• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of slight to minor biodegradation on C6to C7light hydrocarbons in crude oils:a case study from Dawanqi Oilfield in the Tarim Basin,NW China

    2016-10-20 02:27:38LuYangChunmingZhangMeijunLiJingZhaoXueningQiJinxiuDu
    Acta Geochimica 2016年2期

    Lu Yang·Chunming Zhang·Meijun Li·Jing Zhao· Xuening Qi·Jinxiu Du

    ?

    The effect of slight to minor biodegradation on C6to C7light hydrocarbons in crude oils:a case study from Dawanqi Oilfield in the Tarim Basin,NW China

    Lu Yang1·Chunming Zhang2·Meijun Li1·Jing Zhao1· Xuening Qi3·Jinxiu Du4

    Light hydrocarbons(LHs)are one of the main petroleum fractions in crude oils,and carry much information regarding the genetic origin and alteration of crude oils.But secondary alterations-especially biodegradation-have a significant effect on the composition of LHs in crude oils.Because most of the LHs affected in oils underwent only slight biodegradation(rank 1 on the biodegradation scale),the variation of LHs can be used to describe more the refined features of biodegradation.Here,23 crude oils from the Dawanqi Oilfield in the Tarim Basin,NW China,eleven of which have been biodegraded to different extents,were analyzed in order to investigate the effect of slight to minor biodegradation on C6-C7LHs. The study results showed that biodegradation resulted in the prior depletion of straight-chained alkanes,followed by branched alkanes.In slight and minor biodegraded oils,such biodegradation scale could not sufficiently affect C6-C7cycloalkanes.For branched C6-C7alkanes,generally,monomethylalkanesarebiodegradedearlierthan dimethylalkanes and trimethylalkanes,which indicates that branched alkanes are more resistant to biodegradation,with the increase of substituted methyl groups on parent rings. The degree of alkylation is one of the primary controlling factors on the biodegradation of C6-C7LHs.There is a particular case:although 2,2,3-trimethylbutane has a relative higher alkylation degree,2,2-dimethylpentane is more resistant to biodegradation than 2,2,3-trimethylbutane.2,2-Dimethylpentane is the most resistant to biodegradation in branched C6-C7alkanes.Furthermore,the 2-methylpentane/3-methylpentane and 2-methylhexane/3-methylhexane ratios decreased steadily with increasing biodegradation,which implies that isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain isomers.The position of the alkyls on the carbon skeleton is also one of the critical factors controlling the rate of biodegradation.With increasing biodegradation,Mango’s LH parameters K1 values decrease and K2 values increase,the values of n-heptane and isoheptane decrease,and the indices of methylcyclohexane and cyclohexane increase. LH parameters should be applied cautiously for the biodegraded oils.Because biodegraded samples belong to slight or minor biodegraded oils,the values of n-heptane and isoheptane from Dawanqi Oilfield can better reflect and determine the‘‘Biodegraded’’zone.When the heptane value is 0-21 and the isoheptane value is 0-2.6,the crude oil in Dawanqi Oilfield is defined as the‘‘Biodegraded’’zone.

    Crude oils·Light hydrocarbons· Biodegradation·Dawanqi Oilfield·Tarim Basin

    This contribution has been accepted as a poster presentation in the 27th International Meeting on Organic Geochemistry.

    ? Chunming Zhang zhangcm@126.com

    1State Key Laboratory of Petroleum Resources and Prospecting,College of Geosciences,China University of Petroleum,Beijing 102249,China

    2Key Laboratory of Exploration Technologies for Oil and Gas Resources,College of Earth Environment and Water Resource,Yangtze University,Wuhan 430100,China

    3Langfang Branch,Research Institute of Petroleum Exploration and Development,PetroChina,Langfang 065000,China

    4Huabei Oilfield Company,PetroChina,Renqiu 062552,China

    1 Introduction

    Light hydrocarbons(LHs)are one of the main petroleum fractions in crude oils,especially for light oils in which commonly used biomarkers are usually present in extremely low concentrations or even under the detection limit of routine gas chromatography-mass spectrometry analyses(Peters et al.2005).

    Benchmark research has suggested that LHs carry much information regarding the genetic associations and alteration of crude oils.It has been documented that LHs can be applied to oil-oil correlation studies,distinguishing genetic types of crude oils,and determining their thermal maturation levels(Williams 1974;Philippi 1975;Thompson 1983;Halpern 1995;Haven 1996;Chung et al.1998;Zhang et al.2005).However,secondary alteration-especially biodegradation-has a significant effect on the composition of LHs in crude oils.Based on the differing resistance of compound classes to biodegradation,Peters et al.(2005)developed a scale of 1-10 to assess the degree of biodegradation.Much work has been done on the effect of biodegradation on the molecular composition of crude oils(Volkman et al.1983;Connan 1984;Palmer 1993;Fisher et al.1998),whilst relatively little work has been done on the effect of biodegradation on the behavior of LHs.

    Welte et al.(1982)demonstrated the preferential depletion of straight-chain alkanes relative to branched and cyclic alkanes during biodegradation and proposed two parameters(iso-pentane/n-pentane,3-methylpentane/nhexane)that could be used to indicate biodegradation. BeMent et al.(1994)suggested that 2,3-dimethylpentane is more subject to bacterial attack than 2,4-dimethylpentane. Masterson et al.(2001)showed that n-heptane,3-methylhexane,cyclohexanel and methylcyclohexane were more easily removed by biodegradation than benzene or toluene. George et al.(2002)suggested three main controls on the susceptibility to biodegradation(carbon skeleton,degree of alkylation,and position of alkylation).

    Up to the present,details have been limited on the relative susceptibility of LHs to biodegradation.Because most of the LHs in oils underwent only slight biodegradation(rank 1 of the biodegradation scale),the variation of LHs can be used to describe more the refined features of biodegradation.Here,a total of 23 light oils from the Dawanqi Oilfield in the Tarim Basin(NW China)were analyzed to investigate the effect of slight to minor biodegradation on the distribution of C6-C7LHs.The resultscanbroadenthecurrentunderstandingof biodegradation effects on these low molecular weight hydrocarbons in crude oils.

    2 Geologic setting

    The Dawanqi Oilfield is located in the western margin of the Kuqa Depression,north of the Tarim Basin,NW China(Fig.1).The oil field covers an area of 5.4 km2with a proved oil reserve of 48.35×106bbl,with 13.64×109scf of dissolved gas(Zhao et al.2003).The Kuqa Depression is situated in the southern foot of the Tianshan orogenic Belt and is dominated by Mesozoic and Cenozoic deposits.This east-west trending depression,450 km long and 50-80 km wide and covering an area of about 2.8×104km2,is one of the most productive gas depressions in China.It contains the North and South Slopes,Baicheng and Yangxia Sags,and Yiqikelike,Kelasu and Qiulitage structural Belts(Graham et al.1993;Jiang et al.2010).The Dawanqi Anticline,situated in the western part of the Baicheng Sag,is composed of several normal fault blocks or broken anticlines separated by a number of normal faults(Zhang et al.2011).These faults,as pathways for oil migration,lead to the accumulation of oil and gas in traps under the gypsum salt(Tang et al. 2014).

