毛 君,張 瑜,劉占勝,李國(guó)平,陳洪月
(1.遼寧工程技術(shù)大學(xué)機(jī)械工程學(xué)院,遼寧阜新 123000;2.中國(guó)煤礦機(jī)械裝備有限責(zé)任公司,北京 100011;3.中煤張家口煤礦機(jī)械有限責(zé)任公司,河北張家口 076250)
刨頭間隙碰撞載荷下滑架體疲勞壽命試驗(yàn)分析
毛 君1,張 瑜1,劉占勝2,李國(guó)平3,陳洪月1
(1.遼寧工程技術(shù)大學(xué)機(jī)械工程學(xué)院,遼寧阜新123000;2.中國(guó)煤礦機(jī)械裝備有限責(zé)任公司,北京100011;3.中煤張家口煤礦機(jī)械有限責(zé)任公司,河北張家口076250)
針對(duì)刨煤機(jī)中部槽滑架體在工作過(guò)程中出現(xiàn)的疲勞斷裂現(xiàn)象,采用理論與試驗(yàn)相結(jié)合的方法,基于Winkler彈性地基接觸模型,建立了刨頭三自由度碰撞振動(dòng)動(dòng)力學(xué)模型.通過(guò)點(diǎn)到直線的距離算法作為檢驗(yàn)碰撞的準(zhǔn)則,構(gòu)造了刨頭與滑架接觸碰撞判別條件.采用數(shù)值方法進(jìn)行求解,得到刨頭與滑架各點(diǎn)的最大碰撞力,并以此作為疲勞試驗(yàn)載荷,對(duì)中部槽滑架體進(jìn)行疲勞壽命試驗(yàn),得到了滑架體的疲勞壽命.研究結(jié)果表明:滑架體在最大碰撞力作用下,在立板前端產(chǎn)生初始裂紋,在發(fā)生靜強(qiáng)度失效時(shí),失效點(diǎn)傾向于立板后部下端.研究結(jié)果對(duì)提高滑架體疲勞強(qiáng)度提供了理論依據(jù).
刨煤機(jī);接觸碰撞;滑架體;疲勞斷裂
刨煤機(jī)作為開(kāi)采薄煤層與中厚煤層的采煤機(jī)械,可實(shí)現(xiàn)刨煤機(jī)械化與自動(dòng)化.而刨煤機(jī)在礦井下工作過(guò)程中的動(dòng)態(tài)特性十分復(fù)雜.針對(duì)刨煤機(jī)在動(dòng)載荷作用下關(guān)鍵部件的可靠性問(wèn)題,趙麗娟等[1-3]應(yīng)用雨流法對(duì)刨煤機(jī)牽引塊、回轉(zhuǎn)接頭以及刨刀進(jìn)行了疲勞預(yù)測(cè).康曉敏等[4]基于雨流法以及線性Miner疲勞累積損傷模型對(duì)刨鏈疲勞壽命進(jìn)行了預(yù)測(cè).刨頭是刨煤機(jī)系統(tǒng)的工作機(jī)構(gòu),康曉敏等[5]對(duì)刨頭的穩(wěn)定性進(jìn)行了分析.刨頭與滑架之間間隙的存在,導(dǎo)致刨煤機(jī)在滑架上運(yùn)行時(shí)產(chǎn)生碰撞,從而影響其動(dòng)力特性、可靠性等.中部槽滑架體在大沖擊載荷作用下將產(chǎn)生疲勞裂紋,嚴(yán)重情況下將導(dǎo)致刨煤機(jī)整個(gè)生產(chǎn)線停產(chǎn).
針對(duì)間隙碰撞振動(dòng),盧緒祥等[6]應(yīng)用Hertz接觸理論研究了含對(duì)稱間隙結(jié)構(gòu)的接觸碰撞動(dòng)力學(xué)特性.Pashah等[7]應(yīng)用彈簧質(zhì)量模型以及三維有限元法研究了鋼球橫向撞擊彈塑性自由梁現(xiàn)象.國(guó)外一些學(xué)者采用連續(xù)接觸碰撞力模型,對(duì)接觸碰撞現(xiàn)象進(jìn)行了研究[8-12].Flores等[13]建立了間隙旋轉(zhuǎn)鉸的接觸條件,并采用連續(xù)接觸碰撞力模型,對(duì)間隙條件下的平面四連桿機(jī)構(gòu)動(dòng)態(tài)特性進(jìn)行了分析.
