鐘 斌,陳俊任,彭丹莉,劉 晨,郭 華,吳家森,葉正錢,柳 丹
(浙江農(nóng)林大學(xué) 浙江省土壤污染生物修復(fù)重點(diǎn)實(shí)驗(yàn)室, 浙江 臨安311300)
速生林木對(duì)重金屬污染土壤植物修復(fù)技術(shù)研究進(jìn)展
鐘斌,陳俊任,彭丹莉,劉晨,郭華,吳家森,葉正錢,柳丹
(浙江農(nóng)林大學(xué) 浙江省土壤污染生物修復(fù)重點(diǎn)實(shí)驗(yàn)室,浙江 臨安311300)
植物修復(fù)技術(shù)是目前國(guó)際上常用的一種用于修復(fù)重金屬污染土壤的綠色環(huán)保技術(shù)。目前研究的修復(fù)材料主要集中在重金屬超積累植物上面,而對(duì)速生林木方面的研究相對(duì)較少,且研究重點(diǎn)主要側(cè)重于對(duì)修復(fù)材料的篩選。一般超積累植物主要集中在草本植物,它們對(duì)重金屬具有吸收和轉(zhuǎn)運(yùn)能力,但其生物量小,生長(zhǎng)緩慢,根系不發(fā)達(dá)等因素限制了在植物修復(fù)中的運(yùn)用。速生林木相比超積累植物,具有生物量大,生長(zhǎng)迅速等特點(diǎn),將其應(yīng)用在植物修復(fù)中可為大面積修復(fù)重金屬污染土壤提供選擇。綜述了速生林木用于重金屬土壤修復(fù)的特點(diǎn),從對(duì)重金屬的脅迫耐性、吸收轉(zhuǎn)運(yùn)、累積分布、強(qiáng)化技術(shù)及修復(fù)材料的回收利用方面進(jìn)行論述,并為今后速生林木修復(fù)土壤重金屬污染提供了新的研究思路。圖1表1參81
土壤生物學(xué);植物修復(fù);重金屬;土壤;速生林木;綜述
近年來(lái),隨著工農(nóng)業(yè)的發(fā)展及人類的活動(dòng),重金屬對(duì)土壤的污染越來(lái)越嚴(yán)重。2014年發(fā)布的《全國(guó)土壤污染狀況調(diào)查公報(bào)》顯示,全國(guó)土壤重金屬總的超標(biāo)率為16.1%。土壤污染防治需要的資金量非常大,“土壤污染防治行動(dòng)計(jì)劃”的發(fā)布預(yù)計(jì)帶動(dòng)5.7萬(wàn)億元投資。針對(duì)中國(guó)及世界上嚴(yán)重的土壤重金屬污染問(wèn)題,有著眾多的研究方法,如物理化學(xué)和生物方法[1]。生物方法又分為動(dòng)物修復(fù)、植物修復(fù)和微生物修復(fù)[2],其中植物修復(fù)是新興的一種綠色環(huán)保的修復(fù)技術(shù)[3]。近年來(lái),在植物修復(fù)過(guò)程中對(duì)于超累積植物的研究比較多[4],而速生林木相對(duì)比較少[5]。速生林木相對(duì)超累積植物,生物量大、生長(zhǎng)迅速,且不與食物鏈相連,但對(duì)重金屬的吸收能力相對(duì)較弱。針對(duì)速生林木的優(yōu)缺點(diǎn),如果在吸收量上得到有效強(qiáng)化,將大大提升植物修復(fù)的效率。因此,展開對(duì)速生林木的強(qiáng)化研究具有重要的研究意義。
目前,在植物修復(fù)方面研究的超累積植物主要是草本植物,如東南景天Sedum alfredii[6-7],龍葵Solanum nigrum[8-9],蜈蚣草Pteris vittata[10]和商陸Phytolacca acinosa[11]等。超累積植物對(duì)重金屬的富集和轉(zhuǎn)運(yùn)能力強(qiáng),但它們的生物量低、植株矮小、生長(zhǎng)緩慢,主根系不發(fā)達(dá)等因素,限制了在植物修復(fù)中的應(yīng)用。
速生林木生物量大、生長(zhǎng)迅速、對(duì)金屬脅迫耐性較強(qiáng),且不與食物鏈相連,能吸收多種重金屬,能夠修復(fù)大面積污染土壤,修復(fù)重金屬后還可以在回收重金屬及建材等多方面的利用,具有一定的經(jīng)濟(jì)效益。能源林及用材林等速生林木是土壤重金屬修復(fù)的主要材料,其中柳樹Salix spp.,楊樹Populus spp.是國(guó)內(nèi)外研究最多的2種林木,且楊樹和柳樹在中國(guó)分布最廣,無(wú)性繁殖率高,稍加管理便能成活[12]。目前,速生林木修復(fù)重金屬污染土壤的研究主要集中在植物對(duì)重金屬的吸收轉(zhuǎn)運(yùn)、累積分布、脅迫抗性和強(qiáng)化修復(fù)這幾方面。
速生林木資源豐富、生長(zhǎng)迅速,尤其在幼年期,如柳樹幼苗在速生期苗高生長(zhǎng)量占總生長(zhǎng)量的60.5%,地徑生長(zhǎng)量占總生長(zhǎng)量的64.0%[12];楊樹經(jīng)過(guò)6 a的生長(zhǎng),地上部生物量達(dá)到112.8 t·hm-2,而干木材蓄積量達(dá)到237.5 m3·hm-2[13]。速生林木不僅可以修復(fù)重金屬,還能吸收其他污染、凈化空氣和水的作用,美化環(huán)境,被廣泛運(yùn)用于園林綠化和植樹造林,資源化利用前景廣闊。
國(guó)外運(yùn)用速生林木修復(fù)重金屬污染土壤起步相對(duì)較早。瑞典在鎘污染的耕地中種植大面積的柳樹來(lái)修復(fù),并將收獲的柳樹作為能源來(lái)利用[14];SLYCKEN等[15]在被冶煉廠所導(dǎo)致的鉛、鋅、鎘等重金屬污染的農(nóng)田土壤中種植柳樹,鎘、鋅的去除能力達(dá)到69 g·hm-2·a-1和1 911 g·hm-2·a-1。在中國(guó),利用速生林木修復(fù)重金屬污染土壤大多還在試驗(yàn)階段。賴發(fā)英等[16]在A和B不同實(shí)驗(yàn)區(qū)的重金屬污染的土壤中種植楊樹,B土壤中的銅、鉛、鋅、鎘含量分別下降了22.15%,19.61%,36.64%,2.03%。李金花等[17]對(duì)受到鉛、鋅、銅、鎘重金屬污染的土壤種植楊樹,其中對(duì)鎘的富集系數(shù)最大,其值達(dá)到16,具有良好的去除鎘的能力。
在植物修復(fù)重金屬污染土壤的過(guò)程中采用的試驗(yàn)方法一般有水培試驗(yàn)、土培試驗(yàn)以及田間試驗(yàn),如表1所示。在水培和土培試驗(yàn)中,研究材料主要是速生林木的種子或幼苗,且研究重點(diǎn)在重金屬脅迫下的生理生化影響,抗性和富集以及快速初步地進(jìn)行篩選植物修復(fù)材料,而田間試驗(yàn)則是進(jìn)一步的驗(yàn)證修復(fù)土壤重金屬材料的篩選。
3.1重金屬對(duì)速生林木種子萌發(fā)及生長(zhǎng)發(fā)育的影響
