周作勇,邵驁駿,徐婷婷,陳家磊,胡世君*
(1.西南大學(xué)榮昌校區(qū)動物醫(yī)學(xué)系,重慶 402460;2.西南大學(xué)動物科技學(xué)院,重慶 400715)
?
基于高通量測序的豬鞭蟲雌、雄蟲差異基因表達(dá)分析
周作勇1,邵驁駿1,徐婷婷2,陳家磊2,胡世君1*
(1.西南大學(xué)榮昌校區(qū)動物醫(yī)學(xué)系,重慶 402460;2.西南大學(xué)動物科技學(xué)院,重慶 400715)
為了探明豬鞭蟲(Trichurissuis)雌、雄蟲的轉(zhuǎn)錄組差異,豐富T.suis轉(zhuǎn)錄組數(shù)據(jù)信息,利用Illumina Hiseq 2000對臨床采集的T.suis雌、雄蟲進(jìn)行高通量測序,將組裝得到的Unigenes在NR、GO、COG和KEGG數(shù)據(jù)庫中比對注釋,并進(jìn)行差異表達(dá)基因分析。結(jié)果,T.suis雌、雄蟲分別獲得59 657 854條和48 414 184條高質(zhì)量測序數(shù)據(jù),分別組裝獲得21 026個和28 886個Unigenes。注釋到NR、GO、COG和KEGG數(shù)據(jù)庫的雌蟲Unigenes數(shù)量分別為11 700、2 287、1 650和9 690個,雄蟲Unigenes數(shù)量分別為12 902、2 414、1 791和10 377個,在NR數(shù)據(jù)庫比對顯示84.90%以上信息均來源于豬鞭蟲。T.suis雌、雄蟲共有4 320個差異表達(dá)基因。以雌蟲為對照,雄蟲中共有3 496個基因表達(dá)上調(diào),有824個基因表達(dá)下調(diào)。共有906個差異表達(dá)基因獲得160個KEGG通路富集,其中顯著富集通路7個。在T.suis轉(zhuǎn)錄組中發(fā)現(xiàn)了許多重要基因的表達(dá),包括與T.suis繁殖相關(guān)的主要精子蛋白、組蛋白H2A/H2B及卵黃蛋白原,與T.suis致病性、免疫及炎癥調(diào)節(jié)相關(guān)的蛋白酶、絲氨酸蛋白酶抑制分子和半胱氨酸蛋白酶抑制分子,以及眾多未知功能的基因。本研究揭示了T.suis雌、雄蟲差異表達(dá)基因的數(shù)量,獲得了這些差異表達(dá)基因的功能、分類和代謝通路注釋,為豐富T.suis轉(zhuǎn)錄組信息,揭示鞭蟲與宿主互作特點(diǎn)及抗鞭蟲靶點(diǎn)藥物研發(fā)奠定基礎(chǔ)。
豬鞭蟲;轉(zhuǎn)錄組;基因注釋;差異表達(dá)基因
豬鞭蟲(Trichurissuis)又稱為豬毛尾線蟲,主要寄生于豬盲腸,是僅次于蛔蟲的豬最常見寄生性蠕蟲之一。T.suis感染在世界范圍內(nèi)廣泛存在[1-2],我國農(nóng)戶散養(yǎng)豬T.suis感染率甚至高達(dá)52%[3-4]。T.suis感染可引起豬腹瀉、貧血和生長發(fā)育不良等,嚴(yán)重感染甚至造成死亡,給養(yǎng)豬業(yè)帶來巨大的經(jīng)濟(jì)損失[5]。因此,如何有效地防制豬鞭蟲病是急需要解決的問題。目前,豬鞭蟲病主要依靠化學(xué)藥物防制,由于治療藥物種類不多,防治效果較差[6],加之鞭蟲耐藥性及藥物殘留問題[7],篩選鞭蟲免疫保護(hù)性抗原和基于藥物靶點(diǎn)的新型藥物研究無疑是一種有效的途徑。另一方面,由于人腸道結(jié)構(gòu)和生理特性與豬相似,T.suis與宿主的互作關(guān)系是研究鞭形鞭蟲(T.trichiura)感染人的重要模型[8]。因T.suis及其分泌排泄物分子對宿主具有免疫應(yīng)答和炎癥反應(yīng)調(diào)節(jié)作用[9-10],能有效降低人炎癥性腸道疾病和潰瘍性結(jié)腸炎等自身免疫相關(guān)疾病的臨床癥狀而備受關(guān)注[11-12],然而T.suis與宿主的特異性互作關(guān)系尚不十分清楚[13]。
轉(zhuǎn)錄組學(xué)是功能基因組學(xué)研究的重要組成部分,轉(zhuǎn)錄組研究能夠從整體水平研究基因功能以及結(jié)構(gòu),揭示特定生物學(xué)過程以及疾病發(fā)生過程中的分子機(jī)制[14]。隨著寄生蟲基因組信息的不斷解析以及高通量測序技術(shù)的應(yīng)用,越來越多的寄生蟲包括間日瘧原蟲[15]、貓后睪吸蟲[16]、日本血吸蟲[17]、柔嫩艾美爾球蟲[18]、肝片吸蟲[19]和犬弓首蛔蟲[20]等的轉(zhuǎn)錄組得以測序完成,為研究這些寄生蟲的生物學(xué)特性、發(fā)育繁殖過程中的基因調(diào)控和免疫逃避機(jī)制等提供重要的依據(jù)。本研究以臨床采集的T.suis為試驗(yàn)材料,對雌、雄蟲進(jìn)行高通量測序,進(jìn)一步豐富T.suis的基因表達(dá)信息,為揭示鞭蟲與宿主互作特點(diǎn)及抗鞭蟲靶點(diǎn)藥物研發(fā)提供基礎(chǔ)。
1.1蟲株來源
T.suis成蟲采自于榮昌某豬場83日齡的發(fā)病豬,其臨床表現(xiàn)為嚴(yán)重腹瀉、食欲少、消瘦,曾以磺胺間甲氧嘧啶鈉預(yù)混劑拌料飼喂,效果不明顯。剖檢發(fā)現(xiàn)病豬大腸上有圓形乳白色結(jié)節(jié),腸黏膜出血,其上有大量鞭蟲寄生,載蟲量在200條以上。采集蟲體后分別按雌蟲(RC1-M)和雄蟲(RC1-F)裝入離心管,置于液氮凍存?zhèn)溆谩?/p>
1.2T.suis總RNA的提取
按RNAisoTMPlus提取試劑盒(TaKaRa公司)說明書進(jìn)行T.suis總RNA提取,通過NanoDrop2000及電泳檢測RNA的濃度、純度和完整性,總RNA置于-70 ℃保存?zhèn)溆谩?/p>
1.3T.suis轉(zhuǎn)錄組測序
