• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compressive Sensing for Radar Target Signal Recovery Based on Block Sparse Bayesian Learning

    2016-10-29 06:35:36ZhongJinrongWenGongjianScienceandTechnologyonAutomaticTargetRecognitionLaboratoryNationalUniversityofDefenseTechnologyChangsha410073China
    雷達學報 2016年1期
    關鍵詞:信號處理貝葉斯雷達

    Zhong JinrongWen Gongjian(Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology,Changsha 410073, China)

    Compressive Sensing for Radar Target Signal Recovery Based on Block Sparse Bayesian Learning

    Zhong Jinrong*Wen Gongjian
    (Science and Technology on Automatic Target Recognition Laboratory, National University of Defense Technology,Changsha 410073, China)

    Nowadays, high-speed sampling and transmission is a foremost challenge of radar system. In order to solve this problem, a compressive sensing approach is proposed for radar target signals in this study. Considering the block sparse structure of signals, the proposed method uses a simple measurement matrix to sample the signals and employ a Block Sparse Bayesian Learning (BSBL) algorithm to recover the signals. The classical BSBL algorithm is applicable to real signal, while radar signals are complex. Therefore, a Complex Block Sparse Bayesian Learning (CBSBL) is extended for the radar target signal reconstruction. Since the existed radar signal compressive sensing models do not take block structures in consideration, the signal reconstruction of proposed approach is more accurate and robust, and the simple measurement matrix leads to an easy implementation of hardware. The effectiveness of the proposed approach is demonstrated by numerical simulations.

    Radar signal processing; Compressive Sensing (CS) radar; Block structure; Compressed measurement; Sparse reconstruction

    1 Introduction

    The higher the resolution of radar, the more details of the target can be captured and more information of the target are available for Automatic Target Recognition (ATR)[1,2].

    Resolution improvement requires additional radar bandwidth. According to the Nyquist theorem, the sampling rate should be twice of thebandwidth. Due to the limited processing speed and data capacity of hardware, a ceiling is set on the sampling rates. Compressive sensing, a new measurement theory proposed by Donoho et al.[3],indicates that sparse signals can be accurately recovered from lower-rate samplings. Radar signals of targets are sparse, and can be compressively measured and reconstructed[4].

    Compressive measurement and signal reconstruction are two key issues of compressive sensing[5-8]. Most existing compressive sensing approaches employ a random matrix to measure signals. However, the hardware implementation of a random matrix is difficult, which is the largest hindrance in the practice of compressive sensing. Thus, people always pursue an easily realized measurement matrix[9-13]. Radar signals of manmade targets have block structures besides sparsity, which has been not taken into consideration by existed approaches. Researches on speech,electroencephalogram and some other signals[14-22]have demonstrated the block structure is beneficial to the signal reconstruction.

    In this paper, an approach of compressive sensing is presented with the block sparse structure of radar target signals both in the compressive measurement and the signal reconstruction steps. In the reconstruction step, it uses a reconstruction algorithm named Complex Block Sparse Bayesian Learning (CBSBL), which is extended in Ref. [23] from the classical BSBL[18,19], to generate a better reconstruction. Based on the excellent reconstruction algorithm, it is able to use a simple measurement matrix in the compressive sensing. There is only one non-zero element in every row and column of such a measurement matrix. Compared with the traditional compressive sensing approaches, the reconstruction accuracy of our approach is better and the hardware of the measurement matrix is easier to implement. Finally, experiment results exhibit the effectiveness of our compressive sensing model.

    2 Compressive Sensing

    Suppose the original radar target signal

    3 Compressive Sensing for Radar Target Signals

    Classical compressive sensing models suppose is just a sparse vector. In applications, it always has certain additional structure such as the block sparse structure[14-16]. With such a structure, vector can be viewed as consisting of non-overlapping blocks, and only a few blocks among them are non-zero.

    where, diis the length of block i.

    Fig. 1 is a block diagram of the compressive sensing for radar target signals. It consists of two part, the compressive measurement and the signal reconstruction. In the diagram, sR(t) is the original signal, X(fm) is the signal sampled by traditional radars, x is its vector form. We can get, a High Resolution Range Profile (HRRP) of the target, by correlating x with that same pulse in a matched filter (effecting pulse compression). If we want to generate a high resolution signal,the Analog-to-Digital (A/D) converter requires a high sampling frequency and a large dynamic range. In a compressive sensing radar, a measurements of the original signal is obtained through a compressed measurement matrix Φ, which can be a low-rate A/D converter. From the measureddata y, we can get a reconstruction of the original signal sR(t), or reconstructions of the digital signal x and, from y. Since sR(t) is analog and not convenient to discuss, we take the wanted high-rate sampled signal X(fm) as the original signal in the following discussion. In our compressive sensing model, we reconstruct the sparse vector of target,, from the compressive measurements y, and then recover the frequency-domain signal byFinally, the HRRP of target is generated by an Inverse Fast Fourier Transform (IFFT), which effect matched filter and pulse compression.

    Fig. 1 Compressive sensing for radar target signals

    In Subsection 3.1, the block structure of radar target signals and the sparse representation of the signals are discussed briefly. In Subsection 3.2, a simple matrix is suggested for compressive measurement. In Subsection 3.3, the method of signal reconstruction from compressive samples is discussed.

    3.1Sparsity and block structure of radar target signals

    Fig. 2 shows a radar target signal in the frequency domain and time domain (only amplitude). The time domain signal can also be referred to as HRRP.

    The original radar target signal in frequency domain is X(fm) or in vector form x, while the complex time domain signal is denoted as. In the application of radar ATR system based on HRRP of targets, the observation ranges of radars are far larger than the size of a target. The scattering centers of some targets, such as airplanes and missiles, are sparse and located on a few blocks ofIn other words,has a with block structure. Moreover, there may be intra-block correlation[18,19]. In the high-frequency region, radar targets can be represented by a few scattering centers, then radar target signals can be sparsely represented by the echoes of these scattering centers[26,27].