本文基于Winkler彈性地基模型,建立刨煤機(jī)刨頭三自由度碰撞振動(dòng)動(dòng)力學(xué)模型,提出刨頭與滑架的碰撞判別條件,并采用數(shù)值方法對(duì)動(dòng)力學(xué)模型進(jìn)行求解,以所得到的最大碰撞力為疲勞試驗(yàn)載荷,對(duì)中部槽滑架體進(jìn)行疲勞試驗(yàn),試驗(yàn)結(jié)果為提高中部槽滑架體可靠性提供了理論基礎(chǔ).
根據(jù)刨頭與滑架體系統(tǒng)的相對(duì)運(yùn)動(dòng)特點(diǎn),將模型進(jìn)行簡(jiǎn)化,如圖1所示.刨頭相對(duì)滑架運(yùn)動(dòng)過(guò)程中在外激勵(lì)作用下產(chǎn)生擺動(dòng)與移動(dòng),此時(shí)將與滑架產(chǎn)生彈塑性碰撞.為了描述刨頭的運(yùn)動(dòng)特性,需要判斷刨頭在運(yùn)動(dòng)過(guò)程中與滑架碰撞的條件.
設(shè)定圖1中RQTSFG為滑架體,且固定不動(dòng). mrqtsn為刨頭相對(duì)滑架運(yùn)動(dòng).通過(guò)判斷兩者是否產(chǎn)生幾何重疊的方法進(jìn)行碰撞判別.以判斷滑架體頂點(diǎn)Q以及刨頭n點(diǎn)產(chǎn)生順時(shí)針碰撞的條件為例,當(dāng)頂點(diǎn)Q到邊lrq的距離與頂點(diǎn)Q到邊lst距離之和大于邊lqt長(zhǎng)時(shí),則產(chǎn)生了碰撞,而當(dāng)刨頭上n點(diǎn)到直線lQT與lFS的距離之差小于滑架體邊lST時(shí),則產(chǎn)生了碰撞.
如圖1所示,選定滑架體中心處為坐標(biāo)原點(diǎn),刨頭運(yùn)動(dòng)之前各頂點(diǎn)坐標(biāo)為Zi=(xi,yi)(i=1,2,3,4,5,6),Q點(diǎn)坐標(biāo)為(x0,y0).當(dāng)刨頭運(yùn)動(dòng)之后位置為圖1中圖形m′r′q′t′s′n′,各點(diǎn)坐標(biāo)Nj=(xj,yj)(j=1,2,3,4),其轉(zhuǎn)化表達(dá)式為
圖1 刨頭間隙碰撞簡(jiǎn)化平面圖Fig.1 Simplified planar graph of clearance impact of coal plow
滑架體頂點(diǎn)Q與刨頭未產(chǎn)生碰撞,則
刨頭上n點(diǎn)與滑架體產(chǎn)生碰撞的條件如下:令n點(diǎn)坐標(biāo)為(xn,yn),順時(shí)針擺動(dòng)之后的坐標(biāo)為n′(x′n,y′n),其轉(zhuǎn)化過(guò)程如式(1).直線lQT表達(dá)式為:x=,lFS:x=-c.由點(diǎn)到直線距離公式,可得點(diǎn)n′到直線lQT與lFS的距離之差為
圖2為刨頭受力簡(jiǎn)圖,以滑架中心處為坐標(biāo)原點(diǎn),設(shè)坐標(biāo)系為xoy,建立刨頭擺動(dòng)與上下、左右移動(dòng)耦合的三自由度運(yùn)動(dòng)方程:
其中:I為刨頭的轉(zhuǎn)動(dòng)慣量;m為刨頭的質(zhì)量;Fx1為頂?shù)哆M(jìn)刀阻力的合力,F(xiàn)x2為腰刀與掏腰刀的進(jìn)刀阻力的合力,F(xiàn)x3為底刀進(jìn)刀阻力的合力;FyN為底刀側(cè)向阻力的合力,F(xiàn)y為頂?shù)秱?cè)向阻力的合力;G為刨頭自身的重力;T為在豎直與水平方向碰撞力對(duì)刨頭扭矩;lg為重力G的力臂;lx1,lx2,lx3為Fx1,F(xiàn)x2,F(xiàn)x3的力臂;ly為Fy的力臂,lyN為FyN的力臂;Q1為碰撞力在水平方向分力,Q2為碰撞力在豎直方向分力.
