• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zircon U-Pb dating of Pubei granite and strontium isotope from sphalerite of the Xinhua Pb-Zn-(Ag)deposit,Yunkai Area of Guangxi Province,South China

    2016-10-20 02:27:29MinfangWangXuboZhangDaohuiPiXiaonanGuo
    Acta Geochimica 2016年2期

    Minfang Wang·Xubo Zhang·Daohui Pi·Xiaonan Guo,3

    ?

    Zircon U-Pb dating of Pubei granite and strontium isotope from sphalerite of the Xinhua Pb-Zn-(Ag)deposit,Yunkai Area of Guangxi Province,South China

    Minfang Wang1,2·Xubo Zhang1·Daohui Pi1·Xiaonan Guo1,3

    The Yunkai Area is located at the southern South China Block and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt,which is a famous polymetallic mineralization belt.The Xinhua Pb-Zn-(Ag)deposit is located in the western part of Yunkai Area,with anabundanceofPubeibatholiths.ZirconU-Pb geochronology of Pubei batholiths shows that crystallization age ranges from 251.9±2.2 to 244.3±1.8 Ma,thus belonging to Indosinian orogeny.Geochemistry and Sr isotopic compositions of the Pubei batholiths show that it is derived from the partial melting of large scale crustal melting during the stage of exhumation and uplifting of the lower-middle crust.In addition,strontium isotope of sphalerite from the Xinhua Pb-Zn-(Ag)deposit,has limited ranges in87Rb/86Sr and87Sr/86Sr,ranging from 0.4077 to 1.0449,and 0.718720 to 0.725245,respectively.The initial87Sr/86Srratiosofsphaleriterangesbetween 0.718720 and 0.725245,which is higher than that of upper continental crust and lower than that of the Pubei batholiths,illustrating the fluid might be derived from the mixing of Pubei pluton and upper continental crust.

    Zircon U-Pb·Strontium isotope·Xinhua

    Pb-Zn-(Ag)deposit·Yunkai Area·South China

    1 Introduction

    The Yunkai Area is located at the southern South China Block(SCB)and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt(QHMB)(Fig.1a).In the past decades,many researchers have discussed the basement nature,regional magmatism,structural style,tectonothermal history,and internal relationship among the mylonite,migmatite,and granite within Yunkai Area(Qiu and Chen 1993;Peng et al.1996;Wang et al.1998a,1999),and they concluded that the Yunkai Area has experienced multistage orogeny from the Neoproterozoic to the Mesozoic,with extensive magmatism(Qiu and Chen 1993;Peng et al. 1996;Li et al.2005b;Wang et al.2007a;Wan et al.2010). It is an ideal area to study for better understanding the temporal and spatial framework of tectonothermal overprinting.The Yunkai Area has Proterozoic basement unit,and SHRIMP zircon dating for the granite gneiss from the Tiantang Group shows an Archean age of 2702±13 Ma(Qin et al.2006,2007).In addition,numerous ore deposits and mineral occurrences have been discovered in recent years in the Yunkai Area(Liu 1997;Liang and Zhang 1998;Cai et al.2002b;Mao et al.2011b,2013;An 2012),which makes it one of the important polymetallic(Pb-Zn-Ag-Au)mineralization zones.

    Although various granite plutons,widely emplaced throughoutIndosinian subduction and orogeny(Maoet al.2011a),exist,the relationship between ore deposits and granites is weak.The isotopic U-Pb systems in zircons,due to chemical stability of zircon and high temperature(>900°C)of Pb diffusion closure in a mineral(Lee et al.1997;Cherniak and Watson 2001;Wu and Zheng 2004),are the most reliable systems to estimate the age of the igneous rock crystallization. Therefore,in this contribution,we present new laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)zirconU-PbofPubeibatholithsto constrain the timing of granitoids.In addition,strontium isotope compositions were analyzed on sphalerite from ores in the Xinhua deposit to discuss the sources of metals.Based on the geochemical,geochronological,and strontium isotopic data from the Pubei batholiths and sphalerite from ores in the Xinhua deposit,the metal source and geodynamic framework of the mineral system have been discussed.

    ? Minfang Wang wang_minfang@163.com Xubo Zhang 1026690223@qq.com Daohui Pi pdaohui@163.com Xiaonan Guo 691387433@qq.com

    1Faculty of Earth Resources,China University of Geosciences,Wuhan 430074,China

    2State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China

    3The Second Geological Survey of Henan Province,Xuchang 461000,China

    Fig.1 a Simplified geological map of the South China Block,showing the location of QHMB,the major faults and important tectonic zone(modified after Chen and Jahn 1998;Wang et al.2007a,c).b Geological map of the Yunkaidashan Belt(modified after Cai et al.2002;Wang et al.2007a,c)

    The Xinhua Pb-Zn-(Ag)deposit is located in the Yunkai Area of Guangxi Province and has estimatedreserves of 46.1 kt of Zn with an average grade of 3.95 wt%Zn,26.6 kt Pb with an average grade of 2.33 wt% Pb,as well as 190 tonnes Ag with an average grade of 79.58 g/tonnes Ag(cf.Huang et al.2008).Since the discovery of the deposit in 1980s,few studies have addressed the geology of the deposit(Chen 2004;Huang et al.2008;Chen et al.2009),and these are published in Chinese without circulating in international journals.

    2 Regional geological setting

    The QHMB has attracted much attention due to its interesting tectonic properties,which have been interpreted as a giant tectonic suture between the Yangtze and Cathaysian blocks(insert map of Fig.1a)(Pirajno and Bagas 2002;Shu et al.2011;Zhou et al.2012;Li et al.2013;Wang et al. 2013;Zheng et al.2014).The suture is about 2000 km long and 70-130 km wide,starting from Hangzhou Bay and ending at Qinzhou Bay.It has experienced multi-stage orogeny from the Mesoproterozoic to the Neoproterozoic,according to the majority ages of the ophiolite suites(1030-860 Ma;Shu 2006;Mao et al.2011b)related to the evolution of the Rodinia supercontinent.

    The NE-trending Yunkaidashan Belt lies along the southern segment of the boundary between the Yangtze and Cathaysian blocks of the South China Block(Chen and Jahn 1998),being up to 150 km wide and over 300 km long.It is tectonically divided from east to west into the Wuchuan-Sihui shear zone,the Xinyi-Gaozhou block,and the Fengshan-Cenxi shear zone(Fig.1b).The Yunkaidashan Belt is traditionally considered to be composed of Archean basement(e.g.,Tiantang Group),Paleozoic and Mesozoic sedimentary cover,and voluminous mid-Paleozoic foliated granites(Qiu and Chen 1993;Peng et al. 1996).

    The Yunkai Area herein means the area located in the Yunkaidashan Belt,bounded to the east by the Wuchuan-Sihui Fault,to the west by the Lingshan-Tengxian Fault,and to the north by the Luoding-Yuecheng Fault.The research area includes two tectonic units:the Yunkai uplift and the Bobai depression,with an area of~12,000 km2(Fig.1b).In general,the Yunkai Area is within the boundary between Guangxi and Guangdong Provinces,and large amounts of ore deposits have been reported in the Yunkai Area(Lei et al.1992;Cai 2002;Li 2004;Mao et al. 2011b;Zhang 2011).

