才華,宋婷婷,張大洋
(東北農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,哈爾濱 150030)
rd29A和CaMV-35S啟動(dòng)子調(diào)控轉(zhuǎn)AtDREB2A苜蓿耐堿性分析
才華,宋婷婷,張大洋
(東北農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,哈爾濱150030)
rd29A和CaMV-35S啟動(dòng)子廣泛應(yīng)用于植物基因工程中,但調(diào)控效果在不同轉(zhuǎn)基因植物中不同。文章采用Real-time PCR分析轉(zhuǎn)基因各株系中AtDREB2A基因表達(dá)差異;對(duì)苜蓿扦插苗及一年生轉(zhuǎn)基因苜蓿成苗分別作50 mmol·L-1NaHCO3(pH 8.0)和混合鹽堿土(pH 9.3)處理,統(tǒng)計(jì)苜蓿各株系成活率、開花植株數(shù),測(cè)定葉綠素、丙二醛、相對(duì)電導(dǎo)率及根系活力。結(jié)果表明,兩種啟動(dòng)子對(duì)AtDREB2A表達(dá)的調(diào)控存在明顯差異,35S啟動(dòng)子調(diào)控的AtDREB2A為超量表達(dá),堿脅迫處理后顯著上調(diào),達(dá)57.6倍;rd29A啟動(dòng)子調(diào)控AtDREB2A誘導(dǎo)表達(dá),表達(dá)量低于35S啟動(dòng)子調(diào)控株系(20.7倍),AtDREB2A超量表達(dá)抑制植株正常生長(zhǎng)。在幼苗期和成苗期,兩種啟動(dòng)子各轉(zhuǎn)基因株系均有一定耐堿能力,但存在差異。AtDREB2A誘導(dǎo)表達(dá)耐堿性效果更明顯,其葉綠素含量、相對(duì)電導(dǎo)率、MDA、根系活力變化均顯著低于AtDREB2A超量表達(dá)。研究?jī)煞N啟動(dòng)子調(diào)控的轉(zhuǎn)AtDREB2A基因苜蓿耐堿效果,為AtDREB2A基因在苜蓿耐堿基因工程中應(yīng)用提供方法。
苜蓿;AtDREB2A;rd29A啟動(dòng)子;耐堿性;轉(zhuǎn)基因
才華,宋婷婷,張大洋.rd29A和CaMV-35S啟動(dòng)子調(diào)控轉(zhuǎn)AtDREB2A苜蓿耐堿性分析[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,47(9):16-23.
Cai Hua,Song Tingting,Zhang Dayang.Alkaline tolerance analysis of transgenic alfalfa withAtDREB2Agene regulated by rd29A or(CaMV)35S promoter[J].Journal of Northeast Agricultural University,2016,47(9):16-23.(in Chinese with English abstract)
黑龍江省是苜蓿主產(chǎn)區(qū)和重要的畜牧業(yè)基地。然而,黑龍江省鹽堿土占總面積的11.99%,主要分布在大慶地區(qū),嚴(yán)重制約苜蓿種植面積擴(kuò)大,影響畜牧業(yè)長(zhǎng)足發(fā)展[1]。如能在該地區(qū)培育出耐鹽堿轉(zhuǎn)基因苜蓿,可滿足苜蓿干草數(shù)量和質(zhì)量需求,減少優(yōu)質(zhì)苜蓿進(jìn)口量,促進(jìn)畜牧業(yè)發(fā)展。
近年來,隨著分子生物學(xué)和苜蓿轉(zhuǎn)基因技術(shù)成熟[2-4],為苜蓿耐鹽堿分子育種研究提供重要手段。Tang等通過在苜蓿中過量表達(dá)WRKY20轉(zhuǎn)錄因子基因,發(fā)現(xiàn)轉(zhuǎn)基因苜蓿對(duì)干旱、高鹽抵御能力增強(qiáng)[5]。Bao等將擬南芥的液泡氫離子焦磷酸酶基因轉(zhuǎn)入苜蓿中,發(fā)現(xiàn)轉(zhuǎn)基因苜蓿對(duì)干旱和鹽分脅迫抗性增加[6]。