首先以磁珠法分離 mRNA,離子打斷 mRNA;進(jìn)行雙鏈cDNA合成、補(bǔ)平、3′端加 A、連接index接頭;然后進(jìn)行文庫富集,PCR擴(kuò)增15個循環(huán),以2%瓊脂糖膠回收目的條帶。通過TBS380(Picogreen)定量,按數(shù)據(jù)比例混合上機(jī),cBot上進(jìn)行橋式 PCR擴(kuò)增,生成 clusters;通過Illumina HiSeqTM2000測序平臺,進(jìn)行高通量測序(轉(zhuǎn)錄組測序委托上海美吉生物醫(yī)藥科技有限公司完成)。
1.4T.suis轉(zhuǎn)錄組測序數(shù)據(jù)的處理與分析
通過堿基含量、堿基質(zhì)量和堿基錯誤率分布統(tǒng)計(jì)對測序得到的原始數(shù)據(jù)(Raw data)進(jìn)行評估。以SeqPrep和Sickle軟件去除制備文庫時(shí)產(chǎn)生的接頭序列,修剪掉序列末端低質(zhì)量的堿基,去除含N比率超過10%的reads,得到高質(zhì)量的測序數(shù)據(jù)(Clean data)。以Trinity將所有Clean data從頭組裝,利用 Trinity 軟件提供的ORF 預(yù)測流程對組裝得到的所有轉(zhuǎn)錄本序列進(jìn)行基因預(yù)測,使用Blast X(Version 2.2.25)分別與非冗余蛋白數(shù)據(jù)庫(Non-redundant,NR)、基因本體論聯(lián)合數(shù)據(jù)庫(Gene ontology,GO) 、蛋白直系同源數(shù)據(jù)庫(Clusters of Orthologous Groups,COG)和京都基因和基因組的百科全書(Kyoto Encyclopedia of Genes and Genome,KEGG)數(shù)據(jù)庫進(jìn)行比對獲得相應(yīng)的注釋信息。
同理當(dāng)連續(xù)缺失陣元數(shù)大于1時(shí)也可以通過相應(yīng)的內(nèi)插方法,重構(gòu)出所有的缺失虛擬陣元響應(yīng),得到連續(xù)虛擬陣列流型B2,B2為(4MN-2N+1)×D維均勻陣列流型,因此
1.5T.suis雌、雄蟲轉(zhuǎn)錄組差異基因的篩選
參考A.Mortazavi等[21]的方法計(jì)算FPKM(fragments per kilobase of exon per million mapped reads,F(xiàn)PKM),以評價(jià)對應(yīng)基因的表達(dá)量。先用FC(Fold-change,倍數(shù)變化)和統(tǒng)計(jì)檢測P值初選,然后以FDR (false discovery rate)校驗(yàn)方法對P值進(jìn)行假陽性檢驗(yàn),篩選差異基因。以FDR≤0.05和|log2FC| ≥2為顯著基因篩選標(biāo)準(zhǔn)。
1.6T.suis雌、雄蟲轉(zhuǎn)錄組差異表達(dá)基因的GO、 KEGG注釋及富集分析
將差異表達(dá)基因在GO、KEGG數(shù)據(jù)庫中注釋,使用Goatools軟件進(jìn)行差異基因的GO富集分析,以KOBAS軟件進(jìn)行KEGG PATHWAY富集分析,使用 Fisher 精確檢驗(yàn)進(jìn)行計(jì)算。使用多重檢驗(yàn)方法(Bonferroni,Holm和false discovery rate)對P值進(jìn)行校正以控制計(jì)算的假陽性率,當(dāng)校正的P值(p_fdr)≤0.05時(shí),認(rèn)為存在顯著富集。
2.1T.suis轉(zhuǎn)錄組測序數(shù)據(jù)質(zhì)量檢測
T.suis轉(zhuǎn)錄組測序數(shù)據(jù)質(zhì)量如表1。通過測序所獲得的總原始reads達(dá)111.17 M條,總原始堿基數(shù)為16.79 Gb。在清除引物、接頭序列和低質(zhì)量的測序數(shù)據(jù)后,所獲得的T.suis高質(zhì)量reads達(dá)108.07 M條(雌蟲59.66 M條,雄蟲48.41 M條),雌蟲獲得的堿基數(shù)為8.38 Gb,雄蟲獲得的堿基數(shù)為6.84 Gb,Q20在97%以上,Q30在92%以上。
表1測序數(shù)據(jù)評估統(tǒng)計(jì)
Table 1The statistical results of sequencing data
樣本Sample總read數(shù)Totalreads總堿基數(shù)/bpTotalnucleotidesError%Q20/%Q30/%GC%原始數(shù)據(jù)Rawdata 雌蟲Female(F)6151224492883488440.015195.8090.2848.51 雄蟲Male(M)4965290874975891080.015595.9990.1646.92高質(zhì)量測序數(shù)據(jù)Cleandata 雌蟲Female(F)5965785483816854420.012497.8293.2648.28 雄蟲Male(M)4841418468382847730.013297.6192.6446.74
Error %.堿基錯誤率;Q20.質(zhì)量值大于或等于20的堿基所占的百分比;Q30.質(zhì)量值大于或等于30的堿基所占的百分比;GC.測序結(jié)果中 G 和 C 兩種堿基所占總堿基的百分比
Error % means error rate of base;Q20 means the percentage of quality value greater or equal to 20 base;Q30 means the percentage of quality value greater or equal to 30 base;GC means the percentage of G and C content of total base in sequencing result
2.2T.suis轉(zhuǎn)錄組的組裝及注釋
圖1 T.suis 雌、雄蟲Unigenes分布Fig.1 Unigenes distribution of T.suis
