安 靜,郭桂真,羅青枝,李雪艷,殷 蓉,王德松
(河北科技大學(xué)理學(xué)院,河北石家莊 050018)
?
載銀殼聚糖接枝香草醛膠乳的制備及抗菌性
安靜,郭桂真,羅青枝,李雪艷,殷蓉,王德松
(河北科技大學(xué)理學(xué)院,河北石家莊050018)
為了增強(qiáng)殼聚糖的抗菌活性和拓展其應(yīng)用領(lǐng)域,在其基體中引入了納米銀粒子,并對其進(jìn)行了接枝改性。采用微波輻射法將香草醛與殼聚糖接枝,然后用香草醛還原硝酸銀,得到均勻分散于殼聚糖香草醛接枝物(CS-g-VA)膠乳中的納米銀粒子,即Ag/CS-g-VA復(fù)合膠乳。探討了制備Ag/CS-g-VA復(fù)合膠乳的影響因素,并采用SEM,TEM,F(xiàn)TIR,XRD,UV-vis和TG-DSC等對其進(jìn)行了結(jié)構(gòu)和熱性能表征。結(jié)果表明合成Ag/CS-g-VA的較理想條件:香草醛的質(zhì)量分?jǐn)?shù)為6.0%,CS-g-VA的質(zhì)量分?jǐn)?shù)為4.0%,硝酸銀的濃度為0.20 mol/L。通過抗菌測試研究了Ag/CS-g-VA對大腸桿菌和枯草桿菌的抑制作用,結(jié)果顯示Ag/CS-g-VA復(fù)合膠乳具有比單一殼聚糖抗菌劑更高效的抗菌性能。
天然高分子化學(xué);殼聚糖接枝香草醛;納米銀;復(fù)合膠乳;微波輻射;抗菌性能
殼聚糖(Chitosan)是唯一含有氨基的弱堿性天然多糖。殼聚糖不僅具有生物相容性、降解性、半剛性高分子骨架和優(yōu)良的成膜能力[1-2],而且是無毒且活性較高的抑菌劑[3-5],因此在醫(yī)藥、食品、水資源處理、紡織等領(lǐng)域得到了廣泛的應(yīng)用[6-8]。殼聚糖分子中大量的—OH和—NH2可進(jìn)行?;?、羥基化、烷基化、酯化等化學(xué)反應(yīng),得到多種殼聚糖衍生物,使其具有更多的特殊功能[9]。由于殼聚糖僅能溶解在部分酸中[10]且耐熱性能不足,其應(yīng)用范圍受到限制。通過對殼聚糖進(jìn)行化學(xué)改性,在增加其溶解性的同時(shí)還可增強(qiáng)其他性能,擴(kuò)大其應(yīng)用領(lǐng)域[11]。用香草醛[12]對殼聚糖進(jìn)行接枝后,可以將直鏈結(jié)構(gòu)的殼聚糖改性成具有支鏈結(jié)構(gòu)的香草醛接枝殼聚糖(CS-g-VA)。接枝物除了具有天然殼聚糖良好的生物相容性、降解性和廣譜抗菌性外,還可增強(qiáng)原始?xì)ぞ厶堑臒嵝阅芎土W(xué)性能。羅潔等[13]以殼聚糖和香草醛為原料,乙醇為溶劑,采用超聲波輻射技術(shù)制備了CS-g-VA。
納米銀具有高效的抗氧化能力、催化能力、持久的殺菌能力[14-18],但是由于納米粒子表面能高,如將其分散于聚合物中,可顯著提高聚合物的穩(wěn)定性[19-20]。采用有機(jī)和無機(jī)抑菌劑復(fù)配,可彌補(bǔ)殼聚糖耐熱性能不足和易洗脫的缺陷,也有利于包埋無機(jī)抑菌劑的毒性,在復(fù)合體系中,有機(jī)和無機(jī)抑菌劑的固有抑菌活性也會(huì)顯著提高[21]。
本課題采用微波輻射法制備CS-g-VA接枝聚合物,并以香草醛為還原劑,將硝酸銀溶液中的Ag+還原為Ag0,制備載銀殼聚糖接枝香草醛復(fù)合膠乳(Ag/CS-g-VA);然后,對其進(jìn)行結(jié)構(gòu)表征及性能測試。所得Ag/CS-g-VA復(fù)合膠乳不但能保留銀和殼聚糖的優(yōu)良性能,而且能通過納米銀與殼聚糖的協(xié)同作用更有效地抑制革蘭氏菌的繁殖。
1.1主要原料
殼聚糖(CS):脫乙酰度≥90.0%,中國醫(yī)藥(集團(tuán))上?;瘜W(xué)試劑公司提供;香草醛(VA):分析純,天津市光復(fù)精細(xì)化工研究所提供;硝酸銀,分析純,中國醫(yī)藥(集團(tuán))上?;瘜W(xué)試劑公司提供。大腸桿菌(Escherichiacoli)(ATCC 44752)、枯草桿菌(Bacillussubtilis) (ATCC 63501)均由中國菌種保存中心(北京)提供。