DREB(Dehydration responsive element binding protein)轉(zhuǎn)錄因子是目前非生物脅迫分子生物學(xué)研究熱點(diǎn)。以多種植物為材料,在基因分離[7]、結(jié)構(gòu)分析[8-9]、功能鑒定[10-12]等方面開展大量研究,結(jié)果表明,DREB轉(zhuǎn)錄因子在植物對(duì)非生物脅迫反應(yīng)中具有調(diào)控作用[13-15],在牧草非生物脅迫基因工程應(yīng)用研究中起重要作用[16-18]。
啟動(dòng)子是調(diào)控基因表達(dá)的關(guān)鍵元件,盡管CaMV-35S啟動(dòng)子是基因工程中使用最多的啟動(dòng)子,但其非特異性表達(dá)不僅造成植物能量過度消耗,還可能誘發(fā)外源基因沉默,影響轉(zhuǎn)基因植株正常生長(zhǎng)發(fā)育。擬南芥rd29A啟動(dòng)子是一個(gè)受干旱、低溫、鹽誘導(dǎo)表達(dá)的啟動(dòng)子,含有干旱、高鹽、低溫、ABA誘導(dǎo)表達(dá)等相關(guān)的順式作用元件(TACCGACAT)[19-20],利用脅迫誘導(dǎo)啟動(dòng)子rd29A代替組成型強(qiáng)啟動(dòng)子,不僅增強(qiáng)植株脅迫耐受力且對(duì)其生長(zhǎng)的負(fù)面影響最小,因此,已廣泛應(yīng)用于抗逆基因工程[21]。文益東等研究發(fā)現(xiàn),AtDREB2A的超量表達(dá)提高苜蓿幼苗耐堿能力,但持續(xù)堿脅迫,轉(zhuǎn)基因苜蓿耐堿性并不理想[18]。本研究通過分析由不同啟動(dòng)子rd29A、CaMV-35S調(diào)控的AtDREB2A轉(zhuǎn)基因苜蓿耐堿性,獲得應(yīng)用價(jià)值較高的耐堿性轉(zhuǎn)基因苜蓿,為AtDREB2A在苜蓿耐堿基因工程中的應(yīng)用提供有效方法。
1.1材料
rd29A和35S啟動(dòng)子調(diào)控的轉(zhuǎn)AtDREB2A苜蓿株系To代植株由前期研究獲得[22],轉(zhuǎn)基因植株所用植物表達(dá)載體骨架為pBI121,篩選標(biāo)記基因?yàn)閚pt-II,啟動(dòng)子為CaMV-35S。轉(zhuǎn)基因To代5次擴(kuò)繁株系名稱分別為rd29A-DREB2A(rd-D-1/rd-D-2/rd-D-3)、35S-DREB2A(35S-D-1/35S-D-2/35SD-3)。陰性對(duì)照品種為肇東紫花苜蓿,由東北農(nóng)業(yè)大學(xué)崔國(guó)文教授提供。
1.2轉(zhuǎn)基因各株系A(chǔ)tDREB2A的Real-time PCR分析
采用Real-time PCR對(duì)擴(kuò)繁后PCR顯示陽性植株作外源基因表達(dá)量分析。以6個(gè)轉(zhuǎn)基因株系(rd-D-1/rd-D-2/rd-D-3、35S-D-1/35S-D-2/35S-D-3)及對(duì)照扦插苗葉片為檢測(cè)材料,每個(gè)株系檢測(cè)3株扦插苗。參照RNAprep pure Plant Kit說明書提取植物總RNA。參照SMART cDNA synthesis Kit說明書合成cDNA第一鏈。使用TaKaRa SYBR?Premix Ex Taq?Ⅱ(RNaseH Plus)試劑并參照其說明書進(jìn)行Real-time PCR檢測(cè)。以苜蓿β-actin(GenBank:BT051890.1)為內(nèi)參,引物為P1:5'GGAAACATC?GTATTGAGTGGTGGTA 3';R1:5'AAGGTGCTGA GGGAAGCCAAA 3'。AtDREB2A特異引物序列為:DR-P3:5'CAACAGCAGGATTCGCTATCTG 3';DR-R3:5'ACATCGT CGCCATTTAGGTCA 3'。
1.3轉(zhuǎn)基因苜蓿擴(kuò)繁
