解域(空間),指滿足約束條件I至III的邊界線(面)、解域(空間).
大量算例表明:多數(shù)情況下,?ΛI(xiàn)ek至?ΛI(xiàn)IIek分布規(guī)律如圖7(a)所示:?ΛI(xiàn)ek位居?ΛI(xiàn)IIek右側(cè),?ΛI(xiàn)Iek(1),?ΛI(xiàn)Iek(2)分別與?ΛI(xiàn)ek,?ΛI(xiàn)IIek截交,Λ∑ek由?ΛI(xiàn)Iek(1),?ΛI(xiàn)Iek(2)和?ΛI(xiàn)IIek截取而得.
根據(jù)3.1至3.3節(jié),得到重要結(jié)論:
1)邊界線?Λ∑ek實(shí)際由?ΛI(xiàn)Iek(1),?ΛI(xiàn)Iek(2),?ΛI(xiàn)IIek耦合而成.?Λ∑ek形態(tài)特征:“U”型彎折線,左端封閉、右端開口.
2)?Λ∑ek將坐標(biāo)平面分為:解域ΛI(xiàn)∑ek,非解域Λ∑Rek.
圖7 歸并約束下的邊界線/解域、邊界面/解空間Fig.7 The bounding line/solution area,bounding surface/ solution space based on merger conditions
4.1.2邊界面S∑={?Λ∑ek}/解空間Ω∑={Λ∑upek}
堆積e=ek,“U”型彎折線堆積成“邊界面S∑”,即{?Λ∑ek}.S∑內(nèi)、外兩側(cè)分別為:解空間Ω∑={Λ∑Gek}、非解空間Ω∑un={Λ∑Rek},如圖7(b).
4.2 “最優(yōu)解區(qū)間”和“非劣解區(qū)間”
4.2.1“最優(yōu)解區(qū)間”?Λ∑ek(1)
如前所述,凸輪基圓半徑r0、壓力角等是衡量材耗、傳動(dòng)和承載性能優(yōu)劣的重要評(píng)價(jià)指標(biāo).
如圖8(a)所示,截平面e=ek,以PAek,PBek為節(jié)點(diǎn)將?Λ∑ek分為三部分?Λ∑ek(1),?Λ∑ek(2)和?Λ∑ek(3),取
PC1→PC2,α相同,r0趨劣,PC1為PC1PC2上“最優(yōu)解”.
故此,任取不同α值,得“最優(yōu)解區(qū)間”為
4.2.2“非劣解區(qū)間”?Λ∑ek(1)*
對(duì)于“最優(yōu)解區(qū)間”?Λ∑ek(1),作進(jìn)一步分析.
沿?Λ∑ek(1)自PDek至PBek:α先單調(diào)減(PDekPAek段),后單調(diào)增(PAekPBek段);r0在PDekPBek均單調(diào)增.
根據(jù)多目標(biāo)優(yōu)化理論[14],“最優(yōu)解區(qū)間”?Λ∑ek(1)內(nèi),存在“非劣解區(qū)間”,實(shí)際綜合時(shí),僅需考慮?Λ∑ek(1)*.
?Λ∑ek(1)*的解析表達(dá)為
圖8 “最優(yōu)解區(qū)間/域”和“非劣解區(qū)間/域”等Fig.8 “The optimal solution/solution interval/solution"and“non-inferior solution interval/solution domain"and so on
據(jù)此,得到重要結(jié)論:
1)滿足約束條件I至III的“r0最優(yōu)解”——PDek點(diǎn);
2)滿足約束條件I至III的“α最優(yōu)解”——PAek點(diǎn);
3)如圖1所示對(duì)象機(jī)構(gòu),“非劣解集”?Λ∑ek(1)*,恒存在于β為鈍角的機(jī)構(gòu)構(gòu)型.
4.3“非劣解域”、“最優(yōu)解集”、“谷底點(diǎn)”和“影像點(diǎn)”等
4.3.1“非劣解域S∑back”、“r0最優(yōu)解集Гr0”和“α最優(yōu)解集Гα”
遍取不同e=ek,?Λ∑ek(1)*堆積得{?Λ∑ek(1)*}——“非劣解域S∑back”,如圖8(b)深灰色區(qū)域所示.