圖2 刨頭受力模型Fig.2 Force model of coal plow
通過(guò)(3)、(4)式以及(6)、(7)式對(duì)各點(diǎn)碰撞狀態(tài)進(jìn)行逐一判斷.式(8)中刨煤機(jī)各位置刨刀刨煤的動(dòng)態(tài)載荷采用文獻(xiàn)[14]方法進(jìn)行模擬,選取BH30/2-160型刨刀,刨刀寬度b=30mm,刀尖角β=50°,后角α=15°,刨削深度為70mm,煤層硬度A=250N/cm,則各位置刨刀動(dòng)載荷統(tǒng)計(jì)值如表1所示.
表1 刨刀動(dòng)載荷統(tǒng)計(jì)值Table 1 Statistic values of dynamic load of plow
對(duì)接觸碰撞力的模型描述,本文采用Winkler地基模型[15],即考慮間隙節(jié)點(diǎn)局部變形,將法向接觸力表示為穿透量δ的函數(shù)接觸點(diǎn)法向相對(duì)速度˙δ函數(shù),其表達(dá)式為
圖3 彈塑性接觸變形模型Fig.3 Elastic-plastic contact deformation model
本文以某種刨頭的結(jié)構(gòu)參數(shù)為例進(jìn)行數(shù)值求
采用數(shù)值分析方法對(duì)刨頭動(dòng)力學(xué)微分方程進(jìn)行求解.圖4為刨頭質(zhì)心相對(duì)滑架質(zhì)心運(yùn)動(dòng)的時(shí)域圖.從圖中可知,刨頭相對(duì)滑架的運(yùn)動(dòng)限制在間隙帶范圍內(nèi).由于刨頭與滑架產(chǎn)生了碰撞,刨頭質(zhì)心擺角幅值及刨頭質(zhì)心水平、豎直移動(dòng)量出現(xiàn)了不同程度的振蕩.而豎直振動(dòng)受重力影響,其反向振動(dòng)大于正向振動(dòng)幅度.
圖4 刨頭相對(duì)滑架運(yùn)動(dòng)時(shí)域圖Fig.4 Time domain chart of relative motion of sliding framework and coal plow
圖5、圖6為刨頭與滑架的順時(shí)針與逆時(shí)針碰撞力.從圖中可知,刨頭與滑架各點(diǎn)產(chǎn)生了不同程度的間斷碰撞.當(dāng)刨頭逆時(shí)針擺動(dòng)時(shí),最大的碰撞力產(chǎn)生在Q點(diǎn);當(dāng)刨頭順時(shí)針擺動(dòng)時(shí),最大碰撞力為R點(diǎn).表2為刨頭在不同擺動(dòng)形式下與滑架產(chǎn)生碰撞的最大力.
圖5 刨頭與滑架逆時(shí)針碰撞力Fig.5 Anti-clockwise collision force between plow head and sliding framework
圖6 刨頭與滑架順時(shí)針碰撞力Fig.6 Clockwise collision force between plow head and sliding framework
表2 各點(diǎn)最大碰撞力Table 2 Maximum collision force of each point
基于以上分析,對(duì)中部槽滑架體進(jìn)行疲勞試驗(yàn),試驗(yàn)方案如圖7所示.
將試驗(yàn)工裝與中部槽進(jìn)行裝配,啟動(dòng)試驗(yàn)臺(tái),使工裝中的拉伸組件鉤住滑架體導(dǎo)向板.通過(guò)對(duì)刨頭滑架碰撞分析可知,作用在導(dǎo)向板S處的最大碰撞力為420kN,以此作為滑架體疲勞壽命試驗(yàn)載荷.反復(fù)加載(保壓5s),直到滑架體發(fā)生疲勞失效.中板上方有1個(gè)采集點(diǎn),編號(hào)為1#,下方布置了3個(gè)應(yīng)力采集點(diǎn),編號(hào)分別為2#,3#,4#,進(jìn)行采集,如圖8所示.?