苜蓿為多年生草本植物,營(yíng)養(yǎng)生長(zhǎng)周期長(zhǎng),難以在短期內(nèi)獲得用于耐堿性分析種子。為此,本文對(duì)轉(zhuǎn)基因苜蓿6個(gè)株系和對(duì)照植株作扦插擴(kuò)繁。選取生長(zhǎng)狀態(tài)良好苜蓿植株,剪取木質(zhì)化程度較高的均勻一致枝條浸泡于1 mg·L-1IBA 30 s后,插入裝有沙土營(yíng)養(yǎng)缽中,溫室培養(yǎng)約30 d后(1 000 lx光照,14 h/10 h光照/黑暗周期,27℃/ 18℃晝夜溫度),對(duì)擴(kuò)繁苜蓿幼苗作耐鹽堿性分析試驗(yàn),統(tǒng)計(jì)擴(kuò)繁植株成活率和生根率。擴(kuò)繁培育在溫室內(nèi)完成。
1.4轉(zhuǎn)基因苜蓿耐堿性分析
1.4.1轉(zhuǎn)基因苜蓿幼苗期耐堿處理?xiàng)l件
由于3個(gè)轉(zhuǎn)rd29A-DREB株系和3個(gè)轉(zhuǎn)35SDREB株系中DREB表達(dá)量相似,將6個(gè)株系扦插苗分為兩個(gè)群體,作耐堿性差異分析。
擴(kuò)繁植株成活8周時(shí),選取長(zhǎng)勢(shì)均勻苜蓿幼苗移栽到裝有細(xì)砂的營(yíng)養(yǎng)缽(口徑為9 cm,高為8 cm)中定植,定植后每3 d用Hoagland營(yíng)養(yǎng)液透灌1次。并用50 mmol·L-1NaHCO3(pH 8.0)脅迫液每日50 mL透灌營(yíng)養(yǎng)缽,處理14 d。幼苗期堿脅迫及生理指標(biāo)測(cè)定在溫室內(nèi)完成。
1.4.2轉(zhuǎn)基因苜蓿成苗期堿處理?xiàng)l件
選取長(zhǎng)勢(shì)均勻1年齡成苗苜蓿。分別定植于正常土壤:鹽堿土=16∶1的混合鹽堿土(pH 9.3)中。以100 mol·L-1(pH 9.3)Na2CO3∶NaHCO3=1∶2為脅迫液每周澆灌1次,12周后測(cè)得混合鹽堿土pH為9.3,灌水深度為15 cm。脅迫處理80 d后統(tǒng)計(jì)成活率,并取材測(cè)定生理指標(biāo);脅迫處理一直持續(xù)到開花期,調(diào)查可正常開花株系數(shù)。室外測(cè)定成苗期堿脅迫及生理指標(biāo)。
1.4.3耐鹽堿轉(zhuǎn)基因苜蓿生理指標(biāo)測(cè)定
分別測(cè)定存活的耐堿轉(zhuǎn)基因苜蓿幼苗及成苗葉綠素、丙二醛含量、相對(duì)電導(dǎo)率及根系活力等生理指標(biāo)[3]。每個(gè)群體測(cè)定15株扦插苗,重復(fù)3次。使用Excel 2007統(tǒng)計(jì)分析。
2.1轉(zhuǎn)基因各株系A(chǔ)tDREB2A表達(dá)量分析
為比較啟動(dòng)子調(diào)控目的基因效果,對(duì)6個(gè)轉(zhuǎn)基因株系(rd-D-1/rd-D-2/rd-D-3、35S-D-1/35S-D-2/35S-D-3)PCR陽性扦插苗Real-time PCR檢測(cè)(見圖1)。轉(zhuǎn)AtDREB2A株系外源基因均能表達(dá),但由于啟動(dòng)子不同,基因表達(dá)量存在較大差異。未經(jīng)脅迫誘導(dǎo),35S啟動(dòng)子調(diào)控的AtDREB2A為超表達(dá),表達(dá)量為未轉(zhuǎn)基因?qū)φ盏?8倍;而rd29A啟動(dòng)子調(diào)控的AtDREB2A表達(dá)與未轉(zhuǎn)基因?qū)φ毡磉_(dá)量無明顯差異,僅為2.6倍。經(jīng)鹽脅迫處理1 h后,35S啟動(dòng)子調(diào)控的AtDREB2A表達(dá)量有所提高,而rd29A啟動(dòng)子調(diào)控的AtDREB2A表達(dá)量明顯增加,但低于35S啟動(dòng)子調(diào)控表達(dá)量(僅是未處理的20.7倍,而35S株系則是57.6倍)。由此表明,rd29A和CaMV-35S啟動(dòng)子對(duì)AtDREB2A表達(dá)調(diào)控存在明顯差異。
2.2不同啟動(dòng)子轉(zhuǎn)基因苜蓿耐堿性差異分析