圖2 T.suis 轉(zhuǎn)錄組的物種分布Fig.2 Species distribution of T.suis
2.2.3T.suis轉(zhuǎn)錄組GO數(shù)據(jù)庫注釋通過與GO數(shù)據(jù)庫比對,所獲得的T.suis轉(zhuǎn)錄組分別在生物過程、分子功能及細(xì)胞組分三個大類及64個亞類得以注釋,在所獲得的21 026條雌蟲Unigenes中,注釋了2 287條,共注釋到了58個亞類,在28 886條雄蟲Unigenes中,注釋了2 414條,共注釋到了63個亞類(表2)。
2.2.4T.suis轉(zhuǎn)錄組COG數(shù)據(jù)庫注釋根據(jù)序列同源性,共有1 650個T.suis雌蟲Unigenes在COG數(shù)據(jù)庫中得到注釋,有1 791個雄蟲Unigenes在COG數(shù)據(jù)庫中得到注釋,這些序列分為25個COG類別,包括細(xì)胞生理過程、信號傳導(dǎo)和新陳代謝等(表3、圖3)。
2.2.5T.suis轉(zhuǎn)錄組KEGG數(shù)據(jù)庫注釋注釋到KEGG數(shù)據(jù)庫中的Unigenes分別為9 690條(RC1-F)和10 377條(RC1-M),這些Unigenes分別注釋到319條(RC1-F)和328條(RC1-M)信號通路,其中注釋最多的均與代謝通路有關(guān),雌蟲Unigenes為626個,雄蟲為634個。一些重要的代謝通路包括PI3K-Akt/PKB信號通路,P53、MAPK信號通路和AMPK信號通路均有注釋。
2.3T.suis雌、雄蟲表達(dá)差異分析及顯著性富集
2.3.1T.suis雌、雄蟲表達(dá)差異分析T.suis雌、雄蟲共有4 320個差異表達(dá)基因,以雌蟲作為對照,雄蟲中共有3 496個基因表達(dá)上調(diào),有824個基因表達(dá)下調(diào),進(jìn)一步將這些差異基因在NR數(shù)據(jù)庫進(jìn)行注釋,得到2 352個注釋基因,其中下調(diào)基因有 570 個,上調(diào)基因有1 782個(表4,圖4)。與雌蟲相比,極顯著上調(diào)的基因有主要精子蛋白(major sperm protein)、活動精子結(jié)構(gòu)域包含蛋白(motile sperm domain containing protein)、磷酸烯醇丙酮酸羧化激酶(phosphoenolpyruvate carboxykinase)、人表皮生長因子和組氨酸磷酸酶1包含蛋白(hEGF and His Phos 1 domain containing protein)、泛素蛋白酶(ubiquitin protease)、跨膜蛋白酶絲氨酸5(transmembrane protease serine 5)、跨膜絲氨酸蛋白酶 (membrane-type serine protease 1)、天冬氨酸蛋白酶(aspartate protease)、半胱氨酸蛋白酶(cysteine protease)、尿苷磷酸化酶2(Uridine phosphorylase 2)、Tau微管蛋白激酶1(Tau tubulin kinase 1)、組蛋白H2A/H2B(histone H2A/H2B)、樁蛋白(paxillin),蛋白質(zhì)酪氨酸磷酸酶(protein-tyrosine phosphatase)、tigger 轉(zhuǎn)座子衍生蛋白(tigger transposable element derived protein)、組蛋白賴氨酸 N-甲基轉(zhuǎn)移酶(histone-lysine N-methyltransferase)等。而極顯著下調(diào)的基因包括卵黃蛋白原(Vitellogenin)及卵黃原蛋白受體(Vitellogenin receptor),酪氨酸酶(tyrosinase),谷氨酰胺合成酶(glutamine synthetase)、絲氨酸:蘇氨酸蛋白激酶MAK(serine:threonine protein kinase MAK)、絲氨酸蛋白酶抑制劑Kunitz-1(serine protease inhibitor Kunitz-1)、跨膜蛋白酶絲氨酸 11E (Transmembrane protease serine 11E)、轉(zhuǎn)錄因子AP-2 α(transcription factor AP-2 alpha)和細(xì)胞色素B561(Cytochrome b561)等。
表2T.suis轉(zhuǎn)錄組在GO數(shù)據(jù)庫中的注釋結(jié)果
Table 2Transcriptome annotation ofT.suisin GO database
分類Classification亞類Subclass雌蟲Female雄蟲MaleUnigenes數(shù)量Unigenesnumber比例/%Proportion(%)Unigenes數(shù)量Unigenesnumber比例/%Proportion(%)分子功能Molecularfunction結(jié)合binding104045.47115847.97催化活性catalyticactivity98543.07103342.79轉(zhuǎn)運(yùn)活性transporteractivity1707.431857.77結(jié)構(gòu)分子活性structuralmoleculeactivity1687.352399.90其他Others25311.0632513.46細(xì)胞組分Cellularcomponent細(xì)胞部分cellpart86637.8799441.18細(xì)胞器organelle61927.0773730.53大分子復(fù)合物macromolecularcomplex51322.4359224.52膜membrane51222.3959024.44其他Others175076.52220591.34生物功能Biologicalprocess細(xì)胞過程cellularprocess130557.06142559.03代謝過程metabolicprocess126155.14136456.50單組織過程single-organismprocess93440.84102142.29生物調(diào)節(jié)biologicalregulation44319.3753422.12定位建立establishmentoflocalization38616.8844718.52刺激應(yīng)答responsetostimulus29012.6844718.52其他Others214693.83236297.84
