• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于CoNi-雙金屬氫氧化物//AC非對(duì)稱(chēng)超級(jí)電容器的構(gòu)筑

    2016-10-31 09:12:39謝莉婧孫國(guó)華謝龍飛蘇方遠(yuǎn)李曉明孔慶強(qiáng)呂春祥李開(kāi)喜陳成猛
    新型炭材料 2016年1期
    關(guān)鍵詞:氫氧化物雙金屬非對(duì)稱(chēng)

    謝莉婧, 孫國(guó)華, 謝龍飛, 蘇方遠(yuǎn), 李曉明,劉 卓, 孔慶強(qiáng), 呂春祥, 李開(kāi)喜, 陳成猛

    (1.中國(guó)科學(xué)院山西煤炭化學(xué)研究所 炭材料重點(diǎn)實(shí)驗(yàn)室,山西 太原030001;2.遼寧工業(yè)大學(xué),遼寧 錦州121001)

    ?

    基于CoNi-雙金屬氫氧化物//AC非對(duì)稱(chēng)超級(jí)電容器的構(gòu)筑

    謝莉婧1,孫國(guó)華1,謝龍飛2,蘇方遠(yuǎn)1,李曉明1,劉卓1,孔慶強(qiáng)1,呂春祥,李開(kāi)喜1,陳成猛1

    (1.中國(guó)科學(xué)院山西煤炭化學(xué)研究所 炭材料重點(diǎn)實(shí)驗(yàn)室,山西 太原030001;2.遼寧工業(yè)大學(xué),遼寧 錦州121001)

    以高電容特性的CoNi-LDH作正極,活性炭作負(fù)極,6 mol/L KOH溶液為電解液構(gòu)筑CoNi-LDH/AC非對(duì)稱(chēng)超級(jí)電容器。由于這兩種材料在同一種電解液中發(fā)生可逆循環(huán)時(shí)對(duì)應(yīng)的電化學(xué)電勢(shì)范圍不同,因此通過(guò)組合這兩種電極材料可以有效地解決對(duì)稱(chēng)電容器工作電壓低的問(wèn)題。用循環(huán)伏安、恒電流充放電等測(cè)試方法對(duì)其電化學(xué)性能進(jìn)行研究。結(jié)果表明,所組裝非對(duì)稱(chēng)電容器在堿性水系電解液中,其工作電壓可以達(dá)到1.5 V。通過(guò)比較它與基于兩種電極材料對(duì)稱(chēng)電容器的能量密度-功率密度曲線可以看出,非對(duì)稱(chēng)電容器的性能有了很大提高,在功率密度為102.3 W·kg-1時(shí),其能量密度可以達(dá)到46.3 Wh·kg-1。

    鈷鎳雙金屬氫氧化物; 納米復(fù)合物; 非對(duì)稱(chēng)超級(jí)電容器; 能量存儲(chǔ)

    1 Introduction

    Over the past few years, the ever-increasing environmental problems and the up-coming depletion of fossil fuels have stimulated intense research on the development of alternative energy storage/conversion devices with high power and energy densities[1,2]. Electrochemical capacitors often called supercapacitors or ultra-capacitors with attractive characteristics such as high power density, low equivalent series resistance (ESR) and permanent charge-discharge life are considered as promising energy storage devices. They can be applied in a large variety of applications, including consumer electronics, memory back-up systems, industrial power, energy management, public transportation, military devices and electric vehicles[3]. However, the low energy density (normally less than 10 Wh·kg-1) of commercially available supercapacitors has imposed significant challenges for their use as power sources to replace batteries[4]. Therefore, improvement of the energy density of supercapacitors is crucial to meet the future energy storage demands.

    Recently, the fabrication of asymmetric supercapacitors using aqueous electrolytes has been regarded as an efficient way to improve their energy density[5, 6]. Such type asymmetric supercapacitors are different from either the electric double layer capacitors (EDLCs) or the conventional batteries,which can make full use of a battery type (faradaic) electrode and a capacitor type (electrochemical double layer) electrode to increase the operation voltage[7]. As a consequence, the high working voltage and high energy density of the faradic reaction electrode can be obtained simultaneously by choosing a proper electrode material, and hence the overall energy density of the asymmetric supercapacitors can be enhanced correspondingly.

    Currently, the negative material of an asymmetric supercapacitior is activated carbon (AC)[8-11], and its positive electrode material is mainly transition metal oxides/hydroxide, including V2O5[9], MnO2[10], NiO[11]and Ni(OH)2[12]. Ni(OH)2is one of the very promising materials for energy storage, and has received increasing attention in recent years owing to their relatively high capacitance and fast redox kinetics[13,14]. Actually, the crystal structure of this kind of the materials plays a critical role in the capacitive performance. Nickel hydroxides are well-known to crystallize in two polymorphs,αandβ[15]. Theβ-form is a stoichiometric phase of the composition Ni(OH)2with a brucite-like structure and consists of a hexagonal packing of hydroxyl ions with Ni(II) occupying alternate rows of octahedral sites[16], while theα-hydroxides are reported to be isostructural with hydrotalcite-like compounds that consist of positively charged Ni(OH)2-xlayers and charge balancing anions (e.g., NO3-, CO32-, Cl-, etc.) in the interlayer gallery[17]. Theα-nickel hydroxide is theoretically expected to exhibit superior electrochemical activity as compared to itsβ-counterpart because of its turbostratically crystallized structure. However,α-Ni(OH)2is unstable in alkaline medium and transforms toβ-Ni(OH)2[18]. Numerous efforts have been made to stabilize theα-phase Ni(OH)2by partially substituting Al[19], Co[20], Mn[21]or Zn[22]ions for Ni ions. Recently, we have reported that loose-packed CoNi-layered double hydroxide (LDH) composed of nanoparticles synthesized by a polyvinyl pyrrolidone-assisted chemical co-precipitation method[23], which was shown to be a potential candidate for a supercapacitor electrode material.

    In the present work, in order to expand the potential window and enhance the energy density, an asymmetric supercapacitor is assembled in a 6 mol/L aqueous KOH electrolyte using AC as the negative electrode and the CoNi-LDH nanoparticles as the positive electrode. The as-obtained asymmetric supercapacitor showed a high energy density of 46.3 Wh·kg-1at a power density of 102.3 W·kg-1, and a high power density of 1 704.5 W·kg-1at an energy density of ~25.6 Wh·kg-1, all with a 1.5 V cell voltage operating. These features are very attractive for a variety of critical applications in high-performance energy storage systems.