    The Yunkai Area has experienced two stage orogeny of Hercynian and Indosinian epoch,and consisted of basement of E-W direction fold system.In addition,the subduction of the Pacific plate and Indian plate in Yanshanian epoch happened,with massive volcanic eruptions(Liu 1997;Wang et al.1998b;Cai et al.2002).There are more than 300 Au-(Ag)and 450 Pb-Zn deposits and mineral occurrences in the Yunkai Area(Liang and Zhang 1998;Liang et al.1998).It could be divided into four NE-trending mineralization belts:I-Xinxing-Yangchun Cu-Pb-Zn-Au-(Ag)metallogenic belt,characterized by skarn,porphyry and magmatic hydrothermal deposits,such as Shilu Cu-(Mo),Tiantang Cu-(Mo)-Pb-Zn and Bengkeng Pb-Zn deposits,etc.,which are related to the crustalderived granite of Indosinian-Yanshanian epoch,with ages of Late Triassic-Early Jurassic;II-Deqing-Luoding-Gaozhou Au-Pb-Zn-(Ag)metallogenic belt,characterized by quartz vein Au-Ag and quartz vein-type Pb-Zn-Ag deposits,such as Hetai Au and Yunfu Ag-Pb-Zn deposits,etc.,related to mineralization in Late-Early Cretaceous(150-80 Ma);III-Cenxi-Luchuan Ag-Au-Pb-Zn metallogenic belt,characterized by quartz vein Ag-Au and magmatichydrothermalPb-Zn-Cudeposits, suchas Pangxidong Ag-Au,Jinshan Ag-Au and Fozichong Pb-Zn-Cu deposits,etc.,related to granite of Middle-Late Jurassic(160-140 Ma);IV-Tengxian-Pubei Pb-Zn metallogenic belt,characterized by hydrothermal vein Pb-Zn-(Ag)deposits,such as Xinhua,Shanming and Xiashui Pb-Zn deposits(Fig.2).

    3 Geology of ore deposit

    The Xinhua Pb-Zn-(Ag)deposit is located 109°42'24''E,22°31'48''N,with an area of 6.82 km2.It is located in the northwest of Pubei complex anticline,bounded by Lingshan and Bobai fold belt,and it formed in the conjunction of NW and SN direction fracture.The Ar-Ar dating of sericite from the principal stage of sphalerite(unpublished data)provides constraints on the timing of sphalerite mineralization of Yanshanian epoch.The Pubei batholiths,covering an area of 4100 km2,is one of the main units of the Darongshan granitic suite,with similar lithology to the Darongshan batholiths(cordierite-biotite granite),which are situated in the eastern side of the Lingshan-Tengxian Fault and to the west of the Bobai-Wuzhou Fault(Fig.1b). The Darongshan granitic suite,outcropping an area of approximately 10,000 km2,consists of five major units:Taima(hypersthene granitic porphyry),Nadong(biotite granite)andJiuzhou(cordierite-biotitemonzogranite)plutons,and Pubei and Darongshan batholiths(Chen et al. 2011).The common existence of Al-rich minerals,such as cordierite and almandine garnet in various amounts,fits the mineralogical criteria of the S-type granite(Chappell and White 1974).The modal mineral composition of the Pubei batholiths is comprised of 35%quartz,35%K-feldspar,20%plagioclase,8%biotite,and 2%minor cordierite,titanite,apatite.Generally,feldspar group minerals have been altered to sericite.

    Fig.2 The metallogenic sketch map of the Yunkai Area,illustrating the distribution of main types of ore deposits(modified after Cai et al.2002;Liang et al.1998)

    There are abundant NWW-,NW-,and near NS-trending faults in the Xinhua deposit,and the numerous NWW-trending faults are the ore-hosting structure(Fig.3a).The Xinhua deposit is comprised of tens of individual ore bodies in veins.No.1,No.2,No.7,and No.7-1 are the largest four ore bodies.The No.1 ore body is located in the compression zone of F1.It is more than 885 m long and 0.14-6.75 m thick,and it extends 480 m down dip,with an averagegradeof2.22 wt%Pb,3.56 wt%Zn,and 71.45 g/tonnes Ag.The No.2 ore body is located in the compression zone of F0.It is more than 880 m long and 0.19-2.90 m thick,and it extends 510 m down dip,with an averagegradeof2.36 wt%Pb,4.89 wt%Zn,and 84.80 g/tonnes Ag.Additionally,the No.7 ore body is located in the compression zone of F7.It is more than 1010 m long and 0.17-3.22 m thick,and it extends 450 m down dip,with an average grade of 2.61 wt%Pb,4.49 wt%Zn,and 77.37 g/tonnes Ag.Finally,the No.7-1 ore body is also located in the compression zone of F7.It is more than 500 m long and 0.53-4.04 m thick,and it extends 330 m down dip,with an average grade of 2.13 wt%Pb,2.85 wt%Zn,and 84.71 g/tonnes Ag.It is concluded that ore bodies were actually controlled by faults,and they had a shape of narrow shrink or swell,thin out or extended(Fig.3b).

    Based on the detailed field and microscopic observation,four ore types have been distinguished:(1)massive quartz-Pb-Zn ores,(2)vein quartz-barite-Pb-Zn ores,(3)disseminated altered granite-Pb-Zn ores and(4)compressive silicification Pb-Zn ores(Fig.4a-d).

    The ore minerals are sphalerite,galena,chalcopyrite,and tetrahedrite(Fig.4e).The main gangue minerals are quartz,barite,and calcite(Fig.4f).The typical alteration in the Xinhua deposit is characterized by the silicification and sericitization,and silicification is the most extensive and economically important.In addition,pyrite,siderite,dolomitization,chloritization,and kaolinization are also recognized.The alteration distributed in both sides of the ore bodies and ore-bearing faults,was identified as 2-50 m in width.

    Fig.3 a Simplified geological map of the Xinhua deposit,showing the distribution of abundant faults and ore bodies. b No.12 section of the Xinhua deposit,showing ore bodies’distribution in veins(modified after Guangxi Pubei Lead and Zinc,Ltd.2005)

    4 Ore mineralogy and paragenesis

    The mineralization in Pubei complex(cordierite-biotite granite)can be divided into four stages(Fig.5):stage 1,quartz-pyrite-sphalerite;stage2,siderite-galena-tetrahedrite;stage 3,quartz-galena;and stage 4,quartz-calcitebarite.The mineral assemblage of stage 1 is dominantly massive quartz and coarse-grained sphalerite,with small amounts of pyrite.Stage 1 mineralization was accompanied by silicification and sericitization(Fig.6a)and was the principal stage of sphalerite.The mineral assemblage of stage 2 is dominantly coarse-grained euhedral galena,siderite,tetrahedrite,and minor sphalerite.This stage is characterized by silicification and carbonatization(Fig.6b). Galena and siderite are characterized by open-space filling textures,such as miarolitic structure and veinlets(Fig.6c). The mineral assemblage of stage 3 is dominantly finegrained quartz and galena and minor calcite(Fig.6d),with extensive silicification and carbonatization.The mineral assemblage of stage 4 is dominantly quartz,calcite,and barite,with minor galena.Calcite-barite veins cut sphalerite and galena veins of stage 1 and 2(Fig.6e,f).

    Fig.4 Hand specimens and corresponding photomicrographs of the Pubei batholiths and ores from the Xinhua deposit.a Massive quartz-Pb-Zn ores,with lead gray galena and brown sphalerite appearance.Quartz vein cut the massive mores with sharp boundary.Hand specimen photograph.b Vein quartz-barite-b-Zn ores,with abundant brown sphalerite and minor galena.White barite paragenesis with colourless quartz. Hand specimen photograph.c Typical appearance of the cordierite-biotite granite(Pubei batholiths),with disseminated sphalerite in altered granite.Hand specimen photograph.d Compressive silicification Pb-Zn ores.Silicification compressive rock/granites included by sphalerite and galena,distributed in the compressive zone.-95 m level of underground workings.e The typical ore minerals in the Xinhua deposit.Subhedralanhedral tetrahedrite(steel gray to iron-gray)included in shpalerite.Reflected light image,plain-polarized light.f The typical gangue minerals in the Xinhua deposit.Plain-polarized light.Brt barite,Bt biotite,Cal calcite,Ccp chalcopyrite,Gn galena,Ms muscovite,Pl plagioclase,Qz quartz,Ser sericite,Si silicate,Sp sphalerite,Ter tetrahedrite.Abbreviations based on Whitney and Evans(2010)

    Fig.5 Mineral paragenesis of the lead-zinc ores in the Xinhua deposit showing mineral assemblages

    5 Samples and analytical methods

    5.1 U-Pb geochronology

    5.1.1 Sample preparation

    The sampling was carried out with the main objective of establishing the crystallization age of the Pubei batholiths,and two samples were taken,medium-fine sized cordieritebiotite granite(XH-5)and coarse-medium sized cordieritebiotite granite(XH-14)(Fig.3).Each sample weighted approximately 5 kg for analyses.

