• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tin partition behavior and implications for the Furong tin ore formation associated with peralkaline intrusive granite in Hunan Province,China

    2016-10-20 02:27:26XiaoyanHuXianwuBiRuizhongHuGuoshengCaiYouweiChen
    Acta Geochimica 2016年2期

    Xiaoyan Hu·Xianwu Bi·Ruizhong Hu·Guosheng Cai·Youwei Chen

    ?

    Tin partition behavior and implications for the Furong tin ore formation associated with peralkaline intrusive granite in Hunan Province,China

    Xiaoyan Hu1·Xianwu Bi1·Ruizhong Hu1·Guosheng Cai2·Youwei Chen1

    Tin deposits are often closely associated with granitic intrusions.In this study,we analyzed tin partition coefficients between different fluids and meltsas well as various crystals and meltsfrom the Furong tin deposit associated with the Qitianling A-type granite.Our experimental results indicate that tin partition behavior is affected by the chemical compositions of fluids,melts,and minerals.Tin is prone to partitioning into the residual magma in fractional crystallization or other differential magmatic processes if the magma originated from crustal sources with high alkali content,high volatile content,and low oxygen fugacity.Highly evolved residual peralkaline granitic magma enriched in tin can lead to tin mineralization in a later stage.Furthermore,the volatiles F and Cl in the magma play important roles in tin partitioning behavior.Low F contents in the melt phase and high Cl content in the aqueous fluid phase are favorable factors for tin partitioning in the aqueous fluid phase.High Cl content in the aqueous fluid catalyzes water-rock interaction and leads to the extraction of tin from tinbearing minerals.All these findings support a hydrothermal origin for the tin deposits.In light of the geotectonic setting,petrochemicalcharacteristics,andmineralizing physicochemical conditions of the Furong tin deposit,it is inferred that the ore-forming fluid of the Furong tin ore deposit could have derived from the Qitianling peralkaline intrusion.

    Tin·Partition·Peralkaline granite·

    Hunan Province

    1 Introduction

    Tin deposits are typically closely related to granite spatially,temporally,and metallogenically(Lehmann 1990;Xia and Liang 1991).Most granites associated with tin deposits display an extreme degree of differentiation and generally share the petrochemical characteristics of being peraluminous,enriched in K(relative to Na),and high in Si content,but lower in Ca,F(xiàn)e,Mg,and Ti content(Lehmann 1990;Xia and Liang 1991;Chesley et al.1993;Yeap 1993;Sun and Higgins 1996;Botelho and Moura 1998;Bettencourt et al.2005).Historically,tin mineralization has been thought to be tied to peraluminous,K-rich,orogenic S-type granites.However,in recent decades,important economic tin deposits associated closely with A-type granites have been found(Taylor 1979;Mitchell and Carson 1981;Sawkins 1990;Bi et al.1993;Botelho and Moura 1998;Liverton and Botelho 2001;Haapala and Lukkari 2005). For example,the Furong superlarge tin deposit in Hunan Province,southeast China is closely associated with the Qitianling peralkaline A-type granite intrusion(Zhao et al. 1998,2000;Zheng and Jia 2001;Wang et al.2003a,b;Li 2006;Shuang et al.2006).A-type granite is generally characterized as peralkaline and anorogenic.Nearly all peralkaline intrusive granites contain alkalis more than 8 wt%more than those in calc-alkali anorogenic granites(Tu 1989).It is important to research the metallogeny of this new type of tin deposit.While there has been someresearch on the new type of tin deposit associated with A-type granite,the question of whether tin-rich aqueous fluid could be derived through peralkaline intrusion remains unsettled.One point of view is that the mineralized fluids of the Furong tin deposit were derived directly from later highly evolved magma(Wang et al.2004;Li and Liu 2005;Shuang et al.2006;Li et al.2007a,b),but another is that the tin-bearing fluids were provided by post-magmatic hydrothermal alteration of the Qitianling granite(Zhao et al.2005;Jiang et al.2006).

    ? Xiaoyan Hu huxiaoyan@mail.gyig.ac.cn

    1State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,People’s Republic of China

    2Guizhou Bureau of Nonferrous Metal and Nuclear Industry Geological Exploration,Guiyang 550002,People’s Republic of China

    Metal mineralization associated with intrusions depends to a great extent on fractional crystallization of the magma and partitioning of metallic elements between the melt and aqueous fluid phases in the evolution of the magma.The fractional crystallization of magma and the partition behavior of its metallic elements depend on the composition of the melt,the composition of fluid derived from the melt,and the physicochemical conditions under which the partitioning occurs(Holland 1972;Feiss 1978;Candela and Holland 1984;Urabe 1985;Candela 1989;Keppler and Wyllie 1991;Lowenstern et al.1991;Peiffert et al.1994;Candela and Piccoli 1995;Chantal et al.1996;Webster 1997;Bai et al.1998;Halter et al.2002).Existing experimental data of tin partitioning behavior have been collected for this paper.These data include the tin partition coefficients between the crystals and liquids between different granitic melts and aqueous fluid phases in known experimental physicochemical conditions.Based on the existing data,geochemical behavior of tin throughout magma evolution and the factors leading to the tin-bearing granite’s petrochemical characteristics are discussed.Furthermore,whether the mineralized aqueous fluids of the Furong tin deposit were derived from the Qitianling peralkaline intrusion is discussed in the context of the petrochemical characteristics of the Qitianling A-type granite,the mineralizing physicochemical conditions,and the geotectonic setting.Finally,the favorable factors of tin mineralization associated with the peralkaline granites are summarized,a significant step inunderstanding the mechanism of tin ore-forming processes related to peralkaline intrusive granite.

    2 Tin partitioning behavior

    2.1 Tin partition between minerals and melts

    Fractional crystallization is the dominant petrogenetic process controlling magmatic evolution.The main tin carrier in tin deposits related to granitic rocks is cassiterite. Some accessory minerals such as biotite,hornblende,titanite,ilmenite,and magnetite are usually important hosts for tin in granitic rocks because of the preferential substitution of major cations Ti4+and Fe3+in those crystals by Sn4+(Barsukov 1957;Petrova and Legeydo 1965). These substitutions are possible because the coordination radii of Ti4+,F(xiàn)e3+,and Sn4+are similar(61,65,and 69 pm,respectively)(Shannon 1976).In contrast,tin contents in feldspar and quartz are generally very lowmuch less than tin content in bulk granite rocks.

    Table 1 Partition coefficients of tin between different minerals and melts

    Thecompileddataoftinpartitioncoefficientsbetween different minerals and melts are shown in Table 1(Gan 1993).Generally,tin tends to partition into biotite,magnetite,ilmenite,and amphibole rather than plagioclase,K-feldspar,and quartz.As the table shows,tin partition coefficients are affected by the melt composition.For example,the value 5.18 ofbetween amphibole and metaluminous andesitic melt is almost ten times that between amphibole and peralkaline rhyolitic melt(0.57). The bulk tin partition coefficients between the minerals and different melts are estimated roughly as the average of the coefficients ofthe individual minerals against the melts.The bulk tin partition coefficients between the minerals and peralkaline basaltic melt,metaluminous andesitic melt,peralkaline andesitic melt,metaluminous acidic melt,peralkaline rhyolitic melt,and peraluminous acidic melt are 0.92,2.41,1.04,1.21,0.50 and 1.03,respectively.The majority of the bulk tin partition coefficients between the minerals and the melts are near 1.The bulk tin partition coefficient between the minerals and the peralkaline rhyoliticmeltisthelowestat0.50.Thisimpliesthattheresidual magma is likely to be enriched in tin following fractional crystallization of peralkaline granitic magma.In contrast,when the magma is rich in Ti4+,F(xiàn)e3+,Mg2+,etc.,the residual magma will be deficient in tin after abundant tin-bearing minerals crystallize.For example,tin is depleted in melt from the mantle at 1000°C for melts containing abundant olivine and pyroxene crystals,a result of a higher bulk tin partition coefficient(>1)(Lehmann(1990),and tin content in the melt generally is less than 1 μg/g(Hamaguchi and Tin 1969).Tin enrichment in residual melt is almost impossible through andesitic magma evolution because of higher bulk tin partition coefficients between sphene/magnetite and andesitic melt(Petrova and Legeydo 1965;Gill 1978;Osborn1979).However,peralkalineandesiticmagma candifferentiatetin-richmelt,asisthecaseintheSilsilahtinbearing peralkaline granite in the northeast Arabia shield(Bray1985),whichimpliesthatperalkalinemeltisfavorable for tin enrichment in the melt phase(Linnen et al.1995,1996).Furthermore,if a crustal source intrusion is initially rich in tin,the residual later stage magma will be more enrichedintinafter highly evolving duetolow initial Ti,F(xiàn)e,andMgcontentsintheintrusion.Therefore,tintransportand enrichment in residual magma should occur in peralkaline crustalsourceintrusionswithahigherdegreeof fractionation.