    Based on seismic,drilling and logging data,the sequence stratigraphic framework of Dawanqi Oilfield is:Paleogene Suweiyi Formation,Neogene Jidike,Kangcun and Kuqa Formations,and the Quaternary(Liu et al.2005).The Neogene Kuqa Formation is the most important prolific payzone in Dawanqi Oilfield.The Upper Triassic lacustrine shales/mudstones,thin coal seams formed in fluvial-deltaic and lacustrine environments,and the Lower-Middle Jurassic coal beds deposited in a swamp-lacustrine system were considered to be the main potential source rocks in the Kuqa Depression(Liang et al.2003;Zou et al.2006).

    3 Samples and experimental procedures

    Twenty-three light oil samples were carefully selected at wellheads from the Dawanqi Oilfield in the Tarim Basin. These samples were collected at temperatures between 25 and 30°,but were quickly refrigerated at below-6°(Canipa-Morales et al.2003).The production zones of these samples are 69.5-662.5 m deep.

    Gas chromatography(GC)of the whole oil samples was performed on an Agilent 6890 gas chromatograph,equipped with two sets of electronic pressure controllers and a flame ionization detector(300°).A 50 m PONY capillary column was used with Helium as the carrier gas and a split ratio of approximately 50:1.The oven was programmed to an initial temperature of 35°for 5 min,followed by a heating ramp at 4°/min to 300°for 20 min.LHs were identified based on the GC analysis technique and byrelative retention times.The whole oil GC of C6-C7LHs in well DW126-8 and their qualitative analyses are shown in Fig.2 and Table 1,respectively.

    Fig.1 Location map of the Dawanqi Oilfield in the Tarim Basin

    Fig.2 Partial whole oil gas chromatograms of well DW126-8,showing the C6-C7region.Peak numbers are listed in Table 1

    These crude oil samples have MPR values ranging from 0.96 to 1.17(RO≈0.88%-0.92%)(Table 2).They have similar thermal maturity.Their densities are commonly lowerthan0.8000 g cm-3,withaminimumof 0.7801 g cm-3.The variations in the relative amounts of fluorenes,dibenzothiophenes,and dibenzofurans from the oil samples are plotted on a ternary diagram from Li et al.(2013).As shown in Fig.3,all the data points are distributed in Zone 4,which shows that Dawanqi oils may originatefrombrackish/salinelacustrineshales.All Dawanqi oil samples belong to the same oil family.

    Table 1 List of C6-C7light hydrocarbon in Dawanqi oils

    4 Results and discussion

    4.1 Gas chromatography of whole oils

    Whole oil gas chromatograms show that Dawanqi oils are characterized by the distribution of light oil,with a predominance of low molecular-weight normal alkanes.In general,the crude oils in the Dawanqi Oilfield have the following distribution types(Fig.4;Table 2).

    Type I The normal alkanes have a common range of carbonnumbersfromnC4to nC30,with a unimodalpattern maximizing at nC9or nC10,are observed.The values of nC21-/nC22+and nC13-/nC14+have a higher relative abundance(9.43-11.68 and 1.33-1.79).They are dominated by low molecular-weight normal alkanes.Most of crudeoilsinDawanqiOilfieldbelongtothistype(Fig.4a). Type II The normal alkane series of this type exhibit a common carbon number range of nC4to nC30and a bimodal distribution pattern,predominated by nC9and nC17.The value of nC21-/nC22+ranges from 3.32 to 6.40 and the value of nC13-/nC14+ranges from 0.29 to 0.95(Fig.4b). Type III The carbon numbers of normal alkanes range from nC4to nC30maximizing at nC14.The samples have a nC21-/nC22+value ranging from 4.35 to 5.27 and a nC13-/nC14+value between 0.40 and 0.56(Fig.4c).

    Type IV There is no obvious n-alkane distribution in this type.Pristine and phytane have been depleted(Fig.4d).

    Except Type IV,the values of pristane/phytane(Pr/Ph)values range from 1.90 to 3.06.Twenty-two crude oil samples have Pr/nC17values ranging from 0.10 to 0.18 and Ph/nC18values between 0.05 and 0.08.These two ratios show slight changes(Table 2).

    Welte et al.(1982)proposed two LH ratios,3MC5/nC6and iso-pentane/n-pentane(iC5/nC5),to identify biodegradation.In the major crude oils(Type I),there are lower relative ratios of 3MC5/nC6and iC5/nC5(0.35-0.37 and 0.79-0.93).In contrast,from type II to type III,these two ratios increase gradually(0.48-2.86 and 0.95-2.51),which shows that crude oils from the Dawanqi Oilfield are characterized by obvious biodegradation.In type IV oils,nC5was totally depleted(Fig.5;Table 2).

    Based on the above analyses,as reported by Yang et al.(2015),the Dawanqi oils from shallower depth usually show biodegraded characteristics.Type I oils are non-degraded oils.Type II oils and Type III oils belong to slight biodegraded oils(rank 1 on the degree of biodegradation scale),and Type IV oils belong to minor biodegraded oils(rank 3 on the degree of biodegradation scale)(Peters et al. 2005).From Type I to Type IV,the extent of biodegradation exhibits a marked tendency to increase.

    4.2 Effect of biodegradation on C6-C7light hydrocarbons

    A total of 23 homologues and isomers of C6-C7LHs,includingstraight-chainedalkanes,branchedalkanes,5-membered cycloalkanes,6-membered cycloalkanes,and aromatic hydrocarbons,were detected with the GC analysis technique(Fig.2;Table 1).Here,no significant systematic susceptibility to biodegradation was found within Benz and Tol,so we will not discuss these two compounds.Except aromatic hydrocarbons,C6-C7LHs are mainly controlled by biodegradation.

    4.2.1 Relative abundance of C6-C7homologues and isomers

    The relative abundance of C6-C7homologues and isomers in Dawanqioilsshowregulardistributionduringbiodegradation.

    In Type I oils,six-membered cycloalkanes have a relatively higher abundance(33.69%-36.70%),followed by straight-chained alkanes(27.00%-28.41%)and branched alkanes(24.90%-27.70%).The proportions of five-membered cycloalkanes range from 10.39%to 11.26%,with relatively lower values.With increasing biodegradation(from Type II to Type IV),the relative abundance of straight-chained alkanes and branched alkanes decreased gradually;five-membered cycloalkanes and six-membered cycloalkanesincreasedgradually(Fig.6; Table 3). Biodegradation resulted in the preferential depletion of straight-chained alkanes and branched alkanes.