1.2測試方法
通過S4800-I型場發(fā)射掃描電子顯微鏡(SEM,荷蘭FEI公司提供)觀察Ag/CS-g-VA 的形貌;紫外-可見漫反射光譜(UV-Vis DRS)用紫外可見分光光度儀(UV-2550 型,日本島津公司提供)測定;傅里葉變換紅外光譜(FTIR)用Raman 光譜儀(IR Prestige-21型,日本島津公司提供)測定;用G2F20型場發(fā)射透射電子顯微鏡(TEM,荷蘭Tecnai公司提供)測定銀粒子分散情況;采用X 射線衍射分析(XRD,D/max-2500 型,日本Rigaku公司提供)對材料的晶粒尺寸進(jìn)行測定;采用TG-204型熱失重儀、MDSC-204型差熱分析儀(TG-TDA,日本Rigaku公司提供)了解Ag/CS-g-VA的穩(wěn)定性。
圖1 微波輻射制備CS-g-VA接枝物的合成路線Fig.1 Synthetic route of the preparation of chitosan grafted vanillin by microwave radiation
1.3Ag/CS-g-VA復(fù)合膠乳的制備
稱取3.0 g的殼聚糖置于250 mL 四口瓶中,隨后倒入60 mL異丙醇浸泡1 h。將4.4 g 香草醛溶解于120 mL異丙醇和乙醇(V(異丙醇) ∶V(乙醇)=1∶1)的混合溶劑中,再將其置于殼聚糖的浸泡液中,攪拌,至殼聚糖和香草醛分散均勻,并在四口瓶外套一個(gè)水浴保護(hù)裝置,置于微波爐(XH100B,北京祥鵠科技發(fā)展有限公司提供)中,在300 W,70 ℃下反應(yīng)12 min。待冷卻后,抽濾,將濾渣用1 mol/L的NaOH 溶液浸泡5~8 h,然后過濾,先后用去離子水和丙酮洗滌,干燥,得黃色粉末狀產(chǎn)物。微波輻射制備CS-g-VA接枝物的合成路線如圖1所示。
將一定量的CS-g-VA溶于質(zhì)量分?jǐn)?shù)為2%的乙酸溶液中,配成質(zhì)量分?jǐn)?shù)為3%的溶液,攪拌使之完全溶解;取20 mL的上述溶液,加入濃度為0.05~0.30 mol/L的 AgNO3水溶液2 mL,持續(xù)攪拌反應(yīng)2 h,接枝產(chǎn)物中的羥基可還原硝酸銀。
1.4Ag/CS-g-VA復(fù)合膠乳的抗菌性能研究
將直徑1 cm的濾紙片滅菌后,在固體培養(yǎng)基表面滴加0.2 mL培養(yǎng)好的菌懸液并涂布均勻,用鑷子夾取濾紙片貼在各含菌平皿的標(biāo)號(hào)處;將CS和CS-g-VA分別分散于二次蒸餾水中得到懸浮液,然后分別在濾紙片上滴加0.01 mL乙酸溶液(空白對照)、CS乙酸溶液、CS-g-VA乙酸溶液和Ag/CS-g-VA膠乳溶液(質(zhì)量濃度均為10 g/L);將放置好樣品的平皿分別放在模擬太陽光和紫外燈下進(jìn)行培養(yǎng)4 h,用顯微鏡觀察細(xì)菌形態(tài),并拍攝照片。
2.1Ag/CS-g-VA 復(fù)合膠乳中納米銀粒徑及其分布的影響因素
影響Ag/CS-g-VA復(fù)合膠乳制備的主要因素有CS濃度、AgNO3濃度、VA濃度等。采用紫外可見分光光度法(UV-vis)測定Ag/CS-g-VA復(fù)合膠乳中納米銀的粒徑大小及粒度分布情況。按照1.3中Ag/CS-g-VA復(fù)合膠乳的制備方法,在一定范圍內(nèi)改變膠乳中主要組分CS-g-VA的質(zhì)量分?jǐn)?shù)(下同)為1.0%~6.0%;AgNO3的濃度為0.05~0.30 mol/L;VA質(zhì)量分?jǐn)?shù)(下同)為1.0%~7.0%。