同理,遍取不同e=ek,則:
PDek堆積得{PDek}——“r0最優(yōu)解集Гr0”;
PAek堆積得{PAek}——“α最優(yōu)解集Гα”.
Гr0,Гα分別是S∑back的上下邊界,Гr0和Гα形態(tài):類拋物線,如圖8(b)所示.
顯然,機(jī)構(gòu)呈傳統(tǒng)形態(tài)布局:β=90°(π/2),對(duì)象機(jī)構(gòu)具有最佳傳動(dòng)性能.據(jù)上,機(jī)構(gòu)呈特殊形態(tài)布局:β=120°(2π/3),對(duì)象機(jī)構(gòu)具有最優(yōu)尺寸.
4.3.2“谷底點(diǎn)”及其“影像點(diǎn)”
據(jù)4.3.1,引伸得重要結(jié)論:
1)“r0最優(yōu)解集Гr0”類拋物線上,必存在一個(gè)“谷底點(diǎn)”,取得最小基圓半徑、對(duì)應(yīng)平底夾角及偏距,如圖8(b)所示.其求解方法:沿?Λ∑ek搜索,通過計(jì)算、比較,篩選使?jié)M足式(8)的最小的r0Dek,以及對(duì)應(yīng)βDek.
2)“α最優(yōu)解集Гα”類拋物線上,必存在一個(gè)“谷底點(diǎn)”,取得α最優(yōu)解——基圓半徑、平底夾角及偏距.其求解方法同上,不在贅述.
將“Гr0”,“Гα”向O-r0e坐標(biāo)平面投影,得到2條平面曲線Гr0′,Гα′.“”,“”即“”,“”的影像點(diǎn),如圖9所示.其求解方法同上,不在贅述.
圖9 投影曲線“Гr0′”,“Гα′”和影像點(diǎn)“”,“”Fig.9 Projective curve“Гr0′",“Гα′"and Image points“",“"
“谷底點(diǎn)P**D”的特殊重要涵義:滿足歸并約束I至III下,取得最小尺寸的全局最優(yōu)解.
已知:h=50mm,Φg=150°,Φr=160°,Φs=30°和Φs′=20°,往程、返程分別選取3-4-5和擺線運(yùn)動(dòng)
2)已知條件同上,但其中Q,Φg,Φr等設(shè)為變量(取值見表1),求機(jī)構(gòu)尺寸最優(yōu)解(r0最優(yōu)).
表1 平底機(jī)構(gòu)尺寸綜合結(jié)果(β/(°),r0/mm,e/mm)Table 1 Dimension synthetic conclusion flat-faced mechanism(β/(°),r0/mm,e/mm)
同時(shí),根據(jù)例題得到:
1)工作載荷對(duì)機(jī)構(gòu)尺寸影響,載荷越大,機(jī)構(gòu)尺寸越大;
2)Φg,Φr對(duì)機(jī)構(gòu)尺寸影響,且Φg,Φr越大,凸輪機(jī)構(gòu)尺寸越小、越緊湊.
1)針對(duì)平底直動(dòng)推桿盤形凸輪機(jī)構(gòu),給出形態(tài)構(gòu)成、尺寸綜合問題的科學(xué)準(zhǔn)確描述和求解基本思路與步驟.
2)系統(tǒng)提出“運(yùn)動(dòng)保真、傳動(dòng)性能和接觸強(qiáng)度”等尺寸綜合的3項(xiàng)性能評(píng)價(jià)指標(biāo),即3項(xiàng)約束條件.
3)構(gòu)建尺寸坐標(biāo)系O-r0βe、尺寸空間Ω(r0,β, e),建立可視映射模型;揭示單一約束和歸并約束下的邊界線、解域和邊界面、解空間,成功實(shí)現(xiàn)了朝二維、三維尺寸坐標(biāo)系的可視映射.