    Fig. 2 HRRP of a target, the below one is HRRP, the above one is its frequency-domain transform

    Here, rpis the position of scattering center p. fmis the frequency of samplings. V(fm) is noise. and Ep(fm;rp) is the response of scattering center p. The isotropic point scattering model is given by Ep(fm;rp)=exp(-j4πfmrp/c). Here, c is the speed of light. There is sparsity in x, as the scattering centers of radar targets are sparse in space. Base on it, we construct the dictionary for radar sig-nals of targets. Suppose that the unambiguous distance of radar is R. The start point is r0. We sample the unambiguous distance into N points with spacing ΔR. For every position rn=r0+nΔR,

    Ψnis an atom of dictionary and φm,nis an element of the atomic. The signal x is sparse on the dictionary Ψ. The radar signals of targets can be represented Eq. (1), x=Ψ.a. Here, a is a sparse representation vector of x. The number of dictionary column, as well as the length of the sparse vector, is N. As the time domain signal have block structures, a is also a block sparse vector based on such a dictionary. It may be with intrablock correlation[18,19].

    3.2Measurement matrix

    Most existing compressive sensing models take a random matrix Φ*, as shown in Fig. 3(a),as the measurement matrix. In our compressive model, we use a simple measurement matrix Φ, as shown in Fig. 3(b). There is only one non-zero element in each row or each column of matrix Φ. Actually, the measurement matrix shown in Fig. 3 is equivalent to an unequally-space sampling method. It not only reduces size of samplings, but also can relieve the pressure of A/D conversion.

    The unequally down-sampling in the frequency domain can retain more information,though aliasing arises in the time domain. Since the signal is block sparse and most of the areas are zero, the aliasing can be suppressed by a

    ~ sophisticated reconstruction algorithm. Therefore,it is reasonable to take Φ as a measurement matrix. The compressive measurement is given by,

    Here, v is a noise vector. The sensing matrix is Θ=Φ.Ψ. Actually, in our compressive sensing model, as the measurement matrix Φ is known,we can construct the sensing matrix Θ directly, Here, the atom isAnd every element is given by θq,n=exp(-j4πfqrn/c). fqis the frequency of q-th sampling. Q is the number of samplings.

    3.3CBSBL signal reconstruction algorithm

    Recovering a from compressive measurement data is an important procedure of compressive sensing. Recently, an excellent recover algorithm named BSBL algorithm is proposed by Zhang and Rao[13,15]. It has a superior ability to recover block sparse signals. Compared to Group Lasso[16], Mix-L1/L2[28], and Block-OMP[29], DSG[30], CluSSMCMC[31], SD-SPR[32]etc., BSBL algorithm does not need any prior knowledge of blocks. Moreover, BSBL algorithm can exploit the intrablock correlation. As the distribution of block structures of radar target signals is unknown, BSBL algorithm is preferred for radar target signal reconstruction.

    Fig. 3 Two different measurement matrices

    The BSBL algorithm is proposed for real signals, but radar signals are complex. It is not directly applicable to radar signals. Dr. Zhang gives a solution, in which we have to decompose the complex signal and sensing matrix into a real part and an imaginary part first. Then we can obtain a real signal model as Eq. (8). We name it as Bin-ary-channels-BSBL (Bi-BSBL) algorithm.

    In order to recover complex signals directly,we extend the advanced BSBL framework into the complex domain, and then present the EM-iteration algorithm[19]in the CBSBL framework.

    and (12) are the complex-domain-extended block sparse Bayesian learning framework. The learning lure of these parameters is the key issue of the Bayesian learning method. There are many different solution algorithms according to iterative methods of Eqs. (11) and (12). Two iteration methods, EM-iteration and BO-iterative are presented in Refs. [18,19] for real signals. We extend the EM iteration algorithm to complex signals. Based on the estimation theory of complex statistical signal processing and complex signals Bayesian method[33], we outline the iterative formulae as follows.

    Iteration:

    If γi≤δγ, set Bi=0. In order to prevent a problem with over-fitting, it is assumed that the structure of each block is the same, i.e.The iteration termination criterion is:

    or the maximum number of iterations Nδis reached. Suppose the index of stop iteration is nδ.

    It is necessary to point out that the CBSBL algorithm is not a novel algorithm, but the complex extension of the BSBL algorithm. It inherits the capability of exploiting block structure and intra-block correlation.

    4 Experimental Results

    First, the performance of our CBSBL reconstruction algorithms is examined, in comparing with Bi-BSBL, Orthogonal Matching Pursuit(OMP), and SBL algorithms. The last two algorithms do not exploit block structure, while the Bi-BSBL does. Second, we analyze the reconstruction accuracy when the original signals are meas-ured by the simple measurement matrix Φ, in construction with the results of experience in which the signals are measured by the random matrix Φ*.

    Experimental data is recoded in microwavedarkroom. The radar emits a step-frequency signal, with start frequency fs=8.5 GHz, stop frequency fe=9.5 GHz, and bandwidth B = 1 GHz. The resolution is dR=0.15 m, and radar un-aliasing distance is R=15 m. We set the spacing ΔR=0.15 m to sample the distance R. The length of vector α is N=101. We add Gaussian white noise and make signal-to-noise ratio SNR=20 dB. In this paper, SNR is defined as SNR=are the energy of signal and noise respectively. ρ is the compressive measurement ratio. The number of samplings at every compressive measurement ratio is M=sup(ρN). ρ is set to 10 values in range[0.25,0.7], with the interval Δρ=0.05. Experiments were repeated Tn=50 times at each ρvalue. Noise v and observation matrix Φ are regenerated every iteration. The Mean Square Error (MSE) of every algorithm is given by

    4.1Experiment exploiting block structure in reconstruction

    In this subsection, the measurement matrix is a random matrix Φ*. Then, we test the reconstruction accuracy of the four algorithms. The sparse parameter of OMP is set as K=25 which is a parameter chosen by prior knowledge of the target. SBL, Bi-BSBL, CBSBL iterate 1000 times separately. Fig. 4 shows MSEs of four algorithms.