    5.1.1.1 Medium-fine sized cordierite-biotite granite(XH-5)The sample was collected from-55 m level of underground workings around the No.17 ore body.It is granite with small amounts of titanite and apatite.Zircons in medium-fine sized cordierite-biotite granite are about 100-250 μm long and 40-80 μm wide and euhedral,prismatic.They have typical oscillatory zoning,indicating magmatic origin(Fig.7a).

    5.1.1.2 Coarse-mediumsizedcordierite-biotitegranite(XH-14)The sample was collected from the eastern adit. It is a granite with small amount of apatite,yielding numerous large to medium-sized,clear,high-quality zircons(Fig.7b).Zircons in coarse-medium sized cordieritebiotite granite are more than 100 μm in diameter and exhibit clear and uniform internal structures.Euhedral zircons have a rectangular shape with width/length ratios of~1:2 to 1:3.There are also rounded,flat and squareshaped zircons with typical oscillatory zoning of magmatic origin.

    5.1.2 Zircon U-Pb dating

    Zircons were separated using conventional heavy liquid and magnetic techniques,in general terms,to that described in detail by Dube′et al.(1996).The samples were washed,then crushed in a jaw crusher and pulverized to a fine powder.The heavy mineral fraction was concentrated using a Wilfley table and heavy liquids.The concentrate was passed through heavy liquids and a Frantz magnetic separator in a sequence of steps designed to discriminate fractions with different magnetic susceptibility.Generally,the high quality zircons were from the least magnetic highdensity fractions(Romeo et al.2006),which were selected according to criteria of morphology and clarity under a microscope.The zircons were abraded to remove the external surface of the grains in an attempt to minimize Pbloss,following the air abrasion technique of Krogh(1982). The abraded zircons were cleaned and purified using HF and HNO3,and the ion exchange chemistry was performed in microcolumns following the technique described by Krogh(1973)but instead reducing the volume of the columns and the reagents in a ratio of 1:10.

    Fig.6 Macroscopic features of hand specimens selected for ore mineralogy and paragenesis studies.a The typical characteristics of stage 1,with massive quartz and coarse grained sphalerite occurred and extensive silicification and sericitization.b The paragenesis of coarse grained euhedral galena and siderite,which is the principal stage of galena.c Veinlets of galena,quartz and siderite in stage 2,with minor calcite.d Fine grained quartz and galena(stage 3)replace coarse grained sphalerite(stage 1).e-f Veins of quartz and barite cut the sphalerite and galena of stage 1 and 2.Brt barite,Cal calcite,Gn galena,Qz quartz,Sd siderite,Ser sericite,Sp sphalerite.Abbreviations based on Whitney and Evans(2010)

    Selected zircons were mounted in epoxy disks and polished to expose their cores.All grains were photographed under transmitted and reflected light.They were subsequently examined by the cathodoluminescence(CL)imagetechniquetorevealtheirinternalstructures. AQuanta450FEGhigh-resolutionemissionfieldenvironmental scanning electron microscope connected to an Oxford SDD Inca X-Max 50 energy dispersive system and a Gatan Mono CL4+CL system at the State Key Laboratory of Geological Processes and Mineral Resources(GPMR),China University of Geosciences,Wuhan,was used.The imaging conditions were 10 kV with a spot size of 5 nm.

    Fig.7 CL images of representative zircon grains,showing internal structures,analyzed locations,and calculated apparent206Pb/238U ages.Yellow solid circles denote U-Pb dating spots,and numbers in circles are equivalent to spot analyses given in Table 1

    The clearest,least fractured rims of the zircon crystals were selected as suitable targets for laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS)analysis with a combination of the GeoLas2005 laser-ablation system and the Agilent7500a ICP-MS at GPMR.The 193 nm ArF excimer laser,homogenized by a set of beam delivery systems,was focused on the zircon surface with an energyfluenceof15 J/cm2.Theablationprotocol employed a spot diameter of 32 μm at 5 Hz repetition rate for 35 s.Helium was used as the carrier gas to enhance the transport efficiency of the ablated materials.U-Th-Pb isotopic compositions were optimized using zircon 91500 as the reference standard and NIST610 as the internal standard.Temora standard was used as the age standard(206Pb/238U=416.8 Ma)(Black et al.2003).Results of isotopic measurement on zircons(all errors are given at the 1 σ level)are listed in Table 1 and are shown in conventional U-Pb concordia plots in Fig.8.Detailed operating conditions and procedures followed Liu et al.(2008,2010).Off-line selection and integration of background and analyze signals,time-drift correction,and UPb dating were performed using ICPMSDataCal(Liu et al. 2008,2010).Uncertainties on the isotopic ratios were calculated at 2 σ level,considering the uncertainty of the measurements by mass spectrometry,isotopic fractionation,and the proportion of initial common lead and its isotopic composition,according to Stacey and Kramers(1975).The results are presented as206Pb/238U ages,using the Isoplot program(Ludwig 2003),and uncertainties are reported at the 95%confidence level.The decay constants that were used are those recommended by Steiger and Ja¨ger(1977),and compositions for initial common Pb were taken from the model of Stacey and Kramers(1975).

    5.2 Strontium isotope compositions

    Six sphalerite separates were collected from Pb-Zn ores at the-55 and-95 m levels of underground workings(Fig.3a;Table 2),respectively.Pure sphalerite separates(~1 g)were obtained from each sample by crushing,washing,drying,and handpicking under a binocularmicroscope.Chemical separation of Rb and Sr from matrix elements as well as mass spectrometric measurement was accomplished at the Analytical Laboratory of Beijing Research Institute of Uranium Geology(BRIUG).The analytical procedure for Rb-Sr isotope analyses is similar to that given by Li et al.(2005a).Spec-Sr exchange resin of special efficiency was used for the separation and purification of Rb and Sr.The whole procedural blank of both Rb and Sr was about 6 pg.Isotopic compositions were measured by the Isoprobe-T Thermal Ionization Mass Spectrometer.An88Sr/86Sr ratio of 8.37323 was used to calibrate mass fractionation of Sr isotope.Repeated measurements of87Sr/86Sr ratio of NBS987 Sr standard solution were 0.710247±17(2σ).Uncertainties(2σ)were 2%for87Rb/86Sr ratios and 0.005%for Sr isotope compositions.

    Table 1 Analytical data of zircon LA-ICP-MS U-Pb dating on the cordierite-biotite granite in the Pubei complex batholiths

    Table 1 continued

    6 Analytical results

    6.1 Zircon U-Pb geochronology

    6.1.1 Sample XH-5

    Seven zircon grains were chosen for the U-Pb analyzing. The zircons have Th and U contents ranging from 684 to 1754 ppm and from 342 to 825 ppm,respectively,with Th/ U ratios of 0.28-0.63.Except for one older zircon age of 792.5±7.9 Ma(spotXH-5-10)(Table 1),theother206U/238Pb ages are almost consistent with each other,yielding a weighted mean age of 251.9±2.2 Ma(n=6;MSWD=0.15)(Fig.8a),which was interpreted as the crystallization age of the granite.The older zircon age indicates neoproterozoic magmatism,which is consistentwith the global Grenville(Sibaoan)collisional orogeny(Qin et al.2006).

    Fig.8 Concordia diagram for the samples of this study.Error ellipses are plotted with 1σ uncertainties.All the ages are calculated as weighted averages using Isoplot(Ludwig 2003)and uncertainties are reported at the 95%confidence interval.MSWD:mean-squared weighted deviates

    Table 2 Location and detailed description of analytical samples from the Xinhua deposit

    6.1.2 Sample XH-14

    Twenty-six zircon grains were chosen for the U-Pb analysis.The zircons have Th and U contents ranging from 704 to 5310 ppm and from 50 to 446 ppm,respectively,with Th/U ratios of 0.02-0.43.All the206U/238Pb ages almost agree with each other,yielding a weighted mean age of 244.3±1.8 Ma(n=26;MSWD=1.5)(Fig.8b),which was also interpreted as the crystallization age of the granite.

    6.2 Strontium isotope compositions

    Results of Rb-Sr isotope of sphalerite are presented in Table 3.Sphalerite separates from the Xinhua deposit have limited ranges in87Rb/86Sr and87Sr/86Sr,ranging from 0.4077 to 1.0449,and 0.718720 to 0.725245,respectively. The initial Sr isotope compositions(at 244 Ma)are estimated to vary from 0.718720 to 0.725245(Table 3).

