周多奇,龔 莉,錢振宇
(安慶師范大學(xué) 1.體育學(xué)院,2. 生命科學(xué)學(xué)院, 安徽 安慶 246133)
?
肌酸激酶的生理功能與運(yùn)動(dòng)
周多奇1,龔莉2,錢振宇1
(安慶師范大學(xué) 1.體育學(xué)院,2. 生命科學(xué)學(xué)院, 安徽 安慶 246133)
肌酸激酶(creatine kinase,CK)是催化磷酸肌酸和ATP間高能磷酸基團(tuán)轉(zhuǎn)移的關(guān)鍵酶,它保持ATP/ADP比例平衡和ATP的供給。肌酸激酶家族共有5種同工酶,分布于全身各種組織的需能部位。研究發(fā)現(xiàn),CK酶在能量代謝中有重要作用,與肌肉收縮、神經(jīng)功能、細(xì)胞膜的穩(wěn)定性、細(xì)胞的能量反饋調(diào)節(jié)、有氧耐力有關(guān)。一些研究認(rèn)為,CKM(肌型肌酸激酶,creatine kinase,muscle)基因多態(tài)性影響個(gè)體有氧運(yùn)動(dòng)能力和個(gè)體對(duì)耐力訓(xùn)練的敏感性。本文對(duì)這些成果作一綜述,并對(duì)未來研究進(jìn)行展望,以期為進(jìn)一步的研究提供參考。
生物;肌酸激酶;能量代謝;有氧耐力;基因多態(tài)性
人類由4種不同的肌酸激酶(CK)亞基組成5種已知的同功酶,大都分布在需能的區(qū)域或結(jié)構(gòu)附近。細(xì)胞質(zhì)中CKB(腦型肌酸激酶,creatine kinase,brain)、CKM(肌型肌酸激酶,creatine kinase,muscle)亞基組成的3種同工酶均為二聚體,CKMM是骨骼肌中最富集的形式;CKBB在神經(jīng)組織中表達(dá)最多,也在視網(wǎng)膜、聽毛、精子、腎、皮膚和其他組織表達(dá);心肌中CKMB活性最高,CKMM和CKBB也在心肌中表達(dá)。此外,線粒體內(nèi)膜的外面還有2種CK同功酶,sMtCK(肌膜型線粒體肌酸激酶,sarcomeric mitochondrial creatine kinase)主要存在于肌肉;uMtCK(廣泛型線粒體肌酸激酶,ubiquitous mitochondrial creatine kinase)普遍存在于身體各種組織,如血小板、精液,細(xì)胞中以2聚體或8聚體形式存在,活性形式可能是8聚體[1-2]。研究發(fā)現(xiàn),CK在細(xì)胞能量代謝方面發(fā)揮重要作用, CKM基因多態(tài)性與個(gè)體有氧運(yùn)動(dòng)能力和個(gè)體對(duì)耐力訓(xùn)練的敏感性有關(guān)[3],前期研究發(fā)現(xiàn),中國(guó)CKM基因A/G多態(tài)可能影響個(gè)體跑機(jī)能節(jié)省化(running economy,RE)對(duì)耐力訓(xùn)練的敏感性[4]。本文對(duì)CK的生理功能及其對(duì)運(yùn)動(dòng)的影響進(jìn)行綜述,以期為進(jìn)一步研究參考。
1.1CK酶與組織細(xì)胞的能量代謝
1.1.1CK-PCr空間能量緩沖系統(tǒng)
CK-PCr空間緩沖系統(tǒng)發(fā)揮轉(zhuǎn)運(yùn)高能磷酸化合物的作用主要通過分布于產(chǎn)能部位(線粒體和糖酵解)與需能部位的各種不同的CK酶的作用完成[8]。肌肉收縮時(shí)消耗能量的部位主要有3處:一是肌膜上Na+泵,影響動(dòng)作電位的形成;二是肌球蛋白橫橋,影響肌肉收縮;三是肌織網(wǎng)Ca2+泵,影響肌肉收縮。從圖1可以看出,此3處均分布有CK酶。CKMM位于骨骼肌、心肌的M線附近[10]、糖分解較多的明帶(I)附近[11]和肌質(zhì)網(wǎng)(sarcoplasmic reticulum, SR)Ca2+ATP酶附近[12];CKBB多分布于腦和外周神經(jīng)漿膜,少量分布于骨骼肌組織[13];2種線粒體CK位于線粒體內(nèi)膜外面通過ATP/ADP的轉(zhuǎn)運(yùn)影響能量轉(zhuǎn)移。