    It can be found from Fig. 4(a) that the reconstruction accuracy of CBSBL algorithm is better than the OMP and SBL algorithms. Fig. 4(b)shows that the reconstruction accuracy of CBSBL algorithm is almost the same as the Bi-BSBL algorithm. When the compressive ratio is low, the performance of CBSBL is a little better than the Bi-BSBL. This demonstrates CBSBL and Bi-BSBL,the algorithms exploiting block structure, obtain better signal reconstructions than those that do not.

    For a straightforward observation, Fig. 5 shows the reconstructed HRRPs of the four algorithms in an experiment trip. Figs. 5(a)~5(d)are the reconstructions of CBSBL algorithm, Bi-BSBL algorithm, SBL algorithm, and OMP algorithms respectively. The reconstructed HRRPs in Figs. 5(a) and 5(b) are more similar to the original signal, while the reconstructed results of SBL and OMP algorithms have obvious waveform distortion. Clearly, the signals are recovered better by CBSBL and Bi-BSBL.

    4.2Experiment exploiting block structure with simplemeasurement matrix

    Fig. 4 Reconstruction MSEs of different algorithms, when the sampling matrix is Φ*

    In this subsection, we use a simple measurement matrix Φ to measure the original signals,and then use CBSBL, Bi-SBSL, SBL, OMP algorithms to recover the signals. The experimentalsetting of this section is the same as for Subsection 4.1.

    Fig. 6 shows the reconstruction accuracy of the four algorithms. Comparing with the results in Fig. 4, we can find that the reconstruction MESs are almost the same. Only slight degradations have appeared. Figs. 7(a)~7(d) show the reconstructions of the four algorithms in one time experiment.The same conclusion, the signals CBSBL and Bi-BSBL algorithms reconstruct signals better, can be drawn from the reconstruction results in Fig. 7.

    4.3Reconstruction accuracy under different noise levels

    Fig. 5 Reconstructed HRRPs of different algorithms in one trip, when the sampling matrix is Φ*and ρ=0.4

    Fig. 6 Reconstruction MSEs of different algorithms, when the sampling matrix is Φ

    In this subsection, we set ρ=0.35, and add Gaussian white noise to the original signals to let SNR=[15,20,25,30,35,40] dB. Then the number of compressive samplings is M=sup(0.35×101)=36. For each fixed SNR, we carry out the compressive measure and reconstruction for Tn=50 trips. The reconstruction MSEs of CBSBL and Bi-BSBL versus SNR are shown in Fig. 8. It can be seen that the reconstruction accuracy of the CBSBLalgorithm is a little better than Bi-BSBL under different noise levels.

    Fig. 7 Reconstructed HRRPs of different algorithms in one trip, when the sampling matrix is Φ*and ρ=0.4

    Fig. 8 Reconstruction MSEs and time cost

    4.4Time efficiency of CBSBL and Bi-BSBL

    The recover accuracy of the CBSBL algorithm has been investigated in Subsections 4.1,4.2, and 4.3. In this subsection, we present the time efficiency. Because accuracy is the primary goal in signal reconstruction, we only compare the efficiency of CBSBL algorithm and Bi-BSBL algorithm, but not OMP and SBL. We use the CPU time as measure of complexity. Although it is not an exact measure, it gives a rough estimation. The comparison is performed in MATLAB2014A environment on a computer with Intel four-core 3.4 GHz CPU and 4.0 Gb RAM,and windows 7 OS.

    Fig. 9 Consumed time versus compressive ratios

    Fig. 9 shows the consumed time of reconstruction versus compression ratios, ρ. Here, we set the SNR as SNR=20 dB. It can be seen that the CBSBL algorithm uses less time than Bi-BSBLunder different compressive ratio levels. Fig. 10 shows the reconstruction cost time versus SNRs.Here, the compressed ratio is ρ=0.35. It is shown that the CBSBL algorithm is less time-intensive than Bi-BSBL under different noise levels.

    Fig. 10 Consumed time versus SNRs

    5 Conclusions

    In this study, we first extend a CBSBL reconstruction algorithm for complex signals, such as radar signals. Compared to the Bi-BSBL method that decomposes signals into two channels, CBSBL has better reconstruction accuracy and efficiency. Based on the CBSBL signal reconstruction algorithm, we present a compressive sensing model for radar target signals that exploits the block structure of signals. It utilizes a measurement matrix, which is easy to realize in hardware. Experiments demonstrated the effectiveness of our compressive sensing model.

    [1]Du L, Wang P, Liu H, et al.. Bayesian spatiotemporal multitask learning for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3182-3196.

    [2]Shi L, Wang P, Liu H, et al.. Radar HRRP statistical recognition with local factor analysis by automatic Bayesian Ying Yang harmony learning[C]. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dallas Texas USA, 2010: 1878-1881.

    [3]Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

    [4]Baraniuk R and Steeghs P. Compressive radar imaging[C]. IEEE Radar Conference, Boston, Apr. 2007: 128-133.

    [5]Ender J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402-1414.

    [6]Xie X C and Zhang Y H. High-resolution imaging of moving train by ground-based radar with compressive sensing[J]. Electronics Letters, 2010, 46(7): 529-531.