選取PCR陽性植株,剪取木質(zhì)化程度較高枝條擴(kuò)繁,兩個(gè)株系擴(kuò)繁植株生根率和成活率存在差異(結(jié)果略)。rd29A啟動(dòng)子調(diào)控的轉(zhuǎn)基因苜蓿長(zhǎng)勢(shì)明顯好于35S,主要表現(xiàn)在生根較快,地上部分生長(zhǎng)迅速,成活率較高。推測(cè)CaMV-35S調(diào)控的外源基因持續(xù)超量表達(dá)抑制植株生長(zhǎng),與Chen等在大豆中研究結(jié)果相同[23]。轉(zhuǎn)錄因子在組成型強(qiáng)啟動(dòng)子驅(qū)動(dòng)下異源超表達(dá),即使在正常生長(zhǎng)條件下,也會(huì)啟動(dòng)基因表達(dá)。這種錯(cuò)誤基因表達(dá)常造成轉(zhuǎn)基因植株在正常生長(zhǎng)條件下株型變異和植株矮?。?4]。
2.2.1幼苗期轉(zhuǎn)基因苜蓿耐堿性分析
為比較不同啟動(dòng)子調(diào)控的轉(zhuǎn)基因苜蓿耐堿性差異,選取擴(kuò)繁成活,長(zhǎng)勢(shì)基本一致材料輕度pH堿脅迫處理。50 mmol·L-1NaHCO3(pH 8.0)處理14 d后,非轉(zhuǎn)基因苜蓿出現(xiàn)葉片部分發(fā)黃、枯萎現(xiàn)象,rd-DREB2A和35S-DREB2A轉(zhuǎn)基因株系葉片仍為綠色,生長(zhǎng)狀態(tài)正常(見圖2),兩者表型無明顯差異。
圖1 轉(zhuǎn)基因苜蓿各株系NaHCO3脅迫處理前后AtDREB2A表達(dá)變化Fig.1Change of AtDREB2A genes expression in wild type(WT),35S-D,rd-D lines under NaHCO3(pH 8.0)treatment
圖2 NaHCO3(pH 8.0)脅迫對(duì)轉(zhuǎn)基因苜蓿幼苗期影響Fig.2Effect of NaHCO3stress assays(pH 8.0)on transgenic alfalfa seedling stage
進(jìn)一步比較轉(zhuǎn)基因苜蓿葉綠素、丙二醛、膜相對(duì)電導(dǎo)率處理前后變化量(見圖3),株系rd-DREB2A葉綠素、相對(duì)電導(dǎo)率生理參數(shù)變化量明顯小于株系35S-DREB2A。結(jié)果表明,輕度堿處理?xiàng)l件下,AtDREB2A誘導(dǎo)表達(dá)對(duì)植株細(xì)胞保護(hù)作用優(yōu)于AtDREB2A超量表達(dá)。
2.2.2成苗期耐堿性分析
選取長(zhǎng)勢(shì)一致1年齡成苗苜蓿,分別定植于正常土壤∶鹽堿土=16∶1的混合鹽堿土(pH 9.3)中。處理80 d后,非轉(zhuǎn)基因苜蓿出現(xiàn)葉片部分枯萎、死亡現(xiàn)象,而轉(zhuǎn)基因苜蓿部分植株葉片僅少部分發(fā)黃。在表型上,與50 mmol·L-1NaHCO3(pH 8.0)脅迫的幼苗期相似,2個(gè)轉(zhuǎn)基因群體耐堿程度無顯著差異(見圖4)。
統(tǒng)計(jì)脅迫80 d后成活率及持續(xù)脅迫后進(jìn)入開花期株系數(shù)量,2個(gè)轉(zhuǎn)基因群體差異顯著(見表1)。
AtDREB2A的誘導(dǎo)表達(dá)更有利于轉(zhuǎn)基因苜蓿耐堿性提高,并不影響植株正常生長(zhǎng)和繁殖。調(diào)查脅迫處理80 d后,轉(zhuǎn)基因苜蓿各株系葉綠素、丙二醛、相對(duì)電導(dǎo)率及根系活力(見圖5),各株系處理前后的變化量差異顯著。結(jié)果表明,中度堿處理?xiàng)l件下,AtDREB2A的誘導(dǎo)表達(dá),使植株膜脂過氧化程度、質(zhì)膜損傷程度、根系活力變化均低于AtDREB2A超量表達(dá),隨pH增加,誘導(dǎo)型啟動(dòng)子rd29A調(diào)控的轉(zhuǎn)基因苜蓿耐堿性未下降。
圖3 NaHCO3(pH 8.0)處理14 d后轉(zhuǎn)基因苜蓿幼苗葉綠素含量、相對(duì)電導(dǎo)率及丙二醛含量變化量Fig.3Changes of the chlorophyll content,relative conductivity and malondialdehyde content in transgenic alfalfa seedlings of transgenic alfalfa in NaHCO3(pH 8.0)treatment for 14 days