表3T.suis轉(zhuǎn)錄組在COG數(shù)據(jù)庫中的注釋最多的前7位結(jié)果
Table 3Top 7 of functional_categories annotation ofT.suistranscriptome in COG database
COG功能類別COGfunctionalcategories雌蟲Female雄蟲MaleUnigenes數(shù)量Unigenesnumber比例/%ProportionUnigenes數(shù)量Unigenesnumber比例/%Proportion一般功能預(yù)測Generalfunctionpredictiononly32719.8233718.82翻譯,核糖體結(jié)構(gòu)和生物轉(zhuǎn)化Translation,ribosomalstructureandbiogenesis19511.6425314.53轉(zhuǎn)錄Transcription19111.5819811.06復(fù)制、重組和修復(fù)Replication,recombinationandrepair1629.821659.21信號傳導(dǎo)機(jī)制Signaltransductionmechanisms1519.151558.65翻譯后修飾,蛋白質(zhì)轉(zhuǎn)換和分子伴侶Posttranslationalmodification,proteinturnover,chaperones1448.731448.04能量生產(chǎn)和轉(zhuǎn)化Energyproductionandconversion744.48794.41
A.RNA加工和修飾;B.染色質(zhì)結(jié)構(gòu)與動力學(xué);C.能源生產(chǎn)和轉(zhuǎn)換;D.細(xì)胞周期控制、細(xì)胞分裂、染色體分區(qū);E.氨基酸運(yùn)輸和代謝;F.核苷酸運(yùn)輸和代謝;G.碳水化合物運(yùn)輸和代謝;H.輔酶運(yùn)輸和代謝;I.脂類運(yùn)輸和代謝;J.翻譯、核糖體結(jié)構(gòu)和生物轉(zhuǎn)化;K.轉(zhuǎn)錄;L.復(fù)制、重組和修復(fù);M.細(xì)胞壁/膜/包膜生源論;N.細(xì)胞運(yùn)動性;O.翻譯后修飾,蛋白質(zhì)轉(zhuǎn)換和分子伴侶;P.無機(jī)離子運(yùn)輸和代謝;Q.次生代謝產(chǎn)物生物合成、運(yùn)輸和分解代謝;R.一般功能預(yù)測;S.未知功能;T.信號傳導(dǎo)機(jī)制;U.細(xì)胞內(nèi)轉(zhuǎn)運(yùn)、分泌和膜泡運(yùn)輸;V.防衛(wèi)機(jī)制;W.胞外結(jié)構(gòu);Y.細(xì)胞和結(jié)構(gòu);Z.細(xì)胞骨架A.RNA processing and modification;B.Chromatin structure and dynamics;C.Energy production and conversion;D.Cell cycle control,cell division,chromosome partitioning;E.Amino acid transport and metabolism;F.Nucleotide transport and metabolism;G.Carbohydrate transport and metabolism;H.Coenzyme transport and metabolism;I.Lipid transport and metabolism;J.Translation,ribosomal structure and biogenesis;K.Transcription;L.Replication,recombination and repair;M.Cell wall/membrane/envelope biogenesis;N.Cell motility;O.Posttranslational modification,protein turnover,chaperones;P.Inorganic ion transport and metabolism;Q.Secondary metabolites biosynthesis,transport and catabolism;R.General function prediction only;S.Function unknown;T.Signal transduction mechanisms;U.Intracellular trafficking,secretion,and vesicular transport;V.Defense mechanisms;W.Extracellular structures;Y.Nuclear structure;Z.Cytoskeleton圖3 T.suis 轉(zhuǎn)錄組在COG注釋結(jié)果Fig.3 Transcriptome annotation of T.suis in COG
圖4 T.suis 雌、雄蟲差異表達(dá)基因散點(diǎn)圖和火山圖Fig.4 Scatter plot and volcano plot of differentially expressed genes of T.suis
表4與雌蟲相比,鞭蟲雄蟲中上調(diào)/下調(diào)幅度最大的前10位基因