MtCK(線粒體肌酸激酶,mitochondrial creatine kinase)和ATP合成酶、ANC(腺苷酸轉(zhuǎn)運(yùn)載體,adenine nucleotide translocase)、PIC(磷酸鹽轉(zhuǎn)運(yùn)載體,phosphate carrier)、VDAC(電壓依賴性陰離子通道,voltage-dependent anion channel)共同組成超級(jí)復(fù)合物,把線粒體產(chǎn)生的ATP轉(zhuǎn)運(yùn)到細(xì)胞質(zhì)中[7,14](圖2)。
圖1[1] 心肌和骨骼肌能量代謝圖
圖2[1] 線粒體CK復(fù)合物
1.1.2CK-PCr時(shí)間能量緩沖系統(tǒng)
CK-PCr作為一個(gè)能量池主要證據(jù)來自于幾個(gè)方面[15]:(1)核磁分析發(fā)現(xiàn),隨著運(yùn)動(dòng)肌中的PCr濃度下降,ATP濃度只有微量降低;(2)轉(zhuǎn)基因鼠研究發(fā)現(xiàn),CKBB的過度表達(dá)能導(dǎo)致肝細(xì)胞ATP濃度顯著增加,抗缺氧能力顯著提高;(3)PCr濃度過低時(shí)出現(xiàn)肌肉疲勞;(4)補(bǔ)充肌酸、β-鳥氨酸等量混合物可以提高肌纖維檸檬酸合成酶的濃度,增強(qiáng)氧化耐力。同時(shí),攝入外源肌酸能提高單次或重復(fù)力竭性運(yùn)動(dòng)的運(yùn)動(dòng)能力[16],運(yùn)動(dòng)耐力增加[17]。耐力能力的提高可能是由于細(xì)胞內(nèi)肌酸濃度提高的結(jié)果。這反過來會(huì)促進(jìn)MtCK活性,導(dǎo)致細(xì)胞質(zhì)PCr和線粒體ADP濃度升高。線粒體ADP濃度越高,就越能刺激呼吸,從而增加攝氧量。
1.1.3CK-PCr能反饋調(diào)節(jié)細(xì)胞內(nèi)的能量代謝
根據(jù)Vendelin-Aliev-Saks (VAS)模型和心肌能量代謝研究,肌肉周期性收縮會(huì)伴隨ADP、PCr/Cr比例、 Pi和質(zhì)子濃度周期性變化,這些變化會(huì)反饋調(diào)節(jié)細(xì)胞線粒體的能量代謝[18]。在肌肉CKMM反應(yīng)時(shí),磷酸沒有被消耗,但可以自由擴(kuò)散和通過磷酸鹽轉(zhuǎn)運(yùn)載體進(jìn)入線粒體;同時(shí)ADP由于非平衡狀態(tài)向線粒體逐漸轉(zhuǎn)移而濃度下降,從而用PCr磷酸化ADP,產(chǎn)生Cr,使PCr/Cr比例變化;這些信號(hào)可以通過CK-PCr緩沖系統(tǒng)轉(zhuǎn)移到MtCK,ADP信號(hào)到達(dá)線粒體,增加ATP再合成。這樣,通過MtCK-ANT復(fù)合物功能耦合促進(jìn)了MtCK反應(yīng)和ATP再合成[18]。
1.2CK酶影響神經(jīng)系統(tǒng)功能
CKBB和uMtCK在神經(jīng)系統(tǒng)能量代謝中起重要作用,研究表明,CKB和uMtCK基因敲除鼠空間學(xué)習(xí)能力、探索能力和體溫調(diào)節(jié)能力下降;視網(wǎng)膜和內(nèi)耳聽毛的CKBB和uMtCK酶還可能影響視覺和聽覺[19-21]。無論是記憶、視覺還是聽覺都對(duì)運(yùn)動(dòng)技能的形成和運(yùn)動(dòng)能力有很大影響。
圖3[1]CK 能量調(diào)節(jié)路徑
1.3CK酶影響細(xì)胞穩(wěn)定性,減少脂質(zhì)過氧化