種子萌發(fā)與植物的受耐性相關(guān),研究重金屬對(duì)速生林木種子萌發(fā)的影響可以在一定程度上反映植物耐重金屬脅迫能力[38]。研究表明:在不同濃度鉛離子(Pb2+)和鎘離子(Cd2+)對(duì)毛竹Phyllostachys edulis種子萌發(fā)和幼苗早期生長(zhǎng)的影響下,隨著 Pb2+和Cd2+濃度的增加,毛竹種子的發(fā)芽率呈現(xiàn)出先升高后降低的趨勢(shì),發(fā)芽指數(shù)、活力指數(shù)均與濃度呈負(fù)相關(guān)關(guān)系[39]。這表明,某些重金屬在低濃度下對(duì)植物有促進(jìn)作用,而高濃度下則抑制。也有研究表明:銀杏Ginkgo biloba種子經(jīng)重金屬處理后,在種子萌發(fā)初期對(duì)銀杏的蛋白質(zhì)代謝和氨基酸代謝有著促進(jìn)作用,但隨著種子萌發(fā)的進(jìn)行,在高濃度重金屬下對(duì)銀杏種子生理代謝產(chǎn)生了抑制效應(yīng)[40]。
重金屬脅迫對(duì)植物生長(zhǎng)發(fā)育也有一定的影響,其生物量的變化反應(yīng)植物對(duì)重金屬的耐性。研究表明:低濃度重金屬對(duì)樟樹Cinnamomum camphora和欒樹Koelreuteria paniculata幼苗生長(zhǎng)沒(méi)有明顯傷害,甚至可以促進(jìn)生長(zhǎng);高濃度重金屬導(dǎo)致幼株長(zhǎng)勢(shì)衰弱,葉片發(fā)黃枯萎,生長(zhǎng)量下降,側(cè)須根生長(zhǎng)受阻,幼苗生長(zhǎng)緩慢,甚至死亡[41],也表現(xiàn)出 “低促高抑”現(xiàn)象。溫瑀等[42]研究表明:隨重金屬處理濃度的增加,小葉丁香Syringa microphylla,紅瑞木Swida alba,遼東水蠟Ligustrum obtusifolium,杞柳Salix integra等4種綠化植物株高和地徑的增加都受到抑制,濃度越高,抑制越明顯。
表1 在不同研究方法及處理水平上對(duì)重金屬污染土壤研究情況Table 1 Research of heavy metal contaminated soil in different research methods and treatment levels
3.2重金屬對(duì)速生林木生理生化的影響
重金屬影響著林木的生理生化特性,對(duì)植物的光合作用、酶活性以及細(xì)胞膜透性產(chǎn)生影響[43-45]。在重金屬鎘的脅迫下,楊樹Populus canescens幼苗表現(xiàn)出一定的毒害癥狀,葉片失綠,甚至出現(xiàn)壞死斑,根生長(zhǎng)受阻,而光合速率、蒸騰速率和氣孔導(dǎo)數(shù)顯著降低[46]。石貴玉等[47]研究泥栽培實(shí)驗(yàn)發(fā)現(xiàn):當(dāng)培養(yǎng)液中鎘濃度為0.6 mmol·L-1時(shí),桐花樹Aegiceras corniculatum和白骨壤Aricennia marina幼苗生長(zhǎng)正常,葉綠素含量和光合速率變化不大。楊衛(wèi)東等[48]通過(guò)水培方法,添加不同濃度鎘對(duì)旱柳Salix matsudana光合作用和內(nèi)肽酶變化活性影響發(fā)現(xiàn):鎘處理降低了總?cè)~綠素、葉綠素a和葉綠素b質(zhì)量分?jǐn)?shù),核酮糖-1,5-二磷酸羧化酶、加氧酶(rubisco)活性隨著介質(zhì)中鎘濃度增加而降低;鎘抑制根和葉磷酸烯醇式丙酮酸羧化酶(PEPC)活性;同對(duì)照相比,根中游離氨基酸質(zhì)量分?jǐn)?shù)沒(méi)有顯著變化;而葉中游離氨基酸質(zhì)量分?jǐn)?shù)增加;不同濃度鎘處理降低根的內(nèi)肽酶活性,高濃度鎘使葉內(nèi)肽酶活力增加。李艷麗等[49]研究表明:隨著重金屬鉛脅迫濃度的增加,旱柳的比葉質(zhì)量、株高與地徑生長(zhǎng)受到抑制,葉綠素質(zhì)量分?jǐn)?shù)及根系活力呈下降的趨勢(shì),葉片游離脯氨酸質(zhì)量分?jǐn)?shù)與細(xì)胞膜透性呈逐漸增加趨勢(shì)。
3.3速生林木耐重金屬脅迫研究
速生林木在重金屬環(huán)境中長(zhǎng)期生長(zhǎng)以及環(huán)境的適應(yīng),對(duì)重金屬產(chǎn)生了一定的耐性[50]。楊衛(wèi)東等[51]研究發(fā)現(xiàn):旱柳葉片中有65%~69%的鎘富集于細(xì)胞壁中;而根中的鎘也集中在細(xì)胞壁,占59%~66%。植物體內(nèi)的一些螯合物質(zhì)在植物對(duì)重金屬的解毒過(guò)程中起到作用,因此,螯合也是植物對(duì)細(xì)胞內(nèi)重金屬解毒的主要方式之一[52]。當(dāng)部分金屬離子穿過(guò)細(xì)胞壁和細(xì)胞膜進(jìn)入細(xì)胞后,能和細(xì)胞質(zhì)中的蛋白質(zhì)、谷膚甘肚、有機(jī)酸等形成復(fù)雜的穩(wěn)定螯合物,它們能使重金屬的毒性降低[53]。ANNEGRET等[54]研究表明:小黑楊Populus trichocarpa×deltoides金屬硫蛋白(MT)基因的表達(dá)增強(qiáng)了對(duì)重金屬的耐性。植物體內(nèi)的酶系統(tǒng)的保護(hù)也能增強(qiáng)植物對(duì)重金屬的抗性。有研究表明[23]:在鉛脅迫質(zhì)量分?jǐn)?shù)不超過(guò)2 000 mg·kg-1時(shí),桐花樹幼苗葉片中的過(guò)氧化物酶和過(guò)氧化氫酶活性高于對(duì)照,且隨鉛質(zhì)量分?jǐn)?shù)的升高而上升,說(shuō)明在一定脅迫濃度下,過(guò)氧化物酶和過(guò)氧化氫酶已被激活,能對(duì)鉛脅迫起防御作用,提高了植物抗鉛的能力。
4.1速生林木對(duì)重金屬的吸收轉(zhuǎn)運(yùn)過(guò)程
速生林木的根系發(fā)達(dá),對(duì)土壤中的重金屬具有強(qiáng)烈的吸收作用[55]。根系也可通過(guò)呼吸釋放二氧化碳與水形成碳酸或向外分泌檸檬酸、蘋果酸等有機(jī)酸來(lái)活化,并進(jìn)一步加以吸收[56-57]。重金屬進(jìn)入根系后,一部分被運(yùn)輸?shù)降厣喜浚亟饘龠M(jìn)入根內(nèi)部運(yùn)輸至導(dǎo)管后隨蒸騰作用運(yùn)輸?shù)降厣喜?。重金屬可通過(guò)質(zhì)外體或共質(zhì)體進(jìn)入根內(nèi)部,質(zhì)外體運(yùn)輸時(shí),當(dāng)達(dá)到內(nèi)皮層時(shí),由于內(nèi)皮層上存在凱氏帶,在運(yùn)輸中被阻擋而不能通過(guò),最終通過(guò)共質(zhì)體向內(nèi)運(yùn)輸至導(dǎo)管[55]。重金屬可通過(guò)木質(zhì)部向上運(yùn)輸,也可以從木質(zhì)部橫向運(yùn)輸?shù)巾g皮部。在饅頭柳Salix matsudana中,鎘從根到地上部的長(zhǎng)距離運(yùn)輸主要通過(guò)韌皮部完成的[58]。