圖2 不同CS-g-VA濃度時(shí)Ag/CS-g-VA復(fù)合膠乳的UV-vis 吸收光譜Fig.2 UV-vis absorption spectra of Ag/CS-g-VA colloidal sol
圖3 不同AgNO3濃度時(shí)Ag/CS-g-VA復(fù)合膠乳的UV-vis 吸收光譜Fig.3 UV-vis absorption spectra of Ag/CS-g-VA colloidal sol
2.1.1接枝殼聚糖濃度的影響
固定AgNO3和VA的濃度分別為0.20 mol/L和6.0%,改變CS-g-VA的濃度制備Ag/CS-g-VA復(fù)合膠乳,測定相應(yīng)的UV-vis 吸收光譜,如圖2 所示。由圖2可看出,380~420 nm 之間的響應(yīng)峰是Ag/CS-g-VA膠乳中納米級Ag粒子的等離子共振吸收峰[22]。隨著體系中CS-g-VA濃度的升高,納米Ag粒子的吸收峰逐漸增強(qiáng),說明CS-g-VA濃度越高,生成的納米級Ag粒子越多。這是因?yàn)镃S-g-VA通過與Ag+螯合對Ag粒子起到保護(hù)作用,CS-g-VA的大分子網(wǎng)狀結(jié)構(gòu)顯著改善了納米銀的團(tuán)聚現(xiàn)象,低濃度的CS-g-VA無法形成完整的網(wǎng)狀結(jié)構(gòu),因此Ag粒子會(huì)產(chǎn)生團(tuán)聚而形成大尺寸的粒子。另外,納米粒子尺寸越均勻則等離子共振吸收峰的峰形越窄。在CS-g-VA質(zhì)量分?jǐn)?shù)為5.0%和6.0%時(shí)納米銀共振峰最強(qiáng),但峰形較寬,說明Ag粒子雖然數(shù)目較多,但尺寸不均勻。因此,反應(yīng)選擇較佳的CS-g-VA質(zhì)量分?jǐn)?shù)為4.0%。
2.1.2AgNO3濃度的影響
固定CS-g-VA和VA的質(zhì)量分?jǐn)?shù)分別為4.0%和6.0%,考察AgNO3濃度對Ag/CS-g-VA膠乳中納米銀粒徑及粒度分布的影響規(guī)律,結(jié)果如圖3所示。從圖3可以看出,隨著AgNO3溶液濃度的增加,復(fù)合膠乳中納米銀的共振吸收峰強(qiáng)度先增強(qiáng)后減弱,且在AgNO3的濃度為0.20 mol/L時(shí),吸收峰強(qiáng)度最高,峰位置最小,表明此時(shí)膠乳中的納米粒子含量最高,且平均粒徑最小。在反應(yīng)體系中一般納米粒子的數(shù)目隨著Ag+濃度的升高而增多,當(dāng)Ag+的濃度過高時(shí),體系中Ag晶體的生長速率就會(huì)明顯高于其成核速率,則納米粒子不斷增大并縮短了粒子之間的距離,增加了它們之間的碰撞幾率,從而導(dǎo)致生成較大的微米級粒子。因此,反應(yīng)選擇較佳的AgNO3溶液濃度為0.20 mol/L。
圖4 不同香草醛濃度時(shí)Ag/CS-g-VA復(fù)合膠乳的UV-vis 吸收光譜Fig.4 UV-vis absorption spectra of Ag/CS-g-VA colloidal sol
2.1.3香草醛濃度的影響
固定CS-g-VA和AgNO3濃度分別為4.0%和0.20 mol/L,改變還原劑VA的濃度,制備Ag/CS-g-VA復(fù)合膠乳,其UV-vis吸收光譜如圖4所示。 圖4中Ag粒子的最大吸收峰位于380~420 nm之間,由于CS-g-VA中氨基與Ag的配位作用使納米銀吸收波長藍(lán)移(為380~400 nm)。當(dāng)香草醛質(zhì)量分?jǐn)?shù)為1.0%~5.0%時(shí),吸收峰峰形較寬,表明Ag粒子的粒徑不均勻。而當(dāng)香草醛質(zhì)量分?jǐn)?shù)為6.0%時(shí), 復(fù)合膠乳中納米Ag的共振吸收較強(qiáng),峰形較窄,表面納米粒子數(shù)目較多且粒度分布均勻。當(dāng)香草醛質(zhì)量分?jǐn)?shù)為7.0%時(shí),吸收峰雖強(qiáng),但是峰形變得很寬,納米粒子粒徑不均勻,易發(fā)生團(tuán)聚。因此反應(yīng)中香草醛的較佳質(zhì)量分?jǐn)?shù)為6.0%。