    7 Discussion

    7.1 Ages of magmatism

    Granites are widely distributed in South China,outcropping an area of approximately 170,000 km2,and 12%are Triassic in age(Sun 2006).Indosinian granites in the SCB interior are traditionally classified as the Hercynian-Indosinian peraluminous S-type granites,and they are characterized by large amount of peraluminous massive granites and minor gneissic granites(Wang et al.2007c,2013;Mao et al.2011a).Zircon U-Pb age for theseperaluminous massive granitesfall intoa rangeof 248-202 Ma,with two age-peaks of~239 and~220 Ma for magma emplacement(Deng et al.2004;Peng et al. 2006;Sun 2006;Li and Li 2007;Wang et al.2007b,2013;Luo et al.2010).Zircon U-Pb ages of minor gneissic granites fall into a range of 250-242 Ma(Peng et al.2006;Zhou et al.2006a,b,2007).

    Table 3 Rb-Sr data ofsphalerite separates from the Xinhua deposit

    Fig.9 Comparison of(87Sr/86Sr)iratios among Xinhua Pb-Zn-(Ag)deposit,upper mantle(Faure 1977),upper continental crust(Jahn et al. 1999),basement of Cathaysia Block(Shen et al.2008),and Taima,Jiuzhou,Pubei plutons(Qi et al.2007)

    Chen et al.(2011)reported LA-ICP-MS U-Pb zircon and electron microprobe(EMP)monazite ages for the Pubei batholiths as being 260.4±3.1 to 255.5±5.8 Ma,which are older than SHRIMP zircon U-Pb ages(233±5 Ma)by Deng et al.(2004).Therefore,the Pubei batholiths were the resultofIndosinianorHercynianorogeny.AlthoughCharoy and Barbey(2008)and Deng et al.(2004)have reported and compiled ages of zircon U-Pb and the whole-rock Rb-Sr isochron,thisdatahasreceivedlessconsideration,likelydue to the lack of descriptions on the zircon morphology and structure.In contrast,the Zircon U-Pb dating in this study shows that crystallization age of the Pubei batholiths ranges from 251.9±2.2 to 244.3±1.8 Ma,supporting the conclusion of Indosinian orogeny.

    7.2 Sources of ore-forming fluid

    Sphalerite from the Xinhua Pb-Zn-(Ag)deposit has initial87Sr/86Sr ratios(ISr)from 0.718720 to 0.725245,higher than the upper mantle and upper continental crust,and these fall into the range of basement of Cathaysian block(Fig.9).The ISrfrom sphalerite is larger than 0.710,meaning the sources of crust,but not the mantle.Comparing with ISrof Taima,Jiuzhou,and Pubei plutons,the Pubei pluton has the highest ISr(0.7266-0.7295;Qi et al.(2007))(Fig.9),showing that it is derived from higher evolutionofcrustalmaterials.ISrinsphalerite(0.718720-0.725245),which is lower than that of the Pubei pluton and higher than that of upper continental crust,show that the fluid might be derived from the mixing of Pubei pluton and upper continental crust.

    7.3 Regional geological significances

    The timing of Pubei batholiths has important significance for the understanding of the geotectonic context of the Darongshan granitic suite.In general,two contrasting genetic models have been proposed for the Darongshan granitic suite.Some researchers propose that the Darongshan granitic suite might be genetically related to the NWSE compression due to continent-continent collision of two smaller continental blocks of the Asian Plate(Chen et al.1995;Deng et al.2004).Other researchers argue that it resulted from various degrees of melting at different crustal levels during crustal thinning in extensional postcollision setting(Charoy and Barbey 2008;Chen et al. 2011;Zhao et al.2012).

    Our zircon U-Pb age for the Pubei batholiths demonstrates the relationship of the Indosinian orogeny in South China,not Hercynian orogeny.According to the strontium,isotopic compositions by previous researchers(Qi et al.,2007)suggest that the Pubei granites resulted from high degrees of the melting of older crust.However,the ISrof sphalerite from the Xinhua deposit,higher than upper continental crustal and lower than that of the Pubei pluton,implies the fluid mixing of these two members.

    8 Conclusion

    The Xinhua Pb-Zn-(Ag)deposit is located in the western part of Yunkai Area,South China,related to Pubei batholiths.Zircon U-Pb geochronology shows that the crystallization age ofthe Pubei batholiths rangesfrom 251.9±2.2 to 244.3±1.8 Ma,illustrating its Indosinian orogeny.Sphalerite from the Xinhua Pb-Zn-(Ag)deposit has limited ranges in87Rb/86Sr and87Sr/86Sr,ranging from 0.4077 to 1.0449,and 0.718720 to 0.725245,respectively,and it has an ISrranging from 0.718720 to 0.725245. Geochemistry and Sr isotopic compositions of the Pubei batholiths show that it is derived from the partial melting of large scale crustal melting during the stage of exhumation and uplifting of the lower-middle crust.In addition,the ISrof sphalerite from the Xinhua deposit shows that the fluid might derive from the mixing of Pubei pluton and upper continental crust.

    AcknowledgmentsThis study was supported by grants by the National Natural Science Foundation of China(No.41272097),the China Geological Survey Project(No.12120114016601),the Special Fund for Basic Scientific Research of Central Colleges,China University of Geosciences(Wuhan)(No.CUG120702),and the Teaching Laboratory Foundation of China University of Geosciences(Wuhan)(No.SKJ2013085,SKJ2014010).We are indebted to colleagues of Guangxi Pubei Lead and Zinc,Ltd.for their help in the field.Special thanks to Xiaofeng Cao,Yanjun Li and Zhen Yang for the sample collection.

    An GY(2012)Geological features and space-time distribution of mineral deposits in the Yunkai region,Guangxi.Geol Bull Sichuan 32:281-285(in Chinese with English abstract)

    Black LP,Kamo SL,Allen CM,Aleinikoff JN,Davis DW,Korsch RJ,F(xiàn)oudoulis C(2003)TEMORA 1:a new zircon standard for Phanerozoic U-Pb geochronology.Chem Geol 200:155-170

    Cai MH(2002)Study on metallogenic regularity and dynamics of Mesozoic nonferrous metal and precious deposits in Eastern Guangxi and Western Guangdong.Chinese Academy Geological Sciences for Doctoral Degree,Beijing(in Chinese with English abstract)

    Cai MH,Zhan MG,Peng SB,Meng XJ,Liu GQ(2002)Study of Mesozoic metallogenic geological setting and dynamic mechanism in Yunkai area.Miner Depos 21:264-269(in Chinese with English abstract)

    Chappell BW,White AJR(1974)Two contrasting granite types. Pacific Geol 8:173-174

    Charoy B,Barbey P(2008)Ferromagnesian silicate association in S-type granites:the Darongshan granitic complex(Guangxi,South China).Bull Soc Geol Fr 179:13-27

    Chen JJ(2004)Characteristics and genesis of the Xinhua Pb-Zn-(Ag)deposit,Pubei county,Guangxi.S Land Resour 4:27-29(in Chinese)

    Chen J,B-M Jahn(1998)Crustal evolution of southeastern China:Nd and Sr isotopic evidence.Tectonophysics 284:101-133

    Chen TY,Sun GY,Yao YP,Chen H(1995)Peraluminous granites of East Tethys and their implication in Gondwana dispersion and Asian accretion.J Southeast Asian Earth Sci 11:243-251

    Chen JJ,Liu YF,Ye QS(2009)Genesis of the Xinhua Pb-Zn-(Ag)deposit,Pubei county,Guangxi.S Land Resour 9(23-24):27(in Chinese)

    Chen CH,Hsieh PS,Lee CY,Zhou HW(2011)Two episodes of the Indosinian thermal event on the South China Block:constraints from LA-ICPMS U-Pb zircon and electron microprobe monazite ages of the Darongshan S-type granitic suite.Gondwana Res 19:1008-1023

    Cherniak DJ,Watson EB(2001)Pb diffusion in zircon.Chem Geol 172:5-24

    Deng XG,Chen ZG,Li XH,Liu DY(2004)SHRIMP U-Pb zircon dating of the Darongshan-Shiwandashan.Geol Rev 50:426-432(in Chinese with English abstract)