    High volatile content,particularly F and Cl,can increase tin solubility in the granite melt phase(Bhalla et al.2005;Farges et al.2006).F in melt can reduce the melt viscosity and liquidus and lower the crystallizing temperature(Baker and Vaillancourt 1995;Xiong et al.1998).These factors decrease bulk(with crystals including biotite, hornblende,titanite,ilmenite and magnetite,plagioclase,K-feldspar and quartz,etc.)because of the decreasing substitution by tin in the minerals for the higher crystal order under lower temperature conditions(Badejoko 1984;Xu et al.1995).As a result,tin contents in the minerals are lower and tin becomes enriched in the melt phase when granitic magma contains more volatiles.

    Magmaticoxygenfugacityisanotherveryimportantfactor influencing tin partitioning behavior between minerals and melts.TheionicradiusofSn2+is93 pmandislargerthanthat of Sn4+(Huheey et al.1993).Existing data show thatisgenerallylessthan1and,and that crystals include tin-bearing biotite, hornblende,sphene,ilmenite,and magnetite(Ishihara,1981). If the oxygen fugacity is higher,the Sn4+/Sn2+ratio value in the melt will increase(Linnen et al.1995,1996;Farges et al. 2006),accompanied by a higher bulkAs a result, tinintheresidualmeltwillberelativelydepleted.Lowoxygen fugacity is also a favorable factor for enriching tin in residual magmabydecreasingbulk,asobservedinthemany tinoredepositsassociatedwithhighlydifferentiallowoxygen fugacity granite(Ishihara 1981;Lehmann 1990).

    It is speculated that tin tends to partition into the residual magma in differential fractional crystallization processes, when the initial magma is characterized as peraluminous(crustal sources)with lower contents of Ti4+,F(xiàn)e3+,and Mg2+;peralkaline;volatile-rich;and having low oxygen fugacity.Such magmas probably serve as favorable reservoirs or as an important transport media for tin ore formation.

    2.2 Tin partition between granitic melt and aqueous fluid phase

    Experimental results of tin partition coefficientsbetween granitic melt and coexisting aqueous fluid show thatis influenced by oxygen fugacity,temperature,pressure,and chemical compositions of melt and coexisting aqueous fluid(Wang et al.1986;Li 1989;Webster 1990;Keppler and Wyllie 1991;Chen and Peng 1994;Xiong et al.1998;Villemant and Boudon 1999;Hu et al.2008).

    Previous experimental results imply that tin favors partitioning into aqueous fluids with abundant Cl-and F-ligands(Wang et al.1986;Li 1989;Keppler and Wyllie 1991;Chen and Peng 1994;Hu et al.2008).The geochemistry of tin in aqueous fluids indicatesthat Sn2+complexeswith Cl-more easilythanwithothercomplexions,anddivalenttinchloride compounds are stable in reducing acid media(Jackson and Helgeson 1985;Chen 1986;Li 1989;Wilson and Eugster 1990;Taylor and Wall 1993;Barnes 1997;Sherman et al. 2000;Mu¨ller and Seward 2001).An experimental study(Hu etal.2008)conductedat850°C,100 MPaandfo2nearNNO revealed thatincreases with increasing HCl content in aqueous fluid in which Sn2+is the dominant species. Additionally,the aluminum saturation index(ASI)of the melts after equilibrium with high HCl concentration in the aqueous fluid phase will increase due to the transport of alkalisinthemelttotheaqueousfluidphase.Thepresenceof fluorine in the starting fluid does not significantly influence

    Daq.fl./meltSnbecause fluorine isinclinedto partitioninginto the melt phase(Webster 1990;Xiong et al.1998;Villemant and Boudon 1999).Furthermore,compounds of Sn4+and F-could play an important role for tin transport in aqueous fluids when Sn4+is the dominant species at higher oxygen fugacity conditions(Liu and Chen 1986).

    2.3 Tin partition influenced by F and Cl

    Volatileelements,particularlyFandCl,playimportantroles in the evolution of magmas and hydrothermal ore-forming fluid(Webster and Holloway 1988;Webster 1990).The halogens affect intrusion properties such as viscosity,diffusibility,and vapor saturation.Fluorine and chlorine in silicatemelt canimprovediffusibilityofcationsbyreducing cation activation energies for diffusion(Baker and Watson 1988).Therefore,diffusibility and solubility of tin in melt increasewithincreasingFandClcontentsinthemelt(Bhalla et al.2005),and high-F and high-Cl content melt could extract tin during magma evolution before the magma is water-saturated.By complexing with metals,they exert strong controls over the compositional variations and the style of mineralization in hydrothermal ore deposits.

    According to previous studies(Webster 1990;Xiong et al.1998;Villemant and Boudon 1999),F(xiàn) is preferentially partitioning into the melt phase,and the partition coefficients of F between aqueous fluid and silicate melt at high pressure and temperature conditions are generally less than 1.As a result,F(xiàn) should be enriched in those kinds of melts through granitic crystallization and differentiation.In contrast to F,Cl prefers partitioning into aqueous fluids with a wide range of partition coefficients from 2 to 117(Webster 1992b,c,1997;Bureau et al.2000).Mg,Ca,F(xiàn)e,Si,and F clearly influence Cl partitioning behavior between aqueous fluids and silicate melts.Chlorine partition coefficientsincreasewithdecreasingmolarratiosof(Al+Na+Ca+Mg)/Si and F content in silicate melts;increasing H2O/(H2O+CO2)molar ratios and Cl content in the system are also favorable for chlorine partitioning into the aqueous fluid phase(Webster and Holloway 1988;Webster 1992a;Signorelli and Carroll 2000;Mathez and Webster 2005).

    Experimentalstudiesontinpartitioningbehavior between the aqueous fluid and granitic melt phases in systems with coexisting F and Cl at 850°C,100 MPa,and fo2near NNO show thatis generally less than 0.1,with a little variation when F content in the melt is more than about 1 wt%.Howeverincreases rapidly when F content in the melt is less than about 1 wt%-i.e.decreasing F content in the melt phase is favorable for tin partitioning into the aqueous fluid phase(Hu et al.2009).In other words,granitic silicate melt with high F content(more than about 1 wt%)could extract tin,becoming enriched in tin in the melt phase.This is consistent with the fact that a lot of granites associated with tin deposits have a relatively high F content.Increasingvalues can be caused by increasing Cl partition coefficients,especially in a water-saturated magma system with high HCl content but low F content.Stronger partitioning of Cl into the fluid phase also may cause the partitioning of major elements such as Na and K into the aqueous fluid phase,while the concentrations of SiO2and Al2O3in the melt phase are evidently unaffected by increasing HCl concentrations(Frank et al.2003;Hu et al. 2008).Additionally,Na and K will lead to increased ASI in the melts.It is also implied that increasingis a result of decreasing F content in the melt phase,which could be caused by a great deal of F-bearing minerals crystallizing from tin-rich melt or F degassing into the aqueous fluid phase when pressure is abruptly lowered through fractures or faults,or near the edge of the magma chamber.Furthermore,lower F content in the melt also could decrease tin saturated solubility in the melt(Bhalla et al.2005),contributing to disseminated cassiterite crystallization in the melt accompanied by F-bearing minerals. Noticeably,chlorine and fluorine begin to exsolve at respective pressures of~100 MPa and≤10 MPa and degas at the rates of 22-55%,and 0-15%,respectively,upon eruption(Spilliaert et al.2006).In shallow magma degassing processes,the aqueous fluids generated by the different degassing paths are deficient in F but enriched in Cl(Villemant and Boudon 1999),which apparently is favorable for Cl-rich aqueous fluid extraction of tin from the melt phase,as well as water-rock interactions.