圖4 鹽堿土(pH 9.3)對(duì)轉(zhuǎn)基因苜蓿成苗期影響Fig.4Effect of saline-alkali soil(pH 9.3)treatment on transgenic alfalfa adult stage
表1 鹽堿土對(duì)轉(zhuǎn)基因苜蓿生長(zhǎng)發(fā)育影響Table 1Effect of saline-alkali soil on transgenic alfalfa growth development
圖5 鹽堿土(pH 9.3)處理前后轉(zhuǎn)基因苜蓿幼苗葉綠素含量、相對(duì)電導(dǎo)率、丙二醛含量和根系活力變化量Fig.5Changes of the chlorophyll content,relative conductivity,malondialdehyde content and root activity of transgenic alfalfa in the saline-alkali soil(pH 9.3)treatment for 80 days
目前,植物轉(zhuǎn)基因育種研究中,為提高外源基因表達(dá)量,超量表達(dá)啟動(dòng)子的應(yīng)用較為普遍[25],僅有少數(shù)材料選擇種子特異性啟動(dòng)子、葉綠體組織表達(dá)啟動(dòng)子[26]等組織特異性啟動(dòng)子,而環(huán)境因素誘導(dǎo)型啟動(dòng)子的應(yīng)用較少[27]。研究發(fā)現(xiàn),兩種不同啟動(dòng)子調(diào)控的轉(zhuǎn)基因植株生長(zhǎng)及堿脅迫抗性,存在以下差異:一是基因表達(dá)存在差異。在正常生長(zhǎng)情況下,由于rd29A啟動(dòng)子為環(huán)境誘導(dǎo)型啟動(dòng)子,啟動(dòng)子未發(fā)揮調(diào)控作用,AtDREB2A基因表達(dá)量低;而CaMV-35S啟動(dòng)子為轉(zhuǎn)基因育種中常用的超量表達(dá)啟動(dòng)子,為組成型啟動(dòng)子,其調(diào)控基因在正常生長(zhǎng)情況下表達(dá)量為非轉(zhuǎn)基因的38倍。堿脅迫誘導(dǎo)后,兩轉(zhuǎn)基因株系中AtDREB2A基因表達(dá)量均上調(diào),但rd29A啟動(dòng)子被誘導(dǎo),發(fā)揮調(diào)控功能,AtDREB2A基因上調(diào)表達(dá),是非轉(zhuǎn)基因株系20.7倍;CaMV-35S啟動(dòng)子調(diào)控的AtDREB2A基因在正常生長(zhǎng)調(diào)控基礎(chǔ)上,也有上調(diào)表達(dá),達(dá)到非轉(zhuǎn)基因株系57.6倍。二是轉(zhuǎn)基因植株生長(zhǎng)狀態(tài)。正常生長(zhǎng)環(huán)境及在堿脅迫條件下,CaMV-35S啟動(dòng)子調(diào)控AtDREB2A的轉(zhuǎn)基因株系(35S-D)生長(zhǎng)發(fā)育均不如誘導(dǎo)型啟動(dòng)子調(diào)控轉(zhuǎn)基因株系rd-D表現(xiàn),尤其在持續(xù)性堿脅迫下,即在成苗期鹽堿土生長(zhǎng)環(huán)境中,可見35S-D植株成活率和開花植株數(shù)明顯低于rd-D株系(見表1),其他生理指標(biāo)也存在較大差異(見圖3、5)。由此表明,AtDREB2A轉(zhuǎn)錄因子基因持續(xù)超量表達(dá)會(huì)影響植株生長(zhǎng)發(fā)育,而At?DREB2A的誘導(dǎo)表達(dá)并不影響植株正常生長(zhǎng)發(fā)育。Ito等研究也得到類似結(jié)果,并提出對(duì)于轉(zhuǎn)錄因子等調(diào)節(jié)基因,其持續(xù)超量表達(dá)會(huì)影響植株正常生長(zhǎng)發(fā)育[24]。
