• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boron-doped α-Ni(OH)2 for electro-catalytic oxidation of ureain in alkaline medium

    2016-10-25 07:05:01YANGDuoYUQingtaoMAOLiqunYANGJingheGAOLi
    化學(xué)研究 2016年5期
    關(guān)鍵詞:電催化制氫堿性

    YANG Duo, YU Qingtao, MAO Liqun, YANG Jinghe, GAO Li

    (Engineering Center for Clean Chemical Process and Technology, College of Chemistry and Chemical Engineering,Henan University, Kaifeng 475004, Henan, China)

    ?

    Boron-dopedα-Ni(OH)2for electro-catalytic oxidation of ureain in alkaline medium

    YANG Duo, YU Qingtao, MAO Liqun, YANG Jinghe, GAO Li*

    (EngineeringCenterforCleanChemicalProcessandTechnology,CollegeofChemistryandChemicalEngineering,HenanUniversity,Kaifeng475004,Henan,China)

    Boron-dopedα-Ni(OH)2nanoflowers(B-α-Ni(OH)2) were synthesized by a liquid-phase method using P123 (EO20PO70EO20) as a template and NaBH4as alkali and boron sources. The average size of these B-α-Ni(OH)2nanoflowers is in a range of 200-500 nm with many porous. The B-α-Ni(OH)2nanoflowers were developed as electrocatalysts for urea electro-oxidation in alkaline media with more than 10 times enhancement in current density compared to bulk nickel hydroxide powders. Results demonstrated that the obtained B-α-Ni(OH)2electrode exhibited high activity and good stability. The positive correlation between the scan rates and the anodic currents implied a single diffusion-controlled kinetic process. The enhanced electro-catalytic oxidation of urea using B-α-Ni(OH)2nanoflowers has promising applications in urea-rich wastewater remediation, hydrogen production, and fuel cells.

    boron-dopedα-Ni(OH)2; urea; electro-catalytic oxidation electro-catalysts; hydrogen production; fuel cells

    Article ID: 1008-1011(2016)05-0548-06

    Urea (CO(NH2)2) is widely used in the agricultural industry as an animal feed additive and nitrogen-release fertilizer, which produced a large amount of waste water with differing urea concentrations[1]. Urea management has been becoming a major environmental and health issue. Moreover, urea has been identified as a good hydrogen carrier for long-term sustainable energy supply[2]. Therefore, it is necessary for urea removal/decomposition during wastewater treatment. Electrocatalytic oxidation has been used as a method for treatment of urea water due to no need of extra instruments equipment[1,3]. However, this method requires expensive noble metal catalysts for urea decomposition[3-4].

    Catalyst development plays an important role in the cost reduction of urea oxidation. Recently, nickel and nickel-based modified electrodes were developed as catalysts for urea oxidation electrocatalytic activity[1,5-7]. BOGGS et al. successfully demonstrated urea oxidation to produce hydrogen using Ni electrodes in alkaline medium[1]. Furthermore, several Ni based catalysts have been developed to efficiently electro-oxidize urea in alkaline medium[8-10]. BOGGS et al. proposed that the electro-oxidation of urea on a Ni catalyst follows a direct oxidation mechanism, and the redox transition between Ni(OH)2and NiOOH contributes to the electro-catalytic oxidation of urea molecules, according to the following reactions (Eqs.(1)-(4))[1].

    (1)

    (2)

    (3)

    (4)

    Reactions (1) and (2) take place at the anodic compartment of the electrolyzer, while reaction (3) takes place at the cathodic compartment of the cell apparatus. The overall reaction is given by reaction (4). DARAMOLA et al. presented a mechanism for urea oxidation in the presence of nickel oxyhydroxide (NiOOH) including elementary steps using density functional theory (DFT) methods[11]. In alkaline medium, it was suggested that Ni2+oxidation to its active Ni3+form mediates the urea oxidation reaction, as Eqs. (1)-(2)[12]. During the urea electro-oxidation in alkaline media process, the catalytic active NiOOH is chemically reduced to the inactive Ni(OH)2by urea, at the same time, urea is chemically oxidized to its products[1]. During the urea oxidation in alkaline medium process, the rate-limiting step was found to be desorption of CO2. They reported that the NiOOH catalyst surface could be deactivated by the surface blockage due to CO groups[11]. Nickel and nickel hydroxides catalysts can promote electrochemical redox reactions and alleviate diffusion resistance. Properties of Ni(OH)2can be improved by providing special nanostructure. The doping other atoms modification is also an important way to improve its properties.

    In this work, we synthesized B-α-Ni(OH)2nanoflowers by a liquid-phase method as electro-catalysts for urea electro-catalytic oxidation. Results demonstrated that the obtained B-α-Ni(OH)2electrode exhibited high activity and good stability.

    1 Experimental section

    1.1Reagents

    Nafion (5% ethanol solution, mass fraction) was purchased from Alfa Aesar, and diluted to 0.1% with doubly distilled water in use. Pluronic P123 (surfactant copolymer poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide, EO20-PO70-EO20) was purchased from Sigma-Aldrich. Ni(NO3)2·6H2O was a product of Tianjin Kermel Chemical Co. in analytical grade. Commercial bulk nickel hydroxide powders and sodium borohydride were obtained from Sinopharm Chemical Reagent Co., Ltd. Urea (99.7%) was obtained from Tianjin De'en Chemical Reagent Co., Ltd. Other chemicals were all analytical reagents from Beijing Chemical Company.

