• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EnKF局地化算法對雷達(dá)資料同化的影響研究

    2016-11-01 08:35:20高士博閔錦忠黃丹蓮
    大氣科學(xué)學(xué)報 2016年5期
    關(guān)鍵詞:局地方根反射率

    高士博,閔錦忠*,黃丹蓮

    ?

    EnKF局地化算法對雷達(dá)資料同化的影響研究

    高士博①②,閔錦忠①②*,黃丹蓮①②

    ① 南京信息工程大學(xué) 氣象災(zāi)害預(yù)報預(yù)警與評估協(xié)同創(chuàng)新中心,江蘇 南京 210044;

    ② 南京信息工程大學(xué) 氣象災(zāi)害教育部重點實驗室,江蘇 南京 210044

    2015-05-29收稿,2015-10-08接受

    國家重點基礎(chǔ)研究發(fā)展計劃(973計劃)項目(2013CB43013);江蘇省普通高校研究生科研創(chuàng)新計劃項目(KYLX_0829;KYLX_0844);國家自然科學(xué)基金重點資助項目(41430427);江蘇省高校自然科學(xué)重大基礎(chǔ)研究項目(11KJA170001);江蘇省氣象科學(xué)研究所北極閣基金(BJG201510)

    分級集合濾波(Hierarchical Ensemble Filter,HEF)和采樣誤差修正(Sampling Error Correction,SEC)局地化算法能夠使采樣誤差取得極小值,且不需要給出距離的定義。為了檢驗其理論優(yōu)勢,基于集合卡爾曼濾波(Ensemble Kalman Filter,EnKF)方法同化模擬雷達(dá)資料,通過與Gaspari-Cohn(GC)局地化算法對比,分析不同局地化算法對EnKF同化效果的影響。結(jié)果表明,HEF和SEC局地化算法的雷達(dá)回波在水平和垂直方向上均強(qiáng)于GC局地化算法。HEF局地化算法各個變量的離散度最高,均方根誤差最低;SEC局地化算法離散度略低,均方根誤差略高;GC局地化算法離散度最低,均方根誤差最高。相比于GC局地化算法,HEF和SEC局地化算法的冷池強(qiáng)度減弱,面積減小,下沉氣流的速度和范圍增大,雹霰混合比的大小和覆蓋面積增大。通過模擬發(fā)現(xiàn),HEF局地化算法模擬的北側(cè)對流中心最強(qiáng),SEC局地化算法模擬的南側(cè)對流中心最強(qiáng),且模擬出(40 km,60 km)處的強(qiáng)對流中心。HEF局地化算法模擬的冷池強(qiáng)度最強(qiáng),HEF和SEC局地化算法基本上模擬出北側(cè)的雹霰混合比高值區(qū)。這表明HEF局地化算法有效地改進(jìn)了基于GC局地化算法的EnKF雷達(dá)資料同化效果,SEC局地化算法減小了計算量,是HEF局地化算法較好的近似。

    集合卡爾曼濾波

    雷達(dá)資料同化HEF局地化算法

    SEC局地化算法

    GC局地化算法

    集合卡爾曼濾波方法(Ensemble Kalman Filter,EnKF)是目前常用的一種四維資料同化方法,它利用一組集合來統(tǒng)計背景誤差協(xié)方差,其背景誤差協(xié)方差具有流依賴的優(yōu)勢,且該方法不需要設(shè)計復(fù)雜的切線模式和伴隨模式,因此已經(jīng)廣泛應(yīng)用于大氣、海洋和水文資料同化中(Evensen,1994;Hamil and Synder,2000;Keppenne,2000;Anderson,2001;Mitchell et al.,2002;Whiteker and Hamill,2002;Zhang et al.,2004;陳杰等,2012,閔錦忠等,2013,2015;沈菲菲等,2016)。近年來,EnKF也逐步應(yīng)用到對流尺度雷達(dá)資料同化中,Snyder and Zhang(2003)通過同化模擬雷達(dá)資料,初步驗證了EnKF在風(fēng)暴尺度中的應(yīng)用效果。許小永等(2006)利用云模式對一次雙多普勒雷達(dá)觀測的梅雨鋒暴雨過程進(jìn)行同化試驗,發(fā)現(xiàn)EnKF能夠很好地反演出暴雨過程的動力場、熱力場和微物理量場,但模式中沒有考慮微物理過程的冰相作用。Tong and Xue(2005,2008)、Xue et al.(2006)在此基礎(chǔ)上進(jìn)一步考慮了復(fù)雜冰相作用的微物理過程,在ARPS模式上構(gòu)建了EnKF同化系統(tǒng)并利用模擬多普勒雷達(dá)資料對一次風(fēng)暴過程進(jìn)行同化,結(jié)果表明EnKF能夠很好地還原風(fēng)暴內(nèi)部的結(jié)構(gòu),可得到比較理想的同化效果。

    EnKF通常將預(yù)報集合的統(tǒng)計協(xié)方差作為真實的預(yù)報誤差協(xié)方差,然而有限的集合在估計背景誤差協(xié)方差矩陣時會引入虛假相關(guān)(Anderson and Anderson,1999;Chen and Oliver,2010;劉彥華等,2013)。局地化算法通過設(shè)置影響半徑來濾去遠(yuǎn)距離的虛假相關(guān),它能夠減少觀測數(shù)據(jù)對空間區(qū)域的影響,以及參與計算的集合數(shù)大小(韓培等,2014)。目前最常見的是由Gaspari and Cohn(1999)構(gòu)造的一個關(guān)于距離的5次多項式,形狀隨距離而變化,類似于高斯分布的五階函數(shù)(簡稱GC局地化算法)。該算法具有平滑,計算簡單,隨距離逐漸減小等優(yōu)點,但需要預(yù)先給出距離的物理定義,不同類型的變量之間,例如溫度觀測和狀態(tài)變量的風(fēng)場之間很難給出一個距離的定義。

    為此,Anderson(2007)提出分級集合濾波(Hierarchical Ensemble Filter,HEF)局地化算法,與之前預(yù)先給定距離不同,采用蒙特卡羅方法來估計局地化距離,通過計算采樣誤差的極小值來確定最優(yōu)的局地化參數(shù)。這種方法能夠根據(jù)集合成員的變化而調(diào)整局地化距離,因此可以在不給出距離定義的情況下限制多變量間的虛假相關(guān),但計算量較大。Anderson(2012)進(jìn)一步提出采樣誤差修正(Sampling Error Correction,SEC)局地化算法,假設(shè)集合成員從一個概率分布里面按蒙特卡羅算法采樣得到,采樣誤差的極小值由“offline”蒙特卡羅技術(shù)方法確定。這種方法既繼承HEF局地化算法的優(yōu)點,又減少了計算量,在復(fù)雜的數(shù)值天氣預(yù)報(NWP)模式中,尤其是集合成員個數(shù)較少時能夠提高同化的效果。

    本文基于WRF/DART系統(tǒng),首次將HEF和SEC局地化算法應(yīng)用到EnKF雷達(dá)資料同化上,且采用較復(fù)雜的WRF(Weather Research and Forecasting)模式,通過與GC局地化算法對比,考察不同局地化算法對雷達(dá)資料同化的影響,從而為我國新一代多普勒天氣雷達(dá)資料同化工作提供一定的科學(xué)依據(jù)。

    1 同化分析系統(tǒng)

    WRF/DART(Weather Research and Forecasting/Data Assimilation Research Tested)系統(tǒng)是由NCAR開發(fā)的EnKF資料同化系統(tǒng),該系統(tǒng)通常用于對新的同化理論和方法進(jìn)行測試與發(fā)展。

    1.1觀測算子

    模擬雷達(dá)資料有徑向風(fēng)Vr和反射率因子Z兩個變量,參考TongandXue(2005)的計算方法,雷達(dá)徑向風(fēng)Vr的觀測算子為:

    Vr=ucosαsinβ+vcosαcosβ+(w-wt)sinα。

    (1)

    (1)式中,α為雷達(dá)仰角;β為雷達(dá)方位角;wt為雨滴下落末速度;u,v,w為模式輸出的3個速度分量。雷達(dá)反射率因子Z的觀測算子為:

    (2)

    (2)式中,Z和Ze分別為以dBz和mm6·m-3為單位的總的雷達(dá)反射率因子,由雨(Zer),雪(Zes),雹(Zeh)三部分的反射率因子相加得到,即Ze=Zer+Zes+Zeh。

    1.2局地化算法

    1.2.1GC局地化算法

    GC(Gaspari and Cohn,1999)經(jīng)驗局地化算法是將一個距離相關(guān)的分段有理函數(shù)作用到集合協(xié)方差的估計上。這種方案因簡便而獲得廣泛地使用。

    1.2.2HEF局地化算法

    Anderson(2007)提出分級集合濾波技術(shù),并在動力簡化模型Lorenz-96模式上對其效果進(jìn)行檢驗。利用m組集合,每組n個成員(集合成員總數(shù)為m×n),當(dāng)使用線性回歸計算狀態(tài)變量關(guān)于觀測增量時,每組集合估計得到一個回歸系數(shù)。假設(shè)忽略其他誤差源,回歸系數(shù)的真值應(yīng)從m個回歸系數(shù)樣本的相同分布中隨機(jī)獲得?;貧w系數(shù)樣本的不確定性反映了增量的不確定性,因此定義回歸置信因子,使采樣誤差的數(shù)學(xué)期望達(dá)到最小。最終求解得到置信因子,即作為觀測對狀態(tài)量的影響權(quán)重系數(shù)。

    1.2.3SEC局地化算法

    HEF局地化算法的效果在Lorenz-96模式具有一定的優(yōu)越性,但對于較復(fù)雜的NWP,計算量是比較大的,因此Anderson(2012)進(jìn)一步利用“offline”蒙特卡羅技術(shù)將其進(jìn)行簡化即SEC局地化算法:構(gòu)造一個局地化因子,使得回歸系數(shù)最大似然估計的方差期望值達(dá)到最小,并令其導(dǎo)數(shù)為零,最后利用“offline” 蒙特卡羅技術(shù)可以求解出局地化參數(shù)。

    2 試驗設(shè)計

    2.1真值試驗

    假設(shè)模式完美,即在不考慮模式誤差的情況下,可將模擬結(jié)果當(dāng)成大氣真實狀態(tài),與同化試驗結(jié)果對比以檢驗同化效果。1977年5月20日00時發(fā)生在美國俄克拉荷馬州的風(fēng)暴是一個典型的超級單體風(fēng)暴,不少學(xué)者(Xue et al.,2006;Wang et al.,2012,2013)對其進(jìn)行了深入的研究和分析,它是一個非常適合風(fēng)暴尺度系統(tǒng)研究的理想個例。初始環(huán)境場是通過理想風(fēng)暴產(chǎn)生環(huán)境的單點探空資料生成,在水平位置(40 km,60 km,1.5 km),水平半徑為10 km,垂直半徑為1.5 km處添加強(qiáng)度為3 K的橢球形熱泡以激發(fā)對流。利用WRF模式進(jìn)行理想風(fēng)暴的模擬,稱為真值試驗。模式向前預(yù)報120 min,然后根據(jù)公式(1、2),計算出雷達(dá)反射率因子和徑向風(fēng),并加入隨機(jī)的觀測誤差作為雷達(dá)資料。雷達(dá)坐標(biāo)為(20 km,100 km,0.35 km),假設(shè)每5 min完成一次體掃,雷達(dá)的掃描模式為VCP11風(fēng)暴模式,徑向風(fēng)觀測標(biāo)準(zhǔn)差為2 m/s,反射率因子觀測標(biāo)準(zhǔn)差為2 dBz。

    2.2同化試驗

    為分析不同局地化算法對EnKF雷達(dá)資料同化的影響,設(shè)計了3組試驗,分別采用GC、HEF和SEC局地化算法同化模擬雷達(dá)資料,具體試驗方案見表1。

    表1局地化算法對比試驗

    Table 1Comparison experiments of different localization methods

    試驗名稱試驗方案ExpGCGC局地化算法,局地化距離取6kmExpHEFHEF局地化算法ExpSECSEC局地化算法

    預(yù)報模式為WRF中尺度數(shù)值預(yù)報模式,模式水平區(qū)域為120 km×120 km,格距2 km,垂直層數(shù)為40層,微物理方案采用WSM6,長波輻射方案為RRTM,短波輻射方案為Dudhia,不使用積云參數(shù)化方案和陸面過程方案,側(cè)邊界條件為開邊界,上下邊界為剛性邊界。同化系統(tǒng)采用NCAR開發(fā)的DART/EnKF,同化方法為集合調(diào)整卡爾曼濾波(Ensemble Adjustment Kalman Filter,EAKF)確定性同化方法。具體配置為:40個集合成員;集合成員由一組標(biāo)準(zhǔn)差為:水平風(fēng)速U=3 m/s,V=3 m/s,垂直風(fēng)速W=2 m/s,位溫T=2 K,水汽混合比IQV=0.5 g/kg,均值為0的高斯隨機(jī)過程產(chǎn)生,協(xié)方差膨脹參數(shù)取1.1。

    Tong and Xue(2005)指出,預(yù)報20 min可以使模式的各個變量相互協(xié)調(diào),考慮到強(qiáng)對流發(fā)生發(fā)展較為迅速,5 min的同化頻率可以較好地利用雷達(dá)資料高時間分辨率的特點,通過 1 h左右的同化即約10幾次同化循環(huán),能夠使集合之間建立起比較合理的協(xié)方差結(jié)構(gòu),估計出較為合理的初始場。因此本文由背景場經(jīng)過20 min的“spin up”后,開始同化雷達(dá)資料,同化頻率為每5 min 1次,總共同化14次,由90 min最后分析場的集合平均值向前做30 min的確定性預(yù)報。

    3 同化效果檢驗

    圖1以真實場為標(biāo)準(zhǔn),分別對比了基于GC、HEF和SEC局地化算法同化得出的組合反射率因子和對流中心(74 km,60 km)處反射率因子垂直剖面。由圖1a—d可知,三組試驗的組合反射率因子分布基本上與真實場一致,但對流區(qū)域面積均偏小。不同試驗對比,相比ExpGC,ExpHEF在北側(cè)對流區(qū)域(組合反射率因子大于45 dBz)的面積增大,ExpSEC在南側(cè)對流區(qū)域的面積增大,更接近真實場。

    進(jìn)一步對比反射率因子的垂直結(jié)構(gòu)可知(圖1e—h),真實場的超級單體正處在發(fā)展旺盛階段,存在兩個強(qiáng)對流區(qū)域(反射率因子大于50 dBz),且出現(xiàn)了明顯的鉤狀回波結(jié)構(gòu),對流高度最大能達(dá)到12 km(圖1e)。ExpHEF同化結(jié)果與真實場最為接近,對流中心位置吻合較好,鉤狀回波明顯;ExpSEC兩個對流極大值中心位置強(qiáng)度稍弱;ExpGC雖同化出鉤狀回波,但回波在北側(cè)的對流高度明顯偏低,對流中心明顯偏弱。EnKF受有限集合成員數(shù)等影響,會存在較大的采樣誤差,HEF和SEC局地化算法通過取合適的局地化距離使得采樣誤差取得極小值,從而使得同化結(jié)果更接近真實場。可見在對雷達(dá)反射率因子的同化中,HEF和SEC局地化算法優(yōu)于GC局地化算法。