AtDREB2A基因超量表達(dá)對(duì)植株生長(zhǎng)發(fā)育有負(fù)面影響,推測(cè)可能存在以下兩種原因。Qin等報(bào)道表明,DREB2A轉(zhuǎn)錄因子,在蛋白水平調(diào)控存在泛素化降解過程。即其調(diào)控下游基因表達(dá)功能后,將通過泛素化過程被降解,這種調(diào)控比較科學(xué),與多種代謝途徑相關(guān)聯(lián)[28]。因此,該基因持續(xù)過量表達(dá)會(huì)影響細(xì)胞內(nèi)基因、蛋白及生理代謝過程變化,最終影響植株生長(zhǎng)及抗逆性。另外,研究報(bào)道,DREB類轉(zhuǎn)錄因子之間存在相互調(diào)控關(guān)系,這種調(diào)控關(guān)系維持DREB蛋白量[29]。本研究中也發(fā)現(xiàn),rd29A啟動(dòng)子調(diào)控的轉(zhuǎn)基因株系在未經(jīng)處理時(shí),DREB基因也有少量表達(dá);經(jīng)堿脅迫處理后,35S調(diào)控的轉(zhuǎn)基因株系中DREB基因表達(dá)也明顯提高。由此表明內(nèi)源DREB基因存在,且在堿脅迫下上調(diào)表達(dá)。AtDREB2A超量表達(dá)勢(shì)必會(huì)對(duì)苜蓿內(nèi)源DREB類轉(zhuǎn)錄因子表達(dá)及蛋白含量產(chǎn)生影響,破壞DREB類蛋白平衡,產(chǎn)生消極影響,最終引起植株正常生長(zhǎng)發(fā)育和耐堿性發(fā)揮。
植物對(duì)非生物脅迫響應(yīng)是多基因表達(dá)調(diào)控的結(jié)果,對(duì)任一基因操縱均會(huì)導(dǎo)致大量相關(guān)基因及相應(yīng)蛋白產(chǎn)物發(fā)生改變。在植物耐鹽堿性基因工程研究中,要盡可能減少這些改變,適時(shí)激活脅迫應(yīng)答基因表達(dá)。即在無脅迫條件下盡量降低外源基因表達(dá)量,控制表達(dá)時(shí)間和豐度;而在外界環(huán)境變化時(shí),轉(zhuǎn)基因植株才表現(xiàn)其抗逆優(yōu)勢(shì),在確保作物產(chǎn)量同時(shí)提高其耐逆性。這也是轉(zhuǎn)基因植物安全評(píng)價(jià)中“實(shí)質(zhì)等同”原則的實(shí)質(zhì)所在。針對(duì)這一要求,適當(dāng)選擇誘導(dǎo)型啟動(dòng)子是有效手段。rd29A是脅迫誘導(dǎo)型啟動(dòng)子,在低溫、干旱、高鹽等脅迫條件下誘導(dǎo)表達(dá)。利用脅迫誘導(dǎo)啟動(dòng)子rd29A代替超量表達(dá)啟動(dòng)子,可使外源調(diào)控基因僅在植物遭受外界脅迫時(shí),在植物中超表達(dá),消除在正常生長(zhǎng)條件下外源基因超表達(dá)對(duì)植物的不利影響[30]。本研究發(fā)現(xiàn),轉(zhuǎn)基因株系rd-D生長(zhǎng)及耐堿性均優(yōu)于35S-D,且這種耐堿性隨鹽堿程度增加并未下降。另外,rd29A啟動(dòng)子作用不僅局限于轉(zhuǎn)錄因子基因耐逆基因工程領(lǐng)域,對(duì)蛋白激酶、離子通道蛋白等基因異源表達(dá)調(diào)控同樣有效[30-32]。因此,利用rd29A啟動(dòng)子和調(diào)控基因組合,可有效提高苜蓿耐堿能力,為耐鹽堿苜?;蚬こ萄芯刻峁┬峦緩?。
rd29A啟動(dòng)子和CaMV-35S啟動(dòng)子調(diào)控At?DREB2A表達(dá)存在明顯差異,且rd29A啟動(dòng)子調(diào)控的轉(zhuǎn)基因苜蓿生長(zhǎng)及對(duì)堿的耐逆性均優(yōu)于CaMV-35S啟動(dòng)子,其耐堿性并未隨堿程度增加而下降,rd29A啟動(dòng)子與AtDREB2A可共同應(yīng)用于植物耐堿基因工程。
[1]劉功,李銳,王連敏,等.淺談黑龍江省鹽堿地利用[J].黑龍江農(nóng)業(yè)科學(xué),2007(2):108-109.
[2]劉瑩,才華,劉晶,等.GsCRCK基因轉(zhuǎn)化農(nóng)菁1號(hào)苜蓿及其耐鹽性分析[J].草業(yè)學(xué)報(bào),2013,22(2):150-157.
[3]王臻昱,才華,柏錫,等.野生大豆GsGST19基因的克隆及其轉(zhuǎn)基因苜蓿的耐鹽堿性分析[J].作物學(xué)報(bào),2012,38(6):971-979.