    2 Experimental

    2.1Synthesis of electrode materials

    Reagents were all of AR grade. Water used in the synthesis and washing was deionized. CoNi-LDH powder was prepared using a chemical co-precipitation method, referencing the previous work[30]. The typical route is as follows. In the first step, CoCl2·6H2O (0.005 mol) and NiCl2·6H2O (0.005 mol) were dissolved in distilled water (50 mL) with vigorous stirring. Then, 5 g polyvinyl pyrrolidone was added to the solution under vigorous stirring for 1 h. Afterward, 5 wt% NH3·H2O was added dropwise into the above solution with continuous stirring until the pH of the solution reached 9. After aging for 12 h, the resulting product was separated by suction filtration and rinsed with distilled water and ethanol several times, and then dried at 60 ℃ for 12 h.

    Activated carbon powder with a specific area of 2 384 m2·g-1was prepared from coal powder (Yi chuan, Shanxi, China) via KOH activation at 800 ℃ for 1.5 h with a coal/KOH mass ratio of 1∶6.

    2.2Characterization

    The obtained products were characterized by field emission scanning electron microscopy (FESEM) (JSM-6701F, Japan), X-ray diffraction (Rigaku, D/Max-2400, Japan) and nitrogen adsorption and desorption (Micromeritics, ASAP 2020M, USA). The specific surface area was obtained using Brunauer-Emmett-Teller (BET) method. The pore size distribution of the CoNi-LDH and activated carbon were calculated using the Barrett-Joyner-Halenda (BJH) model and density functional theory (DFT) method based on the nitrogen adsorption isotherms, respectively. The elemental composition in the as-prepared samples was determined using Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) (Thermo ICAP6300).

    2.3Electrochemical test of the single electrode and asymmetric supercapacitor

    The CoNi-LDH used for the positive electrode was prepared by mechanically mixing 75 wt% powered CoNi-LDH, 10 wt% acetylene black, 10 wt% conducting graphite, and 10 wt% polytetrafluoroethylene (PTFE) emulsion with a PTFE content of 50 wt%. Then the mixture was pressed on a Ni-foam grid at a pressure of 10 MPa and dried at room temperature for 24 h. The AC electrodes were prepared by the same method as the positive electrode described above. To construct an asymmetric supercapacitor, the loading mass ratio of active materials (CoNi-LDH/activated carbon) was estimated to be 3∶19 according to their specific capacitances from their galvanostatic charge-discharge curves in a three-electrode cell. The galvanostatic charge-discharge test of the individual electrode was performed in a three-electrode cell, in which a platinum foil and a Hg/HgO were used as counter and reference electrode, respectively, in 6 mol/L KOH aqueous solution. The cyclic voltammetry and galvanostatic charge-discharge tests of the symmetric supercapacitors (AC/AC) and the asymmetric supercapacitors based on CoNi-LDH and activated carbon electrodes separated by a porous nonwoven cloth were performed in a two-electrode cell in 6 mol/L KOH aqueous solution. All of the above electrochemical measurements were carried out on a CHI760D electrochemical working station (CH Instrument).

    The specific capacitance of the asymmetric capacitor can be evaluated from the charge/discharge test with the following equation:C=I/[(dE/dt)×m]≈I/[(ΔE/Δt)×m](F/g)

    (1)

    whereCis the specific capacitance;Iis the constant discharging current;Δt is the time period for the potential changeΔE; andmis the total mass of active material in two electrodes.

    The charge on the electrode can be evaluated from the charge/discharge test with the following equation:

    C'=IΔt/m(C/g)

    (2)whereIis the constant discharging current;Δis the time period for the potential change; and m is the mass of the corresponding electrode materials measured.

    The real power densityPrealis determined from the constant current charge/discharge cycles as follows:

    Preal=ΔEI/m(W/kg)

    (3)

    where withEmaxis the potential at the end of the charge andEminat the end of the discharge,Iis the applied current (A), andmis the weight of the active material in the electrode (kg).

    The specific energy Erealis defined as:

    (4)

    whereCis the system capacitance for a cell andUmaxis the maximum cell voltage.

    3 Results and discussion

    3.1Material characterization

    The atomic percentages (at%) of the elements Co and Ni in the CoNi-LDH was obtained by means of Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The result shows that the CoNi-LDH material was obtained when the molar ratio of the CoCl2·6H2O∶NiCl2·6H2O in the mixed solution was 1∶1.

    The XRD patterns of the Co(OH)2, CoNi-LDH, Ni(OH)2are shown in Fig.1. The patterns in Fig.1 comprise four broad peaks appearing at 2θvalues of 11.3° (0.789 nm), 22.8° (0.391 nm), 34.3° (0.262 nm) and 60.4° (0.153 nm). The XRD patterns correspond to bothα-Co(OH)2andα-Ni(OH)2. It is difficult to differentiate the two phases, since they have very similar structures, and hence their diffraction peaks are very close. Furthermore, theα-phase hydroxides display more disorder and a larger interlayer spacing as the interlamellar space contains water molecules or other anions than theβ-phase[24]. Therefore,α-phase composites are theoretically expected to exhibit superior electrochemical activity as compared with theβ-form[25].

    The morphology and structure characters of the CoNi-LDH and the activated carbon are shown in Fig. 2. It can be clearly observed from Fig.2a that the CoNi-LDH is comprised of grain-like particles with diameters in the range from 10 to 30 nm, and these particles arrange randomly and form a relatively loose packed microstructure. This kind of porous structure not only provides a large active area, but also allows a rapid transportation of electrolyte ions, which meet the demand of the appreciable performance at high charge/discharge rate for the asymmetric supercapcitor. The activated carbon sample in Fig. 2b shows mesoporosity, which is essential for the electrochemical activity.

    Further information on the specific surface area and pore structure of the activated carbon (Fig. 3) is obtained from N2adsorption-desorption measurements. A type IV isotherm with a distinct hysteresis loop is observed for the the activated carbon, indicating the presence of a mesoporous structure. The specific surface area and pore volume of the CoNi-LDH are 109.8 m2·g-1and 0.603 6 cm3·g-1, respectively. Its corresponding pore diameter distributions is shown in Fig. 3a (insert), which possesses a narrow mesoporous distribution around 1.5-5 nm. The activated carbon shows a BET surface area of 2 384 m2·g-1and a pore volume of 1.98 cm3·g-1. Moreover, the pores of the activated carbon are mainly mesopores with a narrow size distribution of 3-5 nm (Fig. 3b insert). These intriguing features are of huge benefit for the transport and diffusion of electrolyte ions during the rapid charge-discharge process, hence resulting in an excellent electrochemical performance.

    Fig. 1 XRD patterns of Co(OH)2, CoNi-LDH and Ni(OH)2.

