• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    1-D coupled non-equilibrium sediment transport modeling for unsteady flows in the discontinuous Galerkin framework*

    2016-10-18 01:45:14FarzamSafarzadehMALEKIAbdulKHAN
    水動力學研究與進展 B輯 2016年4期

    Farzam Safarzadeh MALEKI, Abdul A. KHAN

    1. Engineering Department, Massachusetts Maritime Academy, Buzzards Bay, MA 02532, USA,

    E-mail: fmaleki@maritime.edu

    2. Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA

    ?

    1-D coupled non-equilibrium sediment transport modeling for unsteady flows in the discontinuous Galerkin framework*

    Farzam Safarzadeh MALEKI1, Abdul A. KHAN2

    1. Engineering Department, Massachusetts Maritime Academy, Buzzards Bay, MA 02532, USA,

    E-mail: fmaleki@maritime.edu

    2. Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA

    A high-resolution, 1-D numerical model has been developed in the discontinuous Galerkin framework to simulate 1-D flow behavior, sediment transport, and morphological evaluation under unsteady flow conditions. The flow and sediment concentration variables are computed based on the one-dimensional shallow water flow equations, while empirical equations are used for entrainment and deposition processes. The sediment transport model includes the bed load and suspended load components. New formulations for Harten-Lax-van Leer (HLL) and Harten-Lax-van Contact (HLLC) are presented for shallow water flow equations that include the bed load and suspended load fluxes. The computational results for the flow and morphological changes after two dam break events are compared with the physical model tests. Results show that the modified HLL and HLLC formulations are robust and can accurately predict morphological changes in highly unsteady flows.

    dam break flow, sediment transport modeling, Harten-Lax-van Leer (HLL) and Harten-Lax-van Contact (HLLC) flux functions, discontinuous Galerkin scheme

    Introduction

    Sediment transport modeling is of great importance in investigating morphological changes in rivers,coastal areas, and estuaries under steady and unsteady flows. Significant morphological changes occur during major flood events and highly unsteady flows, such as dam break floods. Floods resulting from dam break are not uncommon, Graham and Major[1]compiled a list of floods resulting from dam failures in the United States that cause major damage. Over the last decade,several numerical models[2-4]have been developed for solving shallow water flow equations over fixed bed. However, the strong entrainment/deposition capability of transient flows in such events, which leads to major morphological changes, cannot be ignored. As pointed out by Wu and Wang[5], in earlier studies either the coupling between flow, sediment transport, and bed change was ignored, or the assumption of local equilibrium of sediment transport with the flow conditions was used. Cao et al.[6]studied both the equilibrium and non-equilibrium models for fluvial sediment transport and found that for the bed load sediment transport the differences between equilibrium and non-equilibrium models were essentially negligible, while non-equilibrium modeling was critical for suspended sediment transport. However, in the case of highly unsteady flow,such as resulting from a dam break, the assumption of equilibrium sediment transport may not be valid[7]. Fraccarollo and Capart[8]examined the sudden erosional flow initiated by the release of a dam break wave over a loose sediment bed. However, due to the assumption of constant sediment concentration at lower level, the applicability of the model is limited to low concentration cases.

    Cao et al.[9]presented a dam break flow model on a mobile bed with non-equilibrium sediment transport and morphological evolution. The model over-predicted channel erosion[5]. Simpson and Castelltort[10]introduced a model that coupled water flow and sediment transport dynamics. The model was based on theshallow water flow equations, conservation of sediment concentration, and empirical functions for bed friction, beds erosion, and deposition. Wu and Wang[5]developed a 1-D model for dam break flows over movable bed based on the upwind scheme of Ying et al.[11,12]. Physical model tests of dam break flows over mobile bed were used to validate the numerical model. Abderrezzak and Paquier[13]proposed a 1-D mathematical model that accounted for changes in channel cross sectional geometry with time by incorporating various approaches for updating cross-sectional shape.

    To date, there is no specific study of coupled flow and sediment transport modeling using the discontinuous Galerkin framework. In this paper, the flow and morphological evolution after dam failure is investigated. The Harten-Lax-van Leer (HLL) and Harten-Lax-van Contact (HLLC) formulations are modified to include the treatment of numerical fluxes associated with suspended and bed load sediment transport. Additionally, the performance of the two approximate Riemann solvers is investigated.