    3 The Furong tin deposit and the Qitianling intrusion

    3.1 Geological characteristics

    As a new-found superlarge tin deposit,the Furong deposit is located in the largest Nanling Mountains’tungsten-tin polymetallic metallogenic belt in Hunan Province,southeast China(Xu et al.2000;Wei et al.2002).The deposit is closely associated with the Qitianling granite intrusion spatially,temporally,and metallogenically(Wang et al. 2003a;Cai et al.2004;Wang et al.2004;Jiang et al.2006;Li 2006;Shuang 2007;Peng et al.2008).The tin ore bodies of the deposit occur in the Qitianling granite complex or along its contacts with the wall rocks(Wei et al.2002).The host mineral is cassiterite with accessory minerals such as pyrite, chalcopyrite, magnetite, galena, sphalerite,arsenopyrite,etc.Located at the intersection of the NE-trending Yanling-Chenzhou-Lanshan and the NW-trending Chenzhou-Shaoyang tectonomagmatic belts,the Qitianling granite complex crops out over an area of about 520 km2and includes the Qiguling,Wuliqiao,Goutouling,Maziping,Nanxi,and Lijiadong units(Fig.1).According to40Ar-39Ar isotopic dating,the ages of the granites associated with the deposit are in the range of 151-160 Ma and the Qitianling granite intrusion occurred in Yanshanian(Liu et al.2003).The results of further studies suggest that the main geological period of mineralization occurred between 150 and 160 Ma(Mao et al.1997).This implies that the intrusion of the Qitianling granite and the mineralization of the Furong tin deposit occurred in the same geological period.

    Fig.1 Geological sketch map of the Qitianling granite(modified from Zhu et al.2007)

    3.2 Petrological and geochemical characteristics of the Qitianling granite complex

    The Qitianling granite complex is primarily composed of amphibole-biotite granite and biotite granite.Generally,both are peralkaline,K-rich,and have high volatiles contents mainly in the form of biotite and fluorite.Crystallization temperatures of the amphibole-biotite granite are in the range of 680-740°C,which is higher than that of the later biotite granite with crystallization temperatures of 530-650°C(Li et al.2007a).The oxygen fugacities of the amphibole-biotite granite and biotite granite range from -16.00 to-15.31 and-19.20 to-17.50,respectively(Li et al.2007a).The oxygen fugacities of both granites are relatively low,especially those of the biotite granites which approach NNO(Zhao et al.2005).The chemical compositions of the two granites are shown in Tables 2 and 3.

    The geologic age of the early stage amphibole-biotite granite is in the range of 158.6 to 162.9±0.4 Ma(Bi et al. 2008).It has a porphyritic texture with phenocrysts of quartz,K-feldspar,plagioclase,biotite,hornblende,etc.,and its accessory minerals are apatite,sphene,zircon,magnetite,etc.The contents of SiO2,alkalis(K2O+Na2O),F(xiàn)eOtotal,and TiO2in the amphibole-biotite granite have weight percentages in the range of 68.59-69.96,7.45-7.97,4.04-4.12,and 0.49-0.59,respectively.The ASI is in the range of 1.27-13.7 and the differentiation index(DI)is in the range of 82.40-84.71.Tin concentrations in the amphibole-biotite granite range from 14.90 to 95.80 μg/g.

    The biotite granite is the later intrusion with a geologic age of 156.7-153.5±0.4 Ma(Bi et al.2008).The contents of SiO2,alkalis(K2O+Na2O),F(xiàn)eOtotal,and TiO2in the granite have weight percentages in the range of 75.07-76.49,7.95-8.59,1.64-1.87,and0.09-0.12,respectively.Tin concentrations in the biotite granite are less than 12.80 μg/g.The ASI of the biotite granite is higher than that of the early stage amphibole-biotite granite,as is the DI value of the biotite granite with a range of 92.80-93.93.In contrast to the early amphibole-biotite granite,the biotite granite is characterized by its enrichment in silicon and potassium,peraluminous categorization,and high degrees of differentiation.

    Table 2 Chemical compositions of the Qitianling granite(wt%)

    Table 3 Volatiles F and Cl contents of biotite in the amphibolebiotite granite and biotite granite

    Furthermore,a series of studies on the Qitianling granite provide important information on the tectonic background of the formation(Zheng and Jia 2001;Shuang et al.2006;Li et al.2007b;Bi et al.2008).The Qitianling granite is characterized as peralkaline granite,having characteristic levels of rare earth elements,trace elements,and major elements,as well as Sr,He,Pb,S,H,and O isotope geochemistry characteristics of a peralkaline granite.Peralkaline granite may derive from crustal melting triggered byheat from the upwelling mantle.The two-stage granites of the Qitianling intrusion have a common magmatic origin and are assigned to A-type granite.It is implied that the Qitianling intrusion occurred under the geodynamic setting of lithospheric thinning of South China and post-orogenic crustal extension during the Mesozoic.

    4 Discussion

    As above mentioned,the Qitianling peralkaline granite derived mainly from crustal resources with some mantle material incorporated.Tin content in the early-stage amphibole-biotite granite varies from 14.90 to 95.80 μg/g(average 39.3 μg/g),and volatile content of the whole rock is rather high,especially Cl content as compared to the later stage biotite granite(Table 3).The early tin-rich and volatile-rich magma could have derived from tin-rich crustal strata melted by upwelling mantle heat.Additionally,the Qitianling granite is characterized as peralkaline and volatile-rich with lower oxygen fugacity near NNO,all of which are advantages for tin enrichment in residual magma during early-stage crystallization and differentiation processes under high pressure and closed conditions. As a result,the later stage peralkaline silicate magma would be a favorable reservoir with higher tin and volatile contents.The Cl-rich and tin-bearing hydrothermal fluid could be derived from the residual magma because of the higherachieved by higher silicon and water contents in the system.Average SiO2content in the late-stage biotite granite is 75.60 wt%,which is higher than that in the amphibole-biotite granite(69.21 wt%). Highercould also be caused by a great deal of F-bearing minerals such as fluorite and topaz crystallizing from tin-rich melt during magma cooling or by F degassing into the aqueous fluid phase when pressure is lower around fractures and faults and at the top of the magma chamber.The combination of the above favorable factors enhancesgreatly,which enhances tin partitioning in the aqueous fluids. BasedonthedataofthefluidinclusionstudyontheFurong tin deposits(Shuang 2007),the temperature and pressure of the deposits at formation are mainly in the ranges of 300-450°C and 17.9-180 MPa.The physicochemical conditions are favorable for F-bearing crystals crystallizing and Cl-rich volatiles degassing.So,the later stage magma of the Qitianling intrusion possessed advantageous physicochemical conditions to produce Cl-rich fluid.The Cl-rich fluid reacted withthemelt,leadingtoincreasedthatisafactorin deriving high tin-bearing aqueous fluids.At the same time,the Cl-rich fluid also reacted with tin-bearing minerals,such as biotite and magnetite,thus extracting more tin from these minerals to the aqueous fluid phase.

    AsshowninTables 2and3,SnandClcontentsinthelater stage biotite granite are less than those in the amphibolebiotite granite,which may be the result of Sn and Cl partitioning into the aqueous fluid phase.In contrast with Cl distribution behavior,F(xiàn) is inclined to partition into the melt phase,with a degassing pressure and degassing rate of 10 MPa and 15%,respectively,which are lower than those of Cl at 100 MPa and 22-55%,respectively(Spilliaert et al. 2006).Fcontentinthemeltphaseincreaseswiththeevolution of magma in a closed,high-pressure system;F mainly remains in the late-stage biotite granite because the oreforming pressure of the Furong deposit is more than 10 MPa. Therefore,the F/Cl ratio(1.02-2.92)in biotite of the later stage biotite granite is evidently higher than that of the amphibole-biotite granite(0-0.21).Furthermore,the ASI of biotitegraniteishigherthanthatofamphibole-biotitegranite,which may be related to the abstraction of alkalis by the Clrichaqueousfluidphasederivedfromtheresidualmeltphase.