    1.2Synthesis of materials

    The synthesis of B-α-Ni(OH)2was based on a self-assembly between a triblock copolymer template P123 and two precursors(sodium borohydride and nickel species) in a flask. Put Ni(NO3)2·6H2O (8.6 g) into 40 mL water, and then stirring at ambient temperature after ultrasonic dispersion. Then, the nickel solution was put into the 400 mL solution of P123 (4 g), and then slow stirring at 313 K for more than 3 h. When the temperature drops to ambient temperature, the 20 mL sodium borohydride (1.5 g) solution was added into the mixture. After 2 h, the same quantity of sodium borohydride solution was added into the mixture. After 210 min, light green sediments were formed. The mixture was filtered and washed many times with water and ethanol to remove organics, ions, and surfactant P123 and dried under vacuum at 333 K, then we got B-α-Ni(OH)2[13-14].

    1.3Preparation of nickel electrodes and electrochemical measurements

    A three electrode system was used. Ag/AgCl electrode filled with saturated potassium chloride was used as reference electrode and platinum wire was used as counter electrode with 1 mol/L aqueous solution of KOH as electrolyte. The working electrode was modified glassy carbon electrode (GCE) (3 mm in diameter). Electrochemical experiments were tested on a CHI760E electrochemical workstation. Cyclic voltammetry (CV), linear sweep voltammetry (LSV) were conducted at a rate of 50 mV·s-1in alkaline aqueous solution. Chronoamperograms curve was recorded in alkaline aqueous solution at 0.5 V for 1 000 s. The amperometrici-tcurve was measured in alkaline aqueous solution at 0.5 V for 600 s.

    A preparation method of the modified electrode process is as follows: The bare GCE was polished with 1.0, 0.3, and 0.05 μm alumina slurry, rinsed thoroughly with deionized water, and dried by N2blowing. 5 mg catalyst was added into 1 mL 0.1% nafion solution to form homogeneous mixtures under ultrasonication. Next, the various suspensions of 10 μL were drop in the surface of GCE or modified GCE. Finally, the as-prepared catalyst film was dried at room temperature or under the infrared lamp.

    1.4Characterization

    The samples crystalline structure were examined by X-ray diffraction (XRD) by X-ray D8 Advance (Bruker, Germany) instrument with Cu Kαradiation (λ= 0.15418 nm). Samples microstructure was determined using a scanning electron microscope (SEM, XL30S-FEG, 5 kV). The morphology and dispersion of the samples were observed using Transmission electron microscopy (TEM, FEI Tecnai G2T20). Fourier transform infrared (FT-IR) spectra were measured by transmission on a Bruker Vertex 80 FT-IR Spectrometer on KBr pellets with 2 cm-1resolution.

    2 Results and discussion

    The structures and composition of the obtained B-Ni(OH)2nano-catalyst were studied by XRD and FT-IR spectrum. Fig. 1A shows the XRD pattern of Ni(OH)2material. The diffractive peaks at 2θ=11.4°, 22.7°, 33.5° and 60.0° could be assigned to the (003), (006), (101) and (110) planes, respectively, which fit well with rhombohedral type ofα-Ni(OH)2layered structure[15-17]. No other obvious diffraction peaks were monitored, demonstrating the high quality of the sample.

    Fig.1 XRD pattern (A), FT-IR spectra (B), SEM (C) and TEM (D) characterization of B-α-Ni(OH)2

    FT-IR spectra of B-α-Ni(OH)2and Ni(OH)2is shown in Fig.1B. As shown in the B-Ni(OH)2FT-IR spectrum, the strong and broad band around 3 441 cm-1is assigned to the stretching vibration of the adsorbed water while the band around 1 632 cm-1is assigned to the bending vibration of the adsorbed water molecules[5]. Peak of B-α-Ni(OH)2at 474 cm-1is due to the Ni-O stretching vibration. Peak of B-α-Ni(OH)2at 678 cm-1assigned to the stretching vibration of non-hydrogen-bonded OH groups[18]. Peak of B-α-Ni(OH)2at 1 387 cm-1assigned to C-O-C groups, while the peak at 1 462 cm-1assigned to the stretching vibration of CH2- in the molecule of P123. FT-IR spectrum of Ni(OH)2is similar to B-α-Ni(OH)2.

    As shown in Fig. 1C and 1D, the morphology and structure of the B-α-Ni(OH)2samples were investigated by SEM and TEM. The B-α-Ni(OH)2samples are flower-like nanospheres comprising of densely packed irregular sheets (Fig. 1C).The average size of these B-α-Ni(OH)2nanoflowers is in the range of 200-500 nm. As shown in Fig. 1D, the size of the nanosheets is about 50 nm and the thickness of the nanosheets was approximately 5 nm[13].