    Table 2 General information for oils from Dawanqi Oilfield

    Fig.3 Ternary diagram showing the proportion of dibenzothiophenes(DBTs),fluorenes(FLs),and dibenzofurans(DBFs)from Dawanqi oils

    Fig.4 Whole oil gas chromatogram of different types oils from the Dawanqi Oilfield,Tarim Basin

    Fig.5 Plot of 3MC5/nC6vs iC5/nC5of crude oils from Dawanqi Oilfield

    Fig.6 Graph of the average relative content of C6-C7straightchained alkanes,branched alkanes,five-membered cycloalkanes and six-membered cycloalkanes for Dawanqi oils(filled diamond straightchained alkane;open diamond branched alkane;open circle fivemembered cycloalkane;filled square six-membered cycloalkane)

    4.2.2 Branched alkanes

    A total of four methyl-,six dimethyl-and one trimethylsubstituted C6-C7alkanes were detected in oils from the Dawanqi Oilfield(Fig.2;Table 1).The relative abundance of these branched C6-C7alkanes exhibited regular distribution during biodegradation.

    As shown in Fig.7,with increasing biodegradation,the relative abundance of 2MC6decreases gradually.The relative amounts of 2MC5and 3MC6almost remained unchanged in type I and type II,while decreasing in type III and type IV.3MC5show a marked increasing trend with greater biodegradation until type IV oils.Dimethylalkanes and trimethylalkanes exhibit a steadily increasing trend,especially2,3DMC5.InbranchedC6-C7alkanes,biodegradation resulted in the prior depletion of 2MC6,whereas 2,3DMC5is the most resistant to biodegradation.

    The ternary diagram of C6-C7monomethylalkanes,dimethylalkanes,and trimethylalkanes also shows a similar distribution(Fig.8).With increasing biodegradation,the relative contents of monomethylalkanes decrease and dimethylalkanes increase.For trimethylalkanes,because only 2,2,3TMC4was detected in Dawanqi oils by GC analysis technique,the proportions of the trimethylalkanes range from 1.06%to 4.42%,with relatively lower values. The relative contents of trimethylalkanes also show a slight increasing trend.As already mentioned by George et al.(2002)and Yang et al.(2015),the degree of alkylation isone of the primary controlling factors for the biodegradation of C6-C7LHs.Generally,branched C6-C7alkanes are more resistant to biodegradation when more alkylated. There is,however,a particular case:although 2,2,3TMC4has a relative higher alkylation degree,2,3DMC5is more resistant to biodegradation than 2,2,3TMC4.

    The position of alkyls on the carbon skeleton is also one of critical factors controlling the rate of biodegradation,which is mainly reflected in the variation of the 2MC5/ 3MC5and 2MC6/3MC6ratios in Dawanqi oils(Fig.9;Table 3).In non-degraded oils(type I oils),there are higher relative ratios of 2MC5/3MC5and 2MC6/3MC6(1.26-1.32 and 0.90-0.92).With increasing biodegradation,these two ratios show a remarkable decreasing trend(0.16-1.28 and 0.26-0.74),which indicates that the 2MC5and 2MC6are more susceptible to biodegradation than the 3MC5and 3MC6.Isomers of the bilateral methyl groups are more prone to bacterial attack relative to the mid-chain isomers(George et al.2002;Yang et al.2015).However,no similar characteristics in susceptibility to biodegradation were found within other branched C6-C7alkanes,implying that the biodegradation did not progress sufficiently for other analogue ratios of branched alkanes.

    Table 3 Group compositions of C6-C7light hydrocarbon and relevant ratios

    4.2.3 Cycloalkanes

    A total of eight C6-C7cycloalkanes,including six fivemembered cyclcoalkanes and two six-membered cyclohexanes,were detected(Fig.2;Table 1).In the Dawanqi samples,no obvious changes occured in the relative abundance of the C6-C7cycloalkanes during biodegradation,which implies that such a biodegradation scale could not sufficiently affect these compounds.

    4.3 Light hydrocarbon parameters

    Based on the above study,the variation of C6-C7LHs may affect common LH parameters.

    4.3.1 Mango's light parameters K1 and K2

    Mango(1987)determined that four isoheptanes had fixed roles in different petroleum systems,K1=(2MC6+2,3-DMC5)/(3MC6+2,4DMC5)≈1.0,regardless of the concentrations in the oils.Subsequently,Mango(1990,1992,1994)posed a steady-state catalytic process and the parentdaughter scheme was established and modified for theformation of C7hydrocarbons.Based on the scheme,the second invariance ratio was predicted,K2=(2,2DMC5+ 2,3DMC5+2,4DMC5+3,3DMC5+2,2,3TMC4)/(2MC6+ 3MC6+1,1DMCYC5+1,c3DMCYC5+1,t3DMCYC5). Generally,analogous oil genesis sets should have similar K1 and K2 values.

    In non-degraded oils(type I oils),Mango parameter K1 is approximately 1.04-1.05,and K2 is approximately 0.25-0.26.In type II and type III oils,Mango parameters show relatively low K1 values(0.81-0.99)and relatively high K2 values(0.29-0.59).The K1 values are affected very little in type II and type III oils.In typeIV oils,there are higher relative Mango parameters of K1 and K2(1.83 and 1.14).Biodegradation could affect Mango parameters K1 and K2(Fig.10;Table 4).

    Fig.7 Bar charts of the average relative content of branched C6-C7alkanes for Dawanqi oils

    Fig.8 Ternary diagram of C6-C7monomethylalkanes,dimethylalkanes and trimethylalkanes for Dawanqi oils

    Fig.9 Plot of 2MC5/3MC5vs 2MC6/3MC6of crude oils from Dawanqi Oilfield

    4.3.2 Heptane value and isoheptane value

    Thompson(1979)proposed two LH parameters:the Paraffin index 1,of which the formula is:Isoheptane Value=(2MC6+3MC6)/(1,c3DMCYC5+1,t3DMCYC5+1,t2DMCYC5)and the Paraffin index 2,which can been expressed as:Heptane Value=nC7×100/(CYC6+2MC6+ 1,1DMCYC5+3MC6+1,c3DMCYC5+1,t3DMCYC5+ 1,t2DMCYC5+nC7+MCYC6).The distribution of nondegraded samples from the Dawanqi Oilfield show that Dawanqi oils belong to mature oils.With increasing biodegradation,the values of n-heptane and isoheptane decrease gradually(Fig.11;Table 4).