    圖1 90 min時即最后分析時刻,組合反射率因子(a—d)與對流中心(74 km,60 km)處的反射率因子垂直剖面(e—h)(單位:dBz)  a,e.真實場;b,f.GC局地化算法;c,g.HEF局地化算法;d,h.SEC局地化算法Fig.1 Analysis maximum reflectivity(a—d;units:dBz) and cross sections of analysis reflectivity in the centre of convection(74 km,60 km)(e—h;units:dBz) of the final analysis at 90 min:(a,e)true;(b,f)GC localization method;(c,g)HEF localization method;(d,h)SEC localization method

    為了定量比較分析場和真實場之間的誤差以及集合之間的差異,分別計算了三種局地化算法的模式變量的集合離散度和均方根誤差。集合離散度代表了背景場的標(biāo)準(zhǔn)差,過低的離散度會使集合過度自信,使得觀測權(quán)重較小,嚴(yán)重時會導(dǎo)致濾波發(fā)散。

    從各個變量的均方根誤差可知(圖2),無論哪種局地化算法,大部分變量的均方根誤差均隨時間呈現(xiàn)下降的趨勢,并且在每次同化分析后,都比預(yù)報場的均方根誤差有所下降,這說明雷達(dá)資料同化對預(yù)報有顯著地改進(jìn)。不同試驗對比,ExpHEF均方根誤差最小,ExpSEC次之,ExpGC最大。這說明HEF和SEC局地化算法提高了風(fēng)、溫度和微物理變量的同化效果,其中HEF局地化算法的效果最佳。從各個變量的離散度可以看出(圖略),無論分析還是預(yù)報,ExpHEF的集合離散度最大,ExpSEC次之,ExpGC最小。

    圖2 模式變量的均方根誤差  a.水平速度東西分量(U),單位:m/s;b.水平速度南北分量(V),單位:m/s;c.垂直速度(W),單位:m/s;d.擾動位勢高度(PH),單位:gpm;e.擾動位溫(T),單位:K;f.水汽混合比(QV),單位:g/kg;g.雨水混合比(QC),單位:g/kg;h.云水混合比(QR),單位:g/kg;i.冰晶混合比(QI),單位:g/kg;j.雪混合比(QS),單位:g/kg;k.雹霰混合比(QG),單位:g/kgFig.2 RMSE and spread of WRF variables:(a)U(units:m·s-1);(b)V(units:m·s-1);(c)W(units:m·s-1);(d)perturbation potential height(PH)(units:gpm);(e)perturbation pontential temperature(T)(units:K);(f)water vapor mixing ratio(QV)(units:g·kg-1);(g)rainwater mixing ratio(QC)(units:g·kg-1);(h)cloud-water mixing ratio(QR)(units:g·kg-1);(i)ice mixing ratio(QI)(units:g·kg-1);(j)snow mixing ratio(QS)(units:g·kg-1);(k)graupel mixing ratio(QG)(units:g·kg-1)

    為了更清楚對比不同局地化算法的離散度和均方根誤差,圖3計算了各變量同化后的離散度和均方根誤差在同化時段內(nèi)(20~90 min)的平均值,可以看出,相比ExpGC,ExpHEF的離散度普遍增加,其中水平速度U,V和垂直速度W分別增加約0.6 m/s,擾動位勢高度PH增加16.9 gpm,微物理量水汽混合比(QV),雨水混合比(QC),云水混合比(QR),冰晶混合比(QI),雪混合比(QS)和雹霰混合比(QG)平均增加約0.08 g/kg。ExpSEC的離散度也均比ExpGC大,但增加的幅度小于ExpHEF。同時可以看出,相比于ExpGC,ExpHEF的所有變量均方根誤差均顯著減少,其中水平速度U,V和垂直速度W減少約1 m/s,擾動位溫T減少0.4 K,QV,QC,QR,QI,QS,QG平均減少約0.09 g/kg。ExpSEC除QS外,均方根誤差均比ExpGC小,但減少的幅度小于ExpHEF。不同變量相比,ExpHEF對風(fēng)場變量的同化效果改善最明顯,相比ExpGC,U,V和W的離散度增加約45%,均方根誤差減少約25%。其次是QV,QC,QR,QI,QS,QG等微物理量離散度增加約42%,均方根誤差減少約17%。

    圖3 GC、SEC和HEF試驗在同化時段內(nèi)的平均離散度(a)和均方根誤差(b)(水平速度東西分量(U)、水平速度南北分量(V)、垂直速度(W);單位:m/s);擾動位勢高度(PH),單位:gpm/102;擾動位溫(T),單位:K;水汽混合比(QV)、雨水混合比(QC)、云水混合比(QR)、冰晶混合比(QI)、雪混合比(QS)和雹霰混合比(QG),單位:g/kg)Fig.3 The mean spread(a) and RMSE(b) for the GC,SEC and HEF localization methods from 20 min to 90 min[U,V and W(units:m·s-1);perturbation potential height(PH;units:gpm·10-2);perturbation potential temperature(T;units:K);water vapor mixing ratio(QV;units:g·kg-1);rainwater mixing ratio(QC;units:g·kg-1);cloud-water mixing ratio(QR;units:g·kg-1);ice mixing ratio(QI;units:g·kg-1);snow mixing ratio(QS;units:g·kg-1);graupel mixing ratio(QG;units:g·kg-1)]

    為探討不同局地化算法對超級單體熱力、動力的同化效果的影響,圖4以真實場為標(biāo)準(zhǔn),分別對比了三種不同局地化算法的位溫場和對流中心(74 km,60 km)處垂直速度的垂直剖面。由圖4a可知,真實場近地面的位溫場存在負(fù)中心,即低層形成明顯的冷池結(jié)構(gòu),冷池中心最低位溫能達(dá)到299 K,這與圖1a、e中強(qiáng)對流回波區(qū)相對應(yīng)。強(qiáng)對流回波區(qū)對應(yīng)的是冷區(qū),這主要是雨滴沉降蒸發(fā)冷卻所致。不同試驗對比發(fā)現(xiàn)(圖4a—d),三組試驗的冷池結(jié)構(gòu)有很大差異。ExpHEF的冷池范圍和強(qiáng)度最接近真實場,ExpSEC的冷池的面積偏大,北部對流中心的位溫偏低2~3 K。ExpGC的冷池面積最大,強(qiáng)度最強(qiáng),明顯超過真實場。從垂直風(fēng)速的垂直剖面可知(圖4e—h),在南北方向60~120 km,垂直高度0~12 km處,真實場以下沉氣流為主,風(fēng)速最大能達(dá)到8 m/s。對于該區(qū)域,ExpHEF的下沉氣流速度和范圍最接近真實場,ExpSEC和ExpGC的下沉氣流范圍明顯偏小。三種局地化算法在上邊界都同化出虛假的高值區(qū),這可能是受邊界條件的影響。

    圖4 90 min時即最后分析時刻,1.5 km高度處的位溫場(a—d;單位:K)與對流中心(74 km,60 km)處垂直速度的垂直剖面(e—h;單位:m/s)  a,e.真實場;b,f.GC局地化算法;c,g.HEF局地化算法;d,h.SEC局地化算法Fig.4 Analysis potential temperature(a—d;units:K) at 1.5 km and cross sections of vertical wind speed in the centre of convection(74 km,60 km)(e—h;units:m·s-1) of the final analysis at 90 min:(a,e)true;(b,f)GC localization method;(c,g)HEF localization method;(d,h)SEC localization method