4)揭示“最優(yōu)解/解區(qū)間/解集”、“非劣解區(qū)間/解域”和“谷底點(diǎn)”等存在性和重要意義,給出求解方法.
基于可視映射的思想和手段,構(gòu)建尺寸坐標(biāo)系、尺寸空間,實(shí)現(xiàn)復(fù)雜解析公式的可視映射,系統(tǒng)、全面地解決了平底直動(dòng)推桿盤形凸輪機(jī)構(gòu)的性能評(píng)價(jià)、尺寸綜合問題,其尺寸綜合思想,為解決工程設(shè)計(jì)機(jī)構(gòu)尺寸綜合問題提供了理論依據(jù).
[1]華大年,唐之偉.機(jī)構(gòu)分析與設(shè)計(jì)[M].北京:紡織工業(yè)出版社,1985:103-162.
HUA Da-nian,TANG Zhi-wei.Analysis and design of mechanisms[M].Beijing:Textile &Apparel Press,1985:103-162.
[2]伏爾默J.凸輪機(jī)構(gòu)[M].郭連聲,譯.北京:機(jī)械工業(yè)出版社,1983:21-78.
VOLLMER J.Cam mechanisms[M].Translated by Guo Lian-sheng.Beijing:China Mechine Press,1983:21-78.
[3]常勇,徐繼楊,黎慶.推導(dǎo)凸輪廓線外凸性判據(jù)和曲率半徑的一種新方法[J].黑龍江商學(xué)院學(xué)報(bào)(自然科學(xué)版),1996,12(2):43-50.
CHANG Yong,XU Ji-yang,LI Qing.A new method for deriving the external-convexity criterion and convature radius formula[J].Journal of Heilongjiang Commercial College(Natural Sciences Edition),1996,12(2):43-50.
[4]魏曉鳴,常勇,李延平.最小尺寸直動(dòng)平底從動(dòng)桿平面凸輪機(jī)構(gòu)的設(shè)計(jì)方法[J],黑龍江商學(xué)報(bào)(自然科學(xué)版),1994,10(3):30-33.
WEI Xiao-ming,CHANG Yong,LI Yan-ping.A designing method of the follow planar cam mechanism with minimum size translating flat bottom[J].Journal of Heilongjiang Commercial College(Natural Sciences Edition),1994,10(3):30-33.
[5]劉遠(yuǎn)偉,常勇.基于接觸強(qiáng)度的最小尺寸凸輪機(jī)構(gòu)設(shè)計(jì)[J].機(jī)械設(shè)計(jì),1997,14(10):10-13.
LIU Yuan-wei,CHANG Yong.Application innovation of cam mechanism based on tangency stress[M].Journal of Machine Design,1997,14(10):10-13.
[6]石永剛,吳央芳.凸輪機(jī)構(gòu)設(shè)計(jì)與應(yīng)用創(chuàng)新[M].北京:機(jī)械工業(yè)出版社,2007:37-82.
SHI Yong-gang,WU Yang-fang.The design and application innovation of cam mechanism[M].Beijing:China Machine Press,2007:37-82.
[7]牧野洋.自動(dòng)機(jī)械機(jī)構(gòu)學(xué)[M].胡茂松,譯.北京:科學(xué)出版社,1980:176-234.
HIROSHI M.Automatic mechanism and machine theory[M].Translated by HU Mao-song.Beijing:Chinese Science Press,1980:176-234.
[8]華大年.按許用壓力角設(shè)計(jì)最小尺寸擺動(dòng)從動(dòng)桿平面凸輪的解析法[J].機(jī)械工程學(xué)報(bào),1982,18(4):74-79.
HUA Da-nian.Method for designing minimum size oscillating follower plane cam mechanisms according to alloyvable pressureAngle[J].Journal of Mechanical Engineering,1982,18(4):74-79.
[9]NAVARRO O,WU C J,ANGELES J.The size-minimization of planar cam mechanisms[J].Mechanism and Machine Theory,2001,36(3):371-386.