    Thompson(1983)proposed that when the heptane value is 0-18 and isoheptane value is 0-0.8,a crude oil iscatergorized as‘‘Biodegraded’’.However,in the Dawanqi oils,only three biodegraded oils are in the‘‘Biodegraded’’zone determined by Thompson(1983)(Fig.11;Table 4). Here,because the biodegraded samples belong to slight or minor biodegraded oils(ranks 1 or 3 on the degree of biodegradation scale)as described before,the values of nheptane and isoheptane from the Dawanqi Oilfield can better reflect and determine‘‘Biodegraded’’zone.As shown in Fig.11,when the heptane value is 0-21 and the isoheptane value is 0-2.6,the crude oil can be catergorized as within the‘‘Biodegraded’’zone.

    Fig.10 Bar charts of Mango parameters K1 and K2 for oil samples from Dawanqi Oilfield

    Table 4 Geochemical parameters list of C6-C7hydrocarbons

    4.3.3 Methylcyclohexane index and cyclohexane index

    The C6and C7oil correlation ternary diagram has been widely used to gain geochemical information(Hu et al. 1990;Dai 1992,1993;Odden et al.1998;Odden 1999;Jarvie 2001;Hu and Zhang 2011).Based on these diagrams,the indices of methylcyclohexane(MCH index)and cyclohexane(CA index)have been developed by many scholars as optimum indices for parent material type and maturity(Hu et al.1990;Dai 1992,1993;Hu and Zhang 2011).The formula of these two parameters are:MCHindex=MCYC6/(nC7+MCYC6+1,1DMCYC5+1,c3DMCYC5+1,t3DMCYC5+1,t2DMCYC5)×100,CA index=CYC6/(nC6+CYC6+MCYC5)×100.Parent materials from humic kerogen show the distribution pattern of the MCH index as>50%and the CA index as>27%,while those from sapropelic kerogen show the distribution pattern of the MCH index as<50%and the CA index as<27%.

    Fig.11 Correlation of the the isoheptane and heptane values of crude oils from Dawanqi Oilfield,contrasting with the Thompson model(1983)

    Fig.12 Ternary diagram of methylcyclohexane(MCYC6),dimethylcyclopentanes(∑DMCYC5)and n-heptane(nC7)for Dawanqi oils

    Fig.13 Ternary diagram of cyclohexane(CYC6),methylcyclopentane(MCYC5)and n-hexane(nC6)for Dawanqi oils

    The ternary diagram of the C7LHs show that the relative contentofmethylcyclohexaneis49%-74%,whichishigher than those of dimethylcyclopentane(14%-26%)and nheptane(0%-36%).Correspondingly,the ternary diagram of C6LHs show that the relative content of cyclohexane is 40%-78%,which is higher than those of methylcyclopentane(13%-24%)and n-hexane(1%-47%).Most of oil data is distributed in the position of methylcyclohexane and cyclohexane,which indicates that the Dawanqi oils maybe originate from terrigenous source rock.We can also see that the MCH index and CA index increase obviously with increasingbiodegradation,whichiscausedbythepreferential degradationofstraight-chainedalkanes(Figs.12,13;Table 4).

    All the above discussions indicate that LH parameters should be applied cautiously for the biodegraded oils.

    5 Conclusions

    1.Whole oil gas chromatograms show that Dawanqi crude oils have four distribution types.Type I oils are non-degraded oils.Type II oils and Type III oils belong to slight biodegraded oils(rank 1 on the degree of biodegradation scale),and Type IV oils belong to minor biodegraded oils(rank 3 on the degree of biodegradation scale).

    2.Biodegradation resulted in the preferential depletion of straight-chained alkanes,followed by branched alkanes.In slight and minor biodegraded oils,such biodegradation scale could not sufficiently affect C6-C7cycloalkanes.

    3.For branched C6-C7alkanes,biodegradation resulted in the preferentialdepletion of 2MC6.2,3DMC5is the most resistant to biodegradation.With increasing biodegradation,therelativecontentsofmonomethylalkanes decrease,whereas dimethylalkanes and trimethylalkanes increase.The degree of alkylation is one of the primary controlling factors of the biodegradation of C6-C7LHs.Generally,branched C6-C7alkanes are more resistant to biodegradation when more alkylated However,there is a particularcase:although2,2,3TMC4hasarelativehigher alkylationdegree,2,3DMC5ismoreresistanttobiodegradation than 2,2,3TMC4.

    4.With increasing biodegradation,the ratios of 2MC5/ 3MC5and 2MC6/3MC6show a remarkable decrease,which indicates that 2MC5and 2MC6are more susceptible to biodegradation than 3MC5and 3MC6. Isomers of bilateral methyl groups are more prone to bacterial attack relative to mid-chain isomers.The position of alkyls on the carbon skeleton is also one of critical factors controlling the rate of biodegradation.

    5.During biodegradation,Mango’s LH parameters K1 values decrease and K2 values increase,the values of nheptane and isoheptane decrease,and the indices of methylcyclohexane and cyclohexane increase.LHs parameters should be applied cautiously for the biodegradedoils.Becausebiodegradedsamplesbelongtoslight or minor biodegraded oils,the values of n-heptane and isoheptane from the Dawanqi Oilfield can better reflect and determine‘‘Biodegraded’’zone.When the heptane value is 0-21 andtheisoheptane valueis 0-2.6,thecrude oil is categorized as within‘‘Biodegraded’’zone.

    AcknowledgmentsThe work was financially supported by the National Natural Science Foundation of China(Grant No.41272158 and 41172136).

    BeMent WO,Levey RA,Mango FD(1994)The temperature of oil generation as defined with a C7chemistry maturity parameter(2,4-DMP/2,3-DMP ratio).In:First joint AAPG/AMPG Hedberg research conference.Geological Aspects of Petroleum System,2-6 Oct 1994,Mexico City(Oral Presentation)

    Canipa-Morales NK,Galan-Vidal CA,Guzman-Vega MA,Jarvie DM(2003)Effect of evaporation on C7light hydrocarbon parameter. Org Geochem 34:813-826

    Chung HM,Walters CC,Buck S,Bingham B(1998)Mixed signals of the source and thermal maturity for petroleum accumulations from light hydrocarbons:an example of the Beryl Field.Org Geochem 29:381-396

    Connan J(1984)Biodegradation of crude oils in reservoirs.Adv Pet Geochem 1:299-335

    Dai JX(1992)Identification and distinction of various alkane gases. Sci China B 35:1246-1257

    Dai JX(1993)Identification of coal formed gas and oil type gas by light hydrocarbons.Pet Explor Dev 20:26-32(in Chinese with English abstract)

    Fisher SJ,Alexander R,Kagi RI,Oliver GA (1998)Aromatic hydrocarbons as indicators of biodegradation in North Western Australian reservoirs.In:Purcell PG,Purcell RR(eds),The sedimentary basins of Western Australia 2.Proceedings of Petroleum Exploration Society of Australia Symposium,Perth,pp 185-194