    Dube′B,Dunning GR,Lauzie`re K,Roddick JC(1996)New Insights into the Appalachian Orogen from geology and geochronology along the Cape Ray fault zone,southwest Newfoundland.Geol Soc Am Bull 108:101-116

    Faure G(1977)Principles of isotope geology.Wiley,New York

    Guangxi Pubei Lead and Zinc,Ltd.(2005)Design of replacement resources of the Xinhua Pb-Zn-Ag deposi,Pubei county,Guangxi,38(in Chinese)

    Huang DJ,Li HY,Qin F(2008)Prospecting of the deeper and outer region of the Xinhua Pb-Zn-(Ag)deposit,Pubei county.S Land Resour 8(52-53):56(in Chinese)

    Jahn B-M,Wu F,Lo C-H,Tsai C-H(1999)Crust-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional maficultramafic intrusions of the northern Dabie complex,central China.Chem Geol 157:119-146

    Krogh TE(1973)A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations.Geochim Cosmochim Acta 37:485-494

    Krogh TE(1982)Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique.Geochim Cosmochim Acta 46:637-649

    Lee JKW,Williams IS,Ellis DJ(1997)Pb,U and Th diffusion in natural zircon.Nature 390:159-162

    Lei LQ,F(xiàn)eng ZH,Cheng ZP(1992)Fozichong Pb-Zn-(Ag)deposit,Guangxi.Tiandi Publishing House,Chengdu(in Chinese with English abstract)

    Li XM(2004)Study on fission track method and the thermochronology of the Yunkaidashan.Guangzhou Institute of Geochemistry,Chinese Academy of Sciences for Doctoral Degree,Guangzhou(in Chinese with English abstract)

    Li ZX,Li XH(2007)Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:a flat-slab subduction model.Geology 35:179-182

    Li Q,Chen F,Wang X,Li X,Li C(2005a)Ultra-low procedural blank and the single-grain mica Rb-Sr isochron dating.Chin Sci Bull 50:2861-2865

    Li XM,Wang YJ,Tan KX,Peng TP(2005b)Meso-Cenozoic uplifting and exhumation on Yunkaidashan:evidence from fission track thermochronology.Chin Sci Bull 50:903-909

    Li HZ,Zhai MG,Zhang LC,Zhou YZ,Yang ZJ,He JG,Liang J,Zhou LY(2013)The distribution and composition characteristics of siliceous rocks from Qinzhou Bay-Hangzhou Bay Joint Belt,South China:constraint on the tectonic evolution of plates in South China.Sci World J 2013:25

    Liang YH,Zhang QF(1998)Geological indictors of gold,silver,copper,lead and zinc mineralization in Yunkai district,South China.Geol Min Resour S China 14:14-21(in Chinese with English abstract)

    Liang YH,Zhang QF,Yang SY,Liu HQ (1998)Ore-forming regularities and ore-searching prediction of Yunkai uplift. Geological Publishing House,Beijing(in Chinese with English abstract)

    LiuTF(1997)Metallogeneticcharacteristicsandexploration prospects of gold-silver deposits in Yunkai province in Guangxi. Guangxi Geol 10:15-22(in Chinese with English abstract)

    Liu YS,Hu ZC,Gao S,Gunther D,Xu J,Gao CG,Chen HH(2008)In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34-43

    Liu YS,Hu ZC,Zong KQ,Gao CG,Gao S,Xu J,Chen HH(2010)Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.Chin Sci Bull 55:1535-1546

    Ludwig K(2003)User’s manual for Isoplot 3.00:a geochronological toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication,Berkeley

    Luo ZG,Wang YJ,Zhang FF(2010)LA-ICPMS Zircon U-Pb dating for Baimashan and Jintan Indosinian granitic plutons and its petrogeneticimplications.GeotectonicaetMetallogenia 34:282-291(in Chinese with English abstract)

    Mao JR,Takahashi Y,Kee W-S,Li ZL,Ye HM,Zhao XL,Liu K,Zhou J(2011a)Characteristics and geodynamic evolution of Indosinian magmatism in South China:a case study of the Guikeng pluton.Lithos 127:535-551

    Mao JW,Chen MH,Yuan SD,Guo CL (2011b)Geological characteristics of the Qinhang(or Shihang)metallogenic belt in South China and spatial-temporal distribution regularity of Mineral deposits.Acta Geol Sinica 85:636-658(in Chinese with English abstract)

    Mao JW,Cheng YB,Chen MH,F(xiàn)ranco P(2013)Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings.Miner Deposita 48:267-294

    Peng SM,F(xiàn)u LF,Zhou GQ(1996)Tectonic evolution of Yunkai Massif and its shearing anatectic origin of the gnessic granitic rocks.China University of Geosciences Press,Wuhan

    Peng BX,Wang YJ,F(xiàn)an WM,Peng TP,Liang XQ(2006)LA-ICPMS zircon U-Pb dating for three Indosinian granitic plutons from central Hunan and western Guangdong provinces and its petrogenetic implications.Acta Geol Sinica 80:660-669(in Chinese with English abstract)

    Pirajno F,Bagas L(2002)Gold and silver metallogeny of the South China Fold Belt:a consequence of multiple mineralizing events?Ore Geol Rev 20:109-126

    Qi CS,Deng XG,Li WX,Li XH,Yang YH,Xie LW(2007)Origin of the Darongshan-Shiwandashan S-type granitoid belt from southeastern Guangxi:geochemical and Sr-Nd-Hf isotopic constraints. Acta Petrologica Sin 23:403-412(in Chinese with English abstract)

    Qin XF,Pan YM,Li J,Li RS,Zhou FS,Hu DA,Zhong FY(2006)Zircon SHRIMP U-Pb geochronology of the Yunkai metamorphic complex in southern Guangxi,China.Geol Bull China 25:553-559(in Chinese with English abstract)

    Qin XF,Xia B,Zhou FS,Hu GA,Xie LF,Zhou KH,Pan YW(2007)Confirm of Proterozoic unconformity event in the Yunkai area of Guangxi and its tectonic significance.Geoscience 21:22-30(in Chinese with English abstract)

    Qiu YX,Chen HJ(1993)Geological structure of Yunkaidashan and its adjacent Areas.Geological Publishing House,Beijing(in Chinese with English abstract)

    Romeo I,Lunar R,Capote R,Quesada C,Dunning GR,Pin?a R,Ortega L(2006)U-Pb age constraints on Variscan magmatism and Ni-Cu-PGE metallogeny in the Ossa-Morena Zone(SW Iberia).J Geol Soc 163:837-846

    Shen WZ,Zhang FR,Shu LS,Wang LJ,Xiang L(2008)Formation age,geochemical characteristics of the Ninggang granite body in Jiangxi Province and its tectonic significance.Acta Petrologica Sin 24:2244-2254(in Chinese with English abstract)

    Shu LS(2006)Predevonian tectonic evolution of South China:from cathaysian block to caledonian period folded orogenic belt.Geol J China Univ 12:418-431(in Chinese with English abstract)

    Shu LS,F(xiàn)aure M,Yu JH,Jahn BM (2011)Geochronological and geochemical features of the Cathaysia block(South China):new evidence for the Neoproterozoic breakup of Rodinia.Precambr Res 187:263-276

    Stacey JS,Kramers JD(1975)Approximation of terrestrial lead isotope evolution by a two-stage model.Earth Planet Sci Lett 26:207-221

    Steiger RH,Ja¨ger E(1977)Subcommission on geochronology:convention on theuse ofdecay constants in geo-and cosmochronology.Earth Planet Sci Lett 36:359-362

    Sun T(2006)A new map showing the distribution of granites in South China and its explanatory notes.Geol Bull China 25:332-335(in Chinese with English abstract)

    Wan Y,Liu D,Wilde SA,Cao J,Chen B,Dong C,Song B,Du L(2010)Evolution of the Yunkai Terrane,South China:evidence from SHRIMP zircon U-Pb dating,geochemistry and Nd isotope.J Asian Earth Sci 37:140-153