4.2重金屬在植物體內(nèi)的累積及分布
朱宇恩等[59]研究旱柳體內(nèi)銅遷移特征中發(fā)現(xiàn):不同組織富集能力順序?yàn)楦救~>莖,且SEM-EDAX分析發(fā)現(xiàn),根內(nèi)銅主要存在于表皮、中柱及維管束部分,莖內(nèi)銅則主要分布在皮層、韌皮部和木質(zhì)部。董方平等[36]研究發(fā)現(xiàn):銻礦區(qū)構(gòu)樹Broussonetia papyrifera根、枝、莖、葉各器官累積重金屬銻、砷、鉛的順序?yàn)槿~>枝>莖>根,累積鋅的順序?yàn)槿~>枝>根>莖。重金屬銻、鋅、鉛、砷主要富集在構(gòu)樹的葉、枝部。銻礦區(qū)重金屬污染地構(gòu)樹整株累積的銻為155.85 mg·kg-1,鋅為150.12 mg·kg-1,鉛為7.56 mg·kg-1,砷為18.90 mg·kg-1,其中85%的重金屬累積在構(gòu)樹的地上部分,且60%以上累積在構(gòu)樹的葉部。吳海燕等[58]在饅頭柳對(duì)鎘的研究中發(fā)現(xiàn)饅頭柳地上部有非常強(qiáng)的持續(xù)富集能力;地上部富集的鎘占植株吸收總鎘量的52%~62%,且主要集中在葉片。楊樹中金屬含量最低是樹干,最高是衰老葉片,因此,清除落葉是必要的,以防止重金屬對(duì)土壤造成二次污染[60]。
速生林木的生物量大、根系發(fā)達(dá),但吸收能力較弱。速生林木強(qiáng)化技術(shù)主要在螯合劑強(qiáng)化、微生物強(qiáng)化及農(nóng)藝措施強(qiáng)化等方面。通過(guò)強(qiáng)化技術(shù)可提高土壤中重金屬活性或促進(jìn)植物生長(zhǎng)來(lái)增強(qiáng)對(duì)重金屬的吸收累積,具體如圖1所示。
5.1螯合劑強(qiáng)化技術(shù)
在污染土壤中施加乙二胺四乙酸、檸檬酸、蘋果酸等螯合劑,可與土壤中一些重金屬發(fā)生配位反應(yīng),使不溶態(tài)轉(zhuǎn)化為可溶態(tài),提高重金屬在土壤中的生物有效性,從而促進(jìn)植物的吸收。金誠(chéng)等[61]通過(guò)盆栽實(shí)驗(yàn)發(fā)現(xiàn)投加螯合劑顯著提高了土壤中水提態(tài)鉛的含量,且乙二胺四乙酸相比于乙二醇雙(2-氨基乙醚)四乙酸和檸檬酸,更有助于楊樹對(duì)土壤中鉛的吸收和積累,但過(guò)量的乙二胺四乙酸會(huì)對(duì)植物產(chǎn)生一定的毒性,降低其生物量[62]。ZHIVOTOVSKY等[63]觀察柳樹在盆栽試驗(yàn)和田間試驗(yàn)的吸收和轉(zhuǎn)運(yùn)鉛差異中發(fā)現(xiàn)乙二胺四乙酸的使用能使鉛大量地向地上部轉(zhuǎn)移,轉(zhuǎn)移量超過(guò)1 000 mg·kg-1。盡管螯合劑對(duì)重金屬污染土壤修復(fù)具有強(qiáng)化作用,但螯合劑的使用也存在著一定的風(fēng)險(xiǎn),主要表現(xiàn)在淋失與地下水的污染,殘留的螯合物也有可能產(chǎn)生新的污染[64]。因此,使用可生物降解、對(duì)植物無(wú)毒害和對(duì)環(huán)境影響小的螯合劑修復(fù)重金屬污染土壤具有重要的意義。
5.2微生物強(qiáng)化技術(shù)
根際微生物可提高重金屬的生物有效性來(lái)促進(jìn)重金屬在植物中的累積[65]。目前,研究的微生物主要是真菌、細(xì)菌等[66-67]。叢枝菌根(arbuscular mycorrhizal,AM)真菌能與林木形成良好的共生關(guān)系,促進(jìn)植物的生長(zhǎng)和根的活動(dòng),從而提高植物對(duì)重金屬的吸收及修復(fù),同時(shí)也提高對(duì)重金屬的抗性[68]。BOJARCZUK等[69]在研究灰楊Populus×canescens在重金屬銅和鉛污染土壤生長(zhǎng)中,發(fā)現(xiàn)在接種叢枝菌根真菌的灰楊比未接種的灰楊更好地生存在重金屬污染的土壤中,且可有效降低土壤中的重金屬濃度。在重金屬污染條件下,叢枝菌根真菌能與植物形成良好的共生關(guān)系,且叢枝菌根真菌能夠顯著促進(jìn)植物吸收磷,增加植物生物量,同時(shí)改變植物重金屬吸收及分配,減少重金屬的生理毒害[70],也增加了植物體內(nèi)抗氧化酶的活性,提高了對(duì)重金屬的抗性[71-72]。李霞等[73]研究發(fā)現(xiàn),叢枝菌根真菌降低了翅英木Zenia insignis體內(nèi)鐵、銅、鋅和鉛濃度,同時(shí)增加了鐵、銅、鋅和鉛累積量。
5.3農(nóng)藝措施強(qiáng)化技術(shù)
農(nóng)藝措施是強(qiáng)化植物修復(fù)重金屬的基本措施,主要是促進(jìn)植物的生長(zhǎng),提高生物量來(lái)增加對(duì)重金屬的累積,包括施肥、增加二氧化碳濃度和田間管理等。肥料的施加改變了土壤的環(huán)境,為植物提供營(yíng)養(yǎng)物質(zhì),促進(jìn)植物生長(zhǎng)和吸收重金屬的能力。其中,氮是植物體內(nèi)蛋白質(zhì)、酶、葉綠素、維生素等的重要組成元素,氮肥在植物對(duì)重金屬的解毒中起到重要的作用,可以降低重金屬對(duì)植物的毒害作用。ZHANG等[74]通過(guò)盆栽試驗(yàn)對(duì)鎘脅迫下楊樹扦插苗施加氮肥,高濃度鎘處理下施加氮肥不僅增加了植株的生長(zhǎng),并且體內(nèi)的葉綠體結(jié)構(gòu)完整,在重金屬脅迫中起到解毒作用。二氧化碳濃度的升高也增加了植物對(duì)重金屬的抗性,提高植物的生物量,進(jìn)而提高了植物對(duì)重金屬的修復(fù)。有研究表明:在鎘處理下,二氧化碳濃度的增加有效地刺激了楊樹和柳樹生長(zhǎng)。隨著光合作用的增強(qiáng),增加了抗氧化酶活性,提高了楊樹和柳樹對(duì)鎘的抗性[75],并且增加了隔在楊樹和柳樹中的累積[76]。定期地將林木進(jìn)行地上部的短期輪伐及對(duì)落葉的清理可有效地清除重金屬,提高植物的修復(fù)效率[77]。