綜上所述,制備Ag/CS-g-VA復(fù)合膠乳的較佳條件:CS-g-VA質(zhì)量分?jǐn)?shù)為4.0%,AgNO3溶液濃度為0.20 mol/L、香草醛質(zhì)量分?jǐn)?shù)為6.0%。
2.2掃描電鏡(SEM)分析
圖5分別是CS,CS-g-VA與Ag/CS-g-VA的SEM 照片,比較圖5 a)、圖5 b)和圖5 c)可以發(fā)現(xiàn), 加入Ag后,沒有明顯的銀團(tuán)聚現(xiàn)象。
圖5 CS,CS-g-VA與Ag/CS-g-VA 的掃描電鏡照片F(xiàn)ig.5 SEM images of CS,CS-g-VA與Ag/CS-g-VA colloidal sol
2.3透射電鏡(TEM)分析
圖6是Ag/CS-g-VA分別在低倍及高倍電鏡下的TEM 照片,圖6 a)顯示納米銀在Ag/CS-g-VA 溶膠表面分散得比較均勻,無明顯團(tuán)聚現(xiàn)象,由圖6 b)可知,銀粒子的粒徑為10~20 nm。
圖6 Ag/CS-g-VA 的透射電鏡照片F(xiàn)ig.6 TEM images of Ag/CS-g-VA colloidal sol
2.4X射線衍射(XRD)分析
圖7為CS與Ag/CS-g-VA的XRD圖。圖中32.2°,46.1°,67.5°和79.0°處的衍射峰分別對應(yīng)Ag/CS-g-VA復(fù)合膠乳中銀晶的(111)、(200)、(220)和(311)晶面,這表明Ag/CS-g-VA復(fù)合膠乳中的納米銀晶型為面心立方[23]。根據(jù)最強(qiáng)衍射峰的半高寬運(yùn)用Scherrer公式[24]計(jì)算出納米Ag/CS-g-VA 復(fù)合膠乳中Ag粒子的平均粒徑約為16.3 nm。
2.5紅外光譜(FTIR)分析
圖8為CS,CS-g-VA,Ag /CS-g-VA復(fù)合膠乳的紅外光譜圖。CS分子鏈中含有氨基、羥基和未脫酰的乙酰氨基。由圖8可知,3 000~3 500 cm-1處的特征吸收峰是由O—H和N—H 的伸縮振動(dòng)峰重疊而成,2 850~2 900 cm-1處的吸收峰是C—H的伸縮振動(dòng)峰,1 068 cm-1為C—O振動(dòng)吸收峰,1 410 cm-1為CS中C—N鍵的伸縮振動(dòng)峰。1 513 cm-1處為香草醛分子中苯環(huán)特征峰,1 667 cm-1處為C=N希夫堿特征吸收峰;1 426 cm-1處則為O—CH3的吸收峰;665~895 cm-1處則為苯環(huán)中C—H吸收帶,通過這些吸收峰可判斷CS與VA發(fā)生了接枝反應(yīng)生成了CS-g-VA接枝聚合物[25]。由于Ag/CS-g-VA復(fù)合膠乳中納米銀含量較少,銀的存在對CS-g-VA接枝物的紅外光譜影響不大。
圖7 Ag/CS-g-VA與CS的X射線衍射譜對比圖Fig.7 XRD patterns of Ag/CS-g-VA colloidal sol and CS
圖8 CS,CS-g-VA和Ag/CS-g-VA的紅外光譜圖Fig.8 FTIR spectra of CS,CS-g-VA and Ag/CS-g-VA colloidal sol
2.6熱失重(TG)和差熱(DTA)分析
CS,CS-g-VA和Ag/CS-g-VA的TG和DTA曲線如圖9所示,根據(jù)熱失重梯度較大的TG曲線部分在相應(yīng)的DTA曲線上對應(yīng)出3種樣品的玻璃化轉(zhuǎn)變溫度和分解溫度。CS,CS-g-VA和Ag/CS-g-VA的玻璃態(tài)轉(zhuǎn)變溫度分別為272.7,311.5和318.7 ℃,它們的分解溫度分別為548.9,560.8和574.6 ℃。殼聚糖與香草醛接枝后,形成致密的交聯(lián)網(wǎng)狀結(jié)構(gòu),聚合物的玻璃化轉(zhuǎn)變溫度和分解溫度都明顯提高[26],接枝物與納米銀復(fù)合后,由于分子內(nèi)氧或氮與銀的配位作用,使得聚合物的熱性能更為穩(wěn)定。