    George SC,Boreham CJ,Minifie SA,Teerman SC(2002)The effect of minor to moderate biodegradation on C5to C9hydrocarbons in crude oils.Org Geochem 33:1293-1317

    Graham SA,Hendrix MS,Wang LB,Homewood P(1993)Collision successor basins of western China,impact of tectonic inheritance on sand composition.Geol Soc Am Bull 105:323-344

    Halpern HI(1995)Development and applications of light-hydrocarbon-based star diagrams.AAPG Bull 79:801-815

    Haven HLT(1996)Applications and limitations of Mango’s light hydrocarbon parameters in petroleum correlation studies.Org Geochem 24:957-976

    Hu GY,Zhang S(2011)Characterization of low molecular weight hydrocarbons in Jingbian gas field and its application to gas sources identification.Energy Explor Exploit 29:777-796

    Hu TL,Ge BX,Zhang YG,Liu B(1990)The development and application of fingerprint parameters for hydrocarbons absorbed by source rocks and light hydrocarbons in natural gas.Pet Geol Exp 12:375-393(in Chinese with English abstract)

    Jarvie DM(2001)Williston basin petroleum systems:inferences from oil geochemistry and geology.Mt Geol 38:19-41

    Jiang ZX,Li LX,Song Y,Tian FH,Zhao MJ,Wang HJ,Zhao ZX(2010)Control of neotectonic movement on hydrocarbon accumulation in the Kuqa Foreland Basin,west China.Pet Sci 7:49-58

    Li MJ,Wang TG,Zhong NN,Zhang WB,Sadik A,Li HB(2013)Ternary diagram of fluorenes,dibenzothiophenes and dibenzofurans:indicating depositional environment of crude oil source rocks.Energy Explor Exploit 31:569-588

    Liang DG,Zhang SC,Chen JP,Wang FY,Wang PR(2003)Organic geochemistry of oil and gas in the Kuqa Depression,Tarim Basin,NW China.Org Geochem 34:873-888

    Liu WH,Zhang DW,Zheng JJ,Chen MJ,Wang XF,Gao B(2005)A preliminary discussion on geochemical dynamic tracing of oil/gas reservoir ring process-taking Dawanqi structure in Kuqa Depression as an example.Oil Gas Geol 26:716-717(in Chinese with English abstract)

    Mango FD(1987)An invariance in the isoheptanes of petroleum. Science 237:514-517

    Mango FD(1990)The origin of light hydrocarbons in petroleum:a kinetic test of the steady-state catalytic hypothesis.Geochim Cosmochim Acta 54:1315-1323

    Mango FD(1992)Transition metal catalysis in the generation of petroleum:a genetic anomaly in ordovician oils.Geochim Cosmochim Acta 10:3851-3854

    Mango FD(1994)The origin of light hydrocarbon in petroleum:ring preferencein theclosure of carbocyclicrings.Geochim Cosmochim Acta 58:895-901

    Masterson WD,Dzou LIP,Holba AG,F(xiàn)incannon AL,Ellis L(2001)Evidence for biodegradation and evaporative fractionation in West Sak,Kuparuk and Prudhoe Bay field areas,North Slope,Alaska.Org Geochem 32:411-441

    Odden W (1999)A study of natural and artificially generated light hydrocarbons(C4-C13)in source rocks and petroleum fluids from offshore mid-Norway and the southernmost Norwegian and Danish sectors.Mar Pet Geol 16:747-770

    Odden W,Patience RL,Van Graas GW(1998)Application of light hydrocarbons(C4-C13)to oil/source rock correlations:a study of the light hydrocarbon compositions of source rocks and test fluids from offshore Mid-Norway.Org Geochem 28:823-847

    Palmer SE(1993)Effect of biodegradation and water washing on crude oil composition.In:Engel MH,Macko SA(eds)Organic geochemistry,principles and applications.Plenum,New York,pp 511-533

    Peters KE,Walters CC,Moldowan JM(2005)The biomarker guide. Cambridge University Press,Cambridge

    Philippi GT(1975)The deep subsurface temperature controlled origin of the gaseous and gasoline-range hydrocarbons of petroleum. Geochim Cosmochim Acta 39:1353-1373

    Tang XY,Yang SC,Hu SB(2014)Thermal and maturation history of Jurassic source rocks in the Kuqa foreland depression of Tarim Basin,NW China.J Asian Earth Sci 89:1-9

    Thompson KFM(1979)Light hydrocarbons in subsurface sediments. Geochim Cosmochim Acta 43:657-672

    Thompson KFM(1983)Classification and thermal history of petroleum based on light hydrocarbon.Geochim Cosmochim Acta 47:303-316

    Volkman JK,Alexander R,Kagi RI,Woodhouse GW (1983)Demethylated hopanes in crude oils and their applications in petroleum geochemistry.Geochim Cosmochim Acta 47:785-794 Welte DH,Kratochvil H,Rullko¨tter J,Ladwein H,Schaefer RG(1982)Organic geochemistry of crude oils from the Vienna Basin and an assessment of their origin.Chem Geol 35:33-68

    Williams JA(1974)Characterization of oil types in Williston Basin. AAPG Bull 58:1243-1252

    Yang L,Zhang CM,Li MJ,Du JX (2015)Influence of slight biodegradation on C7hydrocarbons in crude oils:a case study of Dawanqi Oilfield in Tarim Basin.Geochimica 44:485-492(in Chinese with English abstract)

    Zhang CM,Li ST,Zhao HJ,Zhang J(2005)Applications of Mango’s light hydrocarbon parameters to petroleum from Tarim Basin,NW China.Appl Geochem 20:545-551

    Zhang SC,Zhang B,Zhu GY,Wang HT,Li ZX(2011)Geochemical evidence for coal-derived hydrocarbons and their charge historyin the Dabei Gas Field,Kuqa Thrust Belt,Tarim Basin,NW China.Mar Pet Geol 28:1364-1375

    Zhao MJ,Song Y,Liu SB,Qin SF(2003)The diffusion influence on gas pool:Dawanqi Oilfield as an example.Nat Gas Geosci 14:393-397

    Zou YR,Zhao CY,Wang YP,Zhao WZ,Peng PA,Shuai YH(2006)Characteristics and origin of natural gases in the Kuqa Depression of Tarim Basin,NW China.Org Geochem 37:280-290