能源林及用材林等速生林木在修復(fù)重金屬污染后的回收利用具有一定的經(jīng)濟(jì)效益,比如重金屬的回收、植物能源的利用以及建材方面的利用[78]。在重金屬回收和能源利用方面,歐美國(guó)家首先把植物修復(fù)和能源生產(chǎn)結(jié)合起來(lái),達(dá)到一定的生態(tài)和經(jīng)濟(jì)效益。將富集重金屬的林木進(jìn)行焚燒處理,大大減少了約90%以上的質(zhì)量和體積,而焚燒后的底灰可用作農(nóng)田和林地肥料,產(chǎn)生的熱能用于所需要的電能[79]。在建材方面,速生林木被廣泛運(yùn)用于建筑、煤礦、家具等產(chǎn)業(yè)。在一些行業(yè)中,林木會(huì)長(zhǎng)期的暴露在自然環(huán)境中,經(jīng)受風(fēng)吹、日曬、雨淋和蟲蛀而腐蝕。為了防止進(jìn)一步被腐蝕,人們采用防腐劑滲透到林木內(nèi)部達(dá)到防腐、防蟲效果,節(jié)約林木資源。目前市場(chǎng)上防腐劑主要以活性成分二價(jià)銅離子和硼酸鹽類化合物為主[80-81]。含有重金屬的林木如果能運(yùn)用到防腐中,具有積極的應(yīng)用價(jià)值。在中輕度重金屬污染下生長(zhǎng)的林木可用作于生物能源、紙漿及工藝品的生產(chǎn),在使用過(guò)程中必須考慮是否會(huì)對(duì)環(huán)境和人們帶來(lái)影響。針對(duì)速生林木生物量大的優(yōu)點(diǎn),進(jìn)行修復(fù)重金屬材料的資源化利用具有重大的意義。林木資源具有多方面的利用,深入處理的修復(fù)材料可應(yīng)用于能源和建材工程等領(lǐng)域,具有重要的經(jīng)濟(jì)效益和社會(huì)效益。
目前,針對(duì)重金屬污染土壤,在植物修復(fù)方面研究的超累積植物較多,但對(duì)速生林木的研究較少,且對(duì)速生林木的研究大多數(shù)是幼苗在重金屬脅迫下生理生化的影響以及重金屬在體內(nèi)的累積分布,沒(méi)有像超累積植物一樣進(jìn)行深入研究。今后應(yīng)從以下幾個(gè)方面對(duì)速生林木修復(fù)重金屬污染展開研究。①在速生林木對(duì)重金屬的吸收轉(zhuǎn)運(yùn)及耐性機(jī)制方面,重點(diǎn)圍繞重金屬在林木體內(nèi)的耐性/解毒機(jī)制及吸收轉(zhuǎn)運(yùn)機(jī)制,根際微生物的作用機(jī)理對(duì)重金屬的根際吸收及重金屬在木質(zhì)部的轉(zhuǎn)運(yùn)情況進(jìn)行研究,達(dá)到細(xì)胞層次。②在強(qiáng)化修復(fù)土壤重金屬技術(shù)方面,由于速生林木對(duì)重金屬的吸收能力相對(duì)較弱,在其對(duì)重金屬的吸收量上得到一定的強(qiáng)化,提高對(duì)重金屬的吸收及轉(zhuǎn)運(yùn),具有重要的應(yīng)用價(jià)值。在今后的研究中,應(yīng)將螯合劑、微生物和農(nóng)藝措施等強(qiáng)化技術(shù)結(jié)合起來(lái)進(jìn)行重金屬污染土壤修復(fù),并應(yīng)用在大田試驗(yàn)中。③速生林木修復(fù)重金屬后具有很大的生物質(zhì)能,針對(duì)速生林木的特點(diǎn),將速生林木修復(fù)重金屬后的材料進(jìn)行資源化利用,深入地開展修復(fù)材料在應(yīng)用于能源和建材工程領(lǐng)域,以及吸收重金屬后材料防腐、防蟲效果的研究,具有重要的生態(tài)效益和經(jīng)濟(jì)效益。
[1]趙風(fēng)蘭,高原,劉彩玲.土壤重金屬污染及修復(fù)方法研究進(jìn)展[J].環(huán)境科學(xué)與技術(shù),2013,36(12M):232-235. ZHAO Fenglan,GAO Yuan,LIU Cailing.Research progress on soil of heavy metal pollution and remediation method [J].Environ Sci Technol,2013,36(12M):232-235.
[2]李飛宇.土壤重金屬污染的生物修復(fù)技術(shù)[J].環(huán)境科學(xué)與技術(shù),2011,34(12H):148-151. LI Feiyu.Bioremediation in heavy metals contaminated soils[J].Environ Sci Technol,2011,34(12H):148-151.
[3]SALT D E,BLAYLOCK M,KUMAR N P,et al.Phytoremediation:a novel strategy for the removal of toxic metals from the environment using plants[J].Bioltechnolgy,1995,13(5):468-474.
[4]宋想斌,方向京,李貴祥,等.重金屬污染土壤植物聯(lián)合修復(fù)技術(shù)研究進(jìn)展[J].廣東農(nóng)業(yè)科學(xué),2014,41 (24):58-62. SONG Xiangbin,F(xiàn)ANG Xiangjing,LI Guixiang,et al.Research progress of phytoremediation combination technology to remediate heavy metal contaminated soil[J].Guangdong Agric Sci,2014,41(24):58-62.
[5]LIU Xihua,LIN Xianju,XING Jianhong,et al.Advances in application of forest trees as hyperaccumulators of heavy metal[J].J Henan Agric Sci,2011,40(11):13-16.
[6]廉梅花,孫麗娜,胡筱敏,等.土壤pH對(duì)東南景天修復(fù)鎘和鋅污染土壤的影響[J].生態(tài)學(xué)雜志,2014,33 (11):3068-3074. LIAN Meihua,SUN Lina,HU Xiaomin,et al.Effect of soil pH on phytoremediation of Sedum alfredii Hance in Cd and Zn contaminated soil[J].Chin J Ecol,2014,33(11):3068-3074.
[7]ZHANG Xincheng,LIN Li,CHEN Mingyue,et al.A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance[J].J Hazard Mater,2012,229/230(3):361-370.