    The electro-oxidation properties of B-α-Ni(OH)2and bulk-Ni(OH)2catalysts toward urea oxidation were investigated. Fig. 2A shows cyclic voltammetry urea electro-oxidation of 0.33 mol/L urea in 1 mol/L KOH solution catalyzed by B-α-Ni(OH)2and bulk-Ni(OH)2at a scan rate of 50 mV·s-1. The curve of B-α-Ni(OH)2shows exhibited oxidation current density starting at 0.41 V and a peak current density at 0.55 V vs. Ag/AgCl in the KOH solution containing 0.33 mol/L urea. In 1 mol/L KOH solution, the CV curve illustrates an anodic and cathodic peak related to the Ni(OH)2/NiOOH redox couple. As a comparison, the urea oxidation peak current density of bulk Ni(OH)2is very weak. The B-α-Ni(OH)2nanoflowers were developed as electrocatalysts for urea electro-oxidation in alkaline media more than 10 times enhancement in current density compared to bulk nickel hydroxide powders. The excellent catalytic property was also been verified by LSV (Fig. 2B).

    Fig.2CV (A) and LSV (B) for urea electro-oxidation of 0.33 mol/L urea in 1 mol/L KOH solution catalyzed by B-α-Ni(OH)2, Bulk-Ni(OH)2at 50 mV·s-1scan rate. Chronoamperograms curve (C) and amperometrici-tcurve (D) for urea electro-oxidation >of 0.33 mol/L urea in 1 mol/L KOH solution catalyzed by B-α-Ni(OH)2, Bulk-Ni(OH)2at 0.50 V vs. Ag/AgCl

    To evaluate the stability of nanocatalysts, as shown in Fig.2C chronoamperograms curve experiments were used to further evaluate the electrocatalytic activities of B-α-Ni(OH)2nanoflowers and bulk-Ni(OH)2catalysts/electrodes for urea oxidation. CA curves (performed at 0.5 V vs. Ag/AgCl for 1000 s) exhibits that the B-α-Ni(OH)2nanoflowers have a higher reaction current density and a slower current degradation over time compared with the bulk nickel hydroxide powders for the entire time course. Actually, the B-α-Ni(OH)2nanoflowers exhibited better electrocatalytic stability performance[6,9].

    As shown in Fig. 2D, amperometrici-tcurve experiments were used to further evaluate the electrocatalytic activities of B-α-Ni(OH)2and bulk-Ni(OH)2catalysts for urea oxidation. The experiments were performed at a constant voltage of 0.50 V vs. Ag/AgCl for 600 s. As shown in Fig. 2D, the decay was slow and the current density finally reached a stable current density. B-α-Ni(OH)2showed the higher activity and higher stability for urea oxidation. The urea oxidation current catalyzed by B-α-Ni(OH)2was more than 3 times higher than that of bulk nickel hydroxide powders. The result of amperometrici-tcurve was consistent with that of CV, LSV and CA.

    As shown in Fig. 3A, the effect of scan rate was investigated. It can be seen that oxidation peak current density (Ip) for methanol oxidation become larger with the increase of the scan rate. TheIpwas linear with the square root of scan rate(v1/2) in the range of 20-140 mV·s-1, suggesting that the scan rates and the anodic currents density implied the electrochemical reaction controlled by a single diffusion-controlled kinetic process (Fig. 3A inset).

    Fig.3 (A) CVs for urea electro-oxidation on B-α-Ni(OH)2 in 1 mol/L KOH solution containing 0.33 mol/L urea at different scan rates (20 mV·s-1< scan rate < 140 mV·s-1); Inset: the line relation between peak current density and the square root of the scan rate. (B) Effect of different concentrations of KOH on the urea electro-oxidation onB-α-Ni(OH)2 electrode at a scan rate of 50 mV·s-1

    As shown in Fig. 3B, effect of different concentrations of KOH was also investigated. The experiments implied an improvement in the oxidation current density with increasing concentrations of KOH. Since concentrations of OH-are dependence on the formation of NiOOH that catalyzes the urea oxidation process reaction, it is prospective to see an increase in the anodic current density with increasing KOH concentration. At the same time, the onset potential for the urea oxidation shifts to more negative values with increasing concentrations of KOH. This explains that the urea oxidation reaction becomes thermodynamically more favorable at higher concentrations of KOH[10].The redox transition between Ni(OH)2and NiOOH contributes to the electro-catalytic oxidation of urea molecules, which is consisted with previous reports[1,10,19-20].

    3 Conclusions

    The electrocatalyic oxidation urea on B-α-Ni(OH)2electrode and nickel hydroxide electrode in alkaline medium was investigated. The B-α-Ni(OH)2nanoflowers were synthesized through a liquid-phase method and used as electro-catalysts for catalytic oxidation of urea. XRD, FT-IR, SEM, TEM, spectroscopy, cyclic voltammetry, linear sweep voltammetry, chronoamperograms, amperometrici-ttechniques were used to characterize the B-α-Ni(OH)2nanoflowers. The electrochemical analysis showed that the urea oxidation current of the B-α-Ni(OH)2nanoflowers is more than 10 times higher than that of the bulk nickel hydroxide powders. The catalytic process on the B-α-Ni(OH)2nanoflowers modified electrode is a di-ffusion controlled process. The experiments implies an improvement in the oxidation current density with increasing concentrations of KOH. Urea oxidation occurs after the formation of NiOOH on the electrode surface. The enhanced electro-catalytic oxidation of urea using B-α-Ni(OH)2synthesized by this method reveals great potential for future applications in urea-rich wastewater remediation, hydrogen production, and fuel cells.

    [1] BOGGS B K, KING R L, BOTTE G G. Urea electrolysis: direct hydrogen production from urine [J]. Chem Commun, 2009, 32(32): 4859-4861.