    Fig. 2 SEM images of (a) the CoNi-LDH and (b) activated carbon.

    Fig. 3 N2 adsorption-desorption isotherms of (a) the CoNi-LDH and (b) activated carbon (insets show their pore size distributions).

    3.2Electrochemical characterization

    Fig. 4a shows the CV curves of the CoNi-LDH and the AC as electrode materials, which are measured in a three-electrode system. The AC electrode is measured within a potential window from -1 V to 0 V, and the CoNi-LDH electrode within a potential window from 0 V to 0.5 V at a scan rate of 5 mV·s-1. The CV curve of the AC electrode exhibits a rectangular shape, suggesting a typical characteristic of EDLC behavior. In contrast, the CoNi-LDH electrode exhibits a pair of cathodic and anodic peaks, indicating the existence of fast Faradic redox reactions during the CV tests.

    Fig. 4b shows the charge-discharge curves of the individual electrodes vs. the Hg/HgO reference electrode. The AC electrode presents a typical linear relationship with increasing time, being a characteristic of electric double layer capacitance. The CoNi-LDH electrode deviates from the ideal line due to the existence of the faradaic reaction, as indicated by the CV results. According to the Equation (1), the specific capacitances of the AC and CoNi-LDH are 210 and 2 614 F·g-1at a current density of 1 A·g-1, respectively. The stored charges (q) are related with the specific capacitance (C), the potential window (ΔV), and the mass (m) of the electrode according to the Equation (2)[26]. Therefore, on the basis of the specific capacitances and the potential windows of the two materials, the mass ratio between the CoNi-LDH electrode and the AC electrode should be 3∶18 in an asymmetric supercapacitior.

    Fig. 4 (a) Cyclic voltammograms of the CoNi-LDH and AC electrodes at a scan rate of 5 mV·s-1in 6 M KOH solution and (b) the charge-discharge curves of the individual electrodes vs. the Hg/HgO reference electrode.

    The working principle of the positive and negative electrodes in the asymmetric supercapacitor is illustrated in Fig.5. Based on the physical reasoning, both electrodes of an asymmetric supercapacitor connect in series[27]. In the view of this holistic supercapacitor, the series circuit combines with two parts: one part is the symmetric circuit based on activated carbon and another part is the symmetric circuit based on CoNi-LDH. As these two different materials have different potential ranges operating reversibly in the same aqueous electrolyte, it could effectively increase the operation voltage if these two electrodes are combined. Moreover, in the as-constructed asymmetric supercapacitor system, the positive electrode made from CoNi-LDH to supply pseudo-capacitance and the negative electrodes from activated carbon to obtain double-layer capacitance in their respective potential ranges, which is favorable for its storage charge in the voltage range of 0-1.5 V.

    Fig. 5 Schematic diagram of the CoNi-LDH//AC asymmetric supercapacitor.

    The CV curves of the CoNi-LDH//activated carbon asymmetric supercapacitor have been tested at various scan rates and are shown in Fig. 6a, which is consistent with our hypothesis, i.e., the voltage of the asymmetric supercapacitor can be extended to be 1.5 V. With the increase of the scan rate from 3 to 30 mV·s-1, the shapes of CV curves of the capacitor do not change, implying its good electrochemical performance. At the same time, no oxygen or hydrogen evolution current is observed in these curves, indicating that no hydrogen or oxygen evolution occurs within the voltage range (0-1.5 V). Fig. 6b shows galvanostatic charge-discharge curves of the CoNi-LDH//activated carbon asymmetric supercapacitor at various current densities. It can be seen that both charge and discharge curves remain a good symmetry at cell voltage as high as 1.5 V, implying that the cell has an excellent electrochemical reversibility and capacitive characteristics. Although an almost linear potential response is observed, the galvanostatic charge-discharge curves are not in an exact triangle shape, which may be due to the pseudocapacitance arising from the redox reaction within this voltage range. The specific capacitance calculated from the galvanostatic charge-discharge curves according to the Equation (1) is 149 F·g-1at a current density of 142.8 mA·g-1and still reaches 112 F·g-1at a high current density of 2 381 mA·g-1, indicating a good rate capability.

    The effect of positive electrode/negative electrode mass ratio on specific capacitance of the assembled asymmetric supercapacitors was investigated by chronopotentiometry and the corresponding results are shown in Fig.7. The assembled asymmetric supercapacitors have the same active-material loading on positive electrode but varied loadings on negative electrode from 12 to 27 mg. As seen in Fig.7, the specific capacitances of the CoNi-LDH//activated carbon asymmetric supercapacitors firstly increase markedly, and then decrease when the mass ratio is in the range between 1∶7 and 1∶9. The maximal specific capacitance at different current densities is obtained when the cathode/anode mass ratio is 1∶6. These results show that the CoNi-LDH/activated carbon mass ratio with 1∶6 is ideal for the CoNi-LDH//activated carbon asymmetric supercapacitor. The experiment result is consistent with theoretical calculations above.

    Fig. 6  (a) Cyclic voltammograms at different scan rates and (b) galvanostatic charge-discharge curves at different current densities of the asymmetric supercapacitor.

    Fig. 7 Specific capacitances of the CoNi-LDH//AC asymmetric supercapacitors having different positive-to-negative electrode mass ratios at different current densities.

    Electrochemical impedance spectroscopy (EIS) is a very powerful tool to characterize the electrochemical process of an electrochemical capacitor. To better evaluate the performance of the asymmetric supercapacitor, the electrochemical impedance measurements were carried out at applied potentials of 0.5, 0.8, 1.0 and 1.3 V and the frequency range of 105-10-2Hz and typical plots are shown in Fig. 8. Three distinct regions, which are dependent on the frequency, are shown in Fig. 8a-d. From the points intersecting the real axis in high frequency, it can be seen that the values of the internal resistance (Ri) of the hybrid electrochemical capacitor at all the applied potentials are nearly the same, which are estimated as little as 0.88 Ω. In the high-medium frequency region, from the semi-circles observed for all the plots, the charge-transfer resistances (Rct) related to charge-transfer process on the surfaces of the electroactive materials are estimated the same as 0.35 Ω at various applied potentials. And it is clear that, in the low frequency region, the slope of all the impedance plots increases and almost tends to a vertical asymptote, indicative of the good electrochemical capacitance performance of the asymmetric supercapacitor within the applied voltage range from 0 V to 1.5 V, which is well consistent with the analysis of the CV tests in Fig. 5b.