[4]吳婧,才華,柏錫,等.轉(zhuǎn)GsGST13/SCMRP基因雙價(jià)苜蓿的耐鹽性分析[J].草業(yè)學(xué)報(bào),2014,23(1):257-265.
[5]Tang L L,Cai H,Zhai H,et al.Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa(Medicago sativa L.)[J].Plant Cell,Tissue and Organ Cul?ture,2014,118(1):77-86.
[6]Bao A K,Wang S M,Wu G Q,et al.Overexpression of the Arabi?dopsis PPase enhanced resistance to salt and drought stress in transgenic alfalfa[J].Plant Science,2009,176(2):232-240.
[7]劉曉穎,陳麗媛,張競(jìng)秋,等.白菜脫水應(yīng)答轉(zhuǎn)錄因子Bp?DREB1基因的克隆及功能研究.作物學(xué)報(bào),2013,39(2):230-237.
[8]Xu P,Narasimhan M L,Samson T,et al.A nitrilase-like protein interacts with GCC box DNA-binding roteins involved in ethyl?ene and defense responses[J].Plant Physiology,1998,118:867-874.
[9]Akhtar M,Jaiswal A,Taj G,et al.DREB1/CBF transcription fac?tors:Their structure,function and role in abiotic stress tolerance in plants[J].Journal of Genetics,2012,91(3):385-395.
[10]Roychoudhury A,Paul S,Basu S.Cross-talk between abscisic ac?id-dependent and abscisic acid-independent pathways during abiotic stress[J].Plant Cell Report,2013,32(7):985-1006.
[11]Fujita Y,Yoshida T,Yamaguchi-Shinozaki K.Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants[J].Physiologia Plantarum,2013,147(1):15-27.
[12]孫海桃,徐兆師,侯建華,等.小麥TaDREB6轉(zhuǎn)錄因子互作蛋白的篩選[J].中國(guó)農(nóng)業(yè)科學(xué),2011,44(22):4740-4747.
[13]Khan M S.The roll of DREB transcription factors in abiotic stress tolerance of plants[J].Biotechnology and Biotechnological Equip?ment,2011,25(3):2433-2442.
[14]Zhao T,Xia H,Liu J,et al.The gene family of dehydration respon?sive element-binding transcription factors in grape(Vitis vinif?era):Genome-wide identification and analysis,expression pro?files,and involvement in abiotic stress resistance[J].Molecular Bi?ology Reports,2014,41(3):1577-1590.
[15]Zhang X X,Tang Y J,Ma Q B,et al.OsDREB2A,a rice transcrip?tion factor,significantly affects salt tolerance in transgenic soy?bean[J].PLoS One,2013,8(12):e83011.
[16]王舟,劉建秀.DREB/CBF類轉(zhuǎn)錄因子研究進(jìn)展及其在草坪草和牧草抗逆基因工程中的應(yīng)用[J].草業(yè)學(xué)報(bào),2011,20(1):222-236.
[17]賈小霞,齊恩芳,王一航,等.轉(zhuǎn)錄因子DREB1A基因和Bar基因雙價(jià)植物表達(dá)載體的構(gòu)建及對(duì)馬鈴薯遺傳轉(zhuǎn)化的研究[J].草業(yè)學(xué)報(bào),2014,23(3):110-117.
[18]文益東,才華,柏錫,等.轉(zhuǎn)AtDREB2A基因苜蓿的耐堿性分析[J].作物雜志,2012(3):32-35.
[19]Yamaguchi-Shinozaki K,Shinozaki K.A novel cis-acting ele?ment in an Arabidopsis gene is involved in responsiveness to drought,low temperature,or high-salt stress[J].The Plant Cell,1994,6(2):251-264.
[20]Bihmidine S,Lin J,Stone J M,et al Activity of the Arabidopsis RD29A and RD29B promoter elements in soybean under water stress[J].Planta,2013,237(1):55-64.
[21]Zhao J S,Ren W,Zhi D Y,et al.Arabidopsis DREB1A/CBF3 be?stowed transgenic tall fescue increased tolerance to drought stress [J].Plant Cell Report,2007,6(9):1521-1528.
[22]盛慧,朱延明,李杰,等.DREB2A基因?qū)俎_z傳轉(zhuǎn)化的研究[J].草業(yè)科學(xué),2007,24(3):40-45.
[23]Chen M,Xu Z S,Ma Y Z.Cold-induced modulation and function?al analyses of the DRE-binding transcription factor gene,Gm?DREB3,in soybean(Glycine max L.)[J].Journal of Experimental Botany,2009,60(1):121-135.