    Wang JH,Sun DZ,Chang XY(1998a)U-Pb dating of the Napeng granite at the NW marginal of the Yunkai block,Guangdong,south China.Acta Mineralogica Sin 18:130-133(in Chinese with English abstract)

    Wang ZW,Zhou YZ,Zhang HH,Zhou HW(1998b)The basement evolution and mineralization of Yunkai Massif,South China. Prog Precam Res 21:45-53(in Chinese with English abstract)

    Wang JH,Tu XL,Sun DZ(1999)U-Pb dating of anatectic migmatites at Gaozhou in the Yunkai block,western Guangdong,China.Geochimica 28:231-238(in Chinese with English abstract)

    Wang YJ,F(xiàn)an WM,Cawood PA,Ji SC,Peng TP,Chen XY(2007a)Indosinian high-strain deformation for the Yunkaidashan tectonic belt,south China:kinematics and 40Ar/39Ar geochronological constraints.Tectonics 26:229-247

    Wang YJ,F(xiàn)an WM,Sun M,Liang XQ,Zhang YH,Peng TP(2007b)Geochronological,geochemical and geothermal constraints onpetrogenesis of the Indosinian peraluminous granites in the South China Block:a case study in the Hunan Province.Lithos 96:475-502

    Wang YJ,F(xiàn)an WM,Zhao GC,Ji SC,Peng TP(2007c)Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Res 12:404-416

    Wang YJ,F(xiàn)an WM,Zhang GW,Zhang YH(2013)Phanerozoic tectonics of the South China Block:key observations and controversies.Gondwana Res 23(4):1273-1305

    Whitney DL,Evans BW (2010)Abbreviations for names of rockforming minerals.Am Miner 95:185-187

    Wu YB,Zheng YF(2004)Genesis of zircon and its constraints on interpretation of U-Pb age.Chin Sci Bull 49:1589-1604(in Chinese with English abstract)

    ZhangYH(2011)Geologicalcharacteristicsandprospecting persepective of Fozichong Pb-Zn ore field,Guangxi.Chinese Academy of Geological Sciences for Master Degree,Beijing(in Chinese with English abstract)

    Zhao L,Guo F,F(xiàn)an W,Li C,Qin X,Li H(2012)Origin of the granulite enclaves in Indo-Sinian peraluminous granites,South Chinaanditsimplicationforcrustalanatexis.Lithos 150:209-226

    Zheng Y,Zhou YZ,Wang YJ,Shen WJ,Yang ZJ,Li XY,Xiao F(2014)A fluid inclusion study of the Hetai goldfield in the Qinzhou Bay-Hangzhou Bay metallogenic bel,South Chinat. Ore Geol Rev.doi:10.1016/j.oregeorev.2014.09.008

    Zhou JC,Jiang SY,Wang XL,Ying JH,Zhang MQ(2006a)Re-Os isotopic composition of late Mesozoic mafic rocks from southeasterncoastofChina.ActaPetrologicaSinica 22:407-413(in Chinese with English abstract)

    Zhou XM,Sun T,Shen WZ,Shu LS,Niu YL(2006b)Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:a response to tectonic evolution.Episodes 29:26-33

    Zhou XM,Chen PR,Xu XS(2007)Petrogenesis of late Mesozoic granite and dynamic evolution of Lithosphere in Nanling Region.Science Press,Beijing

    Zhou YZ,Zeng CY,Li HZ,An YF,Liang J,Lv WC,Yang ZJ,He JG,Shen WJ(2012)Geological evolution and ore-prospecting targets in southern segment of Qinzhou Bay-Hangzhou Bay juncture orogenic belt,southern China.Geological Bulletin of China 31:486-491(in Chinese with English abstract)