    不同局地化算法對微物理量場也有較大的影響,雹霰混合在90 min時分裂為兩個對流中心,最大值分別約為6 g/kg和5 g/kg,且位于低層風(fēng)場的輻合區(qū),這表明氣流的輻合會造成水凝物的累積。分別對比三種局地化算法同化得到的5 km處雹霰混合比發(fā)現(xiàn)(圖略),在東西方向上,真實場雹霰混合比尺度為80 km,ExpHEF、ExpSEC和ExpGC的雹霰混合比尺度分別為70 km,65 km和60 km左右??梢奅xpHEF尺度最大,最接近真實場,ExpGC尺度最小,ExpSEC介于兩者之間。

    4 不同局地化算法模擬結(jié)果

    以上分析表明HEF局地化算法同化效果強(qiáng)于GC局地化算法,其次是SEC局地化算法。為了進(jìn)一步檢驗其應(yīng)用于EnKF同化雷達(dá)資料的可行性,圖5分別對基于不同局地化算法的同化結(jié)果進(jìn)行了30 min的數(shù)值模擬。

    從組合反射率因子的水平結(jié)構(gòu)來看(圖5a—d),三組試驗均較好地模擬出南北兩側(cè)的對流區(qū)域。對于北側(cè)強(qiáng)對流區(qū)域(組合反射率因子≥45 dBz),ExpHEF所模擬的面積最大,對于南側(cè)強(qiáng)對流區(qū)域(組合反射率因子≥45 dBz),ExpSEC所模擬的面積略大于ExpGC和ExpHEF,這與圖1所示的同化結(jié)果也是相吻合的。另外,在東西方向40 km,南北方向60 km處(南北兩側(cè)強(qiáng)對流區(qū)域之間),真實場存在一個較小的強(qiáng)對流區(qū)域,ExpGC和ExpHEF所模擬的強(qiáng)度均偏弱,ExpSEC模擬的強(qiáng)度最強(qiáng),面積最大,最接近真實場。從反射率因子的垂直結(jié)構(gòu)來看(圖5e—h),在南北方向80 km處,真實場的反射率因子達(dá)到50 dBz。在三組試驗中只有ExpHEF模擬出了與真實場對應(yīng)的單體結(jié)構(gòu)。ExpSEC在此處所模擬的單體強(qiáng)度略強(qiáng)于ExpGC。

    圖5 120 min時即預(yù)報結(jié)束時刻,基于EAKF分析場模擬的組合反射率因子(a—d)與對流中心(74 km,60 km)處反射率因子垂直剖面(e—h)(單位:dBz)  a,e.真實場;b,f.GC局地化算法;c,g.HEF局地化算法;d,h.SEC局地化算法Fig.5 Forecast maximum reflectivity at 120 min of the EAKF analysis field(a—d) and cross sections of analysis reflectivity in the centre of convection(74 km,60 km)(e—h)(units:dBz):(a,e)true;(b,f)GC localization method;(c,g)HEF localization method;(d,h)SEC localization method

    對比圖6a—d可見,三組試驗?zāi)M的冷池結(jié)構(gòu)在北側(cè)較明顯,ExpHEF模擬的冷池中心最低位溫能達(dá)到299 K,低于ExpGC和ExpSEC。對于南側(cè)對流中心(80 km,60 km)處,ExpHEF模擬出了一條沿東西方向的冷池結(jié)構(gòu),與真實場最為接近。從雹霰混合比的垂直剖面可以看出(圖6e—h),在南北方向80 km處,真實場的雹霰混合比存在極大值,超過5 g/kg。ExpHEF和ExpSEC在此處模擬的雹霰混合比基本達(dá)到5 g/kg,高于ExpGC。

    圖6 120 min時即預(yù)報結(jié)束時刻,基于EAKF分析場模擬的1.5 km高度處位溫場(a—d;單位:K)與對流中心(74 km,60 km)處雹霰混合比的垂直剖面(e—h;單位:g/kg)  a,e.真實場;b,f.GC局地化算法;c,g.HEF局地化算法;d,h.SEC局地化算法Fig.6 Forecast potential temperature at 120 min of the EAKF analysis field(a—d;units:K) at 1.5 km and cross sections of graupel mixing ratio in the centre of convection(74 km,60 km)(e—h;units:g·kg-1):(a,e)true;(b,f)GC localization method;(c,g)HEF localization method;(d,h)SEC localization method

    綜上所述,相比于GC局地化算法,HEF和SEC局地化算法模擬的回波均增強(qiáng),且模擬的動力結(jié)構(gòu)、熱力結(jié)構(gòu)、微物理量的結(jié)構(gòu)更接近真實場,尤其是HEF局地化算法,模擬效果改善明顯。

    5 討論和結(jié)論

    本文基于WRF/DART系統(tǒng),針對一次超級單體系統(tǒng)的發(fā)生發(fā)展過程,將HEF和SEC局地化算法引入EnKF雷達(dá)資料同化,通過與GC局地化算法的對比,探討了不同局地算法對EnKF同化效果的影響,并通過數(shù)值模擬,進(jìn)一步驗證了將HEF和SEC局地化算法應(yīng)用于EnKF同化雷達(dá)資料的可行性,主要得到以下結(jié)論:

    1)HEF和SEC局地化算法同化的超級單體強(qiáng)度強(qiáng)于GC局地化算法,雷達(dá)反射率因子在水平和垂直方向上均增強(qiáng)。從離散度和均方根誤差來看,HEF局地化算法各個變量同化效果最優(yōu),SEC局地化算法次之,GC局地化算法最次。不同變量相比,HEF局地化算法對風(fēng)場變量的同化效果改善最明顯,相比GC局地化算法,水平速度U,V和的垂直速度W離散度增加約45%,均方根誤差減少約25%。

    2)相比于GC局地化算法,HEF局地化算法同化的冷池強(qiáng)度減弱,面積減少;在南北方向60~120 km,垂直高度0~12 km處,下沉氣流速度增大,范圍增大;在東西方向上,雹霰混合比的數(shù)值和覆蓋面積增大,更接近真實場,其次是SEC局地化算法。

    3)通過數(shù)值模擬表明,HEF局地化算法模擬的北側(cè)對流區(qū)域最強(qiáng),而SEC局地化算法模擬的南側(cè)對流區(qū)域最強(qiáng),且模擬出(40 km,60 km)處的強(qiáng)對流中心。HEF模擬的冷池結(jié)構(gòu)最強(qiáng),位溫最低可達(dá)299 K。HEF和SEC局地化算法基本上模擬出北側(cè)的雹霰混合比高值區(qū),最大值可達(dá)5 g/kg。

    本文的研究表明,HEF和SEC局地化算法對雷達(dá)資料的同化效果均優(yōu)于GC局地化算法,這是因為這兩種算法具有使采樣誤差取得極小值,且不需要給出距離的定義的理論優(yōu)勢,從而提高了在對流尺度上雷達(dá)資料的同化效果。SEC局地化算法同化效果雖次于HEF局地化算法,但大大減少了計算量,且比傳統(tǒng)的GC局地化算法也有一定的改善,因此可以考慮應(yīng)用在復(fù)雜的NWP模式中。另外,本文試驗是在模式無誤差的假定下進(jìn)行的,期待未來將HEF和SEC局地化算法應(yīng)用于實際強(qiáng)對流個例的雷達(dá)資料同化中,得出更全面的結(jié)論。

    References)

    Anderson J L,Anderson S L,1999.A Monte Carlo implementation of the non-linear filtering problem to produce ensemble assimilation and forecasts[J].Mon Wea Rev,127(12):2741-2758.

    Anderson J L,2001.An ensemble adjustment filter for data assimilation[J].Mon Wea Rev,129(12):2884-2903.

    Anderson J L,2007.Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter [J].Physica D,230(1/2):99-111.

    Anderson J L,2012.Localization and sampling error correction in Ensemble Kalman Filter data assimilation[J].Mon Wea Rev,140(7):2359-2371.