    [2] ROLLINSON A N, JONES J, DUPONT V, et al. Urea as a hydrogen carrier: a perspective on its potential for safe, sustain and long-term energy supply [J]. Energ Environ Sci, 2011, 4(4): 1216-1224.

    [3] SIMKA W, PIOTROWSKI J, ROBAK A, et al. Electrochemical treatment of aqueous solutions containing urea [J]. J Appl Electrochem, 2009, 39(7): 1137-1143.

    [4] MILLER A T, HASSLER B L, BOTTE G G. Rhodium electrodeposition on nickel electrodes used for urea electrolysis [J]. J Appl Electrochem, 2012, 42(11): 925-934.

    [5] WANG D, YAN W, VIJAPUR S H, et al. Enhanced electrocatalytic oxidation of urea based on nickel hydroxide nanoribbons [J]. J Power Sources, 2012, 217: 498-502.

    [6] WANG D, YAN W, BOTTE G G. Exfoliated nickel hydroxide nanosheets for urea electrolysis [J]. Electrochem Commun, 2011, 13(10): 1135-1138.

    [7] GUO F, YE K, CHENG K, et al. Preparation of nickel nanowire arrays electrode for urea electro-oxidation in alkaline medium [J]. J Power Sources, 2015, 278: 562-568.

    [8] YAN W, WANG D, BOTTE G G. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation [J]. Electrochim Acta, 2012, 61(2): 25-30.

    [9] JI R Y, CHAN D S, JOW J J, et al. Formation of open-ended nickel hydroxide nanotubes on three-dimensional nickel framework for enhanced urea electrolysis [J]. Electrochem Commun, 2013, 29(10): 21-24.

    [10] VEDHARTHINAM V, BOTTE G G. Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium [J]. Electrochim Acta, 2012, 81(11): 292-300.

    [11] DARAMOLA D A, SINGH D, BOTTE G G. Dissociation rates of urea in the presence of NiOOH catalyst: a DFT analysis [J]. J Phys Chem A, 2010, 114(43): 11513-11521.

    [12] VEDHARTHINAM V, BOTTE G G. Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2catalyst in alkaline medium [J]. Electrochim Acta, 2013, 108: 660-665.

    [13] YANG J H, WANG C, YANG D, et al. Boron-dopedα-Ni(OH)2nanoflowers with high specific surface area as electrochemical capacitor materials [J]. Mater Lett, 2014, 128: 380-383.

    [14] YANG J H, YU Q, LI Y, et al. Batch fabrication of mesoporous boron-doped nickel oxide nanoflowers for electrochemical capacitors [J]. Mater Res Bull, 2014, 59(16): 382-386.

    [15] SOLER-LLLIA G J D A A, JOBBGY M, REGAZZONI A E, et al. Synthesis of nickel hydroxide by homogeneous alkalinization. precipitation mechanism [J]. Chem Mater, 1999, 11(11): 3140-3146.

    [16] JEEVANANDAM P, KOLTYPIN Y, GEDANKEN A. Synthesis of nanosizedα-nickel hydroxide by a sonochemical method [J]. Nano Lett, 2001, 1(5): 263-266.

    [17] XIAO J, CHEN B, LIANG X, et al. NiO microspheres with tunable porosity and morphology effects for CO oxidation [J]. Catal Sci Technol, 2011, 1(6): 999-1005.

    [18] OLIVA P, LEONARDI J, LAURENT J F, et al. Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides [J]. J Power Sources, 1982, 8(2): 229-255.

    [19] MAJDI S, JABBARI A, HELI H. A study of the electrocatalytic oxidation of aspirin on a nickel hydroxide-modified nickel electrode [J]. J Solid State Electr, 2007, 11(5): 601-607.

    [20] HELI H, JAFARIAN M, MAHJANI M G, et al. Electro-oxidation of methanol on copper in alkaline solution [J]. Electrochim Acta, 2004, 49(27): 4999-5006.

    [責(zé)任編輯:吳文鵬]

    堿性介質(zhì)中硼摻雜的α-Ni(OH)2電催化氧化尿素

    楊朵,郁清濤,毛立群,楊敬賀,高麗*

    (河南大學(xué) 化學(xué)化工學(xué)院,化工與清潔技術(shù)工程中心,河南 開(kāi)封 475004)

    以P123(EO20PO70EO20)為模板劑,NaBH4為堿及硼源,采用液相法合成了硼摻雜的α-Ni(OH)2納米花. 該納米花平均尺寸在200~500 nm之間,呈多孔狀. 研究結(jié)果表明,該B-α-Ni(OH)2電極具有良好的電催化作用,活性高,穩(wěn)定性好,在電極上對(duì)尿酸的氧化動(dòng)力學(xué)過(guò)程為擴(kuò)散控制過(guò)程. 與Ni(OH)2相比,其在堿性介質(zhì)中電催化氧化尿素的電流密度提高了10倍以上. B-α-Ni(OH)2納米花在富含尿素的廢水處理、制氫和燃料電池上具有潛在的應(yīng)用前景.

    硼摻雜的α-Ni(OH)2; 尿素; 電催化氧化; 制氫; 燃料電池

    date: 2016-05-13.

    Supported by the National Natural Science Foundation of China (21403053, U1404503).

    , E-mail: gaoli@henu.edu.cn.