[24]Ito Y,Katsura K,Maruyama K,et al.Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-respon?sive gene expression in transgenic rice[J].Plant and Cell Physiolo?gy,2006,47(1):141-153.
[25]賈士榮,袁潛華,王豐,等.轉(zhuǎn)基因水稻基因飄流研究十年回顧[J].中國(guó)農(nóng)業(yè)科學(xué),2014,47(1):1-10.
[26]侯鵬飛,馬俊青,趙鵬飛,等.外源甜菜堿對(duì)干旱脅迫下小麥幼苗葉綠體抗氧化酶及psbA基因表達(dá)的調(diào)節(jié)[J].作物學(xué)報(bào),2013,39(7):1319-1324.
[27]Engels C,F(xiàn)uganti-Pagliarini R,Marin S R,et al.Introduction of the rd29A:AtDREB2A CA gene into soybean(Glycine max L.Mer?ril)and its molecular characterization in leaves and roots during dehydration[J].Genetics Molecular Biology,2013,36(4):556-565.
[28]Qin F,Sakuma Y,Tran L S,et al.Arabidopsis DREB2A-interact?ing proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression[J].The Plant Cell,2008,20(6):1693-1707.
[29]Novillo F,Alonso J M,Ecker J R,et al.CBF2/DREB1C is a nega?tive regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J].Pro?ceedings of the National Academy of Sciences of the USA,2004,101(11):3985-3990.
[30]Pellegrineschi A,Reynolds M,Pacheco M,et al.Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene de?lays water stress symptoms under greenhouse conditions[J].Ge?nome,2004,47(3):493-500.
[31]張俊蓮,王麗,秦舒浩,等.利用擬南芥rd29A啟動(dòng)子驅(qū)動(dòng)基因提高煙草耐鹽性[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2011,19(4):669-676.
[32]馮娟,范昕琦,徐鵬,等.棉屬野生種旱地棉蛋白激酶基因Gar?CIPK8的克隆與功能分析[J].作物學(xué)報(bào),2013,39(1):34-42.
Alkaline tolerance analysis of transgenic alfalfa withAtDREB2Agene regulated by rd29A and CaMV-35S promoter
CAI Hua,SONG Tingting,ZHANG Dayang
(School of Life Sciences,NortheastAgricultural University,Harbin 150030,China)
rd29A or CaMV-35S promoter is widely used in plant genetic engineering,but the effect of regulation is different in transgenic plants with different genes.Real-time PCR was used to assess different expression level ofAtDREB2Agene in transgenic alfalfa lines regulated by rd29A and CaMV-35S promoters,respectively.For alkaline stress treatments,at the seedling stage plants were treated with 50 mmol·L-1NaHCO3(pH 8.0)stress and in mixed alkali soil(pH 9.3),then,the phenotype of the plants and the survival rate were observed,and physiological indicators including chlorophyll,relative conductivity,MDA and root activity were investigated.The results showed that an obvious difference in the regulation of geneexpression ofAtDREB2Aby rd29A and CaMV-35S promoters was observed.AtDREB2Agene was overexpressed under the regulation of CaMV-35S promoter,after alkaline stress treatment for 1 h,the expression ofAtDREB2Agene increased significantly,increased by 57.6-fold.But the expression of AtDREB2A gene in the rd29A-lines was not as high as that of the lines with 35S-AtDREB2Agene(only 20.7-fold).It was deduced thatAtDREB2Agene overexpression inhibited the normal growth of transgenic alfalfa.Alkali stress resisitance ofAtDREB2Agene induced expression was better thanAtDREB2Agene overexpression in transgenic alfalfas.The reduction of chlorophyll content,relative conductivity,MDA and root activity in transgenic alfalfa with rd29A promoter were significantly less than that with CaMV-35S promoter.The aim of this study was to compare the alkaline tolerance of transgenic alfalfa withAtDREB2A (AB007791)gene regulated by different promoters,and to provide an effective method of application of alkali-stress genetic engineering withAtDREB2Agenes in alfalfa.
alfalfa;AtDREB2Agene;rd29Apromoter;alkaline tolerance;transgenic
S541.9
A
1005-9369(2016)09-0016-08
2016-05-19
教育部高等學(xué)校博士學(xué)科專項(xiàng)科研基金(20132325120017);國(guó)家自然科學(xué)青年基金項(xiàng)目(31302022)
才華(1979-),女,副教授,博士,研究方向?yàn)檐俎D湍婊蚬こ膛c分子生物學(xué)。E-mail:caihuaneau@sohu.com