    26 October 2015/Revised:11 November 2015/Accepted:29 December 2015/Published online:27 January 2016?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    久久6这里有精品| 午夜视频国产福利| 极品教师在线视频| 最近2019中文字幕mv第一页| 亚洲欧美日韩卡通动漫| 久久久精品欧美日韩精品| 亚洲一级一片aⅴ在线观看| 日韩欧美精品v在线| 岛国毛片在线播放| 国产 一区 欧美 日韩| 午夜精品在线福利| 观看美女的网站| 久久久久久久久大av| 永久免费av网站大全| 欧美变态另类bdsm刘玥| 老女人水多毛片| 亚洲精品中文字幕在线视频 | 国产精品.久久久| 欧美 日韩 精品 国产| 18禁在线无遮挡免费观看视频| 高清av免费在线| 国产高潮美女av| 日韩,欧美,国产一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 青春草国产在线视频| 亚洲成人久久爱视频| 一级毛片我不卡| 嫩草影院新地址| 一区二区三区四区激情视频| 高清av免费在线| 日韩中字成人| 日韩av在线免费看完整版不卡| 三级经典国产精品| 欧美高清成人免费视频www| 久久精品国产亚洲av天美| 亚洲成人一二三区av| 国产精品一二三区在线看| 51国产日韩欧美| 国产片特级美女逼逼视频| videossex国产| av在线天堂中文字幕| 五月玫瑰六月丁香| 国产亚洲91精品色在线| 欧美bdsm另类| 高清日韩中文字幕在线| 亚洲成人中文字幕在线播放| 日韩av不卡免费在线播放| 国产av在哪里看| 午夜福利网站1000一区二区三区| 国产精品人妻久久久久久| 晚上一个人看的免费电影| 大香蕉97超碰在线| 国产亚洲最大av| 国产精品av视频在线免费观看| av播播在线观看一区| 国产爱豆传媒在线观看| av.在线天堂| 亚洲欧美精品自产自拍| 精品不卡国产一区二区三区| 成年版毛片免费区| 国内精品美女久久久久久| 亚洲电影在线观看av| 少妇熟女aⅴ在线视频| 免费观看精品视频网站| 高清在线视频一区二区三区| 少妇人妻精品综合一区二区| 一级毛片aaaaaa免费看小| 亚洲精品国产av蜜桃| 99热6这里只有精品| 亚洲va在线va天堂va国产| 日本爱情动作片www.在线观看| 国产av国产精品国产| 一区二区三区四区激情视频| 噜噜噜噜噜久久久久久91| 最近视频中文字幕2019在线8| 亚洲精品国产成人久久av| 亚洲18禁久久av| 久久久精品94久久精品| 国产一区亚洲一区在线观看| 看非洲黑人一级黄片| 日韩伦理黄色片| 26uuu在线亚洲综合色| 国产黄频视频在线观看| 亚洲精品乱码久久久久久按摩| 精品酒店卫生间| 天天一区二区日本电影三级| 在线观看人妻少妇| 乱码一卡2卡4卡精品| 久久久久性生活片| 国产精品久久久久久av不卡| 精品一区在线观看国产| 国产精品久久久久久精品电影| 日韩av在线免费看完整版不卡| 欧美日韩综合久久久久久| 在线a可以看的网站| 麻豆成人av视频| 成人高潮视频无遮挡免费网站| 搞女人的毛片| 亚洲在久久综合| 99久久九九国产精品国产免费| 久久久久久久久久久免费av| 久久精品国产亚洲av涩爱| 青春草视频在线免费观看| videos熟女内射| 直男gayav资源| 丝瓜视频免费看黄片| 亚洲精品中文字幕在线视频 | 久久国产乱子免费精品| 亚洲av国产av综合av卡| 边亲边吃奶的免费视频| 看十八女毛片水多多多| h日本视频在线播放| 91精品一卡2卡3卡4卡| 一级毛片aaaaaa免费看小| 亚洲美女搞黄在线观看| 久久精品国产亚洲网站| 啦啦啦中文免费视频观看日本| 色综合站精品国产| 高清日韩中文字幕在线| 亚洲成人中文字幕在线播放| 亚洲精品aⅴ在线观看| 男女啪啪激烈高潮av片| 欧美区成人在线视频| 我的老师免费观看完整版| 日韩精品青青久久久久久| 国产黄频视频在线观看| 国产成人免费观看mmmm| 草草在线视频免费看| 看非洲黑人一级黄片| 日韩精品有码人妻一区| 美女国产视频在线观看| av免费在线看不卡| 亚洲熟妇中文字幕五十中出| 亚洲熟妇中文字幕五十中出| 国产精品久久久久久精品电影| 亚洲18禁久久av| 国产精品爽爽va在线观看网站| 国产精品女同一区二区软件| a级毛片免费高清观看在线播放| 亚洲自偷自拍三级| 亚洲精品色激情综合| 九九久久精品国产亚洲av麻豆| 国产精品无大码| 日本wwww免费看| 在线免费观看的www视频| 久久久久久久久久黄片| 少妇裸体淫交视频免费看高清| 久久97久久精品| 亚洲精品国产av成人精品| 99热全是精品| 特大巨黑吊av在线直播| 晚上一个人看的免费电影| 亚洲图色成人| 精品久久久久久久久久久久久| 久久精品国产鲁丝片午夜精品| 日韩欧美国产在线观看| 亚洲人成网站高清观看| 成人一区二区视频在线观看| 岛国毛片在线播放| 日本黄大片高清| 在线观看av片永久免费下载| 黄片wwwwww| 日韩欧美 国产精品| 91午夜精品亚洲一区二区三区| 亚洲欧美精品专区久久| 亚洲伊人久久精品综合| 亚洲最大成人av| 综合色丁香网| 91在线精品国自产拍蜜月| 国产黄色小视频在线观看| 国产精品精品国产色婷婷| 日韩成人av中文字幕在线观看| 亚洲最大成人av| 淫秽高清视频在线观看| 最近中文字幕高清免费大全6| 一个人观看的视频www高清免费观看| 久久韩国三级中文字幕| 国产精品美女特级片免费视频播放器| 欧美丝袜亚洲另类| 女的被弄到高潮叫床怎么办| 国产亚洲av片在线观看秒播厂 | 国产在视频线在精品| 观看免费一级毛片| 少妇的逼水好多| 内射极品少妇av片p| 欧美激情久久久久久爽电影| 在线天堂最新版资源| 欧美三级亚洲精品| 亚洲国产高清在线一区二区三| 在线天堂最新版资源| 亚洲欧美日韩东京热| 亚洲性久久影院| 高清视频免费观看一区二区 | 精品久久久久久电影网| 在线观看一区二区三区| 又粗又硬又长又爽又黄的视频| 九色成人免费人妻av| 成人午夜高清在线视频| 久久国内精品自在自线图片| 国产69精品久久久久777片| 老师上课跳d突然被开到最大视频| 亚洲无线观看免费| 欧美+日韩+精品| 国产精品1区2区在线观看.