    [7]Hereman M and Strohmer T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.

    [8]Patel V M, Easley G R, Healy D M, et al.. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics on Signal Processing, 2010, 4(2): 244-254.

    [9]Devore R A. Deterministic construction of compressed sensing matrices[J]. Journal of Complexity, 2013, 23(4): 918-925.

    [10]Ni K and Datta S. Efficient deterministic compressed sensing for images with chirps and reed-muller codes[J]. SIAM Journal on Imaging Sciences, 2011, 4(3): 931-953.

    [11]Li S X, Gao F, Ge G N, et al.. Deterministic construction of compressed sensing matrices via algebraic curves[J]. IEEE Transactions on Information Theory, 2012, 58(8):5035-5041.

    [12]Abolghasemi V, Ferdowsi S, and Sanei S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing[J]. Signal Processing, 2012, 92(3): 999-1009.

    [13]Donoho D L and Tsaig Y. Sparse solution of underdetermined systems of linear equations by stage wise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121.

    [14]Baraniukr, Cevher V, Duarte M, et al.. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001.

    [15]Asaeia, Golbabaee M, Bourlard H, et al.. Structured sparsity models for reverberant speech separation[J]. IEEE Transactions on Audio, Speech, and Language Processing,2014, 22(3): 620-633.

    [16]Yuan M and Liu Y. Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society Series B, 2006, 68(1): 49-67.

    [17]Sun H, Zhang Z L, and Yu L. From sparseity to structured sparsity: Bayesian perspective[J]. Signal Processing, 2012,28(6): 760-773 (in Chinese).孫洪, 張智林, 余磊. 從稀疏到結構化稀疏: 貝葉斯方法[J]. 信號處理, 2012, 28(6): 760-773.

    [18]Zhang Z L and Rao B D. Recovery of block sparse signals using the framework of block sparse Bayesian learning[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, Mar. 2012:3345-3348.

    [19]Zhang Z L and Rao B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2012,61(8): 2009-2015.

    [20]Babacan S D, Nakajima S, and Do M N. Bayesian groupsparse modeling and variational inference[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2906-2921.

    [21]Liu B Y, Zhang Z L, Xu G, et al.. Energy efficient telemonitoring of physiological signals via compressed sensing: A fast algorithm and power consumption evaluation[J]. Biomedical Signal Processing and Control, 2014, 11(1): 80-88.

    [22]Shen Y, Duan H, Fang J, et al.. Pattern-coupled sparse bayesian learning for recovery of block-sparse signals[J]. IEEE Transactions on Signal Processing, 2013, 63(2):1896-1900.

    [23]Zhong J R, Wen G J, and Ma C H. Radar signal reconstruction algorithm based on complex block sparse Bayesian learning[C]. 12th International Conference on Signal Processing, Hangzhou, China, Oct. 2014: 1930-1933.

    [24]Davies M E and Gribonval R. Restricted isometry constants where lp sparse recovery can fail for 0<p≤1[J]. IEEE Transactions on Information Theory, 2009, 55(5):2203-2214.

    [25]Wipf D P and Rao B D. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004,52(8): 2153-2164.

    [26]Potter L C and Moses R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing,1997, 6(1): 79-91.

    [27]Potter L C, Chiang D M, Carriere R, el al.. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10):1058-1066.

    [28]Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.

    [29]Eldar Y C and Mishali M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(11): 5302-5316.

    [30]Huang J Z and Zhang T. METAXAS D. Learning with dynamic structured sparsity[J]. Journal of Machine Learning Research, 2012, 12(7): 3371-3412.

    [31]Yu L, Sun H, Barbot J P, et al.. Bayesian compressive sensing for cluster structured sparse signals[J]. Signal Processing, 2012, 92(1): 259-269.

    [32]Peleg T, Eldar Y and Elad M. Exploiting statistical dependencies in sparse representations for signalrecovery[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2286-2303.

    [33]Steven M. K. Fundamentals of Statistical Signal Processing Volume I: Estimation Theory[M]. Englewood Cliffs, NJ,USA, Prentice Hall, IInc., 1993: 493-567.羅鵬飛, 張文明等譯. 統(tǒng)計信號處理基礎--估計與檢測理論[M].北京: 電子工業(yè)出版社, 2006: 397-440.

    Zhong Jinrong was born in Guangxi,China in 1985. He received the BS and MS degrees from National University of Defense Technology in 2008, and 2010, respectively. He is a doctoral candidate in information and communication engineering at the Key Laboratory of ATR, National University of Defense Technology. His main interests are automatic target recognition, radar target characteristics, and radar signal processing.

    E-mail: zhong_nudt@163.com

    Wen Gongjian was born in Changsha,China in 1972. He received the BS,MS, and Ph.D. degrees from National Universityof Defense Technologyin 1994, 1997, and 2000, respectively. Then he went through two years of postdoctoral work at Wuhan University. He is currently a Professor with National University of Defense Technology and the head of the fourth department of the key laboratory of ATR. He is mainly interested in remote sensing,photogrammetry, and image understanding.

    10.12000/JR15056

    Reference format: Zhong Jinrong and Wen Gongjian. Compressive sensing for radar target signal recovery based on block sparse Bayesian learning[J]. Journal of Radars, 2016, 5(1): 99-108. DOI: 10.12000/JR15056.

    引用格式:鐘金榮, 文貢堅. 基于塊稀疏貝葉斯學習的雷達目標壓縮感知[J]. 雷達學報, 2016, 5(1): 99-108. DOI:10.12000/JR15056.