圖9 CS,CS-g-VA和Ag/CS-g-VA的TG和DTA曲線Fig.9 TG and DTA spectra of CS,CS-g-VA and Ag/CS-g-VA
2.7Ag/CS-g-VA抗菌活性分析
從圖10—圖13中可以看出CS無論在可見光下還是紫外光下對大腸桿菌和枯草桿菌均無明顯的抑制作用,CS-g-VA使2種菌發(fā)生彎曲變形和縮短,而Ag/CS-g-VA可大規(guī)模抑制2種菌的繁殖[27]。因此,在接枝物中載入納米銀后得到Ag/CS-g-VA復(fù)合物,其抑菌活性明顯提高。比較可見光和紫外光下的抑菌效果發(fā)現(xiàn),CS,CS-g-VA和Ag/CS-g-VA在紫外光下具有更強(qiáng)的抑菌性能。另外,對比圖12和圖13可知,紫外光下Ag/CS-g-VA復(fù)合物對枯草桿菌的抗菌效果顯著優(yōu)于大腸桿菌。
圖10 可見光下CS,CS-g-VA和Ag/CS-g-VA對大腸桿菌的抑菌照片F(xiàn)ig.10 Bacteriostatic photos of CS,CS-g-VA and Ag/CS-g-VA in Escherichia coli under visible light
圖11 可見光下CS,CS-g-VA和Ag/CS-g-VA對枯草桿菌的抑菌照片F(xiàn)ig.11 Bacteriostatic photos of CS and CS-g-VA and Ag/CS-g-VA in Bacillus subtilis under visible light
圖12 紫外光下CS,CS-g-VA和Ag/CS-g-VA對大腸桿菌的抑菌照片F(xiàn)ig.12 Bacteriostatic photos of CS and CS-g-VA and Ag/CS-g-VA in Escherichia coli under ultraviolet light
圖13 紫外光下CS,CS-g-VA和Ag/CS-g-VA對枯草桿菌的抑菌照片F(xiàn)ig.13 Bacteriostatic photos of CS and CS-g-VA and Ag/CS-g-VA in Bacillus subtilis under ultraviolet light
采用微波輻射法可使香草醛與殼聚糖迅速發(fā)生接枝反應(yīng)而得到接枝聚合物CS-g-VA,再通過溶膠凝膠法使CS-g-VA與AgNO3復(fù)合得到Ag/CS-g-VA復(fù)合膠乳。制備Ag/CS-g-VA的較理想條件:CS-g-VA質(zhì)量分?jǐn)?shù)為4.0%,AgNO3溶液濃度為0.20 mol/L,香草醛質(zhì)量分?jǐn)?shù)為6.0%。TEM圖顯示納米銀在Ag/CS-g-VA溶膠表面分散得比較均勻,無明顯團(tuán)聚現(xiàn)象,Ag粒子的粒徑為10~20 nm;XRD結(jié)果表明,殼聚糖是無定形晶型,被包埋的納米銀晶型為面心立方;紅外光譜圖顯示了殼聚糖的氨基與香草醛發(fā)生反應(yīng);TG-DTA分析表明接枝物與納米銀復(fù)合后,使得聚合物的熱性能更為穩(wěn)定??咕鷮?shí)驗(yàn)表明,Ag/CS-g-VA在紫外光下對大腸桿菌和枯草桿菌的抗菌效果要優(yōu)于可見光下的抗菌效果。
/
[1]PENG Yanfei, HAN Baoqin, LIU Wanshun, et al. Preparation and antimicrobial activity of hydroxypropyl chitosan[J]. Carbohydrate Research, 2005, 340: 1846-1851.