SAK等人報(bào)道細(xì)胞膜磷脂雙分子層的維持與PCr有關(guān),當(dāng)缺氧和缺血時(shí),心肌纖維膜穩(wěn)定性下降,脂質(zhì)過氧化增加[22]。體外注射PCr能減少心肌缺血造成的損害,其機(jī)制可能是膜表面的磷脂極性頭部所帶的兩性電荷可以整合兩性基團(tuán),導(dǎo)致膜從液相向固相過度(圖4),減少磷脂轉(zhuǎn)變成溶血磷脂[22];在缺氧和局部缺血時(shí)細(xì)胞內(nèi)PCr 的快速下降是細(xì)胞膜不穩(wěn)定的重要因素。
圖4[1]PCr對(duì)磷脂雙分子穩(wěn)定性的影響
2.1CK酶對(duì)耐力運(yùn)動(dòng)的影響
研究表明,不同肌纖維類型中的CKMM活性有很大差異,I型肌纖維中CKMM活性較II型纖維至少低兩倍[23],而低CKMM活性可能是耐力運(yùn)動(dòng)員工作肌群的典型特征。Van Deurse等發(fā)現(xiàn),CKM基因敲除鼠在低強(qiáng)度的運(yùn)動(dòng)中,耐力有明顯的提高,抗疲勞能力增強(qiáng),肌肉組織合成ATP的能力也明顯增強(qiáng);同時(shí),CKM缺陷鼠快肌纖維中線粒體體積增大,濃度增加,糖原濃度增加;檸檬酸合成酶和乳酸脫氫酶增加;氧化能力翻倍[24]。通過在鼠CKM基因的第2外顯子插入一段無關(guān)序列[25],創(chuàng)造出一個(gè)新的變異體。與正常鼠相比,CKM I/I型鼠CKMM活性降低3倍,而CKM I/-型CKMM活性降低6倍;有趣的是這些變異體CKM mRNA隨著CKMM活性的下降而成比例地減少,這說明CKMM酶的水平實(shí)際上受控于轉(zhuǎn)錄水平上。此外,CKMM酶的進(jìn)一步降低伴隨著線粒體Cytc氧化酶和檸檬酸合成酶適量增加。這說明CKMM和有氧能力負(fù)相關(guān)[15],且CKMM與有氧能力的負(fù)相關(guān)呈一定量的關(guān)系。
Apple等雜交實(shí)驗(yàn)發(fā)現(xiàn),小鼠經(jīng)耐力訓(xùn)練,腓腸肌中CKB的mRNA含量增加40%,而CKM的mRNA減少42%。推測(cè)跑臺(tái)訓(xùn)練使鼠腓腸肌CK酶活性的改變似乎很大程度上受控于在轉(zhuǎn)錄水平[26]。另一實(shí)驗(yàn)中,狗經(jīng)耐力訓(xùn)練后,CKB mRNA含量增加2.6倍,而CKM mRNA下調(diào)30%[27]。此外,鼠經(jīng)6周過度訓(xùn)練后,取比目魚肌和腓腸肌,發(fā)現(xiàn)跖肌中CKM mRNA下降150%[28]。
2.2CK基因多態(tài)性與有氧運(yùn)動(dòng)能力的關(guān)聯(lián)
此方向的研究集中于CKM基因的NcoI和TaqI多態(tài)。人的CKM基因位于19q13.2-13.3,長(zhǎng)度約17.5 kb,含8個(gè)外顯子和7個(gè)內(nèi)含子,研究表明,在3'端不編碼區(qū)NcoI多態(tài),可能與耐力有關(guān)[29]。Rivera等[30]對(duì)加拿大80個(gè)家庭(80對(duì)父母和80位子女)進(jìn)行了20周的耐力訓(xùn)練。結(jié)果發(fā)現(xiàn),CKM基因NcoI多態(tài)GG純合型的VO2max及其對(duì)耐力訓(xùn)練的敏感性顯著低于AG或AA型。同時(shí),在低反應(yīng)群體中GG頻率是其他兩種基因型人數(shù)的3倍;在高反應(yīng)群體中沒有GG純合子;同時(shí)父母中AG比AA或GG兩種純合子具有更高的VO2max。隨后Rivera等[31]對(duì)加拿大495名受試者進(jìn)行20周的耐力訓(xùn)練,進(jìn)行連鎖分析發(fā)現(xiàn),CKM基因型影響個(gè)體VO2max對(duì)耐力訓(xùn)練的敏感性。 Fedotovskaia等[32]的研究也發(fā)現(xiàn),CKM基因A/G多態(tài)性與有氧運(yùn)動(dòng)能力有關(guān),AA和AG型個(gè)體具有更高的VO2max。