| 人体艺术视频欧美日本| 午夜福利高清视频| 26uuu在线亚洲综合色| 国产成人福利小说| 校园人妻丝袜中文字幕| 一本一本综合久久| 直男gayav资源| 夜夜爽夜夜爽视频| 亚洲人成网站在线观看播放| 日韩国内少妇激情av| 国产成人freesex在线| 久久鲁丝午夜福利片| 黄色日韩在线| 夜夜看夜夜爽夜夜摸| 中文天堂在线官网| 国产av在哪里看| 在线免费观看的www视频| a级毛片免费高清观看在线播放| 欧美日韩国产mv在线观看视频 | 成人亚洲欧美一区二区av| 亚洲自拍偷在线| 亚洲欧美成人综合另类久久久| 亚洲av男天堂| 嫩草影院精品99| 亚洲四区av| 精品99又大又爽又粗少妇毛片| 美女高潮的动态| 久久久久久久亚洲中文字幕| 国产色婷婷99| 色5月婷婷丁香| 国产黄片美女视频| 亚洲电影在线观看av| 国内少妇人妻偷人精品xxx网站| 国产极品天堂在线| 激情五月婷婷亚洲| 国产黄色视频一区二区在线观看| 午夜精品国产一区二区电影 | 久久精品综合一区二区三区| 一二三四中文在线观看免费高清| 国产精品一区www在线观看| 亚洲av在线观看美女高潮| 免费看光身美女| 国产av码专区亚洲av| 日韩一本色道免费dvd| 久久久久精品久久久久真实原创| 又粗又硬又长又爽又黄的视频| 日日干狠狠操夜夜爽| 亚洲精品日本国产第一区| 亚洲精品中文字幕在线视频 | 五月天丁香电影| 熟妇人妻不卡中文字幕| 91狼人影院| 欧美精品一区二区大全| 亚洲伊人久久精品综合| 日日干狠狠操夜夜爽| 成年免费大片在线观看| 午夜精品一区二区三区免费看| 国产精品99久久久久久久久| 久久热精品热| 街头女战士在线观看网站| 熟女人妻精品中文字幕| 欧美丝袜亚洲另类| 天堂影院成人在线观看| 赤兔流量卡办理| 亚洲色图av天堂| 亚洲精品视频女| 国产一区二区亚洲精品在线观看| 丝袜美腿在线中文| 欧美3d第一页| 免费av观看视频| 午夜福利网站1000一区二区三区| 亚洲av男天堂| 禁无遮挡网站| 免费黄网站久久成人精品| 欧美高清成人免费视频www| 欧美日韩一区二区视频在线观看视频在线 | 国产精品福利在线免费观看| 黑人高潮一二区| 国产免费视频播放在线视频 | 国产白丝娇喘喷水9色精品| 日韩av在线免费看完整版不卡| 26uuu在线亚洲综合色| av在线播放精品| 晚上一个人看的免费电影| 欧美高清成人免费视频www| 天天躁夜夜躁狠狠久久av| 国产黄a三级三级三级人| videossex国产| 久久久久久久国产电影| 搞女人的毛片| 黄片wwwwww| 六月丁香七月| 成人鲁丝片一二三区免费| 国产欧美日韩精品一区二区| 亚洲精品aⅴ在线观看| 美女黄网站色视频| 亚洲婷婷狠狠爱综合网| 久久久久久久大尺度免费视频| 亚洲在久久综合| 中文字幕av成人在线电影| av一本久久久久| 一级黄片播放器| videos熟女内射| 久久久久久久久久人人人人人人| 哪个播放器可以免费观看大片| or卡值多少钱| 日韩 亚洲 欧美在线| 美女被艹到高潮喷水动态| 免费观看av网站的网址| 久久久久久伊人网av| 国产综合精华液| 成人鲁丝片一二三区免费| 免费大片黄手机在线观看| 欧美日韩精品成人综合77777| 天美传媒精品一区二区| 国产精品一二三区在线看| 日韩在线高清观看一区二区三区| 日产精品乱码卡一卡2卡三| 搡老妇女老女人老熟妇| 男人狂女人下面高潮的视频| 午夜免费男女啪啪视频观看| 国产成人精品久久久久久| 国产精品一及| 欧美成人一区二区免费高清观看| 国产精品麻豆人妻色哟哟久久 | 夫妻午夜视频| 最近2019中文字幕mv第一页| 国产精品不卡视频一区二区| 我的老师免费观看完整版| 2018国产大陆天天弄谢| 久久久久精品性色| 久久久a久久爽久久v久久| 久久鲁丝午夜福利片| 永久网站在线| 高清av免费在线| 久久久久网色| 国产欧美日韩精品一区二区| 久久久久久九九精品二区国产| 日韩大片免费观看网站| 久久97久久精品| 国产单亲对白刺激| 日韩成人伦理影院| 国产永久视频网站| 日日撸夜夜添| av卡一久久| 91精品国产九色| 日本熟妇午夜| 国产成人免费观看mmmm| 精品久久久精品久久久| 又黄又爽又刺激的免费视频.| 久久久亚洲精品成人影院| 乱人视频在线观看| 中文字幕亚洲精品专区| 高清午夜精品一区二区三区| www.色视频.com| 国内精品宾馆在线| 日韩一区二区视频免费看| 国产三级在线视频| 性插视频无遮挡在线免费观看| 中文字幕制服av| 亚洲色图av天堂| 高清日韩中文字幕在线| 国产精品久久久久久精品电影小说 | 大又大粗又爽又黄少妇毛片口| 国产午夜福利久久久久久| www.色视频.com| 国产精品久久视频播放| 高清毛片免费看| 亚洲经典国产精华液单| 久久精品夜夜夜夜夜久久蜜豆| 嫩草影院新地址| 又爽又黄无遮挡网站| 人妻一区二区av| 草草在线视频免费看| av在线播放精品| 日日啪夜夜爽| 22中文网久久字幕| 最近视频中文字幕2019在线8| 欧美 日韩 精品 国产| 亚洲成色77777| 精品久久久久久久久av| a级毛色黄片| 亚洲最大成人中文| 只有这里有精品99| 69av精品久久久久久| 天堂影院成人在线观看| 91久久精品电影网| 国产综合精华液| 99久国产av精品| 最近中文字幕2019免费版| 草草在线视频免费看| 性插视频无遮挡在线免费观看| 亚洲久久久久久中文字幕| h日本视频在线播放| 色综合亚洲欧美另类图片| 欧美日韩国产mv在线观看视频 | 国产午夜精品久久久久久一区二区三区| 69人妻影院| 在线观看人妻少妇| 男人舔奶头视频| 亚洲aⅴ乱码一区二区在线播放| 中文在线观看免费www的网站| 成人毛片a级毛片在线播放| 午夜亚洲福利在线播放| 天堂网av新在线| 国产黄色免费在线视频| 