    The evidence from the fluid inclusion study on the Furong deposit shows that the physical chemistry of the ore-forming fluidischaracterizedbymid-to-hightemperatureandsalinity,and by a Cl-bearing fluid solution with the composition of CO2-CH4-CaCl2-NaCl-KCl-H2O(Shuang 2007;Bi et al. 2008).Researchontheminerals(Lietal.2007a)hasrevealed that the values of log(fH2O/fHF)fluid,log(fH2O/fHCl)fluid,and log(fHF/fHCl)fluidin the aqueous fluids coexisting with the amphibole-biotite granite are 4.22-4.39,2.78-3.24,and -1.82 to-1.73,respectively.The parallel values of the aqueous fluid coexisting withthe late-stagebiotitegranite are 3.27-3.53,2.85-3.22,and-0.75 to-0.02,respectively. Evidently,themagmatichydrothermalfluidsderivedfromthe magma in the later stage of the Qitianling intrusion bear higher levels of Cl,which is a favorable condition for tin partitioning into the aqueous fluid phase.

    According to Sn,F(xiàn),and Cl partition behavior and the petrological geochemical characteristics of the Qitianling granite mentioned above,the later stage magma of the Qitianling intrusion possesses favorable physicochemical conditions for deriving a Sn-rich aqueous fluid phase as part of tin ore formation.It can be deduced that tin-bearing ore-forming hydrothermal fluid could be derived from peralkaline,peraluminous,volatile-rich intrusions under favorable physicochemical conditions.

    5 Conclusion

    Based on the behavior of tin mineralization associated with granitic magmatism and on tin partition coefficients between the minerals and the different melts,we concludethat tin is likely to be concentrated in residual granitic melt and in the aqueous fluid phase during crystallization and differentiation processes when the granitic magma is peralkaline,high in volatiles,and low in Ca,F(xiàn)e,and Mg.The highly evolved residual peralkaline granitic magmas could have silicate melts enriched in tin,and thus serve as favorable tin ore reservoirs for later-magmatic hydrothermal tin deposit formation.Tin-rich aqueous fluid could be derivedfromlaterperalkalinegraniticmagmawith decreasing F content,increasing water saturation and silica content,under favorable lower pressure and temperature physical conditions.Acidic,Cl-rich aqueous fluids are particularly likely to scavenge abundant tin from highly evolved K-rich,peralkaline,granitic silicate melts,as well as from the high tin-bearing minerals such as biotite,hornblende,titanite, etc.Theyarefavorablefor hydrothermal tin metallization.Therefore,the Qitianling peralkaline intrusion could have produced tin-bearing mineralized hydrothermal aqueous fluid for the Furong tin deposit formation.

    AcknowledgmentsThe authors wish to thank Professor Fan Wenling for her instruction.Constructive,detailed comments by the reviewers and the chief editor were greatly appreciated.This research project was supported by National Natural Science Foundation of China(Grant Nos.41103030;41130423).

    Badejoko TA(1984)Correlations between microstructures,k-feldspar triclinicity and trace element geochemistry in stanniferous and barren granites,northern Nigeria.Lithos 17:259-271

    Bai TB,Koster AF,Gross V(1998)The distribution of Na,K,Rb,Sr,Al,Ge,Cu,W,Mo,La,and Ce between granitic melts and coexistingaqueousfluids.GeochimetCosmochimActa 63:1117-1131

    Baker DR,Vaillancourt J(1995)The low viscosities of F+H2O-bearing granitic melts and implications for melt extraction and transport.Earth Planet Sci Lett 132:199-211

    Baker DR,Watson EB(1988)Diffusion of major and trace elements in compositionally complex Cl-and F-bearing silicate melts. J Non-Cryst Solids 102(1-3):62-70

    Barnes HL(1997)Geochemistry of hydrothermal ore deposits,3rd edn.Wiley,New York,pp 435-469

    Barsukov VL(1957)The geochemistry of tin,(translated from Geokhimiya 1957:36-45).Geochemistry 1:41-52

    Bettencourt JS,Leute WB Jr,Goraieb CL,Sparrenberger I,Bello RMS,Payolla BL(2005)Sn-polymetallic greisen-type deposits associated with late-stage rapakivi granites,Brazil:fluid inclusion and stable isotope characteristics.Lithos 80:365-386

    Bhalla P,Holtz F,Linnen RL,Behrens H,Koepke J(2005)Solubility of cassiterite in evolved granitic melts;effect of T,fo2and additional volatiles.Lithos 80:387-400

    Bi CS,Shen XY,Xu QS,Ming KH,Sun HL,Zhang CS(1993)Geologicalcharacteristicsofstanniferousgranitesinthe Beilekuduk tin metallogenic belt.Xinjiang Acta Petrol et Mineral 12:213-223(in Chinese with English abstract)

    Bi XW,Li HL,Shuang Y,Hu XY,Hu RZ,Peng JT(2008)Geochemical characteristics of fluid inclusions from Qitianling A-type granite,Hunan Province,China.Geol J China Univ 14(4):539-548(in Chinese with English abstract)

    Botelho NF,Moura MA(1998)Granite-ore deposit relationships in Central Brazil.J S Am Earth Sci 11:427-438

    Bray EA(1985)Geology of the Silsilah ring complex,and associated tin mineralization,Kingdom of Saudi Arabia-a synopsis.Am Mineral 70:1075-1086

    Bureau H,Keppler H,Metrich N (2000)Volcanic degassing of bromine and iodine:experimental fluid/melt partitioning data and applications to stratospheric chemistry.Earth Planet Sci Lett 183:51-60

    Cai JH,Wei CS,Mao XD,Chen KX,Cai MH(2004)Characters of mineralizing geology and metallogenic pattern of Furong tin orefield in southern Hunan province.Geol Sci Technol Inf 23:69-76

    Candela PA(1989)Magmatic ore-forming fluids:thermodynamic and mass transfer calculation of melt concentrations.Rev Econ Geol 4:203-221

    Candela PA,Holland HD(1984)The partitioning of copper and molybdenumbetweensilicatemeltsandaqueousfluids. Geochim Cosmochim Acta 48:373-380

    Candela PA,Piccoli PM(1995)Moldel ore-metal partitioning from melts into vapor and vapor/brine mistures.In:Thompson JFH(ed)Magmas,fluids,and ore deposits.Mineralogical Association of Canada,Ottawa,pp 101-127

    Chantal P,Chinh N,Michel C(1996)Uranium in granitic magmas:part 2.Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-hapligranite-H2O-NaX(X=Cl,F(xiàn))system at 770°C,2kar.Geochim Cosmochim Acta 60:1515-1929

    Chen J(1986)Experiment on solubility of cassiterite in the presence of charcoal.Geol Rev 32:287-294(in Chinese with English abstract)

    Chen ZL,Peng SL(1994)The experimental results of W and Sn Partitioning between fluid and melts and their significance for the origin of W and Sn ore deposits.Geol Rev 40:274-282(in Chinese with English abstract)

    Chesley JT,Halliday AN,Snee LW,Mezger K,Shepherd TJ,Scrivener RC (1993)Thermochronology of the Cornubian batholith in southwest England:implications for pluton emplacement and protracted hydrothermal mineralization.Geochim Cosmochim Acta 57:1817-1835

    Farges F,Linnen RL,Brown GEJ(2006)Redox and speciation of tin in hydrous silicate glasses:a comparison with Ta,Mo and W. Can.Mineral 44:795-810

    Feiss PG(1978)Magmatic sources of copper in porphyry copper deposits.Econ Geol 72:197-404

    Frank MR,Candela PA,Piccoli PM(2003)Alkali exchange equilibra between a silicate melt and coexisting magmatic volatile phase:an experimental study at 800°C and 100 MPa.Geochim Cosmochim Acta 67:1415-1427

    Gan GL(1993)Mineral-melt element partition coefficients:data and major variation regularities.Acta Petrol et Mineral 12:144-181(in chinese with English abstract)

    Gill JB(1978)Role of trace element partition coefficients in models of andesite genesis.Geochim Cosmochim Acta 42:709-724

    Haapala I,Lukkari S(2005)Petrological and geochemical evolution of the Kymi stock,a topaze granite cupola within the Wiborg rapakivi batholith,F(xiàn)inland.Lithos 80:247-362

    Halter WE,Pettke T,Heinrich CA(2002)The origin of Cu/Au ratios in porphyry-type ore deposits.Science 296:1844-1846

    Hamaguchi H,Tin KR(1969)In:Wedepohl KH(ed)Handbook of geochemistry.vol II/4.Springer,Berlin Heidelberg,50-B-1 to 50-M-5