    Ragone plots relating the energy density to the power density are an efficient way to evaluate the capacitive performance of a supercapacitor. Fig. 9(a) shows the Ragone plot of the as-prepared the CoNi-LDH//activated carbon asymmetric supercapacitor. The energy and power densities were derived from the discharge curves at different current densities according to the Equation (3) and (4). For comparison, the symmetric supercapacitor based activated carbon and activated carbon, has also been constructed and evaluated in 6 M electrolyte (Fig. 9 (b)). It is worth noting that the maximum energy density for the asymmetric supercapacitor with a cell voltage of 1.5 V is 46.59 Wh·kg-1, which is much higher than the symmetric activated carbon/activated carbon supercapacitor (6.8 Wh·kg-1). Moreover, the asymmetrical supercapacitor still shows a high energy density of 35.3 Wh·kg-1even at a power density of 1 785 W·kg-1. Such a high energy density is comparable to or even higher than other reported asymmetric capacitors[9,10,13,28,29]. The enhancement of the energy density here is attributed to the enlarged potential window and the high specific capacitance, which considerably boosts its potential application in the replacement of traditional symmetric supercapacitor in advanced energy storage devices.

    Fig. 8 Nyquist plots of the CoNi-LDH//AC asymmetric supercapacitor at different applied potentials.

    Fig. 9 Ragone plot relating power density and energy density of (a) the CoNi-LDH/AC asymmetric and(b) the AC/AC symmetric supercapacitor.

    The cycling stability of the asymmetric superca pacitor was further investigated by the galvanostatic charge-discharge between 0 and 1.5 V at a current density of 476 mA·g-1(Fig. 10a). Results have shown that the asymmetric supercapacitor retains 84.5% of initial capacitance even after 1 000 consecutive cycles of charge-discharge testing, displaying a long cycling ability of the CoNi-LDH/activated carbon asymmetric supercapacitor. In order to understand the excellent electrochemical performance, SEM imaging of the CoNi-LDH electrode after 1 000 cycling test was carried out. The morphology as well as particle size of the CoNi-LDH electrode are almost the same as in the initial state (Fig. 2a), as shown in the Fig. 10b. The results display that the CoNi-LDH composite can effectively accommodate the strain and stress of volume change during cycling, which consequently enhances the cyclic stability of the CoNi-LDH/activated carbon asymmetric supercapacitor.

    Fig. 10  (a) Long-term cycling stability of the CoNi-LDH//AC asymmetric supercapacitor at a constant current density of 476 mA·g-1 over 1 000 cycles and (b) the morphology of CoNi-LDH after the long cycling test.

    4 Conclusions

    An asymmetric supercapacitor based on CoNi-LDH as the positive electrode and activated carbon as the negative was successfully assembled in a 6 mol/L aqueous KOH electrolyte, which can be cycled reversibly in the high-voltage region of 0-1.5 V, delivers a high energy density of 46.59 Wh·kg-1at a power density of 107 W·kg-1, and can still operate at a high power density of 1 785 W·kg-1with an energy density of 35.3 Wh·kg-1. Furthermore, the asymmetric supercapacitor also exhibits a long cycle life along with a 84.5% capacitance retention after 1 000 cycles. Such impressive electrochemical performance of the CoNi-LDH//activated carbon capacitor opens new opportunities for its application in high power and energy storage devices.

    [1]Wei T Y, Chen C H, Chien H C, et al. A cost-effective supercapacitor material of ultrahigh specific capacitances: Spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process[J]. Adv Mater, 2010, 22: 347-351.

    [2]Wang H, Casalongue H S, Liang Y, et al. Ni(OH)2nanoplates grown on graphene as advanced electrochemical pseudo-capacitor materials[J]. J Am Chem Soc, 2010, 132: 7472-7477.

    [3]Hu Z A, Xie Y L, Wang Y X, et al. Synthesis ofα-cobalt hydroxides with different intercalated anions and effects of intercalated anions on their morphology, basal plane spacing and capacitive property[J]. J Phys Chem C, 2009, 113: 12502-12508.

    [4]Frackowiak E. Carbon materials for supercapacitor application[J]. Phys Chem Chem Phys, 2007, 9: 1774-1785.

    [5]Khomenko V, Raymundo-Piňero E, Frackowiak E, et al. High-voltage asymmetric supercapacitors operating in aqueous electrolyte[J]. Appl Phys A: Mater Sci Process, 2006, 82: 567-573.

    [6]Park J H, Park O O. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes[J]. J Power Sources, 2002, 111: 185-190.

    [7]Yan J, Fan Z, Sun W, et al. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density[J]. Adv Funct Mater, 2012, 22: 2632-2641.

    [8]Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39: 937-950.

    [9]Qu Q T, Shi Y, Li L L, et al. V2O5·0.6H2O nanoribbons as cathode material for asymmetric supercapacitor in K2SO4solution[J]. Electrochem Commun, 2009, 11: 1325-1328.

    [10]Khomenko V, Raymundo-Pińero E, Béguin F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium[J]. J Power Sources, 2006, 153: 183-190.

    [11]Wang D W, Li F, Cheng H M. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor[J]. J Power Sources, 2008, 185: 1563-1568.

    [12]Wang Y G, Yu L, Xia Y Y. Electrochemical capacitance performance of hybrid supercapacitors based on Ni(OH)2/carbon nanotube composites and activated carbon[J]. J Electrochem Soc, 2006, 153: A743-A748.

    [13]Song Q S, Li Y Y, Lchan S L. Physical and electrochemical characteristics of nanostructured nickel hydroxide powder[J]. J Appl Electrochem, 2005 35: 157-162.

    [14]Cheng J, Cao G P, Yang Y S. Characterization of sol-gel-derived NiOx xerogels as supercapacitors[J]. J Power Sources, 2006, 159: 734-731.

    [15]Oliva P, Leonardi J, Laurent J F, et al. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides[J]. J Power Sources, 1982, 8: 229-255.

    [16]Mockenhaupt C, Zeiske T, Lutz H D. Crystal structure of brucite-type cobalt hydroxideβ-Co{O(H,D)}2-neutron diffraction, IR and Raman spectroscopy[J]. J Mol Struct, 1998, 443: 191-203.

    [17]El-Batlouni H, El-Rassy H, Al-Ghoul M. Cosynthesis, coexistence, andself-organization ofα-andβ-cobalt hydroxide based on diffusion and reaction in organic gels[J]. J Phys Chem A, 2008, 112: 7755-7757.

    [18]Jayashree R S, Kamath P V. Suppression of theα→β-nickel hydroxide transformation in concentrated alkali: Role of dissolved cations[J]. J Appl Electrochem, 2001, 31: 1315-1320.

    [19]Zhao M Q, Zhang Q, Huang J Q, et al. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications[J]. Adv Funct Mater, 2012, 22: 675-694.