    O627.12 Document code: A

    Biography: YANG Duo(1990-), female, master, majoring in electrochemical catalysis.*

    猜你喜歡
    電催化制氫堿性
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    堿性磷酸酶鈣-鈷法染色的不同包埋方法比較
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    堿性土壤有效磷測(cè)定的影響因素及其控制
    制氫工藝技術(shù)比較
    堿性溶液中鉑、鈀和金析氧性能比較
    堿性介質(zhì)中甲醇在PdMo/MWCNT上的電化學(xué)氧化
    高活性Al-LiBH4-Bi鋁基復(fù)合制氫材料
    電解制氫設(shè)備開(kāi)發(fā)入選“863”
    低溫與特氣(2014年4期)2014-03-20 13:36:50
    美女脱内裤让男人舔精品视频| 少妇人妻精品综合一区二区| 国产免费一区二区三区四区乱码| 美女xxoo啪啪120秒动态图| 黑人高潮一二区| 国产欧美日韩综合在线一区二区| 免费观看a级毛片全部| 国产av码专区亚洲av| 久久久久久久亚洲中文字幕| xxxhd国产人妻xxx| 精品久久久久久久久av| 亚州av有码| av又黄又爽大尺度在线免费看| www.色视频.com| 91久久精品电影网| 性高湖久久久久久久久免费观看| av有码第一页| 夜夜爽夜夜爽视频| 欧美 日韩 精品 国产| 欧美亚洲日本最大视频资源| 99热这里只有精品一区| 麻豆精品久久久久久蜜桃| 熟女人妻精品中文字幕| 亚洲精品日本国产第一区| 亚洲成人手机| 久久 成人 亚洲| 黑人猛操日本美女一级片| 国产成人免费观看mmmm| 国产成人91sexporn| 亚洲国产av新网站| 亚洲av成人精品一二三区| 纵有疾风起免费观看全集完整版| 热99久久久久精品小说推荐| 中文字幕免费在线视频6| 高清欧美精品videossex| 91久久精品国产一区二区三区| 国产一区二区在线观看日韩| 99视频精品全部免费 在线| 在线观看免费视频网站a站| 国产精品久久久久久精品古装| 欧美日韩国产mv在线观看视频| 亚洲综合色网址| 国产一区二区三区av在线| 国产av码专区亚洲av| 91精品一卡2卡3卡4卡| 亚洲精品乱码久久久v下载方式| 成年人午夜在线观看视频| 黄片播放在线免费| 国精品久久久久久国模美| 日韩大片免费观看网站| 又大又黄又爽视频免费| 亚洲欧美精品自产自拍| 波野结衣二区三区在线| 美女脱内裤让男人舔精品视频| 国产成人精品久久久久久| 天天躁夜夜躁狠狠久久av| 国产精品国产三级专区第一集| 91国产中文字幕| av免费观看日本| 18禁裸乳无遮挡动漫免费视频| 一级a做视频免费观看| 精品国产一区二区久久| 国产 一区精品| 视频区图区小说| 777米奇影视久久| 久久ye,这里只有精品| 国产av国产精品国产| 免费大片18禁| 少妇的逼好多水| 狂野欧美激情性xxxx在线观看| 黄片播放在线免费| 欧美精品国产亚洲| 欧美精品国产亚洲| 成人影院久久| 99久久综合免费| 欧美日韩视频高清一区二区三区二| 久久人人爽av亚洲精品天堂| 久久国产亚洲av麻豆专区| 啦啦啦在线观看免费高清www| 看非洲黑人一级黄片| 日本vs欧美在线观看视频| 亚洲精品色激情综合| 又粗又硬又长又爽又黄的视频| 91久久精品国产一区二区三区| 亚洲精品国产色婷婷电影| 精品国产乱码久久久久久小说| 国产永久视频网站| 波野结衣二区三区在线| 高清视频免费观看一区二区| 日韩视频在线欧美| 18禁观看日本| 欧美日韩亚洲高清精品| 国产乱来视频区| 丝袜脚勾引网站| 国产黄色视频一区二区在线观看| a级毛色黄片| 99热这里只有精品一区| 一级爰片在线观看| 亚洲人成网站在线观看播放| 日本黄色日本黄色录像| 永久网站在线| 亚洲,欧美,日韩| 久久久国产欧美日韩av| 亚洲国产欧美日韩在线播放| 少妇熟女欧美另类| 99热这里只有是精品在线观看| 久久久久久久久久久丰满| 一个人免费看片子| 香蕉精品网在线| 18禁观看日本| videos熟女内射| 国产精品久久久久久精品古装| 国产精品久久久久久久久免| 十八禁高潮呻吟视频| 另类精品久久| 午夜精品国产一区二区电影| 国产一区有黄有色的免费视频| 极品少妇高潮喷水抽搐| 亚洲精品乱码久久久v下载方式| 久久精品国产亚洲av天美| 欧美成人精品欧美一级黄| 黑人巨大精品欧美一区二区蜜桃 | 欧美日韩av久久| 