    Holland HD(1972)Granites,solutions,and base metal deposits.Econ Geol 67:281-301

    Hu XY,Bi XW,Hu RZ,Shang LB,F(xiàn)an WL(2008)Experimental study on tin partition between granitic silicate melt and coexisting aqueous fluid.Geochem J 42:141-150

    Hu XY,Bi XW,Shang LB,Hu RZ,Cai GS,Chen YW(2009)An experimental study of tin partition between melt and aqueous fluid in F/Cl-coexisting magma.Chin Sci Bull 54(6):1087-1097

    Huheey JE,Keiter EA,Keiter RL(1993)Inorganic chemistry:principles of structure and reactivity,4th edn.HarperCollins,New York

    Ishihara S(1981)The granitoid series and mineralization.Econ Geol 75th Anniv Vol 458-484

    Jackson KJ,Helgeson HC(1985)Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin:I. Calculation of the solubility of cassiterite at high pressures and temperatures.Geochim et Cosmochim Acta 49:1-22

    Jiang SY,Zhao KD,Jinag YH,Ling HF,Ni P(2006)New type of tin mineralization related to granite in South China:evidence from mineralchemistry,elementandisotopegeochemistry.ActaPetrol Sin 22(10):2509-2516(in Chinese with English abstract)

    Keppler H,Wyllie PJ(1991)Partitioning of Cu,Sn,Mo,U and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF.Contrib Mineral Petrol 109:149-1601

    Lehmann B(1990)Metallogeny of tin.Springer,Berlin,pp 19-29

    Li TJ(1989)Experimental studies of the solubility of cassiterite and the extraction of tin from granitic melts.Chin J Geochem 8:84-96

    Li ZL(2006)Geochemical relationship between tin mineralization and A-type granite:a case of the Furong tin orefield,Hunan province,South China.A dissertation Submitted for the degree of Doctor of Philosophy of the Chinese Academy of Sciences and for Diploma of the Institute of Geochemisty.(in Chinese with English abstract)

    Li TY,Liu JQ (2005)Characteristics and composition of fluid inclusions in Furong tin orefield,Qitianling aream,South Huan Province.Geol Mineral Resour South China 3:44-49(in Chinese with English abstract)

    Li HL,Bi XW,Hu RZ,Peng JT,Shuang Y,Li ZL,Li XM,Yuan SD(2007a)Mineral chemistry of biotie in the Qitianling granite associated with the Furong tin deposit:trancing tin mineralization signatures.Acta Petrol Sin 23:2605-2614(in Chinese with English abstract)

    Li ZL,Hu RZ,Yang JS,Peng JT,Li XM,Bi XW(2007b)He,Pb and S isotopic constraints on the relationship between the A-type Qitianling granite and the Furong tin deposit,Hunan Province,China.Lithos 97:161-173

    Linnen RL,Pichavant M,Holtz F,Burgess S(1995)The effect of fo2on the solubility,diffusion and speciation of tin in haplogranitic melt at melt at 850°C and 2kbar.Geochim et Cosmochim Acta 59:1579-1588

    Linnen RL,Pichavant M,Holtz F(1996)The combined effect of fo2and melt composition on SnO2solubility and tin diffusion in haplogranitic melts.Geochim Cosmochim Acta 60:4965-4976

    Liu YS,Chen SQ (1986)An experimental study on cassiterite solubility and tin transport during mineralization.Acta Geol Sin 59:78-87

    Liu YM,Xu JF,Dai TM,Li XH,Deng XG,Wang Q(2003)40Ar-39Ar isotopic ages of Qitianling granite and their geologic implications.Sci China(D)46:50-59

    Liverton T,Botelho NF(2001)Fractionated alkaline rare-metal granites:two examples.J Asian Earth Sci 19:399-412

    Lowenstern JB,Mahood GA,Rivers ML,Sutton SR(1991)Evidence for extreme partitioning of copper into a magmatic vapor phase. Science 252:1405-1409

    Mao JW,Li YH,Li HY,Wang DH,Song HB(1997)Helium isotopic evidence on metalgenesis of mantle fluids in the Wangu gold deposit,Hunan Province.Geol Rev 43:646-649(in Chinese with English abstract)

    Mathez EA,Webster JD(2005)Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid.Geochim Cosmochim Acta 69:1275-1286

    Mitchell AHG,Carson MS(1981)Mineral deposits and global tectonic settings.Academic Press,Cambridge

    Mu¨ller B,Seward TM (2001)Spectrophotometric determination of the stability of tin(II)chloride complexes in aqueous solution up to 300°C.Geochim Cosmochim Acta 65:4187-4199

    Osborn EF(1979)The reaction principle.In:Yoder HS(Ed)The evolution of Igneous Rocks,fiftieth anniversary perspectives. Princeton University Press,Princeton,pp 133-170

    Peiffert C,Cuney M,Chinh NT(1994)Uranium in granitic magmas:part I.experimental determination of uranium-solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H2O-Na2CO3system at 720-770°C,2kbar.Geochim Cosmochim Acta 58:2495-2507

    Peng JT,Hu RZ,Yuan SD,Bi XW,Sheng NP(2008)The time ranges of granitoid emplacement and related nonferrous metallic mineralization in Southern Hunan.Geol Rev 54:617-625(in Chinese with English abstract)

    Petrova ZI,Legeydo VA(1965)Geochemistry of tin in the magmatic process.Geochem Intern 2:301-307(translated from Geokhimiya 4,482-489)

    Sawkins FJ.Metal deposits in relation to plate tectonics.2nd,Springer-Verlay;1990.p.315

    Shannon RD(1976)Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751-767

    Sherman DM,Ragnarsdottir KV,Oelkers EH,Collins CR(2000)Speciation of tin(Sn2+and Sn4+)in aqueous Cl solutions from 25°C to 350°C:an in situ EXAFS study.Chem Geol 167:169-176

    Shuang Y(2007)The geochemistry of ore-forming fluid of Furong tin polymetallic deposit in Hunan Province,P.R.China.Ph.D. thesis,IGCAS(in Chinese with English abstract)

    Shuang Y,Bi XW,Hu RZ,Peng JT,Li ZL,Li XM,Yuan SD,Qi YQ(2006)Tin-polymetallic deposit and its indication of source of hydrothermal ore-forming fluid.Mineral Petrol 26:57-65(in Chinese with English abstract)

    Signorelli S(2000)Carroll MR solubility and fluid-melt partitioning of Cl in hydrous phonolitic melts.Geochim Cosmochim Acta 64:2851-2862

    Spilliaert N,Metrich N,Allard P(2006)S-Cl-F degassing pattern of water-rich alkali basalt:modelling and relationship with eruption stylesonMountEtanavolcano.EarthPlanetSciLett248:772-786

    Sun SS,Higgins NC(1996)Neodymium and strontium isotope study of the Blue Tier Batholith,NE Tasmania,and its bearing on the origin of tin-bearing alkali feldspar granites.Ore Geol Rev 10:339-365

    Taylor GR(1979)Geology of tin deposits.Elsevier,NewYork

    Taylor JR,Wall VJ(1993)Cassiterite solubility,tin speciation,and transport in a magmatic aqueous phase.Econ Geol 88:437-460

    Tu GZ(1989)Alkali-rich intrusive rocks.Mineral Resour Geol 13:1-4(in Chinese)

    Urabe T(1985)Aluminous granite as a source magma of hydrothermal ore deposits:an experimental study.Econ Geol 80:148-157 Villemant B,Boudon G (1999)H2O and halogen(F,Cl,Br)behaviour during shallow magma degassing processes.Earth Planet Sci Lett 168:271-286

    Wang YR,Haselton T,Aruscavage P(1986)Experimental research on the partitioning coefficients of tin between fluids and granitic melts.Annual Report Institute of Geochemistry Academia Sinica.GuiYang.GuiZhouPeople’sPublishingHouse,pp 180-181(in Chinese)

    Wang DH,Chen YC,Li HQ,Chen ZH,Yu JJ,Lu YF(2003a)Geochemistry characteristics of Furong tin deposit and its significance for ore prospecting,Hunan.Geol Bull China 22:50-56(in Chinese with English abstract)

    Wang DH,Chen YH,Li HQ,Chen ZH,Yu JJ,Lu YF,Li JY(2003b)Geological and geochemical features of the Furong tin deposits in Hunan and their significance for mineral prospecting.Bull Geol 22:50-56(in Chinese with English abstract)