但Rivera等對(duì)124名優(yōu)秀的加拿大耐力運(yùn)動(dòng)員和115名加拿大男性普通人的CKM基因NcoI和TaqI多態(tài)進(jìn)行分析,并未發(fā)現(xiàn)CKM基因NcoI多態(tài)在兩組間有顯著性差異[33]。Byung等對(duì)98名韓國(guó)優(yōu)秀男運(yùn)動(dòng)員與64名對(duì)照組的case-control研究也未發(fā)現(xiàn)兩組人群的CKM基因NcoI多態(tài)有顯著性差異[34]。Robert[35]、Lucía[36]和Defoor[37]等也報(bào)道了類似結(jié)果。以上研究結(jié)果有較大的差異,可能是研究對(duì)象(種族、年齡、性別和項(xiàng)目等)、樣本量、實(shí)驗(yàn)設(shè)計(jì)觀察指標(biāo)差異等原因造成的。
本課題組前期也對(duì)CKM基因NcoI多態(tài)與有氧運(yùn)動(dòng)能力的關(guān)系進(jìn)行了探討。讓102名武警新兵完成18周5 000 m跑訓(xùn)練后,VO2max顯著增加了1.50%,12 km/h下的VO2(l/min)下降了7.55%,表明,長(zhǎng)跑明顯提高了受試者有氧耐力水平,但表現(xiàn)出較大的個(gè)體差異,VO2max的變化范圍是-13.64%~24.64%,VO2從-25%變到8%。這種個(gè)體差異與NcoI多態(tài)有關(guān),攜帶AA和AG型的個(gè)體顯著比GG型個(gè)體敏感,但GG型個(gè)體僅占2%。推測(cè)CKM基因NcoI多態(tài)可能與中國(guó)男子有氧運(yùn)動(dòng)能力有關(guān)[4]。
綜上所述,CK家族酶在有氧運(yùn)動(dòng)能力的形成過程中的多個(gè)環(huán)節(jié)有重要作用,并且CKM基因多態(tài)性可能與運(yùn)動(dòng)訓(xùn)練效果有關(guān),攜帶某一基因型的群體可能對(duì)運(yùn)動(dòng)訓(xùn)練有更高的敏感性,更易成為優(yōu)秀運(yùn)動(dòng)員,但是目前的研究結(jié)果還有許多不確定性。結(jié)合當(dāng)前該領(lǐng)域的研究現(xiàn)狀,在CK家族基因多態(tài)性與有氧運(yùn)動(dòng)能力的關(guān)系研究中,存在以下幾個(gè)需研究的問題:
(1) 在不同人群中結(jié)果不盡一致。即使對(duì)于同一SNP位點(diǎn),如NcoI多態(tài)位點(diǎn),在不同的研究,結(jié)果存在很大差異甚至完全相反。因此對(duì)于國(guó)外已有的陽性研究結(jié)果不能直接應(yīng)用到中國(guó)運(yùn)動(dòng)員。
(2) 樣本量較小。這也是目前所有杰出運(yùn)動(dòng)能力相關(guān)基因多態(tài)性研究所面對(duì)的問題,因?yàn)閮?yōu)秀運(yùn)動(dòng)員(健將和國(guó)際健將)的總體樣本量有限,很多研究對(duì)象項(xiàng)目混雜。但按照統(tǒng)計(jì)學(xué)理論,可以按照case-control的1∶2的比例增加對(duì)照組的樣本量來提高研究效度。
(3) 選用的SNP位點(diǎn)太少。CKM基因共有458個(gè)SNPs,目前的研究?jī)H涉及NcoI和TaqI位點(diǎn),而對(duì)于成員其他3個(gè)基因的相關(guān)研究鮮見報(bào)道。因此,應(yīng)全面對(duì)CKM基因所有可能影響基因表達(dá)和基因功能的SNPs進(jìn)行研究,尤其是分布于啟動(dòng)子區(qū)以及改變氨基酸編碼的多態(tài)性。