    [20]Yang J, Yu C, Fan X M, et al. 3D architecture materials made of NiCoAl-LDH nanoplates coupled with Ni Co-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors[J]. Adv Energy Mater, 2014, DOI:10.1002/aenm.201400761.

    [21]Zhao J W, Chen J L, Xu S M, et al. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors[J]. Adv Funct Mater, 2014, 24: 2938-2946.

    [22]Guerlou-Demourgues L, Tessier C, Bernard P, et al. Influence of substituted zinc on stacking faults in nickel hydroxide[J]. J Mater Chem, 2004, 14: 2649-2654.

    [23]Xie L J, Hu Z A, Lv C X, et al. CoxNi1-x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials[J]. Electrochim Acta, 2012, 78: 205-211.

    [24]Coudun C, Hochepied J F. Nickel hydroxide “stacks of pancakes” obtained by the coupled effect of ammonia and template agent[J]. J Phys Chem B, 2005, 109: 6069-6074.

    [25]Liu Z, Ma R, Osada M, et al. Selective and controlled synthesis ofα- andβ-cobalt hydroxides in highly developed hexagonal platelets[J]. J Am Chem Soc, 2005, 127: 13869-13874.

    [26]Fan Z J, Yan J, Wei T, et al. Asymmetric supercapacitors based on graphene/MnO2and activated carbon nanofiber electrodes with high power and energy density[J]. Adv Funct Mater, 2011, 21: 2366-2375.

    [27]Qi X C. Study of asymmetric hybrid supercapacitor's modeling. Proceedings of ISES solar world congress 2007: Solar energy and human settlement[C]. September 18-21, 2007, Beijing, 2811-2814.

    [28]Wang D W, Fang H T, Li F, et al. Aligned titania nanotubes as an intercalation anode material for hybrid electrochemical energy storage[J]. Adv Funct Mater, 2008, 18: 3787-3793.

    [29]Wang Q, Wen Z, Li J. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode[J]. Adv Funct Mater, 2006, 16: 2141-2146.

    A high energy density asymmetric supercapacitor based on a CoNi-layered double hydroxide and activated carbon

    XIE Li-jing1,SUN Guo-hua1,XIE Long-fei2,SU Fang-yuan1,LI Xiao-ming1,LIU Zhuo1,KONG Qing-qiang1,LU Chun-xiang1,LI Kai-xi1,CHEN Cheng-meng1

    (1.KeyLaboratoryofCarbonMaterials,InstituteofCoalChemistry,ChineseAcademyofSciences,Taiyuan030001,China;2.LiaoningUniversityofTechnology,Jinzhou121001,China)

    A high performance asymmetric supercapacitor was fabricated using a CoNi-layered double hydroxide (CoNi-LDH) as the positive electrode and activated carbon as the negative electrode in an electrolyte of 6 M aqueous KOH. The supercapacitor can be cycled reversibly in a wide potential window of 0-1.5 V and exhibits a remarkable energy density of 46.3 Wh·kg-1at a power density of 102.3 W·kg-1, a high energy density of 25.6 Wh·kg-1even at a high power density of 1 704.5 W·kg-1These values are much higher than those of a symmetric supercapacitor using only activated carbon (6.9 Wh·kg-1). The results can be ascribed to the high specific capacitance and rate capability of the CoNi-LDH, and the complementary potential windows of the two electrodes that increase the working voltage of the supercapacitor. The supercapacitor also exhibits stable cycling with a 84.5% capacitance retention after 1 000 cycles.

    Cobalt nickel double hydroxides; Nanocomposite; Asymmetric supercapacitor; Energy storage

    date: 2015-12-12;Reviseddate: 2016-01-11

    National Natural Science Foundation of China (51402324,51402325,51302281).

    LI Kai-xi, Ph. D, Professor. E-mail: likx99@yahoo.com;

    introduction: XIE Li-jing, Ph. D, Assistant Professor. E-mail:xielijing@sxicc.ac.cn

    1007-8827(2016)01-0037-09

    TB333

    A

    國(guó)家自然科學(xué)基金(51402324,51402325,51302281).

    李開(kāi)喜,博士,研究員. E-mail: likx99@yahoo.com; 陳成猛,博士,副研究員. E-mail: ccm@sxicc.ac.cn

    謝莉婧,博士,助理研究員. E-mail:xielijing@sxicc.ac.cn

    CHEN Cheng-meng, Ph. D, Associate Professor. E-mail: ccm@sxicc.ac.cn

    10.1016/S1872-5805(16)60003-3

    English edition available online ScienceDirect ( http:www.sciencedirect.comsciencejournal18725805 ).