Table 4The top 10 genes of up-regulated or down-regulated differential genes in maleT.suisvs femaleT.suis
基因號Gene_id雌蟲FFPKM雄蟲MFPKMlog2FC(M/F)FDRUp/Down功能Functioncomp76923_c00281.4514.471.01E-23up蛋白磷酸酶1comp72196_c00498.6914.253.56E-23up假定蛋白M513_06844comp77651_c00382.5413.981.86E-22up假定蛋白M513_08219comp70876_c00382.913.981.91E-22up假定蛋白M513_03647comp71933_c00361.4113.972.02E-22upUnknowncomp77333_c00290.0513.962.09E-22up假定蛋白TTRE_0000765901comp74102_c00139.3313.776.13E-22up假定蛋白M513_00687comp74270_c00263.7113.756.90E-22up假定蛋白M514_03450comp74177_c00324.9813.709.39E-22up假定蛋白M513_02983comp69213_c10747.0113.641.28E-21upUnknowncomp73933_c0166676.116.11-13.713.74E-32down假定蛋白M513_00366comp75470_c03793.860.59-12.971.01E-28down假定蛋白M513_11202comp64800_c0668.360.1-12.911.95E-26down假定蛋白M514_04483comp75804_c011115.921.84-12.806.56E-29down假定蛋白M513_00865comp60017_c01167.10.26-12.421.55E-26down假定蛋白M514_28338comp72998_c17799.151.87-12.372.07E-27down假定蛋白M514_17772comp72098_c0635.770.17-12.221.79E-26down假定蛋白M513_11229comp69325_c010440.142.66-12.152.42E-27down假定蛋白M513_04098comp75943_c085.740.02-11.996.83E-23down假定蛋白M513_02225comp39339_c0172.360-11.303.04E-15down假定蛋白M514_17772
此外,糜蛋白酶樣蛋白酶 (chymotrypsin-like protease)、絲氨酸蛋白酶52(serine protease),乙酰膽堿酯酶(acetylcholinesterase,AchE)、三磷酸腺苷雙磷酸酶(apyrase)、半胱氨酸蛋白酶抑制分子(cystatin)、絲氨酸蛋白酶抑制分子(serpin)、孔蛋白(porin)、半乳凝素(galectin)和巨噬細(xì)胞移動抑制因子(macrophage migration inhibitory factor)等在雌雄蟲中均有表達(dá),無顯著性差異。
2.3.2T.suis雌、雄蟲差異基因GO、KEGG通路顯著性富集分析共有434個差異表達(dá)基因獲得GO功能顯著性富集,主要分為生物學(xué)過程和細(xì)胞組分2大類27個小類,其中顯著性富集最多的主要參與基因與蛋白質(zhì)導(dǎo)向(protein targeting)、轉(zhuǎn)錄啟始和終止(translational initiation and termination)、內(nèi)質(zhì)網(wǎng)的蛋白質(zhì)定位(establishment of protein localization to endoplasmic reticulum)及核轉(zhuǎn)錄mRNA分解代謝(nuclear-transcribed mRNA catabolic process)等。共有906個差異表達(dá)基因獲得160個KEGG通路富集,7個為顯著富集通路,其中2個與信號通路有關(guān)(Notch信號通路和胰島素信號通路),1個與神經(jīng)系統(tǒng)有關(guān)(長時(shí)程突觸增強(qiáng)),2個與代謝有關(guān)(脂肪酸生物合成和硫代謝),2個與發(fā)育有關(guān)(背腹軸形成和卵母細(xì)胞減數(shù)分裂)(表5)。
3.1豬鞭蟲轉(zhuǎn)錄組測序質(zhì)量評價(jià)
高通量核酸測序技術(shù)和生物信息學(xué)方法對于研究具有重要社會經(jīng)濟(jì)學(xué)價(jià)值的寄生蟲,有著深遠(yuǎn)的意義[20]。本研究以Illumina HiSeqTM2000對T.suis雌、雄蟲進(jìn)行高通量測序,獲得高達(dá)111.17M條原始reads。經(jīng)分析評估,發(fā)現(xiàn)所測序列堿基分布均勻,堿基質(zhì)量Q20在97%以上,Q30在92%以上,堿基的錯誤率均在0.1%以下。在清除引物、接頭序列和低質(zhì)量的測序數(shù)據(jù)后,雌、雄蟲分別獲得59 657 854條和48 414 184條高質(zhì)量序列。組裝獲得T.suis雌、雄蟲Unigenes數(shù)量分別為21 026條和28 886條。在NCBI-NR數(shù)據(jù)庫注釋的序列中,84.96%雄蟲Unigenes來源于T.suis,9.83%來源于T.trichiura,而雌蟲Unigenes中,84.90%來源于T.suis,其次為T.trichiura(11.32%),表明本次測序質(zhì)量可靠,測序數(shù)據(jù)覆蓋率較高。
表5T.suis差異表達(dá)基因顯著性富集的通路
Table 5The top 10 significant enriched pathway for differentially expressed genes ofT.suis