(4) 目前的研究幾乎只涉及CKM基因。CKM基因產(chǎn)物主要在骨骼肌細(xì)胞質(zhì),少量在心肌細(xì)胞質(zhì)能量代謝中發(fā)揮作用,而對(duì)于有氧代謝更為重要的線粒體CK酶編碼基因sMtCK和uMtCK、心肌、神經(jīng)和其他組織的細(xì)胞質(zhì)中CKB基因多態(tài)性研究幾乎沒有涉及。
[1] Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine[J]. Amino Acids, 2011, 40:1271-1296.
[2] Wallimann T, Tokarska-Schlattner M, Neumann D, et al. The phospho-creatine circuit:molecular and cellular physiology of creatine kinases, sensitivity to free radicals and enhancement by creatine supplementation. In: Saks VA (ed) Molecular systems bioenergetics: energy for life [M]. Wiley, Weinheim, 2007: 195-264.
[3] Rankinen T RS, Bray MS,Loos R,et al. Advances in exercise, fitness, and performance genomics [J]. Med Sci Sports Exerc, 2010, 42(5):835-846.
[4] Zhou DQ, Hu Y, Liu G, et al. Muscle-specific creatine kinase gene polymorphism and running economy responses to an 18-week 5000-m training programme [J]. Br J Sports Med, 2006, 40(12):988-991.
[5] Kresge N, Simoni RD, Hill RL. Otto Fritz Meyerhof and the elucidation of the glycolytic pathway [J]. J Biol Chem, 2005, 280(4):e3.
[6] Guzun WR, Timohhina N, Tepp K, et al. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function [J]. Amino Acids, 2011, 40:1271-1296.
[7] Saks V, Monge C, Anmann T, et al. Integrated and organized cellular energetic systems: theories of cell energetics, compartmentation and metabolic channelling. In: Saks V (ed) Molecular system bioenergetics [M]. Energy for life,Wiley-VCH, 2007.
[8] Saks VA, Rosenshtraukh LV, Smirnov VN, et al. Role of creatine phospliokinase in cellular function and metabolism [J]. Can J Physiol Pharmacol, 1978,56 (5): 691-706.
[9] Miller K. Halow J, Koretsky AP. Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia and ischemia [J]. Am J Physiol, 1993,265: C1544-C1551.