    基于塊稀疏貝葉斯學習的雷達目標壓縮感知

    鐘金榮 文貢堅

    (國防科技大學自動目標識別重點實驗室 長沙 410073)

    高速采樣和傳輸是目前雷達系統(tǒng)面臨的一個重要挑戰(zhàn)。針對這一問題,該文提出一種利用信號塊結構特性的雷達目標壓縮感知方法。該方法采用一個簡單的測量矩陣對信號進行采樣,然后運用塊稀疏貝葉斯學習算法恢復信號。經(jīng)典的塊稀疏貝葉斯學習算法適用于實信號,該文將其擴為可直接處理雷達信號的復數(shù)域稀疏貝葉斯算法。相對于現(xiàn)有壓縮感知方法,該方法不僅具有更好的信號重構精度和魯棒性,更重要的是其壓縮測量矩陣形式簡單、易于硬件實現(xiàn)。數(shù)值仿真實驗結果驗證了該方法的有效性。

    雷達信號處理;壓縮感知雷達;塊結構;壓縮測量;稀疏重構

    TN957.52

    A

    2095-283X(2016)01-0099-10

    Manuscript received May 11, 2015; revised February 1, 2016. Published online February 2, 2016.

    The New Century Excellent Talents Supporting Plan of Ministry Education (No.NCET-11-0866).

    *Communication author: Zhong Jinrong.

    E-mail: zhong_nudt@163.com.