[2]VIMALA K,MURALI Y. Fabrication of porous chitosan films impregnated with silver nanoparticles:A facile approach for superior antibacterial application[J].Colloids and Surfaces B:Biointerfaces,2010,76(1): 248-258.
[3]FERNANDES M, FRANCESKO A, JUAN T. Effect of thiol-functionalisation on chitosan antibacterial activity:Interaction with a bacterial membrane model[J]. Reactive & Functional Polymers,2013,73:1384-1390.
[4]STROESCU M, STOICA A, ISOPENCU G,et al. Chitosan-vanillin composites with antimicrobial properties[J]. Food Hydrocolloids,2015,48: 62-71.
[5]AHMED M, HUSSEIN A, SAMAH M,et al. Mechanical and antibacterial properties of novel high performancechitosan/nanocomposite films[J]. International Journal of Biological Macromolecules,2015,76: 25-32.
[6]RABEA E, BADAWY M, STEURBAUT W, et al. In vitro assessment ofN-(benzyl) chitosan derivatives against some plant pathogenic bacteria and fungi[J]. European Polymer Journal, 2009, 45(1): 41-46.
[7]YOUNG I C, HONG K N,SAMUEL P M. Physicoehemical characteristics and functional properties of various commercial chitinand chitosan products[J]. Journal of Agricultural and Food Chemistry,1998,46(9):3839-3843.
[8]SINGH D K,RAY A R. Biomedical applications of chitin, chitosan, and their derivatives[J].Journal of Macromolecular Science(Part C):Polymer Reviews, 2000, 40(1): 69-83.
[9]LI Zhihan,YANG Fei, YANG Rendang. Synthesis and characterization of chitosan derivatives withdual-antibacterial functional groups[J]. International Journal of Biological Macromolecules, 2015, 75:378-387.
[10]RINAUDO M, PAVLOV G. Influence of acetic acid concentration on the solubilization of chitosan[J]. Polymer, 1999, 40: 7029-7032.
[11]ANAND D, AJAY K, SHIVANI B, et al. Stabilisation of silver and copper nanoparticles in a chemically modified chitosan matrix[J]. Carbohydrate Polymers, 2013, 92: 1402-1407.
[12]FACHE M, BOUTEVIN B, CAILLOL S. Vanillin, a key-intermediate of biobased polymers[J]. European Polymer Journal, 2015, 68: 488-502.
[13]羅潔, 陳建山, 王貴武,等. 香草醛接枝殼聚糖的制備及其吸附性能[J]. 應(yīng)用化工, 2006, 35(12): 927-930.
LUO Jie, CHEN Jianshan, WANG Guiwu, et al. Preparation of chitosan grafted by vanillin and its adsorption property[J]. Applied Chemical Industry, 2006, 35(12): 927-930.
[14]JIANG Baojiang, TIAN Chungui, SONG Gang, et al. A green route to synthesize novel Ag/C antibacterial agent[J]. Materials Research Bulletin, 2012, 47: 458-463.
[15]LI Xiaoyun, GAO Guanhui, SUN Chengjun. Preparation and antibacterial performance testing of Ag nanoparticlesembedded biological materials[J]. Applied Surface Science, 2015, 330:237-244.
[16]RAI M, YADAV A, GADE A. Silver nanoparticles as a new generation of antimicrobials[J]. Biotechnology Advances, 2009, 27:76-83.
[17]安靜, 羅青枝, 李雪艷, 等. 銀/聚吡咯/二氧化鈦復(fù)合納米粒的制備與結(jié)構(gòu)表征[J]. 河北科技大學(xué)學(xué)報(bào), 2012, 33(3):210-214.
AN Jing, LUO Qingzhi, LI Xueyan,et al. Preparation and structure characterization of silver polypyrrole nanocomposites[J]. Journal of Hebei University of Science and Technology, 2012, 33(3):210-214.
[18]張立鎖, 安靜, 羅青枝,等. P(AA-co-HEA)/Ag復(fù)合溶膠的制備及抗菌活性研究[J]. 河北科技大學(xué)學(xué)報(bào), 2012, 33(2):107-112.