[10] Turner DC, Wallimann T, Eppenberger HM. A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase [J]. Proc Natl Acad Sci USA, 1973, 70:702-705.
[11] Wegmann G, Huber R, Zanolla E, et al. Differential expression and localization of brain-type and mitochondrial creatine kinase isoenzymes during development of the chicken retina: Mi-CK as a marker for differentiation of photoreceptor ceils [J]. Differentiation, 1991,46 (2): 77-87.
[12] Korge P, CamphcIl KB. Local ATP regeneration is important for sarcoplasmic rcticulum Ca2+pump function [J]. Am J Physiol, 1994,267: C357-C366.
[13] Saks VA, Kuznetzov AV, Kupriyanov VV, et al. Creatine kinase of rat heart mitochondria: the demonstration of functional coupling to oxidative phosphorylalion in an inner membrane preparation [J] . J Biol Chcm, 1985, 260: 7757-64.
[14] Saks V, Beraud N, Wallimann T. Metabolic compartmentation— a system level property of muscle cells [J]. Int J Mol Sci , 2008, 9:751-767.
[15] Echegaray M, Rivera MA. Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance [J]. Genetic and Molecular Evidence, 2001,31(13):919-934.
[16] Guerrero-Ontiveros ML, WaIliman T. Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivor:down regulation of the expression of creatine kinase transporter isoiforms in skeletal muscle [J]. Mol Cell Biochem, 1998,184:427-37.
[17] Rico Sanz J, Mendez, Marco MT. Creatine enhances oxygen uptake and performance during alternating intensity exercise [J]. Med Sci Sports Exerc, 2000,32(2): 379-85.
[18] Guzun R, Timohhina N, Tepp K, et al. Regulation of respiration controlled by mitochondrial creatine kinase in permeabilized cardiac cells in situ. Importance of system level properties [J]. Biochim Biophys Acta, 2009, 1787:1089-1105.
[19] Carolina RJ, Catharina EE, Vander Z,et al.Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility [J].European Journal of Neuroscience, 2002,15:1692-1706.
[20] Femke S, Carolina RJ, Frank O, et al.Mice lacking the UbCKmit isoform of creatine kinase reveal slower spatial learning acquisition, diminished exploration and habituation, and reduced acoustic startle reflex responses [J].Molecular and Cellular Biochemistry, 2004, 256:305-318.
[21] Femke S, Frank O, Bart A,et al.Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit [J].Behavioural Brain Research, 2005, 157: 219-234.
[22] Saks V, Strumia E. Phosphocreatine: Molecular and cellular aspects of the mechanism of cardioprotective action [J]. Curr Therapeut Res, 1993, 53:565-598.
[23] Yamashita, K, Yoshioka T. Profiles of creatine kinase isoenzyme compositions in single muscle fibers of different types [J]. J Muscle Res Cell Motil, 1991, 12:37-44.
[24] Van Deursen J, Heerschap A, Oerlemans F. Skeletal muscles of mice deficient in M-creatine kinase lack burst activity [J]. Cell, 1993,74:621-631.
[25] VAN Deursen J, Ruitenbeek W, Heerschap A, et al. Creatine kinase in muscle energy metabolism: a study of mouse mutants with graded reduction in CK expression [J]. Proc Natl Acad Sci USA, 1994,91:9091-9095.
[26] Apple P S, Billardello JJ. Expression ol'creatine kinase M and B mRNAs in treadmill trained rat skeletal muscle [J]. Life Sci, 1994,55 (8): 585-92.
[27] Alam M,Vaynhlat M, Goswami SK, et al. Activation of creatine kinase-B and phospliolanihan gene expression in transformed latissinius dorsi muscle: evaluation of mRNA by polymerase chain reaction [J]. J Mol Cell Carcliol, 1996, 28(9): 1901-1901.