圖7 中部槽滑架體疲勞試驗(yàn)方案圖Fig.7 Fatigue test program of middle trough sliding framework
圖8 現(xiàn)場(chǎng)試驗(yàn)Fig.8 Field test
疲勞試驗(yàn)第1架滑架體在420kN(保壓5s)的脈動(dòng)循環(huán)載荷下,疲勞壽命為4 425次,在3 200次時(shí),在立板前端產(chǎn)生初始裂紋,并最終在此位置發(fā)生疲勞斷裂,在發(fā)生疲勞斷裂后的下一次載荷循環(huán)時(shí),立板后端失效.
為驗(yàn)證測(cè)試結(jié)果,在疲勞試驗(yàn)中重新測(cè)試了4次循環(huán)載荷過(guò)程中各關(guān)注點(diǎn)的應(yīng)力值,結(jié)果表明:1,2點(diǎn)的測(cè)試結(jié)果較為準(zhǔn)確;4點(diǎn)接近屈服極限;但3點(diǎn)依然失準(zhǔn),3點(diǎn)測(cè)試結(jié)果不足為據(jù).而從趨勢(shì)來(lái)看,4點(diǎn)的應(yīng)力值要大于其他各測(cè)試點(diǎn),因此在發(fā)生靜強(qiáng)度失效時(shí),失效點(diǎn)傾向于立板后部下端.
通過(guò)數(shù)值分析方法對(duì)建立的刨煤機(jī)刨頭碰撞動(dòng)力學(xué)方程進(jìn)行求解.同時(shí),基于刨頭與滑架的碰撞力,對(duì)中部槽滑架體進(jìn)行了疲勞壽命試驗(yàn).分析表明:1)當(dāng)刨頭相對(duì)滑架逆時(shí)針擺動(dòng)時(shí),最大的碰撞力產(chǎn)生在Q點(diǎn);當(dāng)順時(shí)針擺動(dòng)時(shí),最大碰撞力為R點(diǎn). 2)滑架體在立板前端產(chǎn)生初始裂紋,并最終在此位置發(fā)生疲勞斷裂,在發(fā)生疲勞斷裂后的下一次載荷循環(huán)時(shí),在立板后端產(chǎn)生斷裂.
[1]趙麗娟,孫中剛,李國(guó)平.刨煤機(jī)牽引塊可靠性分析及疲勞壽命預(yù)測(cè)[J].煤炭學(xué)報(bào),2012,37(3):516-520.
ZHAO LI-juan,SUN Zhong-gang,LI Guo-ping.Plow traction block reliability analysis and fatigue life prediction[J].Journal of China Coal Society,2012,37(3):516-520.
[2]趙麗娟,劉旭南,張建軍,等.刨煤機(jī)刨鏈回轉(zhuǎn)接頭的可靠性[J].機(jī)械設(shè)計(jì)與研究,2013,29(3):118-122.
ZHAO Li-juan,LIU Xu-nan,ZHANG Jian-jun,et al.Reliability analysis of plow chain swivel joint based on virtual prototyping[M].Machine Design and Research,2013,29(3):118-122.
[3]趙麗娟,馬聯(lián)偉,劉旭南,等.難刨煤層刨刀可靠性與疲勞壽命研究[J].機(jī)械設(shè)計(jì),2013,30(4):85-88.
ZHAO Li-juan,MA Lian-wei,LIU Xu-nan,et al.Plow bit reliability and fatigue life analysis in hard cutting seam[J].Journal of Machine Design,2013,30(4):85-88.
[4]康曉敏,李貴軒.隨機(jī)動(dòng)載荷作用下刨煤機(jī)刨鏈疲勞壽命預(yù)測(cè)[J].煤炭學(xué)報(bào),2010,35(3):503-507.
KANG Xiao-min,LI Gui-xuan.Prediction of fatigue life of coa1plow chain under stochastic dynamic load[J]. Journal of China coal Society,2010,35(3):503-507.
[5]康曉敏,李貴軒.刨煤機(jī)刨頭的穩(wěn)定性分析[J].中國(guó)機(jī)械工程,2012,23(22):2739-2742.
KANG Xiao-min,LI Gui-xuan.Stability analysis of plow body of coal plow[J].China Mechanical Engineering,2012,23(22):2739-2742.
[6]盧緒祥,劉正強(qiáng),黃樹(shù)紅,等.含間隙碰撞振動(dòng)系統(tǒng)的非線性振動(dòng)特性[J].動(dòng)力工程學(xué)報(bào),2012,32(5):388-393.
LU Xu-xiang,LIU Zheng-qiang,HUANG Shu-hong,et al.Nonlinear vibration characteristics of a vibro-impact system with clearance[J].Journal of Chinese Society of Power Engineering,2012,32(5):388-393.