    29 May 2015/Revised:19 July 2015/Accepted:15 November 2015/Published online:25 November 2015?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    国产色视频综合| 91字幕亚洲| 大香蕉久久网| 亚洲视频免费观看视频| 日本黄色日本黄色录像| 国产又爽黄色视频| 国产精品国产av在线观看| 精品一品国产午夜福利视频| 亚洲全国av大片| a 毛片基地| 亚洲av片天天在线观看| 欧美国产精品一级二级三级| 日韩一卡2卡3卡4卡2021年| kizo精华| 欧美日韩黄片免| 国产激情久久老熟女| 99久久国产精品久久久| 亚洲人成电影观看| 欧美日韩亚洲综合一区二区三区_| 亚洲国产毛片av蜜桃av| 下体分泌物呈黄色| 成年av动漫网址| 老司机亚洲免费影院| 亚洲av电影在线观看一区二区三区| 各种免费的搞黄视频| 男人操女人黄网站| 免费女性裸体啪啪无遮挡网站| 91麻豆精品激情在线观看国产 | 美女国产高潮福利片在线看| 男男h啪啪无遮挡| 50天的宝宝边吃奶边哭怎么回事| 可以免费在线观看a视频的电影网站| av片东京热男人的天堂| 日韩有码中文字幕| 超色免费av| 1024视频免费在线观看| 电影成人av| 中亚洲国语对白在线视频| 久久人妻福利社区极品人妻图片| 久久久久精品人妻al黑| 人妻 亚洲 视频| videos熟女内射| 国产精品1区2区在线观看. | 日韩中文字幕欧美一区二区| 亚洲专区国产一区二区| 人妻人人澡人人爽人人| 9191精品国产免费久久| 国产成人av激情在线播放| 成人三级做爰电影| 操美女的视频在线观看| 国产熟女午夜一区二区三区| 久久性视频一级片| 亚洲第一青青草原| 午夜福利一区二区在线看| 亚洲成人免费av在线播放| 在线亚洲精品国产二区图片欧美| 国产亚洲av高清不卡| 免费日韩欧美在线观看| 91老司机精品| 91老司机精品| 黑人欧美特级aaaaaa片| 人人澡人人妻人| 丰满迷人的少妇在线观看| 一级毛片电影观看| 国产高清国产精品国产三级| 成人影院久久| 中文字幕最新亚洲高清| 丰满人妻熟妇乱又伦精品不卡| 国产成人欧美在线观看 | 欧美日韩av久久| 在线十欧美十亚洲十日本专区| 久久精品国产综合久久久| 欧美性长视频在线观看| 岛国在线观看网站| 在线 av 中文字幕| 老熟妇乱子伦视频在线观看 | 一区福利在线观看| av在线老鸭窝| 男女午夜视频在线观看| 亚洲伊人色综图| 亚洲少妇的诱惑av| 搡老岳熟女国产| 午夜免费观看性视频| 蜜桃在线观看..| 另类亚洲欧美激情| 高清视频免费观看一区二区| 嫩草影视91久久| 18禁观看日本| 亚洲精品中文字幕在线视频| 18禁观看日本| 国产亚洲一区二区精品| www日本在线高清视频| 免费久久久久久久精品成人欧美视频| 桃花免费在线播放| 亚洲综合色网址| 如日韩欧美国产精品一区二区三区| 国产免费福利视频在线观看| 国产免费现黄频在线看| 精品少妇黑人巨大在线播放| 国产精品香港三级国产av潘金莲| 涩涩av久久男人的天堂| 亚洲精品国产av蜜桃| 亚洲精品第二区| www日本在线高清视频| 美国免费a级毛片| 美女福利国产在线| xxxhd国产人妻xxx| 欧美另类一区| 一本色道久久久久久精品综合| 免费少妇av软件| 王馨瑶露胸无遮挡在线观看| 黄色怎么调成土黄色| 欧美另类一区| 国产成人啪精品午夜网站| 国产成人欧美在线观看 | 热re99久久精品国产66热6| 国产日韩欧美在线精品| 久久国产精品大桥未久av| 精品国产乱码久久久久久小说| 一区二区av电影网| 一区在线观看完整版| 菩萨蛮人人尽说江南好唐韦庄| 国产精品成人在线| 人人妻人人澡人人看| 各种免费的搞黄视频| 国产片内射在线| 中文字幕最新亚洲高清| 丰满人妻熟妇乱又伦精品不卡| 久久久精品94久久精品| 人人澡人人妻人| 高潮久久久久久久久久久不卡| 高潮久久久久久久久久久不卡| 国产精品一区二区免费欧美 | 欧美精品高潮呻吟av久久| 国产精品麻豆人妻色哟哟久久| 亚洲精品一区蜜桃| 欧美精品高潮呻吟av久久| 欧美精品高潮呻吟av久久| 精品视频人人做人人爽| 久久亚洲精品不卡| 考比视频在线观看| 国产欧美日韩一区二区三 | 国产成人精品久久二区二区91| 免费看十八禁软件| 少妇人妻久久综合中文| 在线观看免费午夜福利视频| 亚洲色图 男人天堂 中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 黄色a级毛片大全视频| 免费在线观看视频国产中文字幕亚洲 | 老司机午夜福利在线观看视频 | 美女大奶头黄色视频| 中亚洲国语对白在线视频| 热99re8久久精品国产| 亚洲成国产人片在线观看| www.熟女人妻精品国产| 天堂8中文在线网| 少妇猛男粗大的猛烈进出视频| 欧美人与性动交α欧美软件| 午夜日韩欧美国产| 9191精品国产免费久久| 免费日韩欧美在线观看| 亚洲一区中文字幕在线| 欧美精品亚洲一区二区| 一边摸一边抽搐一进一出视频| 欧美国产精品va在线观看不卡| 王馨瑶露胸无遮挡在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲一区中文字幕在线| 悠悠久久av| 精品人妻1区二区| 久久狼人影院| 国产亚洲欧美在线一区二区| 香蕉国产在线看| 欧美少妇被猛烈插入视频| 中文字幕高清在线视频| 老司机深夜福利视频在线观看 | 天天操日日干夜夜撸| 成人黄色视频免费在线看| 久久久精品国产亚洲av高清涩受| 夜夜夜夜夜久久久久| 中文字幕最新亚洲高清| xxxhd国产人妻xxx| 天天躁日日躁夜夜躁夜夜| 秋霞在线观看毛片| www.自偷自拍.com| 久久亚洲精品不卡| 国产在线免费精品| 狠狠狠狠99中文字幕| 日韩大码丰满熟妇| 日本一区二区免费在线视频| 爱豆传媒免费全集在线观看| 久久久精品94久久精品| 日日爽夜夜爽网站| 美女福利国产在线| 国产精品熟女久久久久浪| 久久久久久免费高清国产稀缺| 久久久久久人人人人人| 国产野战对白在线观看| 美女午夜性视频免费| 美女高潮到喷水免费观看| 狠狠狠狠99中文字幕| 99精品久久久久人妻精品| 亚洲第一欧美日韩一区二区三区 | 欧美精品人与动牲交sv欧美| 热99re8久久精品国产| 国产男人的电影天堂91| 黄片播放在线免费| 色播在线永久视频| 五月天丁香电影| 亚洲伊人色综图| 另类亚洲欧美激情| 大香蕉久久网| 母亲3免费完整高清在线观看| 久久久国产成人免费| 法律面前人人平等表现在哪些方面 | 国产成人a∨麻豆精品| 亚洲欧美精品综合一区二区三区| 91字幕亚洲| 在线精品无人区一区二区三| 男女免费视频国产| 十分钟在线观看高清视频www| 一级毛片女人18水好多| 日韩 亚洲 欧美在线| 新久久久久国产一级毛片| 五月开心婷婷网| 色精品久久人妻99蜜桃| 国产成人一区二区三区免费视频网站| 久久国产精品人妻蜜桃| 国产在视频线精品| 飞空精品影院首页| 午夜福利乱码中文字幕| 国产精品.久久久| 18禁黄网站禁片午夜丰满| 国产人伦9x9x在线观看| 国产精品99久久99久久久不卡| 亚洲精品国产av蜜桃| 一本一本久久a久久精品综合妖精| 啪啪无遮挡十八禁网站| 精品一区二区三区四区五区乱码| 久久影院123| 一区二区三区乱码不卡18| 婷婷色av中文字幕| 飞空精品影院首页| av在线app专区| 欧美黑人欧美精品刺激| 久久国产精品大桥未久av| a级毛片在线看网站| 国产麻豆69| 色播在线永久视频| 国产一级毛片在线| 亚洲久久久国产精品| 国产有黄有色有爽视频| 亚洲精品日韩在线中文字幕| 久久久精品国产亚洲av高清涩受| www.精华液| 在线观看免费高清a一片| av免费在线观看网站| 三上悠亚av全集在线观看| 久久国产精品男人的天堂亚洲| 高清视频免费观看一区二区| 免费女性裸体啪啪无遮挡网站| 亚洲五月婷婷丁香| 首页视频小说图片口味搜索| 国产片内射在线| 女人爽到高潮嗷嗷叫在线视频| 亚洲熟女毛片儿| 波多野结衣av一区二区av| 欧美黄色片欧美黄色片| 欧美xxⅹ黑人| 亚洲人成电影免费在线| 精品一区二区三区av网在线观看 | 天天操日日干夜夜撸| 中文字幕色久视频| 女人爽到高潮嗷嗷叫在线视频| 女人高潮潮喷娇喘18禁视频| 色94色欧美一区二区| 国产黄频视频在线观看| 欧美少妇被猛烈插入视频| 不卡av一区二区三区| 乱人伦中国视频| 五月开心婷婷网| 日韩一卡2卡3卡4卡2021年| 美女福利国产在线| 乱人伦中国视频| 91成年电影在线观看| 国产精品成人在线| 国产高清国产精品国产三级| 色婷婷久久久亚洲欧美| 久久久久久久国产电影| 捣出白浆h1v1| 黄片大片在线免费观看| 国产激情久久老熟女| 亚洲va日本ⅴa欧美va伊人久久 | 国产又色又爽无遮挡免| cao死你这个sao货| 亚洲精品乱久久久久久| netflix在线观看网站| 成人国产一区最新在线观看| 欧美日本中文国产一区发布| 制服诱惑二区| 人人澡人人妻人| 啦啦啦啦在线视频资源| 亚洲视频免费观看视频| 亚洲精品自拍成人| 正在播放国产对白刺激| 日韩中文字幕欧美一区二区| 