    陳杰,閔錦忠,王世璋,等,2012.WRF-EnSRF系統(tǒng)同化多普勒雷達(dá)資料在多類型強(qiáng)對流天氣過程的數(shù)值試驗[J].大氣科學(xué)學(xué)報,35(6):720-729.Chen J,Min J Z,Wang S Z,et al.,2012.A numerical experiment on WRF-EnSRF for assimilation of Doppler Radar data in multicase strong convective weather processes[J].Trans Atmos Sci,35(6):720-729.(in Chinese).

    Chen Y,Oliver D,2010.Cross-covariance and localization for EnKF in multiphase flow data assimilation[J].Comput Geosci,14(4):579-601.

    Evensen G,1994.Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J].J Geophys Res Atmos,99(C5):10143-10162.

    Gaspari G,Cohn S E,1999.Construction of correlation functions in two and three dimensions[J].Quart J Roy Metero Soc,125(554):723-757.

    Hamill T M,Synder C,2000.A hybrid ensemble Kalman filter-3D variational analysis scheme[J].Mon Wea Rev,128(8):2905-2919.

    韓培,舒紅,許劍輝,2014.EnKF同化的背景誤差協(xié)方差矩陣局地化對比研究[J].地球科學(xué)進(jìn)展,29(10):1175-1185.Han P,Shu H,Xu J H,2014.A comparative study of background error convariance localization in EnKF data assimilation[J].Advances in Earth Science,29(10):1175-1185.(in Chinese).

    Keppenne C L,2000.Data assimilation in to a parallel Ensemble Kalman filter[J].Mon Wea Rev,128(6):1971-1981.

    劉彥華,張述文,毛璐,等,2013.評估兩類模式對陸面狀態(tài)的模擬和估算[J].地球科學(xué)進(jìn)展,28(8):913-922.Liu Y H,Zhang S W,Mao L,et al.,2013.An evaluation of simulated and estimated land surface states with two different models[J].Advances in Earth Science,28(8):913-922.(in Chinese).

    閔錦忠,畢坤,陳耀登,等,2013.基于物理約束擾動的EnSRF雷達(dá)資料同化[J].大氣科學(xué)學(xué)報,36(2):129-138.Min J Z,Bi K,Chen Y D,et al.,2013.Assimilation of Doppler radar data with EnSRF base on physical constrint[J].Trans Atmos Sci,36(2):129-138.(in Chinese).

    閔錦忠,劉盛玉,畢坤,等,2015.基于Hybrid EnSRF-En3DVar的雷達(dá)資料同化研究[J].大氣科學(xué)學(xué)報,38(2):213-221.Min J Z,Liu S Y,Bi K,et al.,2015.Study on the assimilation of Doppler radar data using a hybrid EnSRF-En3DVar method[J].Trans Atmos Sci,38(2):213-221.(in Chinese).

    Mitchell H L,Houtekamer P L,Pellerin G,2002.Ensemble size and model-error representation in an ensemble Kalman Filter[J].Mon Wea Rev,130(11):2791-2808.

    沈菲菲,閔錦忠,許冬梅,等,2016.Hybrid ETKF-3DVAR 方法同化多普勒雷達(dá)速度觀測資料I:模擬資料試驗[J].大氣科學(xué)學(xué)報,39(1):81-89.Shen F F,Min J Z,Xu D M,et al.,2016.Assimilation of Doppler radar velocity observations with hybrid ETKF-3DVAR method part Ⅰ:Experiments with simulated data[J].Trans Atmos Sci,39(1):81-89.(in Chinese).

    Snyder C,Zhang F,2003.Assimilation of simulated Doppler radar observations with an ensemble Kalman filter[J].Mon Wea Rev,131(8):1663-1677.

    Tong M,Xue M,2005.Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model:OSS experiments[J].Mon Wea Rev,133(7):1789-1807.

    Tong M,Xue M,2008.Simultaneous estimation of microphysical parameters and atmospheric state with radar data and ensemble square root Kalman filter.Part II:Parameter estimation experiments[J].Mon Wea Rev,136(5):1649-1668.

    Wang S,Xue M,Schenkman A D,2013.An iterative ensemble square root filter and tests with simulated radar data storm-scale data assimilation[J].Quart J Roy Meteor Soc,139(676):1888-1903.

    Wang S,Xue M,Min J,2013.A four dimensional asynchronous ensemble square-root filter(4DEnSRF) algorithmand tests with simulated radar data[J].Quart J Roy Meteor Soc,139(672):805-819.

    Whitaker J S,Hamill T M,2002.Ensemble data assimilation without perturbed observations[J].Mon Wea Rev,130(7):1913-1924.

    許小永,劉黎平,鄭國光,2006.集合卡爾曼濾波同化多普勒雷達(dá)資料的數(shù)值試驗[J].大氣科學(xué),30(4):712-728.Xu X Y,Liu L P,Zheng G G.2006.Numerical experiment of assimilation of Doppler radar data with an ensemble Kalman filter[J].Chin J Atmos Sci,30(4):712-728.(in Chinese).

    Xue M,Tong M,Droegemeier K K,2006.An OSSE framework based on the ensemble square-root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting[J].J Atmos Oceanic Technol,23(1):46-66.

    Zhang F Q,Snyder C,Sun J Z,2004.Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter[J].Mon Wea Rev,132(5):1238-1253.

    The hierarchical ensemble filter(HEF) and sampling error correction(SEC) localization methods can minimize sampling error without giving definition of physical distance.To examine the advantages of the two methods and the possibility of applying them to storm-scale assimilation,experiments involving assimilating radar data are conducted using the ensemble Kalman filter(EnKF).Compared with the Gaspari-Cohn(GC) experiment,the influence of the localization methods on the assimilation effect is investigated.Results show that the analysis reflectivity coverage of all the experiments is smaller than the true reflectivity.The analysis reflectivity of the HEF experiment is bigger than that of the GC experiment in both the horizontal and vertical directions.The analysis error of most model variables decreases with time and becomes lower after analysis.This indicates that radar data assimilation can help to improve the quality of the forecast field.The RMSE of the HEF experiment is the smallest and the analysis error of the SEC experiment is smaller than the GC experiment.Compared with the GC experiment,the analysis error of the U,V and W of the HEF experiment decreases more sharply than the microphysical variables,including QR(cloud-water mixing ratio),QC(rainwater mixing ratio),QI(ice mixing ratio),QS(snow mixing ratio) and QG(graupel mixing ratio).ForU,VandW,the analysis error decreases by 25% and,for microphysical variables,it decreases by 17%.The spread of the HEF experiment is largest and the spread of the SEC experiment is larger than that of the GC experiment.Compared with the GC experiment,the spread of theU,VandWof the HEF experiment increases by 45%,while that of the microphysical variables increases by 42%.In the convective region,the temperature is colder than the environment,which is called the cold pool.This is caused by the evaporation of the rainwater in the convective system.The strength and coverage of the cold pool of the GC experiment are stronger than the true field,while the HEF and SEC experiments are weaker and their areas are smaller.From 60 km to 120 km in the south—north direction,and from 0 km to 12 km in the vertical direction,the areas of vertical wind and Graupel mixing ratio are bigger,while their values are larger.So,they are closer to the wind and Graupel mixing ratio of the true field,respectively.Through simulation of the analysis fields,it is found that the northern branch of the convective system of the HEF experiment is stronger than that of the SEC and GC experiments,especially at 80 km in the south—north direction.The true field and HEF forecast result can reach about 50 dBz,which corresponds well with the assimilation results.The southern branch of the convective system of the SEC experiment is stronger than that of the HEF and GC experiments.The SEC experiment can simulate the new convective cell at(40 km,60 km).The cold pool of the HEF experiment is coldest,reaching as low as 299 K.Both the HEF and SEC experiments can simulate the center of the graupel mixing ratio.These results prove that the HEF and SEC localization methods can improve the performance of the EnKF based on GC localization method.The SEC localization method is inferior to the HEF method,but it can reduce the computational expense of the HEF method and its effect is better than the GC method.So,it could be a good choice when the NWP model is complicated.