    CLC index: TN957.52

    猜你喜歡
    信號處理貝葉斯雷達
    有雷達
    大自然探索(2023年7期)2023-08-15 00:48:21
    雷達
    《信號處理》征稿簡則
    信號處理(2018年5期)2018-08-20 06:16:02
    《信號處理》第九屆編委會
    信號處理(2018年5期)2018-08-20 06:16:00
    《信號處理》征稿簡則
    信號處理(2018年8期)2018-07-25 12:25:42
    《信號處理》第九屆編委會
    信號處理(2018年8期)2018-07-25 12:24:56
    貝葉斯公式及其應用
    基于貝葉斯估計的軌道占用識別方法
    基于空時二維隨機輻射場的彈載雷達前視成像
    一種基于貝葉斯壓縮感知的說話人識別方法
    電子器件(2015年5期)2015-12-29 08:43:15
    网址你懂的国产日韩在线| 欧美成人免费av一区二区三区| 女人高潮潮喷娇喘18禁视频| 不卡一级毛片| 色哟哟哟哟哟哟| 国产午夜福利久久久久久| 人人妻人人看人人澡| 很黄的视频免费| 亚洲成av人片免费观看| 男女下面进入的视频免费午夜| 女人高潮潮喷娇喘18禁视频| 日本熟妇午夜| 久久午夜综合久久蜜桃| 国产成人aa在线观看| 午夜福利免费观看在线| 国产成人影院久久av| 久久欧美精品欧美久久欧美| 成人国产综合亚洲| 久久久久精品国产欧美久久久| 成人鲁丝片一二三区免费| 88av欧美| 成人高潮视频无遮挡免费网站| 国产97色在线日韩免费| 制服丝袜大香蕉在线| 成在线人永久免费视频| 亚洲国产欧美人成| 欧美zozozo另类| 母亲3免费完整高清在线观看| 97人妻精品一区二区三区麻豆| 非洲黑人性xxxx精品又粗又长| 91老司机精品| 亚洲黑人精品在线| 中文字幕人成人乱码亚洲影| 色综合欧美亚洲国产小说| 欧美日韩亚洲国产一区二区在线观看| 欧美成人免费av一区二区三区| 波多野结衣巨乳人妻| 国产黄片美女视频| 欧美一区二区精品小视频在线| 日本五十路高清| 色哟哟哟哟哟哟| 又粗又爽又猛毛片免费看| 亚洲色图av天堂| 久久久久久久久中文| 免费看光身美女| 国产爱豆传媒在线观看| 久久中文看片网| 免费高清视频大片| cao死你这个sao货| 亚洲狠狠婷婷综合久久图片| 久久欧美精品欧美久久欧美| 午夜成年电影在线免费观看| 精品国内亚洲2022精品成人| 亚洲av成人一区二区三| 欧美日韩瑟瑟在线播放| 97碰自拍视频| 国产私拍福利视频在线观看| 亚洲av美国av| 久久久久久久精品吃奶| 美女 人体艺术 gogo| 亚洲国产中文字幕在线视频| 日韩欧美国产在线观看| 亚洲av成人精品一区久久| 99国产精品99久久久久| 亚洲欧美精品综合久久99| 禁无遮挡网站| 免费在线观看成人毛片| 99热这里只有精品一区 | 成人亚洲精品av一区二区| 国产人伦9x9x在线观看| 午夜日韩欧美国产| 三级男女做爰猛烈吃奶摸视频| 男人舔女人的私密视频| 日本黄大片高清| 手机成人av网站| 国产伦精品一区二区三区四那| 成人三级做爰电影| 中亚洲国语对白在线视频| 狠狠狠狠99中文字幕| 香蕉国产在线看| 欧美中文综合在线视频| 国产综合懂色| 日韩人妻高清精品专区| 国产高清视频在线播放一区| 午夜视频精品福利| 12—13女人毛片做爰片一| 麻豆久久精品国产亚洲av| 国产三级中文精品| 一级a爱片免费观看的视频| 在线免费观看的www视频| 久久香蕉国产精品| 精品免费久久久久久久清纯| 亚洲aⅴ乱码一区二区在线播放| 色吧在线观看| av中文乱码字幕在线| 一进一出抽搐gif免费好疼| 国产一区二区三区视频了| 国产爱豆传媒在线观看| 又黄又爽又免费观看的视频| 91在线观看av| 成人精品一区二区免费| 欧美一级a爱片免费观看看| 国产成人av激情在线播放| netflix在线观看网站| 小说图片视频综合网站| 此物有八面人人有两片| 在线观看舔阴道视频| 国模一区二区三区四区视频 | 亚洲人与动物交配视频| 欧美色欧美亚洲另类二区| xxx96com| 日本成人三级电影网站| 国产不卡一卡二| 综合色av麻豆| 日本a在线网址| 午夜免费激情av| 亚洲avbb在线观看| 一区二区三区国产精品乱码| 香蕉久久夜色| 国产亚洲av高清不卡| 亚洲色图av天堂| 国语自产精品视频在线第100页| 搞女人的毛片| 特级一级黄色大片| 熟女电影av网| 免费在线观看影片大全网站| 久久精品91蜜桃| 午夜免费成人在线视频| 神马国产精品三级电影在线观看| 中文字幕人成人乱码亚洲影| 啦啦啦免费观看视频1| 欧美午夜高清在线| 波多野结衣高清作品| 俄罗斯特黄特色一大片| 欧美黑人巨大hd| 三级毛片av免费| 天堂影院成人在线观看| 国产熟女xx| 不卡一级毛片| 亚洲av免费在线观看| 后天国语完整版免费观看| 久久国产精品人妻蜜桃| 18禁观看日本| 亚洲国产欧美一区二区综合| 中文在线观看免费www的网站| 国产高清视频在线播放一区| 国产伦人伦偷精品视频| 久久久久久久久免费视频了| 日韩成人在线观看一区二区三区| 一本一本综合久久| 久久久久国产精品人妻aⅴ院| 国产欧美日韩一区二区三| 久久久国产成人免费| 亚洲成av人片在线播放无| 国产人伦9x9x在线观看| 黄色 视频免费看| 国内毛片毛片毛片毛片毛片| 亚洲人成网站高清观看| 97人妻精品一区二区三区麻豆| 中国美女看黄片| 午夜精品一区二区三区免费看| 欧美+亚洲+日韩+国产| 搡老妇女老女人老熟妇| 国产 一区 欧美 日韩| 又粗又爽又猛毛片免费看| 欧美成人性av电影在线观看| 淫妇啪啪啪对白视频| 国产一区二区三区视频了| 天天添夜夜摸| 久久热在线av| 亚洲成人中文字幕在线播放| 国产淫片久久久久久久久 | 1024手机看黄色片| 国产伦在线观看视频一区| 久久精品aⅴ一区二区三区四区| 久久九九热精品免费| 国产亚洲精品av在线| avwww免费| 午夜福利视频1000在线观看| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 欧美一级毛片孕妇| 日韩免费av在线播放| а√天堂www在线а√下载| 