[10]SCHOENHERR J.Synthesis of planar cam mechanics with lowest dimensions[J].Mechanism and Machine Theory,1993,28(3),317-325.
[11]李延平,林榮富,常勇.浮動(dòng)平底推桿凸輪機(jī)構(gòu)的第Ⅱ類尺寸綜合問題[J].中國(guó)機(jī)械工程,2015,26(5):611-619.
LI Yan-ping,LIN Rong-fu,CHANG Yong.ClassⅡsynthesis of cam mechanism with floating flat faced pushrod[J].Journal of Mechanical Engineering,2015,26(5):611-619.
[12]常勇,林榮富,李延平.浮動(dòng)平底推桿共軛凸輪機(jī)構(gòu)的第Ⅱ類機(jī)構(gòu)綜合問題研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(3):331-338.
CHANG Yong,LIN Rong-fu,LI Yan-ping.Class II synthesis of conjugate cam mechanism with floating flat faced pushrod[J].Transactiongs of the Chinese Society for Agricultural Machiney,2014,45(3):331-338.
[13]李曉梅,黃朝暉,蔡勛,等.并行與分布式可視化技術(shù)及應(yīng)用[M].北京:國(guó)防工業(yè)出版社,2001.
LI Xiao-mei,HUANG Chao-hui,CAI Xun,et al.Parallel and distributed visualization:techniques and applications[M].Beijing:National Defense Industry Press,2001.
[14]劉三明.多目標(biāo)規(guī)劃的理論方法及其應(yīng)用研究[M].上海:上海交通大學(xué)出版社,2014:16-55.
LIU San-ming.Research on synthetical analysis and assessmentch of multi-objective planning[M].Shanghai:Shanghai Jiaotong University Press,2014:16-55.
The dimension synthesis of disc cams with translating flat-faced follower based on technology of the visualization-oriented mapping
WU Qiu-ping1,LI Yang-ping1,CHANG Yong1,2
(1.College of Mechanical and Energy Engineering,Jimei University,Xiamen 361021,China;2.Engineering Training Center,Jimei University,Xiamen 361021,China)
According to the study in disc cams with translating flat-faced follower,the paper showed the organization's form,basic dimension,accurate description and basic steps for dimension synthesis.It also offered three constraint conditions and parsing expressions,then built the dimension area and constructing coordinate system O-r0βe and areaΩ(r0,β,e)of dimension,as well as establishing mathematical model based on“Visualization in Scientific Computing". Through single or merge visualization-oriented mapping with ergodic method,some comparable boundaries and solution domains were given.According to the multi-objective planning,several important rules such as“the optimal solution/solution interval/solution rendezvous"and the“non-inferior solution interval/solution domain"were presented.This paper also revealed the existence of optimal solution.All the consequences were instructive to the dimension synthesis of the mechanism with an effective general solution method,as well as establishing the theoretical foundation for the selection of basic size and engineering design of the mechanism.
translating flat-faced follower;disc cam;visualization-oriented mapping;dimension synthesis;the optimal solution/solution interval/solution rendezvous;bottom point
TH 112.2
A
1006-754X(2016)02-0116-08
10.3785/j.issn.1006-754X.2016.02.003
2015-09-18.本刊網(wǎng)址·在線期刊:http://www.journals.zju.edu.cn/gcsjxb
國(guó)家自然科學(xué)基金資助項(xiàng)目(51175224,51475209);福建省自然科學(xué)基金資助項(xiàng)目(2010J01302);福建省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(201510390041).
吳秋平(1989—),男,江蘇無錫人,碩士生,從事凸輪機(jī)構(gòu)分析、設(shè)計(jì)與可視化軟件開發(fā)等研究,E-mail:469534211@ qq.com.
常勇(1964—),男,山東東營(yíng)人,教授,碩士生導(dǎo)師,從事凸輪與連桿機(jī)構(gòu)學(xué)、機(jī)構(gòu)分析與綜合可視化等研究,E-mail:cy13950017369@163.com.http://orcid.org//0000-0002-7473-5603