    猜你喜歡
    氫氧化物雙金屬非對(duì)稱(chēng)
    雙金屬支承圈擴(kuò)散焊替代技術(shù)研究
    雙金屬?gòu)?fù)合管液壓脹形機(jī)控制系統(tǒng)
    非對(duì)稱(chēng)Orlicz差體
    雙金屬?gòu)?fù)合管焊接方法選用
    點(diǎn)數(shù)不超過(guò)20的旗傳遞非對(duì)稱(chēng)2-設(shè)計(jì)
    雙金屬?gòu)?fù)合板的拉伸回彈特性研究
    非對(duì)稱(chēng)負(fù)載下矩陣變換器改進(jìn)型PI重復(fù)控制
    層狀雙氫氧化物處理工業(yè)廢水的研究進(jìn)展
    氫氧化物鹽插層材料的制備和表征
    層狀雙氫氧化物表面負(fù)載TiO2的光催化性能
    特大巨黑吊av在线直播| 免费人成视频x8x8入口观看| 国产伦精品一区二区三区视频9| 成人毛片a级毛片在线播放| 日本黄大片高清| 亚洲在线自拍视频| 国产中年淑女户外野战色| av视频在线观看入口| 黑人高潮一二区| 边亲边吃奶的免费视频| 久久久久久久久中文| 久99久视频精品免费| 欧美成人a在线观看| 亚洲国产欧美人成| 国内揄拍国产精品人妻在线| 99国产极品粉嫩在线观看| 国产成人freesex在线| 成人美女网站在线观看视频| 可以在线观看的亚洲视频| 亚洲aⅴ乱码一区二区在线播放| 欧美一区二区国产精品久久精品| 一区福利在线观看| 夜夜看夜夜爽夜夜摸| 中文字幕av在线有码专区| 国产精品久久电影中文字幕| 国产真实乱freesex| 日日干狠狠操夜夜爽| 九九热线精品视视频播放| 爱豆传媒免费全集在线观看| 国产精品福利在线免费观看| ponron亚洲| 亚洲国产精品合色在线| 久久久久久久久久久免费av| 国产精品一区二区在线观看99 | 日韩欧美 国产精品| 国产精品一区二区性色av| 婷婷亚洲欧美| 搞女人的毛片| 高清午夜精品一区二区三区 | 一边摸一边抽搐一进一小说| 男女视频在线观看网站免费| 中国美女看黄片| 好男人在线观看高清免费视频| 久久久久九九精品影院| 毛片女人毛片| 亚洲精品国产av成人精品| 色播亚洲综合网| 亚洲av一区综合| 99久久无色码亚洲精品果冻| 欧美xxxx黑人xx丫x性爽| 色综合站精品国产| 欧美精品国产亚洲| 99久久中文字幕三级久久日本| 97人妻精品一区二区三区麻豆| 在线观看av片永久免费下载| 又粗又硬又长又爽又黄的视频 | 在线观看一区二区三区| 亚洲国产精品sss在线观看| 久久热精品热| 久久久久国产网址| 麻豆一二三区av精品| 成人综合一区亚洲| 精品久久久久久久人妻蜜臀av| 色视频www国产| 最近手机中文字幕大全| 一级毛片久久久久久久久女| 中国国产av一级| 久久精品综合一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 美女大奶头视频| 国产精品乱码一区二三区的特点| 国内精品久久久久精免费| 特大巨黑吊av在线直播| 国产人妻一区二区三区在| 嫩草影院新地址| 在线免费观看的www视频| 热99在线观看视频| 精品久久久久久久久亚洲| 国产精品一及| 欧美bdsm另类| 丰满人妻一区二区三区视频av| 久久这里只有精品中国| 久久久久久久久大av| 亚洲av免费在线观看| 日韩精品有码人妻一区| 97人妻精品一区二区三区麻豆| av免费观看日本| eeuss影院久久| 美女大奶头视频| 26uuu在线亚洲综合色| 日韩制服骚丝袜av| 日韩精品有码人妻一区| 又粗又硬又长又爽又黄的视频 | 九九在线视频观看精品| 午夜福利在线观看免费完整高清在 | 久久久久久九九精品二区国产| 久久欧美精品欧美久久欧美| 美女大奶头视频| 97人妻精品一区二区三区麻豆| avwww免费| 日韩中字成人| 久久99精品国语久久久| 国产三级在线视频| 国产精品综合久久久久久久免费| 深夜a级毛片| 日产精品乱码卡一卡2卡三| 久久国产乱子免费精品| 99热只有精品国产| 淫秽高清视频在线观看| 日韩强制内射视频| 亚洲va在线va天堂va国产| 国产淫片久久久久久久久| 午夜免费激情av| 欧美在线一区亚洲| 免费观看人在逋| 亚洲aⅴ乱码一区二区在线播放| 日日干狠狠操夜夜爽| 偷拍熟女少妇极品色| 久久精品综合一区二区三区| 欧美一区二区国产精品久久精品| 亚洲av成人av| 草草在线视频免费看| www日本黄色视频网| 2022亚洲国产成人精品| 亚洲一区二区三区色噜噜| 夫妻性生交免费视频一级片| 国产精品国产高清国产av| 特级一级黄色大片| 国产av一区在线观看免费| 直男gayav资源| 99久国产av精品| 内地一区二区视频在线| 免费看av在线观看网站| 黑人高潮一二区| 少妇人妻一区二区三区视频| ponron亚洲| 天堂中文最新版在线下载 | 嫩草影院入口| 亚洲婷婷狠狠爱综合网| 日韩成人av中文字幕在线观看| 男女边吃奶边做爰视频| 一区二区三区四区激情视频 | 啦啦啦啦在线视频资源| 亚洲欧洲国产日韩| 欧美又色又爽又黄视频| 日本-黄色视频高清免费观看| 久久亚洲国产成人精品v| 亚洲丝袜综合中文字幕| 最近最新中文字幕大全电影3| 国产精品人妻久久久久久| 午夜免费男女啪啪视频观看| 国产免费男女视频| 不卡一级毛片| 日韩精品青青久久久久久| 国产午夜精品论理片| av在线亚洲专区| 久久人妻av系列| 青春草视频在线免费观看| 啦啦啦韩国在线观看视频| а√天堂www在线а√下载| 国产一区二区亚洲精品在线观看| 丰满乱子伦码专区| 国产精品女同一区二区软件| 国产黄片视频在线免费观看| 老司机影院成人| 在线免费观看不下载黄p国产| 欧美成人精品欧美一级黄| 久久久久久久久久久丰满| 午夜精品一区二区三区免费看| 久久久久免费精品人妻一区二区| 内射极品少妇av片p| 亚洲人成网站在线播放欧美日韩| 人妻夜夜爽99麻豆av| 亚洲乱码一区二区免费版| 26uuu在线亚洲综合色| 亚洲一级一片aⅴ在线观看| АⅤ资源中文在线天堂| 天美传媒精品一区二区| 性插视频无遮挡在线免费观看| 最后的刺客免费高清国语| 亚洲高清免费不卡视频| 能在线免费看毛片的网站| 亚洲国产精品成人综合色| 