[8]殷永超,吉普輝,宋雪英,等.龍葵(Solanum nigrum L.)野外場(chǎng)地規(guī)模Cd污染土壤修復(fù)試驗(yàn)[J].生態(tài)學(xué)雜志,2014,33(11):3060-3067. YIN Yongchao,JI Puhui,SONG Xueying,et al.Field experiment on phytoremediation of cadmium contaminated soils using Solanum nigrum L.[J].Chin J Ecol,2014,33(11):3060-3067.
[9]LIU Hui,YUAN Ming,TAN Shiyun,et al.Enhancement of arbuscular mycorrhizal fungus(Glomus versiforme)on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum[J].Appl Soil Ecol,2015,89:44-49.
[10]朱啟紅,夏紅霞.蜈蚣草對(duì)Pb,Zn復(fù)合污染的響應(yīng)[J].環(huán)境化學(xué),2012,31(7):1029-1035. ZHU Qihong,XIA Hongxia.Study on response of Pteris vittata to Pb and Zn combined pollution[J].Environ Chem,2012,31(7):1029-1035.
[11]黃五星,高境清,黃宇,等.商陸對(duì)鎘鋅銅脅迫的生理響應(yīng)與金屬積累特性[J].環(huán)境科學(xué)與技術(shù),2010,33 (1):77-79. HUANG Wuxing,GAO Jingqing,HUANG Yu,et al.Bioaccumulation and physiological response to cadmium,zinc and copper stress in Phytolacca acinosa[J].Environ Sci Technol,2010,33(1):77-79.
[12]沈惠娟.國(guó)外主要速生樹種快速繁殖的進(jìn)展[J].世界林業(yè)研究,1996(1):21-27. SHEN Huijuan.Progress of rapid propagation of fast-growing woody species at abroad[J].World For Res,1996(1):21-27.
[13]FORTIER J,GAGNON D,TRUAX B,et al.Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips[J].Biom Bioen,2010,34(7):1028-1040.
[14]BERNDES G,F(xiàn)REDTIKSON F,B?RJESSON P.Cadmium accumulation and Salix-based phytoextraction on arable land in Sweeden[J].Agric Ecosyst Environ,2004,103(1):207-223.
[15]SLYCKEN S V,WITTERS N,MEIRESONNE L,et al.Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils[J].Int J Phytorem,2013,15(7):677-689.
[16]賴發(fā)英,賴明,曾小欽,等.立體式植物修復(fù)受重金屬污染農(nóng)田土壤的探討[J].環(huán)境污染與防治,2005,27 (5):382-384,319. LAI Faying,LAI Ming,ZENG Xiaoqin,et al.Three-dimensional solid phytoremediation of heavy-metal polluted soil [J].Environ Poll Control,2005,27(5):382-384,319.
[17]李金花,何燕,段建平,等.107楊對(duì)土壤重金屬的吸收和富集[J].林業(yè)科學(xué)研究,2012,25(1):65-70. LI Jinhua,HE Yan,DUAN Jianping,et al.Absorption and accumulation of heavy metal from soil by leaves of Populus×euramericana‘Neva’plantation[J].For Res,2012,25(1):65-70.
[18]高建欣,張文輝,王校鋒.Cd2+處理對(duì)5個(gè)柳樹無(wú)性系氣體交換參數(shù)及葉綠素?zé)晒鈪?shù)的影響[J].西北植物學(xué)報(bào),2013,33(9):1874-1884. GAO Jianxin,ZHANG Wenhui,WANG Xiaofeng.Effects Cd2+stresst on photosynthetic and fluorescent parameters of five willow clones[J].Acta Bot Boreal-Occident Sin,2013,33(9):1874-1884.
[19]王樹鳳,施翔,孫海菁,等.鎘脅迫下杞柳對(duì)金屬元素的吸收及其根系形態(tài)構(gòu)型特征[J].生態(tài)學(xué)報(bào),2013,33(19):6065-6073. WANG Shufeng,SHI Xiang,SUN Haijing,et al.Metal uptake and root morphological changes for two varieties of Salix integra under cadmium stress[J].Acta Ecol Sin,2013,33(19):6065-6073.
[20]孫曉燦,魏虹,謝小紅,等.水培條件下秋華柳對(duì)重金屬Cd的富集特性及光合響應(yīng)[J].環(huán)境科學(xué)研究,2012,25(2):220-225. SUN Xiaocan,WEI Hong,XIE Xiaohong,et al.Bioaccumulation and photosynthesis response of Salix variegate to cadmium under hydroponic culture[J].Res Environ Sci,2012,25(2):220-225.
[21]YANG Weidong,ZHAO Fengliang,ZHANG Xincheng,et al.Variations of cadmium tolerance and accumulation among 39 Salix clones:implications for phytoextraction[J].Environ Earth Sci,2015,73(7):3263-3274.
[22]POLLE A,KLEIN T,KETTNER C.Impact of cadmium on young plants of Populus euphratica and P.×canescens,two poplar species that differ in stress tolerance[J].New For,2011,44(1):13-22.
[23]蔡建秀,王慧云,王春風(fēng).鉛脅迫對(duì)桐花樹幼苗根葉蛋白質(zhì)及根抗氧化酶活性的影響[J].安徽農(nóng)業(yè)科學(xué),2010,38(6):2903-2905. CAI Jianxiu,WANG Huiyun,WANG Chunfeng.The effects of Pb stress on roots and leaves protein and root antioxidant enzyme activity of Aegiceras corniculatum seedlings[J].J Anhui Agric Sci,2010,38(6):2903-2905.
[24]趙素貞,洪華龍,嚴(yán)重玲.鈣對(duì)鎘脅迫下秋茄葉片光合作用及超微結(jié)構(gòu)的影響[J].廈門大學(xué)學(xué)報(bào):自然科學(xué)版,2014,53(6):875-882. ZHAO Suzhen,HONG Hualong,YAN Chongling.Effect of calcium supply on photosynthesis and ultrastructure of cell of Kandelia obovata(S.L.)Yong under cadmium stress[J].J Xiamen Univ Nat Sci,2014,53(6):875-882.
[25]劉旭輝,李月蘭,李秋明,等.鋅和鎘脅迫下的桑樹幼苗盆栽試驗(yàn)[J].江蘇農(nóng)業(yè)科學(xué),2012,40(4):335-339. LIU Xuhui,LI Yuelan,LI Qiuming,et al.Pot experiment of mulberry seedlings under zinc and cadmium stress[J]. Jiangsu Agric Sci,2012,40(4):335-339.
[26]LIU Dan,CHEN Junren,MAHMOOD Q,et al.Effect of Zn toxicity on root morphology,ultrastructure,and the ability to accumulate Zn in moso bamboo(Phyllostachys pubescens)[J].Environ Sci Poll Res,2014,21(23):13615-13624.
[27]汪慶兵,陳光才,房娟,等.速生柳樹苗對(duì)土壤鉛的耐性、積累與分配特性研究[J].植物研究,2014,34 (5):626-633. WANG Qingbing,CHEN Guangcai,F(xiàn)ANG Juan,et al.Characteristics of soil lead tolerance,accumulation and distribution in Salix babylonica Linn.and Salix jiangsuensis J172[J].Bull Bot Res,2014,34(5):626-633.