国产综合懂色| av天堂在线播放| 国产成人精品无人区| 在线播放国产精品三级| 午夜福利在线在线| 禁无遮挡网站| 成人高潮视频无遮挡免费网站| 97超视频在线观看视频| 亚洲avbb在线观看| 大型黄色视频在线免费观看| 色播亚洲综合网| 日日夜夜操网爽| 丁香欧美五月| x7x7x7水蜜桃| 色哟哟哟哟哟哟| 91在线精品国自产拍蜜月 | 欧美三级亚洲精品| 成人午夜高清在线视频| 一区二区三区国产精品乱码| 国产91精品成人一区二区三区| 老司机午夜十八禁免费视频| 亚洲中文字幕日韩| 久久中文字幕一级| 日日夜夜操网爽| 最新中文字幕久久久久 | 久久香蕉精品热| 国产一区二区三区在线臀色熟女| 真实男女啪啪啪动态图| 国产又色又爽无遮挡免费看| 热99re8久久精品国产| 一二三四在线观看免费中文在| 亚洲中文av在线| 欧美成人免费av一区二区三区| 悠悠久久av| 亚洲欧美一区二区三区黑人| 一级毛片高清免费大全| 亚洲,欧美精品.| 色视频www国产| 精品国产亚洲在线| 性色av乱码一区二区三区2| 最新美女视频免费是黄的| 亚洲 国产 在线| 中国美女看黄片| 99久久99久久久精品蜜桃| 久久99热这里只有精品18| 亚洲人成伊人成综合网2020| 中文亚洲av片在线观看爽| 欧美性猛交╳xxx乱大交人| 在线播放国产精品三级| 国产成人系列免费观看| 在线看三级毛片| 精品国产亚洲在线| 欧美xxxx黑人xx丫x性爽| 亚洲av片天天在线观看| 国产成人福利小说| 亚洲人成网站高清观看| 久久精品aⅴ一区二区三区四区| 在线观看日韩欧美| 午夜两性在线视频| 亚洲精华国产精华精| 欧美乱码精品一区二区三区| 亚洲精品美女久久av网站| 欧美中文综合在线视频| 一级a爱片免费观看的视频| 操出白浆在线播放| av天堂中文字幕网| 欧美成人性av电影在线观看| 亚洲国产欧美网| 他把我摸到了高潮在线观看| 午夜福利成人在线免费观看| 精品久久久久久,| 禁无遮挡网站| 99视频精品全部免费 在线 | 精品一区二区三区视频在线观看免费| 久久天躁狠狠躁夜夜2o2o| 久久精品国产综合久久久| 国产成年人精品一区二区| 久久草成人影院| 精品电影一区二区在线| 午夜精品在线福利| 免费无遮挡裸体视频| 亚洲av电影在线进入| 亚洲在线自拍视频| 黄片小视频在线播放| 精品久久蜜臀av无| 亚洲自拍偷在线| av女优亚洲男人天堂 | 国产成人一区二区三区免费视频网站| 黑人巨大精品欧美一区二区mp4| 性色av乱码一区二区三区2| 国产激情偷乱视频一区二区| 亚洲激情在线av| 欧美中文日本在线观看视频| 好男人电影高清在线观看| 欧美黑人巨大hd| 无限看片的www在线观看| www.999成人在线观看| 国产精品久久电影中文字幕| 无遮挡黄片免费观看| 欧美色视频一区免费| 老熟妇乱子伦视频在线观看| 男女之事视频高清在线观看| 国产熟女xx| 国产av不卡久久| av黄色大香蕉| 男女做爰动态图高潮gif福利片| 美女 人体艺术 gogo| 亚洲 欧美 日韩 在线 免费| 一个人观看的视频www高清免费观看 | 国产激情久久老熟女| 午夜福利在线在线| 国产淫片久久久久久久久 | 亚洲欧美日韩高清在线视频| 国产91精品成人一区二区三区| 99久国产av精品| 国产精品久久久久久久电影 | 国产成人欧美在线观看| 久久国产乱子伦精品免费另类| 毛片女人毛片| 国产精品亚洲美女久久久| 久久香蕉国产精品| 国产精品野战在线观看| 女生性感内裤真人,穿戴方法视频| 99久久成人亚洲精品观看| 免费看a级黄色片| 久99久视频精品免费| 国产伦在线观看视频一区| 国产三级黄色录像| 黑人欧美特级aaaaaa片| 久久久久久久久久黄片| 久久国产精品人妻蜜桃| 国产私拍福利视频在线观看| 特大巨黑吊av在线直播| www.自偷自拍.com| 俺也久久电影网| 手机成人av网站| 国产黄色小视频在线观看| 国产1区2区3区精品| 午夜免费观看网址| 久久伊人香网站| 亚洲自拍偷在线| 老司机午夜十八禁免费视频| 国产乱人视频| 国产成人一区二区三区免费视频网站| 日韩欧美国产一区二区入口| 日韩有码中文字幕| 日韩免费av在线播放| 1024手机看黄色片| 老熟妇仑乱视频hdxx| 中国美女看黄片| 精品福利观看| 母亲3免费完整高清在线观看| 免费看光身美女| 香蕉丝袜av| 国产熟女xx| 噜噜噜噜噜久久久久久91| 亚洲 欧美一区二区三区| 精品乱码久久久久久99久播| 九色国产91popny在线| 香蕉av资源在线| 蜜桃久久精品国产亚洲av| 精华霜和精华液先用哪个| 国产亚洲欧美98| 波多野结衣高清无吗| 国产淫片久久久久久久久 | 亚洲av美国av| 夜夜躁狠狠躁天天躁| 亚洲av美国av| 国产成人啪精品午夜网站| 我的老师免费观看完整版| 国产欧美日韩一区二区三| 99riav亚洲国产免费| 国产熟女xx| 99精品欧美一区二区三区四区| 亚洲一区高清亚洲精品| 国产视频一区二区在线看| 搡老妇女老女人老熟妇| 午夜日韩欧美国产| 亚洲av成人av| 久久国产精品人妻蜜桃| 99久久精品热视频| 成熟少妇高潮喷水视频| 亚洲美女黄片视频| 美女 人体艺术 gogo| 一进一出抽搐gif免费好疼| 免费观看的影片在线观看| www日本在线高清视频| 欧美性猛交╳xxx乱大交人| 99精品在免费线老司机午夜| 日韩欧美一区二区三区在线观看| 欧美丝袜亚洲另类 | 国产成人福利小说| 99久久综合精品五月天人人| 精品国产超薄肉色丝袜足j| 观看美女的网站| 精品国内亚洲2022精品成人| 久久精品国产亚洲av香蕉五月| 啪啪无遮挡十八禁网站| 免费观看精品视频网站| 美女免费视频网站| 这个男人来自地球电影免费观看| 国产探花在线观看一区二区| 国产三级在线视频| 中亚洲国语对白在线视频| 一级毛片精品| 美女午夜性视频免费| 亚洲欧美日韩高清专用| 成人高潮视频无遮挡免费网站| 变态另类丝袜制服| 国产真实乱freesex| 久久草成人影院| 亚洲电影在线观看av| 最近最新免费中文字幕在线| www日本在线高清视频| 国产午夜福利久久久久久| 淫秽高清视频在线观看| 国产麻豆成人av免费视频| 亚洲中文字幕日韩| 亚洲aⅴ乱码一区二区在线播放| 淫妇啪啪啪对白视频| 一区福利在线观看| 一本一本综合久久| 老熟妇乱子伦视频在线观看| av在线天堂中文字幕| 成人欧美大片| 国产91精品成人一区二区三区| 18禁美女被吸乳视频| 国产亚洲精品av在线| 国产精品一区二区三区四区久久| www.