    EnKF;radar data assimilation;HEF localization;SEC localization;GC localization

    (責(zé)任編輯:孫寧)

    Research on the impact of localization methods on radar data assimilation using the ensemble Kalman filter

    GAO Shibo1,2,MIN Jinzhong1,2,HUANG Danlian1,2

    1CollaborativeInnovationCenterontheForecastandEvaluationofMeteorologicalDisasters,NanjingUniversityofInformationScience&Technology,Nanjing210044,China;2KeyLaboratoryofMeteorologicalDisasteroftheMinistryofEducation,NanjingUniversityofInformationScience&Technology,Nanjing210044,China

    10.13878/j.cnki.dqkxxb.20150529001

    引用格式:高士博,閔錦忠,黃丹蓮,2016.EnKF局地化算法對雷達(dá)資料同化的影響研究[J].大氣科學(xué)學(xué)報,39(5):633-642.

    Gao S B,Min J Z,Huang D L,2016.Research on the impact of localization methods on radar data assimilation using the ensemble Kalman filter[J].Trans Atmos Sci,39(5):633-642.doi:10.13878/j.cnki.dqkxxb.20150529001.(in Chinese).

    *聯(lián)系人,E-mail:minjz@nuist.edu.cn

    猜你喜歡
    局地方根反射率
    方根拓展探究
    影響Mini LED板油墨層反射率的因素
    近岸水體異源遙感反射率產(chǎn)品的融合方法研究
    海洋通報(2022年4期)2022-10-10 07:40:26
    具有顏色恒常性的光譜反射率重建
    哈爾濱2020年一次局地強(qiáng)對流天氣分析
    黑龍江氣象(2021年2期)2021-11-05 07:06:54
    邊界層參數(shù)化方案中局地與非局地混合在高分辨率數(shù)值預(yù)報模式中的作用和影響
    化學(xué)腐蝕硅表面結(jié)構(gòu)反射率影響因素的研究*
    電子器件(2017年2期)2017-04-25 08:58:37
    均方根嵌入式容積粒子PHD 多目標(biāo)跟蹤方法
    揭開心算方根之謎
    數(shù)學(xué)魔術(shù)
    五月伊人婷婷丁香| av在线观看视频网站免费| 亚洲激情在线av| 少妇裸体淫交视频免费看高清| 99国产精品一区二区蜜桃av| 99久久九九国产精品国产免费| 午夜久久久久精精品| 色综合欧美亚洲国产小说| 男人和女人高潮做爰伦理| 亚洲精品久久国产高清桃花| 97热精品久久久久久| 青草久久国产| 51国产日韩欧美| 国产高清三级在线| 悠悠久久av| 亚洲,欧美精品.| 一个人观看的视频www高清免费观看| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩高清在线视频| 成人毛片a级毛片在线播放| 美女黄网站色视频| 午夜福利在线观看吧| 午夜福利成人在线免费观看| h日本视频在线播放| 婷婷色综合大香蕉| 99久久无色码亚洲精品果冻| 日本三级黄在线观看| 一个人看视频在线观看www免费| 国产三级中文精品| 天堂√8在线中文| 国产精品日韩av在线免费观看| 一本久久中文字幕| 亚洲av免费高清在线观看| 国内久久婷婷六月综合欲色啪| 国产毛片a区久久久久| 国产真实伦视频高清在线观看 | 亚洲国产精品成人综合色| 欧美黄色淫秽网站| 欧美激情久久久久久爽电影| 日韩欧美一区二区三区在线观看| 桃红色精品国产亚洲av| 亚洲人成网站高清观看| 国产极品精品免费视频能看的| 国产私拍福利视频在线观看| 精品欧美国产一区二区三| 中文在线观看免费www的网站| 精品福利观看| 黄色女人牲交| 舔av片在线| 亚洲av日韩精品久久久久久密| 老司机深夜福利视频在线观看| 小蜜桃在线观看免费完整版高清| 人人妻人人看人人澡| 色5月婷婷丁香| 亚洲精品一卡2卡三卡4卡5卡| 1000部很黄的大片| 国产三级在线视频| 在线免费观看的www视频| 亚洲av美国av| 精品人妻熟女av久视频| 亚洲成av人片在线播放无| 婷婷精品国产亚洲av在线| a级毛片a级免费在线| 可以在线观看的亚洲视频| 国产欧美日韩精品一区二区| 国产男靠女视频免费网站| 18禁在线播放成人免费| 日韩欧美精品免费久久 | 亚洲国产精品999在线| 国内毛片毛片毛片毛片毛片| 色av中文字幕| 亚洲av二区三区四区| 国产伦精品一区二区三区视频9| 色播亚洲综合网| 亚洲avbb在线观看| 小说图片视频综合网站| 国产欧美日韩精品亚洲av| 99在线视频只有这里精品首页| 国内精品久久久久精免费| 国产免费一级a男人的天堂| 欧美精品国产亚洲| 麻豆av噜噜一区二区三区| 欧美激情国产日韩精品一区| 国产高清激情床上av| 亚洲五月天丁香| 尤物成人国产欧美一区二区三区| 国产精品亚洲一级av第二区| 亚洲18禁久久av| 亚洲av免费高清在线观看| 精品国内亚洲2022精品成人| 午夜福利18| 少妇裸体淫交视频免费看高清| 亚洲第一欧美日韩一区二区三区| 全区人妻精品视频| 国产av不卡久久| bbb黄色大片| 99久久99久久久精品蜜桃| 自拍偷自拍亚洲精品老妇| 一级毛片久久久久久久久女| 亚洲精品乱码久久久v下载方式| 欧美日韩综合久久久久久 | 欧美一区二区国产精品久久精品| 午夜激情欧美在线| 国产免费男女视频| 久久久久久久久大av| 禁无遮挡网站| 小蜜桃在线观看免费完整版高清| 在线观看一区二区三区| 在现免费观看毛片| 久久久久免费精品人妻一区二区| 久久精品国产亚洲av香蕉五月| 国产精华一区二区三区| 日韩欧美在线乱码| 久久这里只有精品中国| 国产亚洲精品久久久com| 人妻丰满熟妇av一区二区三区| 大型黄色视频在线免费观看| 亚洲黑人精品在线| 色av中文字幕| 一本综合久久免费| 欧美最新免费一区二区三区 | 成人高潮视频无遮挡免费网站| 成人三级黄色视频| 午夜免费成人在线视频| 精品午夜福利在线看| 18禁裸乳无遮挡免费网站照片| 一本精品99久久精品77| 在线a可以看的网站| 亚洲精品成人久久久久久| 九九热线精品视视频播放| 老鸭窝网址在线观看| 