[28]王校鋒,張文輝,崔豫川.瑞典能源柳4個(gè)無(wú)性系對(duì)土壤Hg2+脅迫的生理響應(yīng) [J].西北植物學(xué)報(bào),2013,33 (3):555-563. WANG Xiaofeng,ZHANG Wenhui,CUI Yuchuan.Physiological response of four energy willow clones to soil Hg2+stress[J].Acta Bot Boreal-Occident Sin,2013,33(3):555-563.
[29]張春燕,王瑞剛,范稚蓮,等.楊樹和柳樹富集Cd,Zn,Pb的品種差異性[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32 (3):530-538. ZHANG Chunyan,WANG Ruigang,F(xiàn)AN Zhilian,et al.Difference in cadmium,zinc and lead accumulation of poplar and willow species[J].J Agro-Environ Sci,2013,32(3):530-538.
[30]JAKDVLJEVIC T,REDOVNIKOVIC I R,CVJETKO M,et al.The potential of poplar(Populus nigra var.italica)in the phytoremediation of cadmium[J].Sumarski List,2015,139(5):223-232.
[31]陳良華,徐睿,楊萬(wàn)勤,等.鎘污染條件下香樟和油樟對(duì)鎘的吸收能力和耐性差異[J].生態(tài)環(huán)境學(xué)報(bào),2015,24(2):316-322. CHEN Lianghua,XU Rui,YANG Wanqin,et al.Interspecific differences between Cinnamomum camphora and C. longepaniculatum in Cd absorption and tolerance under two levels of Cd pollution[J].Ecol Environ Sci,2015,24 (2):316-322.
[32]王錦文,白秀,陳錦峰,等.復(fù)合重金屬Pb,Zn對(duì)香樟生理特征的影響[J].安徽農(nóng)業(yè)科學(xué),2009,37(21):10253-10254. WANG Jinwen,BAI Xiu,CHEN Jinfeng,et al.Effect of complex heavy metals Pb/Zn on the physiological characteristics of Cinnamomum camphora[J].J Anhui Agric Sci,2009,37(21):10253-10254.
[33]秦芳,胥曉,劉剛,等.桑樹(Morus alba)幼苗對(duì)鉛污染的生理耐性和積累能力的性別差異[J].環(huán)境科學(xué)學(xué)報(bào),2014,34(10):2615-2623. QIN Fang,XU Xiao,LIU Gang,et al.Sexual differences in physiological tolerance and accumulation capacity against lead pollution in Morus alba seedlings[J].Acta Sci Circumst,2014,34(10):2615-2623.
[34]田勝尼,張靜,孫慶業(yè),等.銅尾礦自然定居腺柳對(duì)重金屬吸收及分布的研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(9):1771-1777. TIAN Shengni,ZHANG Jing,SUN Qingye,et al.Heavy metals absorption and distribution by Salix chaenomeloides settled naturally on the copper tailings[J].J Agro-Environ Sci,2013,32(9):1771-1777.
[35]王新,賈永鋒.楊樹、落葉松對(duì)土壤重金屬的吸收及修復(fù)研究[J].生態(tài)環(huán)境,2007,16(2):432-436. WANG Xin,JIA Yongfeng.Study on absorption and remediation by poplar and larch in the soil contaminated with heavy metals[J].Ecol Environ,2007,16(2):432-436.
[36]童方平,龍應(yīng)忠,楊勿享,等.銻礦區(qū)構(gòu)樹富集重金屬的特性研究[J].中國(guó)農(nóng)學(xué)通報(bào),2010,26(14):328-331. TONG Fangping,LONG Yingzhong,YANG Wuxiang,et al.Study on the characteristics of heavy metal accumulation in Broussonetia papyrifera in an antimony mine[J].Chin Agric Sci Bull,2010,26(14):328-331.
[37]張興,王冶,揭雨成,等.桑樹對(duì)礦區(qū)土壤中重金屬的原位去除效應(yīng)研究[J].中國(guó)農(nóng)學(xué)通報(bào),2012,28(7):59-63. ZHANG Xing,WANG Ye,JIE Yucheng,et al.Effect of heavy metal home position elimination on the mulberry in mining area soil[J].Chin Agric Sci Bull,2012,28(7):59-63.
[38]陳俊任,柳丹,吳家森,等.重金屬脅迫對(duì)毛竹種子萌發(fā)及其富集效應(yīng)的影響[J].生態(tài)學(xué)報(bào),2014,34 (22):6501-6509. CHEN Junren,LIU Dan,WU Jiasen,et al.Seed germination and metal accumulation of moso bamboo(Phyllostachys pubescens)under heavy metal exposure[J].Acta Ecol Sin,2014,34(22):6501-6509.
[39]張大鵬,蔡春菊,范少輝,等.重金屬Pb2+和Cd2+對(duì)毛竹種子萌發(fā)及幼苗早期生長(zhǎng)的影響[J].林業(yè)科學(xué)研究,2012,25(4):500-504. ZHANG Dapeug,CAI Chunju,F(xiàn)AN Shaohui,et al.Effects of Pb2+,Cd2+on germination and seedling early growth of moso bamboo(Phyllostachys edulis)seed[J].For Res,2012,25(4):500-504.
[40]朱宇林,曹福亮,汪貴斌,等.Cd,Pb處理對(duì)銀杏種子萌發(fā)的影響[J].種子,2006,25(3):35-37. ZHU Yulin,CAO Fuliang,WANG Guibin,et al.Effects of cadmium and lead treatment on the germination of Ginkgo biloba seeds[J].Seed,2006,25(3):35-37.
[41]王利寶,朱寧華,鄂建華.Pb,Zn等重金屬對(duì)樟樹、欒樹幼苗生長(zhǎng)的影響[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2010,30(2):44-47. WANG Libao,ZHU Ninghua,E Jianhua.Effects of heavy matels lead,zinc and copper on young seedling growth of Cinnamomum camphora and Koelreuteria paniculata[J].J Cent South Univ For Technol,2010,30(2):44-47.
[42]溫瑀,穆立薔.土壤鉛、鎘脅迫對(duì)4種綠化植物生長(zhǎng)、生理及積累特性的影響[J].水土保持學(xué)報(bào),2013,27 (5):234-239. WEN Yu,MU Liqiang.Effects of soil Pb,Cd stress on the growth,physiological and accumulating characteristics of four ornamental trees[J].J Soil Water Conserv,2013,27(5):234-239.
[43]高建欣,張文輝,王校鋒.Cd2+處理對(duì)5個(gè)柳樹無(wú)性系氣體交換參數(shù)及葉綠素?zé)晒鈪?shù)的影響[J].西北植物學(xué)報(bào),2013,33(9):1874-1884. GAO Jianxin,ZHANG Wenhui,WANG Xiaofeng.Effects of Cd2+stress on photosynthetic and fluorescent parameters of five willow clones[J].Acta Bot Boreal-Occident Sin,2013,33(9):1874-1884.
[44]楊斌,張文輝,高建欣.5種速生柳無(wú)性系對(duì)Pb2+脅迫的生理抗性比較[J].西北植物學(xué)報(bào),2015,35(6):1182-1189. YANG Bin,ZHANG Wenhui,GAO Jianxin.Physiological resistance of five fast-growing willow clones to lead(Pb)stress[J].Acta Bot Boreal-Occident Sin,2015,35(6):1182-1189.