精华液| 国产野战对白在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美高清成人免费视频www| 国产精品一及| xxxwww97欧美| 人妻夜夜爽99麻豆av| 99国产精品一区二区蜜桃av| 成人一区二区视频在线观看| 国产三级中文精品| 久久久久九九精品影院| 久久久久免费精品人妻一区二区| 日韩欧美三级三区| 特大巨黑吊av在线直播| 我的老师免费观看完整版| 精品免费久久久久久久清纯| 精品国产乱子伦一区二区三区| 亚洲片人在线观看| 中文字幕精品亚洲无线码一区| 午夜福利在线观看免费完整高清在 | 久99久视频精品免费| 欧美又色又爽又黄视频| 两人在一起打扑克的视频| 美女午夜性视频免费| av黄色大香蕉| 亚洲国产欧美人成| 天天一区二区日本电影三级| 18禁裸乳无遮挡免费网站照片| 精品国产超薄肉色丝袜足j| 国产精品美女特级片免费视频播放器 | 18美女黄网站色大片免费观看| 动漫黄色视频在线观看| 国产麻豆成人av免费视频| 久久国产乱子伦精品免费另类| 99热这里只有精品一区 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲熟妇中文字幕五十中出| 黑人操中国人逼视频| 亚洲av熟女| 在线a可以看的网站| 亚洲欧美日韩高清专用| 村上凉子中文字幕在线| 精品久久久久久久久久久久久| 免费高清视频大片| 无限看片的www在线观看| 日本 欧美在线| 999精品在线视频| 国产麻豆成人av免费视频| 成人三级黄色视频| 一本精品99久久精品77| 亚洲精品国产精品久久久不卡| 亚洲一区二区三区不卡视频| 欧美成人一区二区免费高清观看 | 色尼玛亚洲综合影院| 午夜福利18| 日韩欧美在线二视频| 亚洲精品在线观看二区| 成年女人毛片免费观看观看9| 日本 av在线| 国产高清三级在线| 噜噜噜噜噜久久久久久91| 亚洲午夜精品一区,二区,三区| 嫁个100分男人电影在线观看| 男人舔女人的私密视频| 色av中文字幕| 他把我摸到了高潮在线观看| 小蜜桃在线观看免费完整版高清| 岛国在线免费视频观看| 一区二区三区激情视频| 久久久久性生活片| 久久婷婷人人爽人人干人人爱| 日本一本二区三区精品| 久久中文字幕人妻熟女| av天堂中文字幕网| 热99re8久久精品国产| 一级a爱片免费观看的视频| 午夜成年电影在线免费观看| 久久精品影院6| 欧美乱色亚洲激情| 久久久久国内视频| 好男人电影高清在线观看| 成年女人毛片免费观看观看9| 国产精品久久久久久精品电影| 中文字幕最新亚洲高清| 国产91精品成人一区二区三区| 99热这里只有是精品50| 我要搜黄色片| 动漫黄色视频在线观看| 国产精品亚洲av一区麻豆| 国产私拍福利视频在线观看| 91在线观看av| a在线观看视频网站| 国产精品影院久久| 国产高清videossex| 天堂动漫精品| 久久精品亚洲精品国产色婷小说| 男人的好看免费观看在线视频| 99国产极品粉嫩在线观看| 国产精品 欧美亚洲| 老汉色av国产亚洲站长工具| 亚洲最大成人中文| 亚洲欧美日韩高清专用| 啦啦啦免费观看视频1| 久久久精品大字幕| 免费观看人在逋| 欧美三级亚洲精品| 久久精品国产99精品国产亚洲性色| 丰满的人妻完整版| 欧美日本视频| 免费看十八禁软件| 亚洲精品在线观看二区| 中文在线观看免费www的网站| or卡值多少钱| 99视频精品全部免费 在线 | 久久精品夜夜夜夜夜久久蜜豆| 精品国内亚洲2022精品成人| 欧美zozozo另类| 久久久久久人人人人人| 欧美中文综合在线视频| 九九热线精品视视频播放| 一二三四在线观看免费中文在| 无人区码免费观看不卡| 免费av毛片视频| 韩国av一区二区三区四区| 国产精品久久视频播放| 国产男靠女视频免费网站| www.熟女人妻精品国产| 成在线人永久免费视频| 一区二区三区激情视频| 久久草成人影院| 亚洲精品美女久久久久99蜜臀| 亚洲最大成人中文| 可以在线观看的亚洲视频| 久久这里只有精品中国| 成人精品一区二区免费| 久久久久国内视频| 无遮挡黄片免费观看| 欧美一级a爱片免费观看看| 国产高清有码在线观看视频| 午夜福利高清视频| 国产久久久一区二区三区| 一个人免费在线观看的高清视频| 一二三四在线观看免费中文在| 中文字幕精品亚洲无线码一区| 国产欧美日韩一区二区三| 国产亚洲精品一区二区www| 国产亚洲精品久久久com| 亚洲成人精品中文字幕电影| 夜夜躁狠狠躁天天躁| 久久久久久久精品吃奶| www.自偷自拍.com| 最新美女视频免费是黄的| 黄频高清免费视频| ponron亚洲| 在线播放国产精品三级| 精品国产乱码久久久久久男人| 亚洲一区二区三区色噜噜| 色av中文字幕| 综合色av麻豆| 欧美三级亚洲精品| 欧美极品一区二区三区四区| 欧美一区二区国产精品久久精品| 在线观看免费视频日本深夜| 国产成人欧美在线观看| 19禁男女啪啪无遮挡网站| 亚洲专区国产一区二区| 欧美丝袜亚洲另类 | 欧美日韩国产亚洲二区| 日韩高清综合在线| 国产精品久久久av美女十八| 国产av麻豆久久久久久久| 欧美黑人巨大hd| 亚洲精品一区av在线观看| 久久国产精品人妻蜜桃| 男女之事视频高清在线观看| 亚洲中文字幕一区二区三区有码在线看 | 久久热在线av| 国产成人精品无人区| 欧美又色又爽又黄视频| 精品久久久久久久久久免费视频| 最近最新中文字幕大全免费视频| 身体一侧抽搐| 国内久久婷婷六月综合欲色啪| 淫秽高清视频在线观看| 99视频精品全部免费 在线 | 在线观看一区二区三区| 亚洲中文日韩欧美视频| 久久九九热精品免费| 又粗又爽又猛毛片免费看| 国内久久婷婷六月综合欲色啪| 观看美女的网站| 18禁观看日本| 两个人看的免费小视频| 最近最新中文字幕大全免费视频| 男人舔奶头视频| 淫妇啪啪啪对白视频| 亚洲五月天丁香| 成人三级黄色视频| 少妇的逼水好多| 男人和女人高潮做爰伦理| 一区福利在线观看| 国产伦在线观看视频一区|