通路Pathway差異基因1Differentialgene1KEGGunigenes2校正P值CorrectedPvaluesPathwayIDNotch信號通路Notchsignalingpathway31521.04×10-10ko04330背腹軸形成Dorso-ventralaxisformation24353.04×10-10ko04320胰島素信號通路Insulinsignalingpathway32835.81×10-6ko04910脂肪酸生物合成Fattyacidbiosynthesis568.62×10-3ko00061卵母細(xì)胞減數(shù)分裂Oocytemeiosis22698.62×10-3ko04114硫代謝Sulfurmetabolism453.86×10-2ko00920長時(shí)程突觸增強(qiáng)Long-termpotentiation14424.35×10-2ko04720
1.比對到 KEGG數(shù)據(jù)庫某通路中的差異基因數(shù);2.比對到KEGG數(shù)據(jù)庫中某通路中所有基因數(shù)
1.Differentially expressed gene in each pathway in KEGG database;2.Gene numbers in this pathway in KEGG database
3.2豬鞭蟲雌、雄蟲的差異表達(dá)基因
本研究發(fā)現(xiàn),與雌蟲相比,雄蟲中顯著上調(diào)的基因有主要精子蛋白、活動精子結(jié)構(gòu)域包含蛋白、磷酸烯醇丙酮酸羧化激酶、人表皮生長因子和組氨酸磷酸酶1包含蛋白、泛素蛋白酶、跨膜蛋白酶絲氨酸5、跨膜絲氨酸蛋白酶、天冬氨酸蛋白酶、半胱氨酸蛋白酶、尿苷磷酸化酶2、Tau微管蛋白激酶1、組蛋白H2A/H2B、樁蛋白、蛋白質(zhì)酪氨酸磷酸酶、tigger 轉(zhuǎn)座子衍生蛋白和組蛋白賴氨酸 N-甲基轉(zhuǎn)移酶等。雄蟲中顯著下調(diào)的基因有卵黃蛋白原及卵黃原蛋白受體、酪氨酸酶、谷氨酰胺合成酶、絲氨酸:蘇氨酸蛋白激酶MAK、絲氨酸蛋白酶抑制劑Kunitz-1、跨膜蛋白酶絲氨酸 11E、轉(zhuǎn)錄因子AP-2α和細(xì)胞色素B561等。在雄蟲高度表達(dá)的基因中,精子蛋白是線蟲獨(dú)有的表達(dá)豐富的細(xì)纖維蛋白,是精子的主要成分[22],組蛋白H2A/H2B亞型及其翻譯后修飾也與精子生成相關(guān)[23-24]。在雌蟲中高度表達(dá)的卵黃蛋白原及卵黃原蛋白受體與胚胎發(fā)育直接相關(guān),其中卵黃蛋白原是一種普遍存在于卵生非哺乳動物中重要的生殖蛋白,主要參與卵生動物生殖、發(fā)育等生理過程,是胚胎發(fā)育的主要能源物質(zhì)[25]。而其他差異性表達(dá)基因的功能有待進(jìn)一步研究。
此外,本研究顯示糜蛋白酶樣蛋白酶、絲氨酸蛋白酶52、乙酰膽堿酯酶、絲氨酸蛋白酶抑制分子、半胱氨酸蛋白酶抑制分子、三磷酸腺苷雙磷酸酶、孔蛋白、半乳凝素和巨噬細(xì)胞移動抑制因子等在雌雄蟲中均有表達(dá),差異不顯著。其中孔蛋白與形成包裹鞭蟲桿狀體的合胞體隧道有關(guān)[26];三磷酸腺苷雙磷酸酶可阻止調(diào)節(jié)性T細(xì)胞向促炎性T細(xì)胞轉(zhuǎn)化[13];糜蛋白酶樣蛋白酶與寄生線蟲侵入宿主[27]、免疫抑制[28]和破壞組織[29]密切相關(guān);絲氨酸蛋白酶抑制分子可抑制中性白細(xì)胞蛋白酶組織蛋白酶G和彈性蛋白酶[30];半胱氨酸蛋白酶抑制分子不僅抑制宿主抗原遞呈所需的半胱氨酸蛋白酶類以降低促炎T細(xì)胞的激活,還可引發(fā)免疫抑制細(xì)胞因子IL-10釋放,減少抗原遞呈細(xì)胞共刺激分子的表達(dá),直接抑制T細(xì)胞的增殖[30];一些模擬宿主的凝集素、半乳凝素和巨噬細(xì)胞移動抑制因子可以宿主多糖為靶點(diǎn),可能參與多糖結(jié)合串聯(lián)調(diào)節(jié)宿主的免疫抑制過程[13,30-32];而乙酰膽堿酯酶能水解破壞宿主神經(jīng)遞質(zhì)乙酰膽堿以阻止其信號傳導(dǎo)[30,33]。本研究結(jié)果表明T.suis雌、雄蟲具有顯著性差異表達(dá)的基因大多與蟲體性別及繁殖密切相關(guān),而與鞭蟲致病性、免疫抑制及抗炎相關(guān)基因在T.suis雌、雄蟲中的表達(dá)差異不顯著。
3.3 豬鞭蟲雌、雄蟲差異表達(dá)基因的富集分析
在生物體內(nèi),不同基因相互協(xié)調(diào)來行使生物學(xué)功能,基于 Pathway 富集分析有助于進(jìn)一步解讀基因的功能。對差異基因進(jìn)行 Pathway 富集分析,可以確定差異表達(dá)基因參與的主要代謝途徑和信號傳導(dǎo)途徑,以及與其他基因的相互作用。本研究 KEGG Pathway分析表明,差異表達(dá)基因涉及到160個KEGG通路富集,其中Notch信號通路、胰島素信號通路、長時(shí)程突觸增強(qiáng)、脂肪酸生物合成和硫代謝、背腹軸形成和卵母細(xì)胞減數(shù)分裂通路顯著富集。這些信號通路大多與生物代謝、組織細(xì)胞的分化和免疫調(diào)控等功能有關(guān)[34-37],本研究結(jié)果提示T.suis雌、雄蟲在這些信號通路中的差異較大。
作者對T.suis轉(zhuǎn)錄組進(jìn)行高通量測序分析,揭示了T.suis雌、雄蟲差異表達(dá)基因的數(shù)量,獲得了這些差異表達(dá)基因的功能、分類和代謝通路注釋,為豐富T.suis轉(zhuǎn)錄組信息,揭示鞭蟲與宿主互作特點(diǎn)及抗鞭蟲靶點(diǎn)藥物研發(fā)奠定基礎(chǔ)。
[1]NISSEN S,POULSEN I H,NEJSUM P,et al.Prevalence of gastrointestinal nematodes in growing pigs in Kabale District in Uganda[J].TropAnimHealthProd,2011,43(3):567-572.