[7]PASHAH S,MASSENZIO M,JACQUELIN E.Prediction of structural response for low velocity impact[J]. International Journal of Impact Engineering,2008,35(2):119-132.
[8]BAPAT C N.The general motion of an inclined impact damper with friction[J].Journal of Sound Vibration,1995,184(11):417-427.
[9]AHN Kil-young,RYU Bong-jo.A modeling of impact dynamics and its application to impact force prediction[J].Journal of Mechanical Science and Technology,2005,19(1):422-428.
[10]FLORES P,AMBROSIO J,CLARO J C P,et al.Influence of the contact impact force model on the dynamic response of multibody systems[J].Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2006,220(1):21-34.
[11]GERASIMOV S A.Vibration-impact dynamics[J]. Russian Engineering Research,2013,33(3):130-132.
[12]PAULO Flores,JORGE Ambrósio.On the contact detection for contact-impact analysis in multibody systems[J].Multibody System Dynamics,2010,24(1):103-122.
[13]FLORES P J,AMBROSIO J C,PIMENTA Claro.Contact-impact force models for mechanical systems[J]. Kinematics and Dynamics of Multibody Systems with Imperfect Joints,2008,12(34):47-66.
[14]李曉豁,付偉麗,張飛虎,等.刨頭上不同位置刨刀的隨機(jī)載荷模擬研究[J].微計(jì)算機(jī)信息,2011,27(12):24-26.
LI Xiao-huo,F(xiàn)U Wei-li,ZHANG Fei-hu,et al.Simulation and study of random loads on plow tools at different locations of plough head[J].Microcomputer Information,2011,27(12):24-26.
[15]劉中華,尹曉春.鈍圓頭質(zhì)量對(duì)簡(jiǎn)支梁的多次彈塑性撞擊[J].爆炸與沖擊,2010,30(2):138-144.
LIU Zhong-hua,YIN Xiao-chun.Multiple elastic-plastic impacts of a simple supported beam struck by aroundnosed mass[J].Explosion and Shock Waves,2010,30(2):138-144.
Fatigue life test analysis of sliding framework under clearance impact load of plough
MAO Jun1,ZHANG Yu1,LIU Zhan-sheng2,LI Guo-ping3,CHEN Hong-yue1
(1.College of Mechanical Engineering,Liaoning Technical University,F(xiàn)uxin 123000,China;2.China National Coal Mining Equipment Co.,Ltd.,Beijing 100011,China;3.China Coal Zhangjiakou Coal Mining Machinery Co.,Ltd.,Zhangjiakou 076250,China)
To solve the fatigue break phenomenon on the middle part of sliding framework of coal planer happened during the working process,the 3-DOF crash dynamic model of plough was established based on the Winkler model by combining theory and experiment together.Test criterion of contact-impact between plow head and sliding framework was established by the collision detection method of the arithmetic of the distance between a point and a line.The maximum impact forces of plow head and sliding framework on each point were obtained by numerical methods,and were used as the load of fatigue test.The fatigue test of middle trough sliding framework was executed.Fatigue life of sliding framework was obtained.The results showed that initial crack appeared at the forepart of standing plate when sliding framework was under the maximum impact force and the failure point tended to appear at the bottom of standing plate when static strength became invalid.The results provide theoretical basis for the improvement of fatigue strength of sliding framework.
plough;contact-impact;sliding framework;fatigue fracture
TD 421.62
A
1006-754X(2016)02-0160-06
10.3785/j.issn.1006-754X.2016.02.009
2015-07-03.本刊網(wǎng)址·在線期刊:http://www.journals.zju.edu.cn/gcsjxb
國(guó)家自然科學(xué)基金資助項(xiàng)目(51304105);遼寧省教育廳創(chuàng)新團(tuán)隊(duì)資助項(xiàng)目(LT2013009);遼寧省教育廳科學(xué)研究一般項(xiàng)目(L2012118).
毛君(1960—),男,滿族,遼寧鞍山人,博士,教授,博士生導(dǎo)師,從事機(jī)械設(shè)計(jì)及仿真、電機(jī)一體化等研究,E-mail:maojun0828@263.net.通信聯(lián)系人:張瑜,遼寧朝陽(yáng)人,博士研究生,E-mail:z13464238735@sina.com.