[45]楊衛(wèi)東,陳益泰.鎘脅迫對(duì)旱柳細(xì)胞膜透性和抗氧化酶活性的影響[J].西北植物學(xué)報(bào),2008,28(11):2263 -2269. YANG Weidong,CHEN Yitai.Membrane leakage and antioxidant enzyme activities in roots and leaves of Salix matsudana with cadmium stress[J].Acta Bot Boreal-Occident Sin,2008,28(11):2263-2269.
[46]張瑩,魏安智,楊途熙,等.鋅脅迫對(duì)灰楊幼苗生長(zhǎng)和光合特性的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2011,39 (3):19-21. ZHANG Ying,WEI Anzhi,YANG Tuxi,et al.Effect of zinc stress on growth and photosynthetic characteristics of Populus canescens[J].J Northeast For Univ,2011,39(3):19-21.
[47]石貴玉,康浩,段文芳.重金屬鎘對(duì)紅樹植物白骨壤和桐花樹幼苗生理特性的影響[J].廣西植物,2009,29 (5):644-647. SHI Guiyu,KANG Hao,DUAN Wenfang.Effect of cadmium on physiological characteristics of mangrove Avicennia marina and Aegiceras corniculatum seedlings[J].Guihaia,2009,29(5):644-647.
[48]楊衛(wèi)東,陳益泰,王樹鳳.鎘脅迫對(duì)旱柳光合作用和內(nèi)肽酶變化的影響[J].植物研究,2009,29(4):428-432. YANG Weidong,CHEN Yitai,WANG Shufeng.Influences of cadmium stress on photosynthesis and endopeptidase activities in Salix matsudana[J].Bull Bot Res,2009,29(4):428-432.
[49]李艷麗,李永杰.土壤鉛脅迫對(duì)旱柳生長(zhǎng)及相關(guān)生理特性的影響[J].北方園藝,2011(13):168-170. LI Yanli,LI Yongjie.Effect of lead stress on the growth and some physiological characteristics in Salix matsudana seedling[J].Northern Hortic,2011(13):168-170.
[50]KATAYAMA H,BANBA N,SUGIMURA Y,et al.Subcellular compartmentation of strontium and zinc in mulberry idioblasts in relation to phytoremediation potential[J].Environ Exp Bot,2013,85(1):30-35.
[51]楊衛(wèi)東,陳益泰,屈明華.鎘在旱柳中亞細(xì)胞分布及存在的化學(xué)形態(tài)[J].西北植物學(xué)報(bào),2009,29(7):1394 -1399. YANG Weidong,CHEN Yitai,QU Minghua.Subcellular distribution and chemical forms of cadmium in Salix matsudana[J].Acta Bot Boreal-Occident Sin,2009,29(7):1394-1399.
[52]鄔飛波,張國(guó)平.植物螯合肽及其在重金屬耐性中的作用[J].應(yīng)用生態(tài)學(xué)報(bào),2003,14(4):632-636. WU Feibo,ZHANG Guoping.Phytochelatin and its function in heavy metal tolerance of higer plants[J].Chin J Appl Ecol,2003,14(4):632-636.
[53]BACCIO D D,KOPRIVA S,SEBASTIANI L,et al.Does glutathione metabolism have a role in the defence of poplar against zinc excess?[J].New Phytol,2005,167(1):73-80.
[54]KOHLER A,BLAUDEZ D,CHALOT M,et al.Cloning and expression of multiple metallothioneins from hybrid poplar[J].New Phytol,2004,164(1):83-93.
[55]李合生.現(xiàn)代植物生理學(xué)[M].北京:高等教育出版社,2012.
[56]劉子雄,朱天輝,張建.林木根系分泌物與根際微生物研究進(jìn)展[J].世界林業(yè)研究,2005,18(6):25-31. LIU Zixiong,ZHU Tianhui,ZHANG Jian.Research advances in root exudates and rhizosphere microorganisms of forest trees[J].World For Res,2005,18(6):25-31.
[57]張豆豆,梁新華,王俊.植物根系分泌物研究綜述[J].中國(guó)農(nóng)學(xué)通報(bào),2014,30(35):314-320. ZHANG Doudou,LIANG Xinhua,WANG Jun.A review of plant root exudates[J].Chin Agric Sci Bull,2014,30 (35):314-320.
[58]吳海燕,臺(tái)培東,李培軍,等.饅頭柳對(duì)鎘的耐性、運(yùn)輸途徑和累積特征[J].生態(tài)學(xué)雜志,2011,30(6):1222-1228. WU Haiyan,TAI Peidong,LI Peijun,et al.Cadmium tolerance of and cadmium transportation and accumulation in Salix matsudana[J].Chin J Ecol,2011,30(6):1222-1228.
[59]朱宇恩,趙燁,徐東昱,等.旱柳(Salix matsudana Koidz)體內(nèi)Cu遷移特征的水培模擬研究[J].環(huán)境科學(xué)學(xué)報(bào),2011,31(12):2740-2747. ZHU Yuen,ZHAO Ye,XU Dongyu,et al.Investigation on the characteristics of copper migration in different tissues of Salix matsudana Koidz based on hydroponic experiment[J].Acta Sci Circumst,2011,31(12):2740-2747.
[60]LAUREYSENS I,BLUST R,de TEMMERMAN L,et al.Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture(I)seasonal variation in leaf,wood and bark concentrations[J].Environ Poll,2004,131(3):485-494.
[61]金誠(chéng),南忠仁,胡亞虎,等.螯合劑強(qiáng)化下新疆楊對(duì)干旱區(qū)Pb污染農(nóng)田土壤的修復(fù)[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2012,31(12):2340-2344. JIN Cheng,NAN Zhongren,HU Yahu,et al.Chelator-enhanced phytoremediation of Pb from contaminated arable soil in arid region by Populus bolleana Lauch[J].J Agro-Environ Sci,2012,31(12):2340-2344.
[62]CHATURVEDI N,DHAL N K,PATRA H K.EDTA and citric acid-mediated phytoextraction of heavy metals from iron ore tailings using Andrographis paniculata:a comparative study[J].Int J Min Reclam Environ,2014,29(1):33 -46.
[63]ZHIVOTOVSKY O P,KUZOVKINA Y A,SCHULTHESS C P,et al.Lead uptake and translocation by willows in pot and field experiments[J].Int J Phytoremed,2011,13(8):731-749.
[64]丁竹紅,胡忻,尹大強(qiáng).螯合劑在重金屬污染土壤修復(fù)中應(yīng)用研究進(jìn)展[J].生態(tài)環(huán)境學(xué)報(bào),2009,18(2):777-782. DING Zhuhong,HU Xin,YIN Daqiang.Application of chelants in remediation of heavy metals-contaminated soil [J].Ecol Environ Sci,2009,18(2):777-782.
[65]王海鷗,徐海洋,鐘廣蓉,等.根際微生物對(duì)植物修復(fù)重金屬污染土壤作用的研究進(jìn)展[J].安徽農(nóng)業(yè)科學(xué),2009,37(30):14832-14834. WANG Haiou,XU Haiyang,ZHONG Guangrong,et al.Progress in effect of rhizosphere microbeson phytoremediation of soil pollutedby heavy metal[J].J Anhui Agric Sci,2009,37(30):14832-14834.