[2]MATSUBAYASHI M,KITA T,NARUSHIMA T,et al.Coprological survey of parasitic infections in pigs and cattle in slaughterhouse in Osaka,Japan[J].JVetMedSci,2009,71(8):1079-1083.
[3]LAI M,ZHOU R Q,HUANG H C,et al.Prevalence and risk factors associated with intestinal parasites in pigs in Chongqing,China[J].ResVetSci,2011,91(3):e121-e124.
[4]WENG Y B,HU Y J,LI Y,et al.Survey of intestinal parasites in pigs from intensive farms in Guangdong Province,People’s Republic of China[J].VetParasitol,2005,127(3-4):333-336.
[5]ROEPSTORFF A,MEJER H,NEJSUM P,et al.Helminth parasites in pigs:new challenges in pig production and current research highlights[J].VetParasitol,2011,180(1-2):72-81.
[6]XIAO S H,UTZINGER J,TANNER M,et al.Advances with the Chinese anthelminthic drug tribendimidine in clinical trials and laboratory investigations[J].ActaTrop,2013,126(2):115-126.
[7]VERCRUYSSE J,SCHETTERS T P,KNOX D P,et al.Control of parasitic disease using vaccines:an answer to drug resistance?[J].RevSciTech,2007,26(1):105-115.
[8]BOES J,HELWIGH A B.Animal models of intestinal nematode infections of humans[J].Parasitology,2000,121 Suppl:S97-S111.
[9]HEWITSON J P,GRAINGER J R,MAIZELS R M.Helminth immunoregulation:the role of parasite secreted proteins in modulating host immunity[J].MolBiochemParasitol,2009,167(1):1-11.
[10]HIEMSTRA I H,KLAVER E J,VRIJLAND K,et al.Excreted/secretedTrichurissuisproducts reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells[J].MolImmunol. 2014,60(1):1-7.
[11]SCH?LMERICH J.Trichurissuisova in inflammatory bowel disease[J].DigDis,2013,31(3-4):391-395.
[12]SUMMERS R W,ELLIOTT D E,URBAN J J,et al.Trichurissuistherapy for active ulcerative colitis:a randomized controlled trial[J].Gastroenterology,2005,128(4):825-832.
[13]JEX A R,NEJSUM P,SCHWARZ E M,et al.Genome and transcriptome of the porcine whipwormTrichurissuis[J].NatGenet,2014,46(7):701-706.
[14]祁云霞,劉永斌,榮威恒.轉(zhuǎn)錄組研究新技術(shù):RNA-Seq及其應(yīng)用[J].遺傳.2011,33(11):1191-1202.
QI Y X,LIU Y B,RONG W H.RNA-Seq and its applications:a new technology for transcriptomics[J].Hereditas,2011,33(11):1191-1202.(in Chinese)
[15]LIU G H,XU M J,SONG H Q,et al.De novo assembly and characterization of the transcriptome of the pancreatic flukeEurytremapancreaticum(trematoda:Dicrocoeliidae) using Illumina paired-end sequencing[J].Gene,2016,576(1 Pt 2):333-338.
[16]POMAZNOY M Y,LOGACHEVA M D,YOUNG N D,et al.Whole transcriptome profiling of adult and infective stages of the trematodeOpisthorchisfelineus[J].ParasitolInt,2016,65(1):12-19.
[17]WANG X,XU X,LU X,et al.Transcriptome Bioinformatical Analysis of Vertebrate Stages ofSchistosomajaponicumReveals Alternative Splicing Events[J].PLoSOne,2015,10(9):e138470.
[18]WALKER R A,SHARMAN P A,MILLER C M,et al.RNA Seq analysis of theEimeriatenellagametocyte transcriptome reveals clues about the molecular basis for sexual reproduction and oocyst biogenesis[J].BMCGenomics,2015,16(1):94.
[19]HACARIZ O,AKGUN M,KAVAK P,et al.Comparative transcriptome profiling approach to glean virulence and immunomodulation-related genes ofFasciolahepatica[J].BMCGenomics,2015,16(1):366.
[20]ZHU X Q,KORHONEN P K,CAI H,et al.Genetic blueprint of the zoonotic pathogenToxocaracanis[J].NatCommun,2015,6(2):6145.
[21]MORTAZAVI A,WILLIAMS B A,MCCUE K,et al.Mapping and quantifying mammalian transcriptomes by RNA-Seq[J].NatMethods,2008,5(7):621-628.
[23]RAMOS I,MARTIN-BENITO J,F(xiàn)INN R,et al.Nucleoplasmin binds histone H2A-H2B dimers through its distal face[J].JBiolChem,2010,285(44):33771-33778.
[24]魯爽.精子發(fā)生過程中組蛋白H2A.H2B編碼及功能研究[D].北京:中國協(xié)和醫(yī)科大學(xué),2009.
LU S.The research on histone H2A.H2B protein coding and function of spermatogenesis[D].Beijing:Peking Union Medical College,2009.(in Chinese)
[25]李兆杰,楊麗君,王靜,等.卵黃蛋白原的研究進(jìn)展[J].生命科學(xué).2010,22(3):284-290.