亚洲av熟女| 麻豆成人午夜福利视频| 禁无遮挡网站| 在线免费十八禁| 又粗又爽又猛毛片免费看| 夜夜看夜夜爽夜夜摸| 久久99精品国语久久久| 久久精品国产清高在天天线| 超碰av人人做人人爽久久| 1024手机看黄色片| 国产精品永久免费网站| 色5月婷婷丁香| 夜夜看夜夜爽夜夜摸| 2021天堂中文幕一二区在线观| 久久精品综合一区二区三区| а√天堂www在线а√下载| 久久久国产成人精品二区| 国产精品久久电影中文字幕| 麻豆一二三区av精品| 国产黄片美女视频| 亚洲精品亚洲一区二区| 久久久精品94久久精品| 国产精品嫩草影院av在线观看| 成年免费大片在线观看| 国产日韩欧美在线精品| 老熟妇乱子伦视频在线观看| 亚洲精品久久久久久婷婷小说 | 乱码一卡2卡4卡精品| 成人永久免费在线观看视频| 欧美日本视频| 小说图片视频综合网站| 午夜a级毛片| 99在线人妻在线中文字幕| 中文精品一卡2卡3卡4更新| 天美传媒精品一区二区| 国产成人aa在线观看| 亚洲欧美日韩高清在线视频| 欧美日韩综合久久久久久| 亚洲成人精品中文字幕电影| 久久久久久久午夜电影| 一本久久精品| 99久久人妻综合| 国产白丝娇喘喷水9色精品| 色噜噜av男人的天堂激情| 日本av手机在线免费观看| 成人性生交大片免费视频hd| 国产 一区 欧美 日韩| 内地一区二区视频在线| 美女被艹到高潮喷水动态| 久久久久久久久久成人| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产欧洲综合997久久,| 日本免费a在线| 久久国内精品自在自线图片| 国产69精品久久久久777片| 国产大屁股一区二区在线视频| 国产成人午夜福利电影在线观看| 黄色日韩在线| 91午夜精品亚洲一区二区三区| 免费av毛片视频| 国产视频首页在线观看| 久久久久九九精品影院| 欧美色欧美亚洲另类二区| 久久久久久久久久久丰满| 午夜免费男女啪啪视频观看| 三级男女做爰猛烈吃奶摸视频| 波多野结衣高清无吗| 亚洲av.av天堂| 日本爱情动作片www.在线观看| 日本欧美国产在线视频| 91精品国产九色| 国产精品野战在线观看| 波野结衣二区三区在线| 亚洲精品久久久久久婷婷小说 | 日韩国内少妇激情av| 国产精品一区二区性色av| 日韩精品有码人妻一区| 淫秽高清视频在线观看| 男插女下体视频免费在线播放| 女人被狂操c到高潮| 欧美最黄视频在线播放免费| 婷婷精品国产亚洲av| 只有这里有精品99| 长腿黑丝高跟| 欧美xxxx黑人xx丫x性爽| 色视频www国产| 啦啦啦韩国在线观看视频| av福利片在线观看| 亚洲精品日韩在线中文字幕 | 亚洲av不卡在线观看| 波多野结衣巨乳人妻| 欧美区成人在线视频| 精品人妻视频免费看| 亚洲av成人av| 精品久久久久久久末码| 男人狂女人下面高潮的视频| 99精品在免费线老司机午夜| 免费av不卡在线播放| 久久99蜜桃精品久久| 少妇的逼好多水| 亚洲va在线va天堂va国产| 极品教师在线视频| 小蜜桃在线观看免费完整版高清| 日本黄大片高清| 色综合亚洲欧美另类图片| 国产精品女同一区二区软件| 韩国av在线不卡| 美女被艹到高潮喷水动态| 日本免费一区二区三区高清不卡| 国产精品国产三级国产av玫瑰| 在线观看午夜福利视频| 精品无人区乱码1区二区| 国产激情偷乱视频一区二区| 亚洲国产高清在线一区二区三| 久久精品国产亚洲av香蕉五月| www.色视频.com| 青春草亚洲视频在线观看| 99久久精品国产国产毛片| 高清毛片免费看| 国产成人一区二区在线| ponron亚洲| 国产成年人精品一区二区| 午夜福利在线观看吧| 91精品国产九色| 麻豆成人av视频| 亚洲欧美日韩无卡精品| 亚洲无线在线观看| 99在线视频只有这里精品首页| 观看免费一级毛片| 小说图片视频综合网站| 久久精品久久久久久噜噜老黄 | 亚洲国产欧美人成| 久久九九热精品免费| 国产乱人偷精品视频| h日本视频在线播放| 国内揄拍国产精品人妻在线| 岛国在线免费视频观看| 日本黄色片子视频| 日韩欧美在线乱码| 国产高潮美女av| 天堂√8在线中文| 国产亚洲精品久久久com| 国产乱人偷精品视频| 亚洲色图av天堂| 精品久久久久久久久亚洲| 在线观看美女被高潮喷水网站| 秋霞在线观看毛片| 波多野结衣巨乳人妻| 亚洲激情五月婷婷啪啪| 一边亲一边摸免费视频| 老司机影院成人| 亚洲在线自拍视频| 国产精品不卡视频一区二区| 亚洲国产精品合色在线| 国产乱人视频| 日本与韩国留学比较| 国产精品精品国产色婷婷| 成人二区视频| 欧美三级亚洲精品| 亚洲国产欧美人成| 午夜福利在线观看吧| 级片在线观看| 99视频精品全部免费 在线| 亚洲欧洲国产日韩| 国产人妻一区二区三区在| 看免费成人av毛片| 又粗又硬又长又爽又黄的视频 | 少妇熟女aⅴ在线视频| 久久精品国产自在天天线| 日本爱情动作片www.在线观看| 青春草国产在线视频 | 亚洲av二区三区四区| 久久久成人免费电影| 日韩高清综合在线| 精品国内亚洲2022精品成人| 日本色播在线视频| 国产亚洲精品久久久com| 熟妇人妻久久中文字幕3abv| 五月伊人婷婷丁香| 国产黄片视频在线免费观看| 99久国产av精品| 插逼视频在线观看| 青春草亚洲视频在线观看| 精品久久久噜噜| 色综合亚洲欧美另类图片| 久久草成人影院| 91午夜精品亚洲一区二区三区| 99久国产av精品国产电影| 白带黄色成豆腐渣| 欧美一区二区亚洲| 亚洲三级黄色毛片| 在线免费观看的www视频| 精品99又大又爽又粗少妇毛片| 人人妻人人澡欧美一区二区| 久久久久网色| 全区人妻精品视频| 久久韩国三级中文字幕| 亚洲无线观看免费| 久久久久久大精品| 久久久久久久亚洲中文字幕| 悠悠久久av| a级毛片免费高清观看在线播放| 在线免费观看不下载黄p国产| 国产成人午夜福利电影在线观看| 成人毛片a级毛片在线播放| 九色成人免费人妻av| 热99re8久久精品国产| 日韩成人伦理影院| 97人妻精品一区二区三区麻豆| 99国产精品一区二区蜜桃av| 别揉我奶头 嗯啊视频| 国产亚洲精品久久久久久毛片| 亚洲自偷自拍三级| 亚洲国产精品成人久久小说 | 99热网站在线观看| 99久久精品国产国产毛片| 