最新中文字幕久久久久| 制服丝袜大香蕉在线| 日韩 亚洲 欧美在线| 国产 一区 欧美 日韩| 亚洲精品一卡2卡三卡4卡5卡| 美女免费视频网站| 久久99热这里只有精品18| 最近视频中文字幕2019在线8| 丝袜美腿在线中文| 可以在线观看的亚洲视频| 老女人水多毛片| 国产精品98久久久久久宅男小说| av在线观看视频网站免费| 十八禁网站免费在线| 老鸭窝网址在线观看| 蜜桃亚洲精品一区二区三区| 在线国产一区二区在线| 国产高清视频在线播放一区| 在线免费观看的www视频| 一区二区三区四区激情视频 | 亚洲欧美清纯卡通| 看黄色毛片网站| 亚洲真实伦在线观看| 亚洲七黄色美女视频| 三级毛片av免费| 亚洲av成人精品一区久久| 身体一侧抽搐| 日本精品一区二区三区蜜桃| 51国产日韩欧美| 国产精品乱码一区二三区的特点| 亚洲av成人av| 老司机福利观看| 午夜两性在线视频| 日本免费a在线| 久久精品国产亚洲av天美| 动漫黄色视频在线观看| 51午夜福利影视在线观看| 国产av一区在线观看免费| 国产高潮美女av| 偷拍熟女少妇极品色| 国产精品久久电影中文字幕| 亚洲第一区二区三区不卡| 淫秽高清视频在线观看| 国产大屁股一区二区在线视频| 一区二区三区高清视频在线| 亚洲精华国产精华精| 免费在线观看日本一区| 日本 av在线| 亚洲欧美日韩高清专用| 国产精品一区二区三区四区免费观看 | 天堂影院成人在线观看| 国产av在哪里看| 亚洲五月天丁香| 免费人成在线观看视频色| 日本五十路高清| 69av精品久久久久久| 99热这里只有是精品50| 最好的美女福利视频网| 性色avwww在线观看| 真人做人爱边吃奶动态| 宅男免费午夜| 成人鲁丝片一二三区免费| 九九在线视频观看精品| 偷拍熟女少妇极品色| 级片在线观看| 深夜a级毛片| 久久精品国产清高在天天线| 欧美3d第一页| 一区二区三区高清视频在线| 一区二区三区免费毛片| 少妇的逼水好多| 色噜噜av男人的天堂激情| 国产精品嫩草影院av在线观看 | av天堂中文字幕网| 少妇裸体淫交视频免费看高清| 国产 一区 欧美 日韩| 精品人妻1区二区| 性插视频无遮挡在线免费观看| 怎么达到女性高潮| 3wmmmm亚洲av在线观看| 中文字幕熟女人妻在线| 男女床上黄色一级片免费看| 日韩中字成人| 国产精品爽爽va在线观看网站| 两人在一起打扑克的视频| 亚洲国产日韩欧美精品在线观看| 亚洲乱码一区二区免费版| 黄片小视频在线播放| 亚洲精品影视一区二区三区av| 一级av片app| 免费av观看视频| 免费在线观看影片大全网站| 丰满的人妻完整版| 亚洲国产精品成人综合色| 蜜桃亚洲精品一区二区三区| 老司机深夜福利视频在线观看| 午夜福利18| 男女之事视频高清在线观看| 一级av片app| 757午夜福利合集在线观看| 日本 av在线| 中国美女看黄片| 中文在线观看免费www的网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品日韩av片在线观看| 在线观看美女被高潮喷水网站 | 九色国产91popny在线| 人妻夜夜爽99麻豆av| 观看美女的网站| 99热这里只有是精品50| 美女免费视频网站| 国产日本99.免费观看| 麻豆成人av在线观看| 亚洲最大成人av| 国产 一区 欧美 日韩| 精品人妻视频免费看| 国产亚洲精品久久久com| 午夜日韩欧美国产| 国产伦精品一区二区三区视频9| 美女 人体艺术 gogo| 三级男女做爰猛烈吃奶摸视频| or卡值多少钱| 日日夜夜操网爽| 婷婷六月久久综合丁香| 欧美成人免费av一区二区三区| 国内少妇人妻偷人精品xxx网站| 亚洲黑人精品在线| 欧美+日韩+精品| 变态另类丝袜制服| 精品久久久久久久久久免费视频| 18禁黄网站禁片免费观看直播| 亚洲国产色片| 成人高潮视频无遮挡免费网站| 少妇被粗大猛烈的视频| 午夜老司机福利剧场| 亚洲av日韩精品久久久久久密| 精品乱码久久久久久99久播| 欧美丝袜亚洲另类 | 精品无人区乱码1区二区| 在线播放无遮挡| 深夜a级毛片| 嫩草影院入口| 老女人水多毛片| 国内少妇人妻偷人精品xxx网站| 日韩欧美免费精品| 日本一本二区三区精品| 成人国产一区最新在线观看| 深爱激情五月婷婷| 亚洲美女搞黄在线观看 | a级毛片a级免费在线| 国产69精品久久久久777片| 免费看光身美女| 国内揄拍国产精品人妻在线| 一区二区三区免费毛片| 午夜老司机福利剧场| 给我免费播放毛片高清在线观看| 小蜜桃在线观看免费完整版高清| 少妇被粗大猛烈的视频| 亚洲欧美日韩高清专用| 亚洲va日本ⅴa欧美va伊人久久| 深夜精品福利| 99热这里只有是精品在线观看 | 亚洲熟妇熟女久久| www.www免费av| 日本一本二区三区精品| 精品一区二区三区人妻视频| 国产精品免费一区二区三区在线| 最近最新免费中文字幕在线| 国产综合懂色| 白带黄色成豆腐渣| 亚洲av免费在线观看| 一级黄片播放器| 亚洲国产精品合色在线| 欧美性感艳星| 精品熟女少妇八av免费久了| 欧美+日韩+精品| 97超视频在线观看视频| 久久久国产成人免费| 91狼人影院| 久久这里只有精品中国| 精品免费久久久久久久清纯| 成熟少妇高潮喷水视频| 亚洲一区二区三区色噜噜| 亚洲自拍偷在线| 18禁黄网站禁片免费观看直播| 搡老妇女老女人老熟妇| 国产成人啪精品午夜网站| 国产精品国产高清国产av| www.色视频.com| 日韩av在线大香蕉| 欧美一级a爱片免费观看看| 又紧又爽又黄一区二区| 亚洲熟妇中文字幕五十中出| 一本一本综合久久| 99精品在免费线老司机午夜| 国产精品一区二区性色av| 久久亚洲精品不卡| 最近最新中文字幕大全电影3| 免费无遮挡裸体视频| 免费高清视频大片| 俺也久久电影网| 久久久久久久久中文| 国产高清激情床上av| 一本一本综合久久| 九色国产91popny在线| 在线观看免费视频日本深夜| 欧美黄色片欧美黄色片| 国产亚洲av嫩草精品影院| 哪里可以看免费的av片| 能在线免费观看的黄片| 亚洲无线观看免费| 日韩欧美一区二区三区在线观看| 最近最新免费中文字幕在线| 天堂网av新在线| 亚洲真实伦在线观看| 噜噜噜噜噜久久久久久91| 欧美3d第一页| 黄色配什么色好看| 亚洲自偷自拍三级| 美女高潮的动态| 亚洲人成网站在线播放欧美日韩| 国产黄a三级三级三级人| 久久草成人影院| 在线天堂最新版资源| 99国产综合亚洲精品| 又爽又黄a免费视频| 国产三级中文精品| 性插视频无遮挡在线免费观看| 看片在线看免费视频| 男人舔女人下体高潮全视频| 午夜精品久久久久久毛片777| 内射极品少妇av片p| 我的女老师完整版在线观看| 久久99热6这里只有精品| 女同久久另类99精品国产91| 午夜免费激情av| 中文亚洲av片在线观看爽| 国模一区二区三区四区视频| 日韩中文字幕欧美一区二区| 青草久久国产| 一进一出抽搐gif免费好疼| 一级作爱视频免费观看| 中文字幕av成人在线电影| 国产精品美女特级片免费视频播放器| 亚洲精品亚洲一区二区| 欧美色欧美亚洲另类二区| 