    Wang XW,Wang XD,Liu JQ,Chang HL(2004)Relationship of Qitianling granite to Sn mineralization in Hunan Province.Geol Sci Technol Inf 23:1-12(in Chinese with English abstract)

    Webster JD(1990)Partitioning of F between H2O and CO2fluids and topaz rhyolite melt.Contrib Mineral Petrol 104:424-438

    Webster JD(1992a)Fluid-melt interactions in Cl-rich granitic systems:effects of melt composition at 2kbar and 800°C. Geochim Cosmochim Acta 56:659-678

    Webster JD(1992b)Fluid-melt interactions involving Cl-rich granites:experimental study from 2 to 8 kbar.Geochim Cosmochim Acta 56:679-687

    Webster JD(1992c)Water solubility and chlorine partitioning in Clrich granitic systems:effect of melt composition at 2kbar and 800°C.Geochim Cosmochim Acta 56:678-687

    Webster JD(1997)Exsolution of magmatic volatile phases from Clenriched mineralizing granitic magmas and implications for ore metal transport.Geochim Cosmochim Acta 61:1017-1029

    Webster JD,Holloway JR(1988)Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O+CO2 fluids:new implications for granitic differentiation and ore deposition.Geochim Cosmochim Acta 52:2091-2105

    Wei SL,Zeng QW,Xu YM,Lan XM,Kang WQ,Liao XJ(2002)Characteristics and ore prospects of tin deposits in the Qitianling area,Hunan.Geol China 29:67-75(in Chinese with English abstract)

    Wilson GA,Eugster HP(1990)Cassiterite solubility and tin speciation in supercritical chloride solutions.In:Spencer RJ,Chou-I-Ming(eds)Fluid-mineral interactions;a tribute to H.P. Eugster,vol 2.Geochemical Society Special Publications,Houston,pp 179-195

    Xia HY,Liang SY(1991)The genesis of granitic Tin-Tungsten rare metal ore deposits in the South-east of China.China Science Press,Beijing(in Chinese)

    Xiong XL,Zhao ZH,Zhu JC,Rao B,Lai M(1998)Experiments on the fluid/melt partition of fluorine in the system albite granite-H2O-HF.Geochimica 27:67-73

    Xu H,Zhao M,Ji SY(1995)A study on the composition and structural state of K-feldspars from Qianlishan granites,Hunan Province. J Nanjing Univ 31:121-127(in Chinese with English abstract)

    Xu YM,Hou MS,Liao XJ,Ao ZW(2000)Deposit types and prospect for prospecting of Sn deposits in Furong ore fluid,Chenzhou. Hunan Geol 19:95-100(in Chinese with English abstract)

    Yeap EB(1993)Tin and gold mineralizations in Peninsular Malaysia and their relationships to the tectonic development.J South East Asian Earth Sci 8:329-348

    Zhao ZH,Bao ZW,Zhang BY(1998)Geochemistry of the Mesozoic basaltic rocks in southern Hunan Province.Sci China(D)41(-suppl.):102-112(in Chinese with English abstract)

    Zhao ZH,Bao ZW,Zhang BY,Xiong XL(2000)Crust-mantle interaction and its contribution to the Shizhuyuan tungstenpolymetallic mineralization.Sci China(D)30(suppl.):161-168(in Chinese with English abstract)

    Zhao KD,Jiang SY,Jiang YH,Wang RC(2005)Mineral chemistry of the Qitianling granitoid and the Furong tin ore deposit in Hunan province,South China:implication for the genesis of granite and related tin mineralization.Eur J Mineral 17:635-648

    Zheng JJ,Jia BH(2001)Geological characteristics and related tin polymetallic mineralization of the Qitianling granite complex in southern Hunan province.Geol Mineral Resour South China 9:50-57(in Chinese with English abstract)

    Zhu J,Zhang P,Xie C(2007)Qitianling granite body.In:Zhou X et al(eds)Genesis of late mesozoic granites in Nanning region and geodynamic evolution of lithosphere.Science Press,Beijing,pp 520-533(in Chinese)

    22 June 2014/Revised:19 November 2015/Accepted:8 January 2016/Published online:21 January 2016?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2016