精品国内亚洲2022精品成人| 在线观看av片永久免费下载| or卡值多少钱| 日本三级黄在线观看| 插逼视频在线观看| 亚洲国产欧美在线一区| 麻豆成人午夜福利视频| 国产精品野战在线观看| 亚洲精品亚洲一区二区| 最近视频中文字幕2019在线8| 久久久久性生活片| 人妻制服诱惑在线中文字幕| 久久亚洲精品不卡| 男插女下体视频免费在线播放| 亚洲人成网站在线观看播放| 欧美日本亚洲视频在线播放| 一夜夜www| 丝袜喷水一区| 男女啪啪激烈高潮av片| 深爱激情五月婷婷| 欧美另类亚洲清纯唯美| 国产精品久久久久久久电影| 麻豆国产97在线/欧美| a级毛色黄片| 久久鲁丝午夜福利片| 久久99热这里只有精品18| 精品欧美国产一区二区三| 国产精品野战在线观看| 村上凉子中文字幕在线| 毛片一级片免费看久久久久| 直男gayav资源| 日本黄大片高清| 在线观看美女被高潮喷水网站| 亚洲av不卡在线观看| 永久网站在线| 九九在线视频观看精品| 五月玫瑰六月丁香| 久久人人爽人人片av| 九草在线视频观看| 哪里可以看免费的av片| 最后的刺客免费高清国语| 国产探花在线观看一区二区| 欧美日本亚洲视频在线播放| 亚洲精品影视一区二区三区av| 99热这里只有是精品50| 午夜福利高清视频| 超碰av人人做人人爽久久| 精品人妻一区二区三区麻豆| ponron亚洲| 亚洲欧美日韩卡通动漫| 级片在线观看| 亚洲av中文av极速乱| 一本一本综合久久| 美女脱内裤让男人舔精品视频 | 久久人人爽人人片av| 国产精品一区二区性色av| 六月丁香七月| 国产精品乱码一区二三区的特点| 免费电影在线观看免费观看| 国产成人aa在线观看| 国产精品乱码一区二三区的特点| 99热网站在线观看| 非洲黑人性xxxx精品又粗又长| 欧美激情久久久久久爽电影| 久久99蜜桃精品久久| 午夜福利在线观看吧| 国产av麻豆久久久久久久| 2021天堂中文幕一二区在线观| 美女内射精品一级片tv| 国产探花在线观看一区二区| www日本黄色视频网| 国产亚洲av嫩草精品影院| 久久这里有精品视频免费| 欧美日韩在线观看h| 日韩欧美精品免费久久| 精品少妇黑人巨大在线播放 | 国产精品久久久久久精品电影| 国内精品宾馆在线| 欧美日韩国产亚洲二区| 91麻豆精品激情在线观看国产| 国产中年淑女户外野战色| 亚洲色图av天堂| 国产一区二区在线av高清观看| 国产精品久久久久久久久免| 日本黄色视频三级网站网址| 乱人视频在线观看| 老女人水多毛片| 亚洲激情五月婷婷啪啪| 99riav亚洲国产免费| 午夜视频国产福利| 久久久久久伊人网av| 久久精品国产亚洲网站| 国产精品一区二区三区四区免费观看| 黑人高潮一二区| 国产69精品久久久久777片| 久久久午夜欧美精品| 可以在线观看的亚洲视频| 国产精品一区二区性色av| 两个人视频免费观看高清| 99精品在免费线老司机午夜| 少妇被粗大猛烈的视频| 乱系列少妇在线播放| 亚洲最大成人中文| 99九九线精品视频在线观看视频| 日本一本二区三区精品| 精华霜和精华液先用哪个| 国产真实乱freesex| 变态另类成人亚洲欧美熟女| 青春草亚洲视频在线观看| 久久人妻av系列| 97人妻精品一区二区三区麻豆| 在线免费十八禁| 欧美日韩综合久久久久久| 亚洲精品影视一区二区三区av| 日韩国内少妇激情av| 99九九线精品视频在线观看视频| 欧美变态另类bdsm刘玥| 一边亲一边摸免费视频| 又黄又爽又刺激的免费视频.| av又黄又爽大尺度在线免费看 | 超碰av人人做人人爽久久| 欧美潮喷喷水| 色吧在线观看| 女的被弄到高潮叫床怎么办| 欧美又色又爽又黄视频| 美女cb高潮喷水在线观看| 免费无遮挡裸体视频| 激情 狠狠 欧美| 精品国内亚洲2022精品成人| 久久久成人免费电影| 干丝袜人妻中文字幕| 国内少妇人妻偷人精品xxx网站| 亚洲高清免费不卡视频| 国产伦一二天堂av在线观看| 中文精品一卡2卡3卡4更新| 一卡2卡三卡四卡精品乱码亚洲| 天天躁夜夜躁狠狠久久av| 国产亚洲精品久久久com| 黄色配什么色好看| 97在线视频观看| 国产成人a区在线观看| 亚洲欧洲国产日韩| 夜夜夜夜夜久久久久| 边亲边吃奶的免费视频| 美女内射精品一级片tv| 黄色配什么色好看| 国产精品精品国产色婷婷| 波多野结衣巨乳人妻| 在线免费观看的www视频| 中文字幕免费在线视频6| 国产亚洲5aaaaa淫片| 老司机影院成人| 欧美区成人在线视频| 一区二区三区四区激情视频 | 国产精品免费一区二区三区在线| 成年av动漫网址| 久久99蜜桃精品久久| 国产日本99.免费观看| 午夜福利在线观看免费完整高清在 | 禁无遮挡网站| 国产高清不卡午夜福利| 国产成人a∨麻豆精品| 亚洲电影在线观看av| 欧美xxxx性猛交bbbb| ponron亚洲| 久久久国产成人免费| av.在线天堂| 最后的刺客免费高清国语| 在线观看66精品国产| 欧美zozozo另类| 欧美激情国产日韩精品一区| 成人特级av手机在线观看| 日韩一区二区视频免费看| 日韩三级伦理在线观看| 国产av一区在线观看免费| 26uuu在线亚洲综合色| 国产精品伦人一区二区| av天堂在线播放| 在线免费观看不下载黄p国产| 成人毛片a级毛片在线播放| 日本欧美国产在线视频| av.在线天堂| 插阴视频在线观看视频| 欧美成人免费av一区二区三区| 亚洲av中文av极速乱| 成人av在线播放网站| 国产精品一区二区性色av| 久久久色成人| 国内精品美女久久久久久| 国产精华一区二区三区| 你懂的网址亚洲精品在线观看 | 青春草亚洲视频在线观看| 99精品在免费线老司机午夜| 国产精品免费一区二区三区在线| 精品久久久噜噜| 97超视频在线观看视频| 在线播放国产精品三级| 最新中文字幕久久久久| 老司机福利观看| 少妇被粗大猛烈的视频| 晚上一个人看的免费电影| 日韩精品有码人妻一区| 精品99又大又爽又粗少妇毛片| 亚洲精品成人久久久久久| 亚洲欧美精品综合久久99| 久久国产乱子免费精品| 性欧美人与动物交配| 深夜a级毛片| 特大巨黑吊av在线直播| 精品久久久久久久久亚洲| 如何舔出高潮| 欧美bdsm另类| 九九爱精品视频在线观看| 色吧在线观看| 日本一本二区三区精品| 久久久久久久久久黄片|