19禁男女啪啪无遮挡网站| 精品国产乱码久久久久久小说| 99久久综合免费| 波多野结衣av一区二区av| 亚洲欧美一区二区三区黑人| 2018国产大陆天天弄谢| 亚洲欧美日韩另类电影网站| 成年动漫av网址| 午夜福利在线观看吧| 黄色a级毛片大全视频| 另类精品久久| 欧美日本中文国产一区发布| 精品国产一区二区久久| 99国产精品99久久久久| 99久久人妻综合| 大香蕉久久网| 日本wwww免费看| 久久精品亚洲熟妇少妇任你| 极品少妇高潮喷水抽搐| 国产亚洲精品久久久久5区| 日韩中文字幕视频在线看片| 欧美 亚洲 国产 日韩一| 国产野战对白在线观看| 中文字幕另类日韩欧美亚洲嫩草| 爱豆传媒免费全集在线观看| 欧美性长视频在线观看| 美女午夜性视频免费| a在线观看视频网站| 亚洲色图综合在线观看| 久久人人97超碰香蕉20202| 亚洲人成77777在线视频| 日韩大片免费观看网站| 欧美人与性动交α欧美软件| 日韩欧美一区视频在线观看| 最近最新免费中文字幕在线| 久久久精品94久久精品| 午夜两性在线视频| 亚洲精品国产精品久久久不卡| 黄色片一级片一级黄色片| 色播在线永久视频| 搡老岳熟女国产| 中亚洲国语对白在线视频| 两个人看的免费小视频| 97在线人人人人妻| 亚洲精品中文字幕一二三四区 | 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 男女无遮挡免费网站观看| 一级,二级,三级黄色视频| 国产一区二区 视频在线| 好男人电影高清在线观看| 天堂中文最新版在线下载| 欧美国产精品一级二级三级| 韩国高清视频一区二区三区| 国产在线免费精品| 夜夜夜夜夜久久久久| 国产精品一区二区精品视频观看| 他把我摸到了高潮在线观看 | 国产精品成人在线| 亚洲av成人一区二区三| 亚洲第一av免费看| 久久精品成人免费网站| 国产日韩一区二区三区精品不卡| 欧美日韩黄片免| 日韩视频一区二区在线观看| 亚洲欧洲日产国产| 丝袜在线中文字幕| 国产有黄有色有爽视频| 国产人伦9x9x在线观看| 老司机靠b影院| 日韩视频一区二区在线观看| 老司机午夜福利在线观看视频 | 黑人猛操日本美女一级片| 一边摸一边做爽爽视频免费| 国产精品九九99| 国产区一区二久久| 亚洲午夜精品一区,二区,三区| 人妻一区二区av| 久久久国产成人免费| 欧美日韩国产mv在线观看视频| 人妻 亚洲 视频| 精品国产乱码久久久久久小说| 手机成人av网站| 人人妻人人爽人人添夜夜欢视频| 亚洲精品乱久久久久久| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花| 久久热在线av| 欧美av亚洲av综合av国产av| 最新的欧美精品一区二区| 国产免费视频播放在线视频| 亚洲成人免费av在线播放| 亚洲精华国产精华精| 男男h啪啪无遮挡| 久久亚洲精品不卡| 青草久久国产| 9191精品国产免费久久| 欧美变态另类bdsm刘玥| 一进一出抽搐动态| 亚洲一区中文字幕在线| 高清视频免费观看一区二区| 夜夜夜夜夜久久久久| 99热全是精品| 最近中文字幕2019免费版| 丰满迷人的少妇在线观看| 极品少妇高潮喷水抽搐| 国产精品成人在线| 超碰成人久久| 亚洲精品美女久久av网站| 免费av中文字幕在线| 12—13女人毛片做爰片一| 黄频高清免费视频| 久久 成人 亚洲| 日韩精品免费视频一区二区三区| bbb黄色大片| 久久精品亚洲熟妇少妇任你| 日本精品一区二区三区蜜桃| 十分钟在线观看高清视频www| 国产精品免费视频内射| 99国产综合亚洲精品| 亚洲国产精品一区三区| 精品人妻一区二区三区麻豆| 视频在线观看一区二区三区| 午夜91福利影院| 亚洲精品美女久久久久99蜜臀| av片东京热男人的天堂| 亚洲精品中文字幕在线视频| 欧美日本中文国产一区发布| 日本猛色少妇xxxxx猛交久久| 午夜精品国产一区二区电影| 久久精品国产亚洲av高清一级| 久久久久久久精品精品| 久久久国产欧美日韩av| 成年人黄色毛片网站| 欧美精品啪啪一区二区三区 | 亚洲七黄色美女视频| 脱女人内裤的视频| 久久狼人影院| 久久久精品国产亚洲av高清涩受| 又紧又爽又黄一区二区| 俄罗斯特黄特色一大片| 久久久久精品国产欧美久久久 | 19禁男女啪啪无遮挡网站| svipshipincom国产片| 国产欧美日韩一区二区三区在线| 老鸭窝网址在线观看| 国产在视频线精品| 欧美精品高潮呻吟av久久| 精品视频人人做人人爽| 国产国语露脸激情在线看| 狂野欧美激情性bbbbbb| 大陆偷拍与自拍| 成人影院久久| 国产在线观看jvid| 日韩视频一区二区在线观看| 亚洲国产精品一区三区| 亚洲欧美色中文字幕在线| 美女主播在线视频| 午夜激情av网站| 亚洲九九香蕉| 精品国内亚洲2022精品成人 | 亚洲精品自拍成人| a 毛片基地| 最近中文字幕2019免费版| 国产成人av激情在线播放| 日韩视频在线欧美| 欧美日韩一级在线毛片| 欧美精品亚洲一区二区| 欧美xxⅹ黑人| 国产成人av激情在线播放| 国产精品麻豆人妻色哟哟久久| tocl精华| 美女国产高潮福利片在线看| 一二三四社区在线视频社区8| 成人三级做爰电影| 日韩欧美国产一区二区入口| 欧美激情高清一区二区三区| 一区二区三区四区激情视频| 一区二区日韩欧美中文字幕| 极品人妻少妇av视频| 热re99久久精品国产66热6| 色精品久久人妻99蜜桃| 岛国在线观看网站| 99国产精品免费福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 18禁观看日本| 久久99一区二区三区| 91精品国产国语对白视频| 日韩欧美一区视频在线观看| 三级毛片av免费| 啦啦啦啦在线视频资源| cao死你这个sao货| 精品国产国语对白av| 十八禁网站网址无遮挡| 国产精品 欧美亚洲| 日本五十路高清| 男人操女人黄网站| 狂野欧美激情性bbbbbb| 国产亚洲精品久久久久5区| 一级毛片精品| cao死你这个sao货| 免费黄频网站在线观看国产| 日韩一卡2卡3卡4卡2021年| 曰老女人黄片| 超碰成人久久| 狠狠婷婷综合久久久久久88av| bbb黄色大片| 丁香六月天网| 亚洲第一欧美日韩一区二区三区 | 91精品国产国语对白视频| 成人亚洲精品一区在线观看| 亚洲av片天天在线观看| 亚洲精品美女久久久久99蜜臀| svipshipincom国产片| 天天影视国产精品| 国产97色在线日韩免费| 欧美+亚洲+日韩+国产| 欧美人与性动交α欧美精品济南到| 亚洲欧美激情在线| cao死你这个sao货| 一级a爱视频在线免费观看| 最近最新免费中文字幕在线| a 毛片基地| 一级,二级,三级黄色视频| 欧美日韩av久久| 免费高清在线观看视频在线观看| 飞空精品影院首页| 日韩一卡2卡3卡4卡2021年| 每晚都被弄得嗷嗷叫到高潮| av福利片在线| videos熟女内射| 亚洲精品国产一区二区精华液| a级片在线免费高清观看视频| 高潮久久久久久久久久久不卡| 90打野战视频偷拍视频| 一本大道久久a久久精品| 老鸭窝网址在线观看| 国产无遮挡羞羞视频在线观看| 午夜老司机福利片| 日本欧美视频一区| 欧美精品av麻豆av| 国产一区二区三区综合在线观看| 亚洲av电影在线观看一区二区三区| 蜜桃在线观看..| 可以免费在线观看a视频的电影网站| 在线观看一区二区三区激情| 亚洲精品国产一区二区精华液| 亚洲成人国产一区在线观看| av国产精品久久久久影院| 在线精品无人区一区二区三| 欧美中文综合在线视频| 亚洲成av片中文字幕在线观看| 日日爽夜夜爽网站| 大陆偷拍与自拍| 久久精品亚洲熟妇少妇任你| 亚洲黑人精品在线| 亚洲五月色婷婷综合| 超碰97精品在线观看| 在线观看免费日韩欧美大片| 久久人人爽人人片av| a级毛片在线看网站| 午夜激情av网站| 欧美精品一区二区大全| 老司机影院成人| cao死你这个sao货| 搡老熟女国产l中国老女人| 国产男女超爽视频在线观看| 精品高清国产在线一区| 精品国产一区二区三区久久久樱花| 欧美日韩国产mv在线观看视频| 中文字幕人妻丝袜制服| av电影中文网址| 狠狠婷婷综合久久久久久88av| 国产精品久久久久成人av| 国产有黄有色有爽视频| 夜夜骑夜夜射夜夜干| 久久99一区二区三区| 老司机影院成人| 69av精品久久久久久 | √禁漫天堂资源中文www| avwww免费| 精品一区在线观看国产| 国产伦理片在线播放av一区| 精品少妇久久久久久888优播| 欧美激情极品国产一区二区三区| 色播在线永久视频| 亚洲,欧美精品.| 淫妇啪啪啪对白视频 | 久久精品成人免费网站| 精品少妇一区二区三区视频日本电影| 午夜福利在线观看吧| 少妇 在线观看| 亚洲色图 男人天堂 中文字幕| 日韩一区二区三区影片| 国产黄色免费在线视频| 久热爱精品视频在线9| 国产黄频视频在线观看| 亚洲精品在线美女| 成人av一区二区三区在线看 | 精品一区二区三区av网在线观看 | 一边摸一边做爽爽视频免费| 嫁个100分男人电影在线观看| 久久久久久久大尺度免费视频| 老司机午夜十八禁免费视频| 无遮挡黄片免费观看| 国产精品免费大片| 国产不卡av网站在线观看| 久久久久久久久免费视频了|