ZHANG Lisuo, AN Jing, LUO Qingzhi, et al. Preparation of P(AA-co-HEA)/Ag nanocomposite sol and its antibacterial activity[J]. Journal of Hebei University of Science and Technology, 2012, 33(2):107-112.
[19]VIGNESHWARAN N, NACHANE R. A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch[J]. Carbohydrate Research, 2006, 341: 2012-2018.
[20]YI Ying, WANG Yuting, LIU Hui. Preparation of new crosslinked chitosan with crown ether and their adsorption for silver ion for antibacterial activities[J]. Carbohydrate Polymers, 2003, 53: 425-430.
[21]RICARDO J B, PINTO A, SUSANA C M, et al. Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles[J]. Carbohydrate Research, 2012, 348: 77-83.
[22]ROY K, SARKAR C K,GHOSH K. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion[J]. Spectrochimica Acta(Part A): Molecular and Biomolecular Spectroscopy,2015, 146(5): 286-291.
[23]PETER L, SIVAGNANAM S, ABRAHAM J. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property[J]. Journal of Saudi Chemical Society,2015, 19(3): 311-317.
[24]SCHERRER P. Estimation of Size and Internal Structure of Colloidal Particles by Means of Rontgen[D].Gottingen:Georg-August-University of Gottingen, 1918.
[25]MARTA S, ANICUTA S, GABRIELA I,et al. Chitosan-vanillin composites with antimicrobial properties[J]. Food Hydrocolloids, 2015, 48: 62-71.
[26]WALKE S, GOPAL S, MILIND N, et al. Fabrication of chitosan microspheres using vanillin/TPP dual crosslinkers for protein antigens encapsulation[J]. Carbohydrate Polymers, 2015, 128: 188-198.
[27]CHANDNI K, ANJANA K, NIDHI A,et al. Antibacterial activity of silver: The role of hydrodynamic particle size at nanoscale[J]. Journal of Bilmedical Materials Research(Part A), 2014, 102(10): 3361-3368.
Preparation and the antibacterial activity of silver-loaded Chitosan-grafted-vanillin sol
AN Jing, GUO Guizhen, LUO Qingzhi, LI Xueyan, YIN Rong, WANG Desong
(School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)
In order to enhance the antibacterial activity of chitosan and expand its application field, silver nanoparticles are introduced into the matrix, and the grafting modification is carried out. Chitosan grafted vanillin (CS-g-VA) is prepared with microwave-radiation method, and silver nitrate is reduced by vanillin, so that silver nanoparticles are separated evenly in CS-g-VA sol, which is Ag/CS-g-VA composite sol. The effects on the preparation of Ag/CS-g-VA composite sol are studied, and the structure and thermal property of the obtained composite sol are characterized by SEM, TEM, FTIR, XRD, UV-vis and TG-DSC. The experiment results show that the optimum conditions for the preparation of Ag/CS-g-VA are as following: Vanillin concentration of 6.0%, CS-g-VA concentration of 4.0%, and silver nitrate concentration of 0.20 mol/L. The inhibition of Ag/CS-g-VA composite sol againstEscherichiacoliandBacillussubtilisis investigated through antibacterial tests. The results show that the antibacterial activity of Ag/CS-g-VA composite sol is more efficient than that of single CS materials.
natural polymer chemistry; CS-g-VA; silver nanoparticles; composite sol; microwave-radiation; antibacterial activity
1008-1542(2016)04-0357-07
10.7535/hbkd.2016yx04007
2015-06-08;
2016-01-15;責(zé)任編輯:王海云
國家自然科學(xué)基金(51203042);河北省自然科學(xué)基金(E2016208030)
安靜(1973—),女,河北巨鹿人,副教授,博士,主要從事納米復(fù)合材料和抗菌材料方面的研究。
王德松教授。E-mail:dswang06@126.com
O636
A
安靜,郭桂真,羅青枝,等.載銀殼聚糖接枝香草醛膠乳的制備及抗菌性[J].河北科技大學(xué)學(xué)報(bào),2016,37(4):357-363.
AN Jing, GUO Guizhen, LUO Qingzhi,et al.Preparation and the antibacterial activity of silver-loaded Chitosan-grafted-vanillin sol[J].Journal of Hebei University of Science and Technology,2016,37(4):357-363.