最近中文字幕高清免费大全6| 亚洲av在线观看美女高潮| 肉色欧美久久久久久久蜜桃 | 高清日韩中文字幕在线| 在线免费十八禁| 国产毛片a区久久久久| 精品一区二区免费观看| 国产精品美女特级片免费视频播放器| 欧美激情国产日韩精品一区| 久久精品久久久久久噜噜老黄| 日本一二三区视频观看| 国产伦理片在线播放av一区| 少妇丰满av| 亚洲欧美中文字幕日韩二区| 特级一级黄色大片| 亚洲精品色激情综合| 国产麻豆成人av免费视频| 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 99热6这里只有精品| 伦理电影大哥的女人| 亚洲av福利一区| 亚洲一区高清亚洲精品| 欧美日韩综合久久久久久| 免费看美女性在线毛片视频| 国产探花在线观看一区二区| 男女下面进入的视频免费午夜| 午夜精品在线福利| 国产毛片a区久久久久| 狂野欧美激情性xxxx在线观看| 99久国产av精品| 午夜日本视频在线| 99久国产av精品国产电影| 成人高潮视频无遮挡免费网站| 亚洲欧洲日产国产| 国产高清三级在线| 日韩不卡一区二区三区视频在线| 免费在线观看成人毛片| 亚洲第一区二区三区不卡| 综合色丁香网| 亚洲国产欧美人成| 久热久热在线精品观看| 亚洲精品aⅴ在线观看| 久久6这里有精品| 亚洲av中文字字幕乱码综合| 亚洲美女视频黄频| 国产精品一区www在线观看| 女人久久www免费人成看片| 淫秽高清视频在线观看| 又爽又黄a免费视频| 我的老师免费观看完整版| 久久6这里有精品| 亚洲三级黄色毛片| 国产精品无大码| 高清欧美精品videossex| 国产午夜精品论理片| 亚洲综合色惰| 好男人在线观看高清免费视频| 亚洲精品一二三| 亚洲国产av新网站| 午夜爱爱视频在线播放| 看免费成人av毛片| 777米奇影视久久| 国产亚洲一区二区精品| 人妻夜夜爽99麻豆av| 97热精品久久久久久| 午夜免费男女啪啪视频观看| 精品午夜福利在线看| 亚洲精品国产av蜜桃| 日本免费在线观看一区| 噜噜噜噜噜久久久久久91| 国产大屁股一区二区在线视频| 国产精品国产三级专区第一集| 18禁在线无遮挡免费观看视频| 亚洲欧美成人精品一区二区| 日韩大片免费观看网站| 久热久热在线精品观看| 欧美精品一区二区大全| 亚洲高清免费不卡视频| 免费av观看视频| 亚洲国产欧美在线一区| 亚洲不卡免费看| 亚洲精品日韩av片在线观看| 老司机影院成人| 看十八女毛片水多多多| or卡值多少钱| 天堂网av新在线| 日韩伦理黄色片| 日韩一区二区三区影片| 成年女人看的毛片在线观看| 日日干狠狠操夜夜爽| 欧美变态另类bdsm刘玥| 最近最新中文字幕免费大全7| 成年av动漫网址| 亚洲乱码一区二区免费版| 久99久视频精品免费| 国产熟女欧美一区二区| 18禁在线播放成人免费| 中文在线观看免费www的网站| 欧美日韩在线观看h| 亚洲人与动物交配视频| 网址你懂的国产日韩在线| 国产av国产精品国产| 久久久久免费精品人妻一区二区| 国产精品三级大全| 观看免费一级毛片| 搡女人真爽免费视频火全软件| 成人鲁丝片一二三区免费| 欧美高清成人免费视频www| 国产一区亚洲一区在线观看| 成年av动漫网址| 少妇人妻一区二区三区视频| 成人性生交大片免费视频hd| 美女脱内裤让男人舔精品视频| 国产黄a三级三级三级人| 久久精品国产鲁丝片午夜精品| 免费看a级黄色片| 国产精品嫩草影院av在线观看| 黄色配什么色好看| 狂野欧美激情性xxxx在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品sss在线观看| 成人av在线播放网站| 色网站视频免费| 69av精品久久久久久| 久久鲁丝午夜福利片| 国产精品爽爽va在线观看网站| 成人综合一区亚洲| 亚洲一级一片aⅴ在线观看| av黄色大香蕉| 搡女人真爽免费视频火全软件| 如何舔出高潮| 国产真实伦视频高清在线观看| 非洲黑人性xxxx精品又粗又长| 国产女主播在线喷水免费视频网站 | 淫秽高清视频在线观看| 免费人成在线观看视频色| 亚洲av免费在线观看| 精品久久久久久久久久久久久| 久久精品国产自在天天线| 啦啦啦啦在线视频资源| 久久99精品国语久久久| 啦啦啦啦在线视频资源| 久久99蜜桃精品久久| 少妇人妻精品综合一区二区| 午夜福利高清视频| 国产精品嫩草影院av在线观看| 你懂的网址亚洲精品在线观看| 精品久久久久久久末码| 黄色日韩在线| 国模一区二区三区四区视频| 国产男女超爽视频在线观看| 日韩av在线大香蕉| 成人高潮视频无遮挡免费网站| 免费看美女性在线毛片视频| 成人欧美大片| 亚洲av成人av| 国产成人a区在线观看| 99久久精品热视频| 久久久久久久国产电影| 国产精品国产三级专区第一集| 午夜爱爱视频在线播放| 精品熟女少妇av免费看| 能在线免费看毛片的网站| 欧美不卡视频在线免费观看| 一个人免费在线观看电影| 在线播放无遮挡| 美女xxoo啪啪120秒动态图| 99re6热这里在线精品视频| 乱人视频在线观看| 亚洲精华国产精华液的使用体验| 91久久精品国产一区二区三区| 国产精品人妻久久久久久| 淫秽高清视频在线观看| 国产又色又爽无遮挡免| 我要看日韩黄色一级片| 日韩成人伦理影院| 青青草视频在线视频观看| 色5月婷婷丁香| 91在线精品国自产拍蜜月| 看十八女毛片水多多多| 亚洲国产精品成人综合色| 三级经典国产精品| 精品久久久久久久末码| 99视频精品全部免费 在线| 国语对白做爰xxxⅹ性视频网站| av天堂中文字幕网| 久久久久九九精品影院| 欧美三级亚洲精品| 国产片特级美女逼逼视频| 久久久久久九九精品二区国产| 精品人妻熟女av久视频| av在线观看视频网站免费| 三级国产精品片| 免费观看a级毛片全部| 色尼玛亚洲综合影院| 最近最新中文字幕免费大全7| 久久久久久久久久久丰满| 亚洲av免费在线观看| 日韩一区二区视频免费看| 乱人视频在线观看| 黄色配什么色好看| 日韩欧美精品免费久久| 免费观看在线日韩| 久久精品夜色国产|