[28] Tsika RW, Hauschka SD, Gao L. M-crcatinc kinase gene expression in mechanically overloaded skeletal muscle of transgenic mice [J]. Am J Physiol, 1995, 269: C665-C674.
[29] Bouchard C, Wolfarth B, Rivcra MA, et al. Genetic determinants of endurance performance. In: Shephard R.I, Astrand PO. editor. Endurance in sports [M]. 2nd ed. London: Blackwell Science, 2000,223-243.
[30] Rivera MA, Dionne FT, Simoneau JA, et al. Muscle-specific creatine kinase gene polymorphism and VO2maxin the Heritage family study [J]. Med Sci Sports Exerc, 1997, 29 (10):1311-1317.
[31] Rivera MA, Perusse JA , Simoneau J,et al. Linkage between a muscle-specific CK gene marker and VO2maxin the HERITAGE Family Study [J]. Med Sci Sports Exerc, 1999, 31:698-701.
[32] Fedotovskaia ON, Popov DV, Vinogradova OL,et al. Association of the muscle-specific creatine kinase (CKMM) gene polymorphism with physical performance of athletes [J]. Fiziol Cheloveka, 2012, 38(1):105-109.
[33] Rivera M A, Dionne F T, Wolfarth B, et al. Muscle-specific creatine Kinase gene polymorphisms in elite endurance athletes and sedentary controls [J]. Med Sci Sports Exerc,1997,29(11): 1444-1447.
[34] Byung, Yong Kang, et al. Muscle specific creatine kinase gene polymorphisms in korean elite athletes[J]. J Toxicol Pub Health, 2003, 19(2): 115-121.
[35] Robert S, Cristina M, Barreda M, et al. Association between CKMM genotype and endurance performance level in hispanic marathon runners[J]. Med Sci Sports Exerc, 2004,36(5) Supplement: S260.
[36] Lucía A, Gómez-Gallego F, Chicharro JL, et al. Is there an association between ACE and CKMM polymorphisms and cycling performance status during 3-week races? [J]. Int J Sports Med, 2005, 26(6):442-447.
[37] Defoor J, Martens K, Matthijs G, et al. The caregene study: muscle-specific creatine kinase gene and aerobic power in coronary artery disease[J]. Eur J Cardiovasc Prev Rehabil, 2005,12(4):415-417.
Physiological Function of Creatine Kinase and Sport
ZHOU Duo-qi1, GONG Li2,QIAN Zhen-yu1
(1.Department of Physical Education;2.Department of biology, Anqing Normal University, Anqing, Anhui 246133, China)
The creatine kinase (CK) is a key enzyme which catalyzes the transfer of high-energy phosphates between PCr and ATP, thus keeping cellular ATP-to-ADP ratios balanced and the ATP pool highly charged. Five isoenzymes in CK family were expressed in regions consuming energy all over different tissues. Many experimental studies have revealed that CK may play important role during energy metabolism, and they were associated with muscle contraction, neurological function, stability of membranal, feedback regulation of energy metabolism and aerobic endurance performance. Other studies found that CKMM gene polymorphisms may contribute to individual aerobic endurance and its’ sensibility to endurance training. The purpose of this work is to provide a new background for the people who are studying in this field by attempting to analyze these results, and inspire future researches.
biology; creatine kinase; energy metabolism; aerobic Endurance; gene polymorphism
2016-02-02
安徽省自然科學(xué)基金面上項(xiàng)目(1308085MH161)。
周多奇,男,安徽定遠(yuǎn)人,碩士,安慶師范大學(xué)體育學(xué)院教授,碩士生導(dǎo)師,研究方向?yàn)檫\(yùn)動(dòng)生理生化。E-mail: duoqizhou@163.com
時(shí)間:2016-8-17 11:31
http://www.cnki.net/kcms/detail/34.1150.N.20160817.1131.029.html
G804
A
1007-4260(2016)03-0113-06
10.13757/j.cnki.cn34-1150/n.2016.03.029