国产男靠女视频免费网站| 美女 人体艺术 gogo| 久久欧美精品欧美久久欧美| 国产精品亚洲av一区麻豆| 久久人人精品亚洲av| 性欧美人与动物交配| 少妇人妻一区二区三区视频| 精品99又大又爽又粗少妇毛片 | 亚洲美女视频黄频| 高清在线国产一区| 亚州av有码| 久久国产精品人妻蜜桃| 一二三四社区在线视频社区8| 啦啦啦观看免费观看视频高清| 久久人人爽人人爽人人片va | 亚洲综合色惰| 亚洲人成网站高清观看| 床上黄色一级片| 99精品在免费线老司机午夜| a级毛片a级免费在线| 国产亚洲精品综合一区在线观看| 一个人免费在线观看电影| 天天一区二区日本电影三级| 夜夜爽天天搞| 亚洲成人免费电影在线观看| 精品一区二区三区视频在线| 欧美+亚洲+日韩+国产| 国内精品久久久久久久电影| 久久国产乱子免费精品| 欧美国产日韩亚洲一区| 88av欧美| 真人做人爱边吃奶动态| 观看美女的网站| 欧美精品啪啪一区二区三区| 97热精品久久久久久| 亚洲 欧美 日韩 在线 免费| 久99久视频精品免费| 亚洲精品亚洲一区二区| 成年女人毛片免费观看观看9| 丁香欧美五月| 直男gayav资源| 国产精品,欧美在线| 亚洲在线自拍视频| 欧美一区二区国产精品久久精品| 国产成+人综合+亚洲专区| 国产伦人伦偷精品视频| 白带黄色成豆腐渣| 国产精华一区二区三区| 亚洲 国产 在线| 两人在一起打扑克的视频| 丁香欧美五月| av黄色大香蕉| 国产黄a三级三级三级人| 18+在线观看网站| 制服丝袜大香蕉在线| 99久久九九国产精品国产免费| 欧美成人一区二区免费高清观看| 日本黄大片高清| 国产美女午夜福利| 国产三级中文精品| 99久国产av精品| 黄色女人牲交| 欧美最黄视频在线播放免费| 美女xxoo啪啪120秒动态图 | 成人性生交大片免费视频hd| 国产爱豆传媒在线观看| 成人鲁丝片一二三区免费| 男女下面进入的视频免费午夜| 精品人妻一区二区三区麻豆 | 一区二区三区高清视频在线| 97超级碰碰碰精品色视频在线观看| 一级a爱片免费观看的视频| 免费黄网站久久成人精品 | 蜜桃亚洲精品一区二区三区| 最好的美女福利视频网| 亚洲美女搞黄在线观看 | 一个人看的www免费观看视频| 小蜜桃在线观看免费完整版高清| 中文字幕精品亚洲无线码一区| 悠悠久久av| 一本久久中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av第一区精品v没综合| 免费一级毛片在线播放高清视频| 国产国拍精品亚洲av在线观看| 久久久精品大字幕| 精品一区二区免费观看| 丰满人妻熟妇乱又伦精品不卡| 久久99热这里只有精品18| 别揉我奶头 嗯啊视频| 亚洲成人精品中文字幕电影| 成年免费大片在线观看| 午夜影院日韩av| 亚洲成a人片在线一区二区| 男人舔奶头视频| 一级黄片播放器| 国产av在哪里看| 亚洲人成伊人成综合网2020| 欧美又色又爽又黄视频| 亚洲成人久久爱视频| 99久久久亚洲精品蜜臀av| 中国美女看黄片| 婷婷精品国产亚洲av| 免费搜索国产男女视频| 亚洲欧美日韩东京热| 亚洲av一区综合| 欧美日本视频| 欧美激情久久久久久爽电影| 国产一区二区激情短视频| 啦啦啦观看免费观看视频高清| 国产高清视频在线观看网站| 亚洲av不卡在线观看| eeuss影院久久| 欧洲精品卡2卡3卡4卡5卡区| 搡女人真爽免费视频火全软件 | 午夜免费男女啪啪视频观看 | 日韩精品中文字幕看吧| 俄罗斯特黄特色一大片| 久久久久久久久中文| 国产亚洲欧美在线一区二区| 日日夜夜操网爽| АⅤ资源中文在线天堂| 精品一区二区三区av网在线观看| 色吧在线观看| 久久国产精品人妻蜜桃| 91麻豆精品激情在线观看国产| 久久精品国产亚洲av天美| 九九久久精品国产亚洲av麻豆| 久久伊人香网站| 最新中文字幕久久久久| 99热这里只有精品一区| 国产不卡一卡二| 亚洲第一欧美日韩一区二区三区| 少妇人妻一区二区三区视频| 男人狂女人下面高潮的视频| 亚洲精品日韩av片在线观看| 亚洲精品456在线播放app | 亚洲片人在线观看| 在现免费观看毛片| 夜夜夜夜夜久久久久| 国产精品影院久久| 亚洲欧美激情综合另类| 免费看a级黄色片| 国产精品亚洲av一区麻豆| 欧美绝顶高潮抽搐喷水| 欧美精品啪啪一区二区三区| 一区二区三区免费毛片| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 色哟哟哟哟哟哟| 国产欧美日韩一区二区精品| 两个人的视频大全免费| 99精品久久久久人妻精品| 久久精品人妻少妇| 亚洲一区高清亚洲精品| 国内揄拍国产精品人妻在线| 又爽又黄a免费视频| 国产欧美日韩一区二区三| 老女人水多毛片| 亚洲av免费在线观看| 精品国内亚洲2022精品成人| 美女高潮喷水抽搐中文字幕| 精品日产1卡2卡| 久久这里只有精品中国| 国产av一区在线观看免费| 欧美激情久久久久久爽电影| 国产91精品成人一区二区三区| 亚洲第一电影网av| 午夜福利欧美成人| 欧美国产日韩亚洲一区| 国产精品一及| 亚洲精品乱码久久久v下载方式| 久久这里只有精品中国| 欧美高清性xxxxhd video| 黄片小视频在线播放| 国产在线精品亚洲第一网站| 99久久精品热视频| 99久久成人亚洲精品观看| 国产91精品成人一区二区三区| 男女那种视频在线观看| 国产欧美日韩精品亚洲av| 成人美女网站在线观看视频| 成年女人永久免费观看视频| 国产亚洲精品综合一区在线观看| 免费观看人在逋| 国产乱人伦免费视频| 午夜福利在线观看吧| 国产极品精品免费视频能看的| av女优亚洲男人天堂| 亚洲精品在线观看二区| 中出人妻视频一区二区| 一区福利在线观看| 在线播放国产精品三级| 亚洲,欧美精品.| 国产欧美日韩精品一区二区| 综合色av麻豆| 人妻制服诱惑在线中文字幕| 在线观看午夜福利视频| 免费在线观看影片大全网站| 日韩 亚洲 欧美在线| 国产三级在线视频| 精品午夜福利视频在线观看一区| 一区福利在线观看| 国产又黄又爽又无遮挡在线| 十八禁网站免费在线| 18+在线观看网站| 成人午夜高清在线视频| 全区人妻精品视频| 成人av在线播放网站| 波多野结衣高清无吗| 欧美另类亚洲清纯唯美| 中文资源天堂在线| 嫩草影院精品99| 三级毛片av免费| 国产不卡一卡二| 18禁黄网站禁片午夜丰满| 亚洲自拍偷在线| 国产 一区 欧美 日韩| 色综合站精品国产| 欧美乱色亚洲激情| 18美女黄网站色大片免费观看| 日韩免费av在线播放| 色综合欧美亚洲国产小说| 亚洲综合色惰| 国产伦精品一区二区三区四那| 51午夜福利影视在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲精品色激情综合| 亚洲国产精品久久男人天堂| 国产三级黄色录像| 亚洲色图av天堂| 欧美xxxx性猛交bbbb| 99久久精品热视频| 可以在线观看毛片的网站| 狠狠狠狠99中文字幕| 国产老妇女一区| 亚洲人成伊人成综合网2020| 搡女人真爽免费视频火全软件 |