久久精品国产亚洲网站| 日本欧美国产在线视频| 国产免费一区二区三区四区乱码| 免费观看性生交大片5| 丰满迷人的少妇在线观看| 亚洲av电影在线观看一区二区三区| 日韩av免费高清视频| 色哟哟·www| 久久精品久久精品一区二区三区| 午夜福利影视在线免费观看| 国产日韩欧美视频二区| 免费看av在线观看网站| 亚洲欧美色中文字幕在线| 十八禁网站网址无遮挡| 狠狠婷婷综合久久久久久88av| 国产男女超爽视频在线观看| 人妻夜夜爽99麻豆av| 国产一区二区三区av在线| 亚州av有码| 久久97久久精品| 亚洲精品第二区| 欧美xxxx性猛交bbbb| 日本黄色片子视频| 免费黄频网站在线观看国产| 91精品一卡2卡3卡4卡| 男女啪啪激烈高潮av片| 最新的欧美精品一区二区| 亚洲国产av新网站| 色吧在线观看| 九色成人免费人妻av| 天美传媒精品一区二区| 亚洲欧美清纯卡通| 老司机亚洲免费影院| 久久精品久久久久久久性| 免费少妇av软件| 在线精品无人区一区二区三| 高清黄色对白视频在线免费看| av播播在线观看一区| 午夜日本视频在线| 满18在线观看网站| 国产女主播在线喷水免费视频网站| 人妻夜夜爽99麻豆av| 成人毛片60女人毛片免费| 亚洲av日韩在线播放| 制服丝袜香蕉在线| 男女免费视频国产| 国产熟女欧美一区二区| 亚洲欧美精品自产自拍| av网站免费在线观看视频| 亚洲第一区二区三区不卡| 国产永久视频网站| 97超视频在线观看视频| 午夜免费鲁丝| 欧美xxxx性猛交bbbb| 国产一区有黄有色的免费视频| 亚洲精品美女久久av网站| 男女啪啪激烈高潮av片| 日韩大片免费观看网站| 最近中文字幕高清免费大全6| 国产av国产精品国产| 日本欧美国产在线视频| av在线app专区| 亚洲精品美女久久av网站| 人成视频在线观看免费观看| 少妇人妻 视频| 国产综合精华液| 热99国产精品久久久久久7| 51国产日韩欧美| 香蕉精品网在线| 中文字幕久久专区| 久久久精品免费免费高清| 色5月婷婷丁香| 欧美最新免费一区二区三区| 91国产中文字幕| 日韩制服骚丝袜av| av一本久久久久| 能在线免费看毛片的网站| 国产一级毛片在线| 熟妇人妻不卡中文字幕| 日韩一区二区视频免费看| 亚洲av二区三区四区| 中文欧美无线码| 免费久久久久久久精品成人欧美视频 | 又大又黄又爽视频免费| 亚洲国产精品专区欧美| 免费不卡的大黄色大毛片视频在线观看| 一本—道久久a久久精品蜜桃钙片| 日韩中文字幕视频在线看片| 夫妻午夜视频| 中文字幕最新亚洲高清| 制服人妻中文乱码| 一区二区三区四区激情视频| 亚洲高清免费不卡视频| 免费日韩欧美在线观看| 水蜜桃什么品种好| 婷婷色av中文字幕| 九九爱精品视频在线观看| videos熟女内射| 欧美日本中文国产一区发布| 国产成人精品久久久久久| 免费av不卡在线播放| 亚洲国产精品一区二区三区在线| 日韩av不卡免费在线播放| 91aial.com中文字幕在线观看| 日韩精品有码人妻一区| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧洲日产国产| 一级二级三级毛片免费看| 日日摸夜夜添夜夜爱| 中文字幕精品免费在线观看视频 | 色婷婷久久久亚洲欧美| 久久久久久久大尺度免费视频| 国产欧美日韩一区二区三区在线 | 日韩大片免费观看网站| 亚洲欧美清纯卡通| 乱码一卡2卡4卡精品| 免费av不卡在线播放| 亚洲av成人精品一二三区| 啦啦啦中文免费视频观看日本| 欧美丝袜亚洲另类| 蜜桃在线观看..| 婷婷色麻豆天堂久久| 九色成人免费人妻av| 日韩亚洲欧美综合| 亚洲三级黄色毛片| 久久婷婷青草| 久久国产精品大桥未久av| 日韩中字成人| 伦理电影免费视频| 天堂8中文在线网| 美女福利国产在线| 亚洲av在线观看美女高潮| 性高湖久久久久久久久免费观看| 中文天堂在线官网| 国产一区二区在线观看av| 久久综合国产亚洲精品| 欧美3d第一页| 蜜桃在线观看..| av有码第一页| 一区在线观看完整版| 久久人人爽av亚洲精品天堂| 麻豆乱淫一区二区| 久久精品国产亚洲av天美| 久久精品国产亚洲av涩爱| 欧美精品一区二区免费开放| 久久久久久久精品精品| a级毛片黄视频| 亚洲人成网站在线播| 99re6热这里在线精品视频| 男女边摸边吃奶| 大片电影免费在线观看免费| 免费日韩欧美在线观看| 一个人免费看片子| 人妻一区二区av| 欧美日韩一区二区视频在线观看视频在线| 欧美97在线视频| 99国产精品免费福利视频| 永久网站在线| 最黄视频免费看| 自拍欧美九色日韩亚洲蝌蚪91| av在线播放精品| 水蜜桃什么品种好| 亚洲精品一区蜜桃| 国产毛片在线视频| 