[66]ZHU Donglin,OUYANG Liming,XU Zhaohui,et al.Rhizobacteria of Populus euphratica promoting plant growth against heavy metals[J].Int J Phytoremed,2015,17(10):973-980.
[67]廖妤婕,談?dòng)?,付旺,?叢枝菌根真菌作用下桉樹對(duì)鉛的耐受機(jī)制研究[J].基因組學(xué)與應(yīng)用生物學(xué),2014,33(3):633-639. LIAO Yujie,TAN Yu,F(xiàn)U Wang,et al.Study on the Pb-tolerance mechanism of Eucalyptus under the role of Arbuscular mycorrhizal fungi[J].Gen Appl Biol,2014,33(3):633-639.
[68]YANG Yurong,LIANG Yan,GHOSH A,et al.Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area:potential applications for phytoremediation[J]. Environ Sci Poll Res,2015,22(17):13179-13193.
[69]BOJARCZUK K,KARLINSKI L,HAZUBSKA-PRZYBYL T,et al.Influence of mycorrhizal inoculation on growth of micropropagated Populus×canescens lines in metal-contaminated soils[J].New For,2015,46(2):195-215.
[70]黃藝,李婷,姜學(xué)艷.鋅對(duì)外生菌根植物蘇格蘭松幼苗鋅積累和光合作用的影響[J].環(huán)境科學(xué)學(xué)報(bào),2004,24(3):508-514. HUANG Yi,LI Ting,JIANG Xueyan.Effects of Zn on Zn accumulation and photosynthesis of ectomycorrhizal Pinus sylvestris seedlings[J].Acta Sci Circumst,2004,24(3):508-514.
[71]FERREIRA P A A,CERETTA C A,SORIANI H H,et al.Rhizophagus clarus and phosphate alter the physiological responses of Crotalaria juncea cultivated in soil with a high Cu level[J].Appl Soil Ecol,2015,91:37-47.
[72]謝翔宇,翁鉑森,趙素貞,等.Cd脅迫下接種叢枝菌根真菌對(duì)秋茄幼苗生長(zhǎng)與抗氧化酶系統(tǒng)的影響[J].廈門大學(xué)學(xué)報(bào):自然科學(xué)版,2013,52(2):244-253. XIE Xiangyu,WEND Bosen,ZHAO Suzhen,et al.Effects of arbuscular mycorrhizal inoculation and Cd stress on the growth and antioxidant enzyme system of Kandelia obovata[J].J Xiamen Univ Nat Sci,2013,52(2):244-253.
[73]李霞,彭霞薇,伍松林,等.叢枝菌根對(duì)翅莢木生長(zhǎng)及吸收累積重金屬的影響[J].環(huán)境科學(xué),2014,35(8):3142-3148. LI Xia,PENG Xiawei,WU Songlin,et al.Effect of arbuscular mycorrhizae on growth,heavy metal uptake and accumulation of Zenia insignis Chun seedlings[J].Environ Sci,2014,35(8):3142-3148.
[74]ZHANG Fan,WAN Xueqin,ZHONG Yu.Nitrogen as an important detoxification factor to cadmium stress in poplar plants[J].J Plant Interact,2014,9(1):249-258.
[75]GUO Baohua,DAI Songxiang,WANG Ruigang,et al.Combined effects of elevated CO2and Cd-contaminated soil on the growth,gas exchange,antioxidant defense,and Cd accumulation of poplars and willows[J].Environ Exp Bot,2015,115:1-10.
[76]WANG Ruigang,DAI Songxiang,TANG Shirong,et al.Growth,gas exchange,root morphology and cadmium uptake responses of poplars and willows grown on cadmium-contaminated soil to elevated CO2[J].Environ Earth Sci,2012,67(1):1-13.
[77]劉艷麗,吳鳳霞,徐瑩,等.楊樹修復(fù)重金屬污染土壤的研究進(jìn)展[J].林業(yè)科學(xué),2012,48(9):139-144. LIU Yanli,WU Fengxia,XU Ying,et al.Research progress in the remediation of heavy metal contaminated soils with populus[J].Sci Silv Sin,2012,48(9):139-144.
[78]LICHT L A,ISEBRANDS J G.Linking phytoremediated pollutant removal to biomass economic opportunities[J]. Biom Bioen,2005,28(2):203-218.
[79]DELPLANQUE M,COLLET S,GRATTA F D,et al.Combustion of Salix used for phytoextraction:the fate of metals and viability of the processes[J].Biom Bioen,2013,49(2):160-170.
[80]施振華.大力發(fā)展木材防腐,節(jié)約木材[J].木材工業(yè),2001,15(4):6-8. SHI Zhenhua.Developing wood preservation with great strength for the economical use of wood[J].China Wood Ind,2001,15(4):6-8.
[81]蔣明銜,陳奶榮,林巧佳.木材防腐的研究進(jìn)展[J].福建林業(yè)科技,2013,40(1):207-213. JIANG Mingxian,CHEN Nairong,LIN Qiaojia.Research progress in preservative-treated wood[J].J Fujian For Sci Technol,2013,40(1):207-213.
Research progress of heavy metal phytoremediation technology of fast-growing forest trees in soil
ZHONG Bin,CHEN Junren,PENG Danli,LIU Chen,GUO Hua,WU Jiasen,YE Zhengqian,LIU Dan
(Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province,Zhejiang A&F University,Lin’an 311300,Zhejiang,China)
Phytoremediation is a green and environmental technology used for heavy metal contaminated soil remediation which is commonly used in the world currently.However,the research materials are mainly concentrated on hyperaccumulating plants especially for the screening of remediation species,and less research focus on the fast-growing trees.Hyperaccumulators mainly concentrated in herbaceous plants and had strong ability of absorption and transport of heavy metals because of their ability,but due to the reason of smaller size,low biomass,slow growth rate and undeveloped root the application was limited.Compared with the hyperaccumulators,the fast-growing trees have the advantages of high biomass and rapid growth,etc.The application of fast-growing trees in phytoremediation provides a choice for remediation of heavy metal contaminated soil of large area.This paper reviews the characteristics of fast-growing trees used for heavy metal contaminated soil remediation.At the same times,the tolerance,absorption,transportation,accumulation,distribution,strengthening technology and recycling of fast-growing trees as a remediation materials are also discussed in this paper,which could provides a new research viewpoint in the future.[Ch,1 fig.1 tab.81 ref.]
soil biology;phytoremediation;heavy metal;soil;fast-growing forest trees;review
S718.51;S154.4
A
2095-0756(2016)05-0899-11
10.11833/j.issn.2095-0756.2016.05.024
2015-11-28;
2016-01-31
浙江省科學(xué)技術(shù)公益項(xiàng)目(2014C33043);浙江省新苗人才計(jì)劃項(xiàng)目(2015R412033)
鐘斌,從事土壤污染修復(fù)研究。E-mail:995378606@qq.com。通信作者:柳丹,教授,博士,從事土壤污染修復(fù)研究。E-mail:liudan7812@aliyun.com
浙 江 農(nóng) 林 大 學(xué) 學(xué) 報(bào),2016,33(5):899-909
Journal of Zhejiang A&F University