    久久久国产一区二区| 最近手机中文字幕大全| 亚洲精品国产色婷婷电影| 成人国产av品久久久| 一二三四在线观看免费中文在| 9热在线视频观看99| 777久久人妻少妇嫩草av网站| 久久 成人 亚洲| 丰满迷人的少妇在线观看| 久久久久久久久免费视频了| 青春草亚洲视频在线观看| 国产视频首页在线观看| 欧美久久黑人一区二区| 中国国产av一级| 精品少妇久久久久久888优播| netflix在线观看网站| 咕卡用的链子| 99国产精品一区二区三区| 又黄又粗又硬又大视频| 一区二区三区精品91| 十八禁人妻一区二区| 久久99精品国语久久久| 午夜av观看不卡| 中文字幕人妻熟女乱码| 性少妇av在线| 成人国语在线视频| 色视频在线一区二区三区| 免费女性裸体啪啪无遮挡网站| 亚洲国产毛片av蜜桃av| 国产亚洲精品第一综合不卡| 啦啦啦中文免费视频观看日本| 最近手机中文字幕大全| 国产一区亚洲一区在线观看| 国产男人的电影天堂91| 一边亲一边摸免费视频| 久久综合国产亚洲精品| 久久国产亚洲av麻豆专区| 高清不卡的av网站| 美女福利国产在线| 青青草视频在线视频观看| 久久青草综合色| 国产成人a∨麻豆精品| 人妻人人澡人人爽人人| 超碰成人久久| 亚洲欧美精品综合一区二区三区| 久久久精品94久久精品| 伦理电影免费视频| 欧美大码av| 丰满迷人的少妇在线观看| 91九色精品人成在线观看| 欧美成人精品欧美一级黄| 国产精品国产av在线观看| 欧美xxⅹ黑人| 亚洲免费av在线视频| 精品高清国产在线一区| 91成人精品电影| 黄色一级大片看看| 日本av免费视频播放| 男女国产视频网站| 亚洲熟女毛片儿| 日韩电影二区| 久久天躁狠狠躁夜夜2o2o | 国产日韩欧美视频二区| 国产免费又黄又爽又色| 国产欧美日韩一区二区三 | 免费在线观看影片大全网站 | 女人精品久久久久毛片| 国产在视频线精品| 在线观看一区二区三区激情| 色94色欧美一区二区| 亚洲天堂av无毛| 久久国产精品人妻蜜桃| 成年人午夜在线观看视频| 日本91视频免费播放| 老司机影院毛片| 欧美日韩福利视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 午夜福利一区二区在线看| 天天操日日干夜夜撸| 操美女的视频在线观看| 高清欧美精品videossex| 亚洲国产欧美日韩在线播放| 黄色一级大片看看| 桃花免费在线播放| 欧美 亚洲 国产 日韩一| 十八禁高潮呻吟视频| 九草在线视频观看| 午夜老司机福利片| av电影中文网址| 97在线人人人人妻| 国产福利在线免费观看视频| 国产片内射在线| 九色亚洲精品在线播放| 久久av网站| 男女边摸边吃奶| 亚洲国产日韩一区二区| a级毛片在线看网站| 可以免费在线观看a视频的电影网站| 99九九在线精品视频| 丝袜在线中文字幕| 亚洲精品第二区| 黑人巨大精品欧美一区二区蜜桃| 国产不卡av网站在线观看| 深夜精品福利| 亚洲av日韩在线播放| 中文字幕色久视频| 手机成人av网站| 丝袜喷水一区| 亚洲激情五月婷婷啪啪| 精品少妇久久久久久888优播| 999精品在线视频| 欧美+亚洲+日韩+国产| 国产午夜精品一二区理论片| 香蕉国产在线看| 校园人妻丝袜中文字幕| 久久精品国产a三级三级三级| 国产男女超爽视频在线观看| 国产男人的电影天堂91| 亚洲三区欧美一区| 人人妻人人澡人人爽人人夜夜| 18禁黄网站禁片午夜丰满| 91精品伊人久久大香线蕉| 亚洲精品国产av蜜桃| 99re6热这里在线精品视频| 中文欧美无线码| 国产成人av激情在线播放| 国产精品久久久久久精品古装| 人人妻人人爽人人添夜夜欢视频| 色婷婷av一区二区三区视频| 免费日韩欧美在线观看| 一本一本久久a久久精品综合妖精| av又黄又爽大尺度在线免费看| 亚洲黑人精品在线| 交换朋友夫妻互换小说| bbb黄色大片| 国产成人啪精品午夜网站| 中文字幕av电影在线播放| 久久精品亚洲熟妇少妇任你| 另类精品久久| 青春草视频在线免费观看| 19禁男女啪啪无遮挡网站| 亚洲av欧美aⅴ国产| 又大又黄又爽视频免费| 成年女人毛片免费观看观看9 | 国产麻豆69| 男女高潮啪啪啪动态图| 大片免费播放器 马上看| 欧美成人午夜精品| 国产日韩欧美在线精品| 在线天堂中文资源库| 老鸭窝网址在线观看| 精品一区二区三区四区五区乱码 | 精品少妇一区二区三区视频日本电影| 国产亚洲精品第一综合不卡| 中文字幕人妻丝袜一区二区| 黄频高清免费视频| 亚洲人成电影免费在线| 国产精品欧美亚洲77777| 王馨瑶露胸无遮挡在线观看| 午夜两性在线视频| 精品亚洲乱码少妇综合久久| 一本一本久久a久久精品综合妖精| 亚洲av欧美aⅴ国产| 亚洲国产av影院在线观看| 久久久久精品国产欧美久久久 | 欧美国产精品一级二级三级| 91九色精品人成在线观看| 亚洲国产成人一精品久久久| 国产精品香港三级国产av潘金莲 | 亚洲免费av在线视频| 9色porny在线观看| 欧美精品啪啪一区二区三区 | 我要看黄色一级片免费的| 黄色 视频免费看| 青春草视频在线免费观看| 夫妻性生交免费视频一级片| 超色免费av| 国产精品 欧美亚洲| 超碰成人久久| 老熟女久久久| 日韩,欧美,国产一区二区三区| 最近中文字幕2019免费版| 99香蕉大伊视频| 国产精品欧美亚洲77777| 五月天丁香电影| 嫩草影视91久久| 国产亚洲精品第一综合不卡| 在线观看一区二区三区激情| 男女床上黄色一级片免费看| 99国产精品免费福利视频| 大话2 男鬼变身卡| 亚洲伊人久久精品综合| 国产一区二区 视频在线| 无限看片的www在线观看| 999久久久国产精品视频| 国产欧美日韩一区二区三 | 91麻豆精品激情在线观看国产 | 亚洲专区中文字幕在线| 国产主播在线观看一区二区 | 国产成人精品久久二区二区免费| 精品少妇一区二区三区视频日本电影| 天天影视国产精品| 欧美日韩亚洲综合一区二区三区_| 在线观看免费午夜福利视频| 久久午夜综合久久蜜桃| 美女国产高潮福利片在线看| 波多野结衣av一区二区av| 久久女婷五月综合色啪小说| 香蕉国产在线看| 久久影院123| 国产老妇伦熟女老妇高清| 91成人精品电影| 中文字幕人妻丝袜制服| 777米奇影视久久| 亚洲精品日本国产第一区| 丁香六月天网| 99国产精品免费福利视频| 欧美老熟妇乱子伦牲交| 国产精品 国内视频| 日韩av免费高清视频| 1024视频免费在线观看| 日韩中文字幕视频在线看片| 99国产精品一区二区三区| 午夜免费观看性视频| 一级片免费观看大全| 欧美另类一区| 黄色视频在线播放观看不卡| 久久毛片免费看一区二区三区| 国产精品 国内视频| 国产片内射在线| 蜜桃国产av成人99| 欧美黄色片欧美黄色片| 永久免费av网站大全| 日本一区二区免费在线视频| 亚洲色图综合在线观看| 成年av动漫网址| 亚洲精品美女久久av网站| 久久性视频一级片| 欧美精品av麻豆av| 国产精品国产三级国产专区5o| 国产精品久久久人人做人人爽| 大型av网站在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷色综合www| 日韩 欧美 亚洲 中文字幕| 纵有疾风起免费观看全集完整版| 亚洲综合色网址| 国产精品熟女久久久久浪| 国产xxxxx性猛交| 亚洲欧美一区二区三区黑人| 久久久国产一区二区| 精品福利观看| 久久天堂一区二区三区四区| 一区二区三区精品91| 亚洲精品国产色婷婷电影| 午夜两性在线视频| 1024香蕉在线观看| 美女主播在线视频| 精品国产国语对白av| 国产免费又黄又爽又色| 婷婷色麻豆天堂久久| 国产免费视频播放在线视频| 新久久久久国产一级毛片| 男女下面插进去视频免费观看| 久久午夜综合久久蜜桃| 热re99久久精品国产66热6| www.av在线官网国产| 人人妻人人澡人人看| av国产久精品久网站免费入址| 人妻 亚洲 视频| 久久久精品国产亚洲av高清涩受| 在线观看www视频免费| 51午夜福利影视在线观看| 亚洲 欧美一区二区三区| 亚洲国产看品久久| 女人精品久久久久毛片| 欧美成人精品欧美一级黄| 男的添女的下面高潮视频| 亚洲国产欧美网| 热99久久久久精品小说推荐| 2018国产大陆天天弄谢| 国产野战对白在线观看| 国产成人一区二区三区免费视频网站 | 亚洲欧洲精品一区二区精品久久久| 新久久久久国产一级毛片| 亚洲美女黄色视频免费看| 中文乱码字字幕精品一区二区三区| 国产免费现黄频在线看| 啦啦啦中文免费视频观看日本| 赤兔流量卡办理| 首页视频小说图片口味搜索 | 精品一区二区三区四区五区乱码 | 精品一品国产午夜福利视频| 久久99精品国语久久久| 久久综合国产亚洲精品| 女性被躁到高潮视频| 精品人妻在线不人妻| 大话2 男鬼变身卡| 午夜久久久在线观看| 亚洲精品在线美女| 亚洲视频免费观看视频| 日本色播在线视频| 欧美日韩国产mv在线观看视频| 欧美97在线视频| 久久精品亚洲av国产电影网| 99九九在线精品视频| 