免费观看av网站的网址| 如日韩欧美国产精品一区二区三区 | 久久热精品热| 少妇人妻 视频| 久久精品久久精品一区二区三区| 飞空精品影院首页| 女人久久www免费人成看片| 美女主播在线视频| 高清不卡的av网站| 国产深夜福利视频在线观看| 欧美最新免费一区二区三区| 国产成人免费观看mmmm| 国产在视频线精品| 大又大粗又爽又黄少妇毛片口| 精品人妻偷拍中文字幕| 国产男人的电影天堂91| 91精品国产国语对白视频| 亚洲精品成人av观看孕妇| kizo精华| 哪个播放器可以免费观看大片| 啦啦啦中文免费视频观看日本| 免费黄网站久久成人精品| 免费高清在线观看日韩| 女人精品久久久久毛片| 中文字幕av电影在线播放| 九九爱精品视频在线观看| 国产av精品麻豆| 大码成人一级视频| 卡戴珊不雅视频在线播放| 妹子高潮喷水视频| 不卡视频在线观看欧美| 又大又黄又爽视频免费| 我要看黄色一级片免费的| 晚上一个人看的免费电影| 一个人看视频在线观看www免费| 午夜av观看不卡| 少妇猛男粗大的猛烈进出视频| 国产乱来视频区| 亚洲精品一二三| 制服诱惑二区| 午夜福利视频精品| 老熟女久久久| 亚洲欧美一区二区三区黑人 | 少妇 在线观看| 日本欧美视频一区| 性高湖久久久久久久久免费观看| 只有这里有精品99| 国产精品三级大全| 我要看黄色一级片免费的| 亚洲美女搞黄在线观看| 99国产精品免费福利视频| 制服诱惑二区| 男男h啪啪无遮挡| av线在线观看网站| 日韩,欧美,国产一区二区三区| 亚洲激情五月婷婷啪啪| 啦啦啦在线观看免费高清www| 欧美日韩国产mv在线观看视频| 女的被弄到高潮叫床怎么办| 亚洲国产精品999| 亚洲精品亚洲一区二区| 高清av免费在线| 高清欧美精品videossex| 久久精品国产鲁丝片午夜精品| 亚洲精品美女久久av网站| 大香蕉久久成人网| 夫妻午夜视频| 成年人午夜在线观看视频| 99re6热这里在线精品视频| 亚洲一级一片aⅴ在线观看| 亚洲av综合色区一区| 亚洲国产日韩一区二区| 国产精品99久久久久久久久| 成人国产av品久久久| 国产日韩一区二区三区精品不卡 | 亚洲av日韩在线播放| 亚洲精品国产色婷婷电影| 老熟女久久久| 91aial.com中文字幕在线观看| 国产精品嫩草影院av在线观看| 久久av网站| 国产一区二区在线观看av| 少妇猛男粗大的猛烈进出视频| 欧美另类一区| 下体分泌物呈黄色| 亚洲第一av免费看| 国产精品嫩草影院av在线观看| 高清毛片免费看| 国产白丝娇喘喷水9色精品| 欧美日韩精品成人综合77777| 天美传媒精品一区二区| 蜜桃国产av成人99| 99国产精品免费福利视频| 成人手机av| 天美传媒精品一区二区| 亚洲成人一二三区av| 99re6热这里在线精品视频| 18禁裸乳无遮挡动漫免费视频| 最近手机中文字幕大全| 久热这里只有精品99| 视频在线观看一区二区三区| 精品久久国产蜜桃| 亚洲成人一二三区av| 插逼视频在线观看| 一级毛片电影观看| 亚洲人成网站在线播| 日本免费在线观看一区| 黑人欧美特级aaaaaa片| 乱码一卡2卡4卡精品| 国产精品国产三级专区第一集| 精品少妇内射三级| 赤兔流量卡办理| 精品国产一区二区久久| 久久久久精品性色| 久久精品人人爽人人爽视色| 亚洲欧洲日产国产| 超碰97精品在线观看| 少妇高潮的动态图| 97超视频在线观看视频| 日韩免费高清中文字幕av| 赤兔流量卡办理| 亚洲av成人精品一二三区| 51国产日韩欧美| 人人妻人人澡人人爽人人夜夜| 精品久久国产蜜桃| 飞空精品影院首页| 久久久国产精品麻豆| 久久人人爽人人爽人人片va| 热re99久久精品国产66热6| 国产成人精品在线电影| 久久ye,这里只有精品| 美女视频免费永久观看网站| 女人久久www免费人成看片| 亚洲av成人精品一二三区| 男人爽女人下面视频在线观看| 看免费成人av毛片| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 国产成人精品在线电影| 国产亚洲欧美精品永久| 亚洲少妇的诱惑av| 婷婷色综合大香蕉| 天堂俺去俺来也www色官网| 全区人妻精品视频| 丰满迷人的少妇在线观看| 亚洲图色成人| 男女啪啪激烈高潮av片| 少妇猛男粗大的猛烈进出视频| 精品亚洲成a人片在线观看| 日本-黄色视频高清免费观看| 日韩强制内射视频| 久久久久久久久久久丰满| 人成视频在线观看免费观看| 啦啦啦视频在线资源免费观看| 两个人免费观看高清视频| 亚洲天堂av无毛| 最近手机中文字幕大全| 久久精品熟女亚洲av麻豆精品| 18在线观看网站| 午夜免费鲁丝| 自线自在国产av| 国产成人精品无人区| 国产高清国产精品国产三级| 