LI Z J,YANG L J,WANG J,et al.The progress in studies on vitellogenin[J].ChineseBulletinofLifeSciences,2010,22(3):284-290.(in Chinese)
[26]TILNEY L G,CONNELLY P S,GUILD G M,et al.Adaptation of a nematode parasite to living within the mammalian epithelium[J].JExpZoolACompExpBiol,2005,303(11):927-945.
[27]TOUBARRO D,LUCENA-ROBLES M,NASCIMENTO G,et al.Serine protease-mediated host invasion by the parasitic nematodeSteinernemacarpocapsae[J].JBiolChem,2010,285(40):30666-30675.
[28]BALASUBRAMANIAN N,TOUBARRO D,SIM?ES N.Biochemical study and in vitro insect immune suppression by a trypsin-like secreted protease from the nematodeSteinernemacarpocapsae[J].ParasiteImmunol,2010,32(3):165-175.
[29]TOUBARRO D,LUCENA-ROBLES M,NASCIMENTO G,et al.An apoptosis-inducing serine protease secreted by the entomopathogenic nematodeSteinernemacarpocapsae[J].IntJParasitol,2009,39(12):1319-1330.
[30]HEWITSON J P,GRAINGER J R,MAIZELS R M.Helminth immunoregulation:the role of parasite secreted proteins in modulating host immunity[J].MolBiochemParasitol,2009,167(1):1-11.
[31]KLAVER E J,KUIJK L M,LAAN L C,et al.Trichurissuis-induced modulation of human dendritic cell function is glycan-mediated[J].IntJParasitol,2013,43(3-4):191-200.
[32]VERMEIRE J J,CHO Y,LOLIS E,et al.Orthologs of macrophage migration inhibitory factor from parasitic nematodes[J].TrendsParasitol,2008,24(8):355-363.
[33]SELKIRK M E,LAZARI O,HUSSEIN A S,et al.Nematode acetylcholinesterases are encoded by multiple genes and perform non-overlapping functions[J].ChemBiolInteract,2005,157-158:263-268.
[34]NOZAKI T,ALI V,TOKORO M.Sulfur-containing amino acid metabolism in parasitic protozoa[J].AdvParasitol,2005,60:1-99.
[35]MORGAN C T,NOBLE D,KIMBLE J.Mitosis-meiosis and sperm-oocyte fate decisions are separable regulatory events[J].ProcNatlAcadSciUSA,2013,110(9):3411-3416.
[36]RADTKE F,MACDONALD H R,TACCHINI-COTTIER F.Regulation of innate and adaptive immunity by Notch[J].NatRevImmunol,2013,13(6):427-437.
[37]FORTINI M E.Notch signaling:the core pathway and its posttranslational regulation[J].DevCell,2009,16(5):633-647.
(編輯白永平)
Differential Expression Analysis of Female and MaleTrichurissuisby a High-throughput Transcriptome Sequencing Method
ZHOU Zuo-yong1,SHAO Ao-jun1,XU Ting-ting2,CHEN Jia-lei2,HU Shi-jun1*
(1.DepartmentofVeterinaryMedicine,RongchangCampusofSouthwestUniversity,Chongqing402460,China;2.CollegeofAnimalScienceandTechnology,SouthwestUniversity,Chongqing400715,China)
To find transcriptome difference of female and maleTrichurissuis,and to enrich pig whipworm transcriptome data,the transcriptomes were analyzed by Illumina Hiseq 2000 high-throughput RNA sequencing.All of the assembled Unigenes were annotated using BLAST search against NR,GO,COG and KEGG databases.The differentially expressed genes were enriched in gene ontology and KEGG pathway.The results showed that 21 026 and 28 886 unigenes were got from female and maleT.suistranscriptomes which were assembled from 59 657 854 and 48 414 184 clean reads respectively.The annotated Unigenes of femaleT.suisto NR,GO,COG and KEGG databases were 11 700,2 287,1 650 and 9 690 respectively,while the data of maleT.suiswere 12 902,2 414,1 791 and 10 377.There were 4 320 differentially expressed genes found in female and maleT.suis,and more than 84.90% of the information were derived from pig whipworm in NR database.Take femaleT.suisfor reference,3 496 genes were up-regulated and 824 genes were down-regulated in maleT.suis.There were 906 differentially expressed genes enriched in KEGG pathways,and 7 of them were significantly enriched.Many important genes associated with reproduction including Major sperm protein,Histone H2A/H2B and Vitellogenin,and genes related to pathogenisis,immunity and inflammatory regulation such as protease,Serpin and Cystatin were found in transcriptome ofT.suis,in addition to these,there were many genes of unknown functions.This study revealed the number of differentially expressed genes in female and maleT.suis,and obtained the function,classification and metabolic pathways of the differentially expressed genes,which enrichedT.suistranscriptome information,and provide a solid basis for the study onT.suis-host interactions and developing anti-whipworm drugs.
Trichurissuis;transcriptome;gene annotation;differentially expressed genes
10.11843/j.issn.0366-6964.2016.09.021
2016-03-29
中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)基金資助項(xiàng)目(XDJK2015C030);重慶市社會事業(yè)與民生保障科技創(chuàng)新專項(xiàng)(CSTC2015SHMSZX80020)
周作勇(1979-),男,四川冕寧人,博士,副教授,主要從事動物傳染病與寄生蟲病防治研究。E-mail:zzyxnny@163.com
胡世君,男,副教授,E-mail:chhjj006@163.com
S852.73
A
0366-6964(2016)09-1914-10