国产精品香港三级国产av潘金莲 | 久久 成人 亚洲| 亚洲精品国产区一区二| 久久久亚洲精品成人影院| 一区二区三区乱码不卡18| 一二三四社区在线视频社区8| 午夜久久久在线观看| 久久久国产欧美日韩av| 亚洲伊人久久精品综合| 久久精品国产a三级三级三级| 后天国语完整版免费观看| 水蜜桃什么品种好| 天堂中文最新版在线下载| 亚洲中文日韩欧美视频| 日本黄色日本黄色录像| 伦理电影免费视频| 亚洲人成网站在线观看播放| 免费av中文字幕在线| 亚洲欧美色中文字幕在线| 免费观看a级毛片全部| 国产黄色视频一区二区在线观看| 天天操日日干夜夜撸| 最近手机中文字幕大全| 国产有黄有色有爽视频| 国产在视频线精品| 国产有黄有色有爽视频| 久久精品熟女亚洲av麻豆精品| 婷婷色综合大香蕉| 丝袜在线中文字幕| 青草久久国产| 妹子高潮喷水视频| 青草久久国产| 超碰97精品在线观看| 日韩人妻精品一区2区三区| 久久人人爽av亚洲精品天堂| 日本欧美视频一区| 狂野欧美激情性xxxx| av在线app专区| 精品国产乱码久久久久久小说| 亚洲精品国产区一区二| 香蕉国产在线看| 国产精品国产三级国产专区5o| 日韩av不卡免费在线播放| 女性被躁到高潮视频| 国产亚洲精品久久久久5区| netflix在线观看网站| 久久久久精品人妻al黑| 国产日韩一区二区三区精品不卡| 国产91精品成人一区二区三区 | 婷婷成人精品国产| av在线播放精品| 久久天堂一区二区三区四区| 可以免费在线观看a视频的电影网站| 好男人电影高清在线观看| 成人黄色视频免费在线看| 韩国高清视频一区二区三区| 中文欧美无线码| 99热全是精品| 丝袜人妻中文字幕| 2021少妇久久久久久久久久久| 热99久久久久精品小说推荐| 精品视频人人做人人爽| 精品久久久久久电影网| 国产无遮挡羞羞视频在线观看| 男女免费视频国产| 老司机亚洲免费影院| 人人妻人人澡人人爽人人夜夜| 免费一级毛片在线播放高清视频 | 久久久久国产一级毛片高清牌| 少妇粗大呻吟视频| 女警被强在线播放| 999精品在线视频| 黄片小视频在线播放| 久久ye,这里只有精品| 一区福利在线观看| 亚洲精品美女久久久久99蜜臀 | 国产在线观看jvid| 久久久久国产一级毛片高清牌| 在线观看www视频免费| 一区二区三区精品91| 91九色精品人成在线观看| 国产一区二区激情短视频 | 手机成人av网站| 午夜福利免费观看在线| 人人妻人人添人人爽欧美一区卜| 午夜影院在线不卡| 国产有黄有色有爽视频| av国产精品久久久久影院| 精品人妻熟女毛片av久久网站| 国产色视频综合| 99久久99久久久精品蜜桃| 久久国产精品大桥未久av| 国产精品 欧美亚洲| 一区二区日韩欧美中文字幕| 亚洲av国产av综合av卡| 免费看av在线观看网站| 欧美xxⅹ黑人| 久久久久网色| 一本一本久久a久久精品综合妖精| 制服人妻中文乱码| 久久久国产欧美日韩av| 久久性视频一级片| 99国产精品99久久久久| 国产成人一区二区在线| 国产精品三级大全| 国产又爽黄色视频| 男女边吃奶边做爰视频| 少妇粗大呻吟视频| 亚洲欧洲国产日韩| 欧美成人午夜精品| 嫁个100分男人电影在线观看 | 久久中文字幕一级| 男女国产视频网站| 免费黄频网站在线观看国产| 国产成人91sexporn| 亚洲 欧美一区二区三区| 国产欧美日韩一区二区三区在线| 视频区欧美日本亚洲| 精品欧美一区二区三区在线| 亚洲av综合色区一区| 午夜av观看不卡| 老司机在亚洲福利影院| 日本黄色日本黄色录像| 亚洲中文日韩欧美视频| 搡老岳熟女国产| 各种免费的搞黄视频| 少妇粗大呻吟视频| 婷婷色麻豆天堂久久| 欧美成人午夜精品| 欧美精品人与动牲交sv欧美| 老司机在亚洲福利影院| 黑丝袜美女国产一区| 欧美 亚洲 国产 日韩一| 国产欧美日韩精品亚洲av| 久热爱精品视频在线9| 国产亚洲av片在线观看秒播厂| 国产成人一区二区在线| 精品卡一卡二卡四卡免费| 人妻一区二区av| 啦啦啦 在线观看视频| 黄色一级大片看看| 亚洲精品日韩在线中文字幕| 大香蕉久久成人网| 最新的欧美精品一区二区| 国产黄频视频在线观看| 操出白浆在线播放| 欧美少妇被猛烈插入视频| 成人18禁高潮啪啪吃奶动态图| 99九九在线精品视频| 蜜桃国产av成人99| 欧美av亚洲av综合av国产av| 亚洲中文av在线| 一区二区三区精品91| 午夜久久久在线观看| 2021少妇久久久久久久久久久| 久久99精品国语久久久| 国产精品久久久久成人av| 大香蕉久久网| 少妇猛男粗大的猛烈进出视频| 两个人免费观看高清视频| 男女高潮啪啪啪动态图| 亚洲av在线观看美女高潮| 91国产中文字幕| 91精品伊人久久大香线蕉| 另类亚洲欧美激情| 国产熟女午夜一区二区三区| 少妇 在线观看| 欧美精品高潮呻吟av久久| 亚洲色图 男人天堂 中文字幕| 啦啦啦在线免费观看视频4| 看免费成人av毛片| xxxhd国产人妻xxx| videosex国产| 亚洲国产中文字幕在线视频| 久久人人97超碰香蕉20202| 香蕉国产在线看| 一级毛片 在线播放| 91精品三级在线观看| 午夜免费男女啪啪视频观看| 啦啦啦 在线观看视频| 成年美女黄网站色视频大全免费| 日韩伦理黄色片| 丰满少妇做爰视频| 天天躁日日躁夜夜躁夜夜| 欧美 亚洲 国产 日韩一| 国产爽快片一区二区三区| 亚洲七黄色美女视频| 国产成人一区二区三区免费视频网站 | 国产欧美日韩精品亚洲av| 国产亚洲精品久久久久5区| 色婷婷av一区二区三区视频| svipshipincom国产片| 女性被躁到高潮视频| 国产在线观看jvid| 91麻豆精品激情在线观看国产 | 叶爱在线成人免费视频播放| 亚洲欧洲国产日韩| 一级a爱视频在线免费观看| 另类亚洲欧美激情| 麻豆国产av国片精品| 50天的宝宝边吃奶边哭怎么回事| 久久狼人影院| 超色免费av| 脱女人内裤的视频| 亚洲精品国产av蜜桃| 性色av乱码一区二区三区2| 欧美中文综合在线视频| 激情视频va一区二区三区| kizo精华| 久久久精品94久久精品| 水蜜桃什么品种好| 男人添女人高潮全过程视频| 国产精品成人在线| 欧美日韩av久久| 中文精品一卡2卡3卡4更新| 国产精品九九99| 国产成人欧美在线观看 | 一级片'在线观看视频| 午夜91福利影院| 美女中出高潮动态图| 免费高清在线观看视频在线观看| 亚洲专区国产一区二区| 51午夜福利影视在线观看| 波多野结衣一区麻豆| 熟女少妇亚洲综合色aaa.| 蜜桃国产av成人99| 精品久久久久久久毛片微露脸 | 国产精品国产三级国产专区5o| av在线app专区| av国产精品久久久久影院| 中文乱码字字幕精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 日本色播在线视频| 午夜激情av网站| 久久av网站| 免费不卡黄色视频| 首页视频小说图片口味搜索 | 2018国产大陆天天弄谢| 欧美 亚洲 国产 日韩一| av有码第一页| 亚洲欧美日韩高清在线视频 | 一区二区三区四区激情视频| 在线观看www视频免费| 精品人妻一区二区三区麻豆| 日韩一本色道免费dvd| 国产精品欧美亚洲77777| 午夜福利视频在线观看免费| 女性生殖器流出的白浆| 成人国语在线视频| 美女午夜性视频免费| 免费在线观看黄色视频的| xxx大片免费视频| 美女视频免费永久观看网站| 久久性视频一级片| 国产1区2区3区精品| 99re6热这里在线精品视频| 尾随美女入室| 制服人妻中文乱码| 80岁老熟妇乱子伦牲交| 亚洲美女黄色视频免费看| 老司机深夜福利视频在线观看 | 国产成人一区二区在线| 国产精品一区二区在线不卡| 亚洲国产欧美日韩在线播放| 我要看黄色一级片免费的| 看十八女毛片水多多多| 99香蕉大伊视频| 久久久久国产精品人妻一区二区| 最近中文字幕2019免费版| 欧美日韩福利视频一区二区| 校园人妻丝袜中文字幕| 久久久亚洲精品成人影院| 日本午夜av视频| 午夜日韩欧美国产| 国产一级毛片在线| 侵犯人妻中文字幕一二三四区| 亚洲成av片中文字幕在线观看| 久久久久久久久久久久大奶| 久久久精品94久久精品| 婷婷色综合www| 久久精品aⅴ一区二区三区四区| 老鸭窝网址在线观看| 精品久久久久久电影网| 真人做人爱边吃奶动态| 国产野战对白在线观看| 只有这里有精品99| 妹子高潮喷水视频| 中文欧美无线码| 亚洲欧美激情在线| 日韩熟女老妇一区二区性免费视频| 首页视频小说图片口味搜索 | 人妻一区二区av| 在线观看免费午夜福利视频| 女人被躁到高潮嗷嗷叫费观| 久久久亚洲精品成人影院| 王馨瑶露胸无遮挡在线观看| 精品国产一区二区三区四区第35| 国产成人影院久久av| 精品少妇一区二区三区视频日本电影| 亚洲久久久国产精品| 我的亚洲天堂| 老熟女久久久| 女警被强在线播放| 久久人人97超碰香蕉20202| 色精品久久人妻99蜜桃| 欧美日韩av久久| 人体艺术视频欧美日本| 丰满少妇做爰视频| 日韩,欧美,国产一区二区三区|