亚洲精品456在线播放app| 亚洲成色77777| xxx大片免费视频| 午夜激情福利司机影院| 一个人看视频在线观看www免费| 美女国产视频在线观看| 精品一区二区三区视频在线| 亚洲精华国产精华液的使用体验| 哪个播放器可以免费观看大片| 特大巨黑吊av在线直播| 丝瓜视频免费看黄片| 国产精品国产三级专区第一集| 国产片特级美女逼逼视频| 亚洲成人av在线免费| 久久精品久久精品一区二区三区| 一级毛片aaaaaa免费看小| 久久国产精品大桥未久av| 亚洲美女黄色视频免费看| 欧美日韩国产mv在线观看视频| 夜夜爽夜夜爽视频| 久久久久久久久大av| 日本黄色片子视频| 国产成人精品无人区| videossex国产| 九草在线视频观看| 91久久精品国产一区二区三区| 一个人免费看片子| 日韩中字成人| 狂野欧美白嫩少妇大欣赏| 国产av码专区亚洲av| xxxhd国产人妻xxx| 午夜视频国产福利| 成人国产麻豆网| 亚洲五月色婷婷综合| 99视频精品全部免费 在线| 精品少妇久久久久久888优播| 两个人免费观看高清视频| 欧美bdsm另类| a 毛片基地| 国产免费现黄频在线看| a级毛片免费高清观看在线播放| 国产高清三级在线| 日本av免费视频播放| av不卡在线播放| 黄色一级大片看看| 亚洲av电影在线观看一区二区三区| 日韩视频在线欧美| 少妇被粗大猛烈的视频| 国产精品一区www在线观看| 成人免费观看视频高清| 成人漫画全彩无遮挡| 在线观看一区二区三区激情| 亚洲欧美成人综合另类久久久| a级毛色黄片| 我的老师免费观看完整版| 美女福利国产在线| 国产色婷婷99| 人人妻人人澡人人看| 午夜激情av网站| 免费高清在线观看日韩| 国产高清国产精品国产三级| 黄色毛片三级朝国网站| 久久久国产精品麻豆| 日日摸夜夜添夜夜爱| 久久精品人人爽人人爽视色| 亚洲内射少妇av| 精品亚洲成国产av| 一区二区av电影网| 老女人水多毛片| 美女国产视频在线观看| 国产深夜福利视频在线观看| 精品久久久久久电影网| 黑人巨大精品欧美一区二区蜜桃 | 22中文网久久字幕| 国产片特级美女逼逼视频| 国产女主播在线喷水免费视频网站| 在线 av 中文字幕| 国产亚洲精品第一综合不卡 | 成人毛片60女人毛片免费| 亚洲精品日本国产第一区| 一级,二级,三级黄色视频| 青春草国产在线视频| 如日韩欧美国产精品一区二区三区 | 久久久精品区二区三区| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| 午夜日本视频在线| 青春草国产在线视频| 免费人妻精品一区二区三区视频| 久久精品久久久久久久性| 国产精品无大码| 特大巨黑吊av在线直播| 久久精品国产自在天天线| av线在线观看网站| 桃花免费在线播放| 亚洲第一av免费看| 国产高清国产精品国产三级| 免费看不卡的av| 9色porny在线观看| 亚洲性久久影院| 国精品久久久久久国模美| 少妇高潮的动态图| 日韩欧美精品免费久久| 一级毛片黄色毛片免费观看视频| 热99国产精品久久久久久7| 在线看a的网站| 欧美xxxx性猛交bbbb| 免费人妻精品一区二区三区视频| 亚洲成人一二三区av| 五月伊人婷婷丁香| 自线自在国产av| 成人国产av品久久久| 亚洲av综合色区一区| 欧美人与性动交α欧美精品济南到 | 黄色一级大片看看| 丝袜美足系列| 国产成人精品久久久久久| 下体分泌物呈黄色| 亚洲精品,欧美精品| 三上悠亚av全集在线观看| 搡女人真爽免费视频火全软件| av黄色大香蕉| 国产男人的电影天堂91| 一区二区日韩欧美中文字幕 | 亚洲av.av天堂| 免费少妇av软件| 成人影院久久| 岛国毛片在线播放| 精品国产国语对白av| 亚洲av日韩在线播放| 久久精品夜色国产| 欧美人与性动交α欧美精品济南到 | kizo精华| 久久久久久久精品精品| 国产高清不卡午夜福利| 成年人午夜在线观看视频| av在线观看视频网站免费| 国产精品蜜桃在线观看| 我的女老师完整版在线观看| 久久婷婷青草| 色视频在线一区二区三区| 久久女婷五月综合色啪小说| 春色校园在线视频观看| 亚洲精品乱码久久久久久按摩| 国产69精品久久久久777片| 国产一区二区在线观看日韩| 国产日韩欧美亚洲二区| 有码 亚洲区| 久久av网站| 热re99久久国产66热| 满18在线观看网站| 久久人人爽人人片av| 久久精品国产自在天天线| av黄色大香蕉| 午夜久久久在线观看| 人妻一区二区av| 精品国产国语对白av| 22中文网久久字幕| 免费看av在线观看网站| 亚洲综合色惰| 成年女人在线观看亚洲视频| 人人澡人人妻人| 大陆偷拍与自拍| 免费日韩欧美在线观看| 日本与韩国留学比较|