    1. Sediment transport

    Sediment transport in natural environment can be classified as bed load and suspended load[14]. The sediment transport can be assumed to be in equilibrium state or non-equilibrium state. In equilibrium state, sediment transport is assumed to be always at equilibrium (also called capacity) and governed by the local flow conditions. In contrast, the non-equilibrium treatment accounts for the time and space required for sediment particles to adapt to its potential equilibrium state[5]. Several researchers[15,16]have used equilibrium sediment transport concept in their models, while other researchers[7,14]used non-equilibrium sediment transport concept.

    Although the equilibrium sediment transport assumption is valid for long term simulations, the lag effects in highly unsteady flow events, such as dam break flows and flash floods, cannot be ignored[17]. In non-equilibrium sediment transport, the adaptation length and suspended load adaptation coefficient play an important role in determining the eventual bed profile. Many researchers have proposed different formulations for non-equilibrium adaptation length[5,9,13]. However, it is well established[14]that these two parameters are case dependent and calibration for a particular scenario should be considered.

    2. Mathematical model

    The generalized form of 1-D shallow water flow equations for the unsteady water-sediment mixture are the mass and momentum conservation equations as given by Eqs.(1) and (2)[5]. The source terms in these equations account for the interaction of flow and sediment, and bed change. In these equationst is time,A is the flow area,Qis the discharge of the watersediment mixture,xis the longitudinal coordinate,P is the porosity of the bed material,B is the width of the channel at the water surface,D andEare sediment deposition and entrainment,Lis the non-equilibrium adaptation length for the total load,Qb*is the equilibrium bed-load transport rate and can be defined by empirical formulae[18],Q is the actual bed load transport,g is the gravitational acceleration,Zis the water surface elevation,nis the Manning's roughness coefficient,R is the hydraulic radius,hlis the local flow depth,ρis the density of water and sediment mixture and is given by ρ=ρw(1-Ct)+ ρsCt,Ctis the volumetric concentration of total sediment load,ρwis the density of water, and ρsis the density of sediment.

    In the mass conservation equation, Eq.(1), the source term (right hand side of the equation) represents the change in bed elevation due to change in suspended load through entrainment and/or deposition. In the momentum equation, Eq.(2), there are two additional terms compared to the clear water flow equations. The second term on the right hand side of the equation reflects the effect of spatial variation of mixture density[9]. The last term on the right hand side of the equation represents the momentum interactions between the water columns and the erodible bed.

    Suspended and bed load transport rate can be mathematically defined by Eqs.(3) and (4)[5], respectively, whereC is cross section averaged volumetric concentration of suspended load and ubis the velocity of the bed load (usually approximated by the average flow velocity). The total load transport rate,Qt, and the volumetric concentration of total load sediment,Ct, can be defined by Eq.(5).

    The sediment deposition and entrainment are described by Eq.(6). In this equation,ωs=ωso(1-Ct)mis the settling velocity in water-sediment mixture,where ωsois the fall velocity of a single particle in clear water andm is a parameter taken as 4.0 in this study. The actual and equilibrium near bed concentration of suspended load are given by ca(=Cα)and ca*, respectively. Among many empirical formulas for ca*, equations proposed by Van Rijn[18]and Zyserman and Freds?e[19]are tested in this study and are given by Eq.(7). In Eq.(7),d is the sediment size,T is the transport stage number,δ=max(2d,0.005h)is the reference level with h being the flow depth, andwithνbeing the kinematic viscosity. The transport stage number is defined as, whereβis a calibration factor, u*is the bed shear velocity, and u*cris the critical bed shear velocity based on the Shield's diagram. The effect of the bed slope is considered in the critical bed shear velocity[14], however, the results with and without the bed slope effect were the same for the tests conducted in this study. The non-equilibrium adaptation coefficient of suspended load (α) is defined as α=min[αo,(1-P)/C], where αois a parameter that needs to be calibrated for determining the non-equilibrium adaptation coefficient[5]. The settling velocity,ωso, is given by Eq.(8)[14].

    The adaptation length for the total-load sediment transport,L , is given by Eq.(9), where Lbis the non-equilibrium adaptation length for the bed load, andu is the average flow velocity[5]. Equilibrium bed-load transport rate,Qb*, is defined by Eq.(10).

    The porosity of the bed material, P , is given by Eq.(11)[20].

    Fig.1 Illustration of discontinuities at element boundaries in the discontinuous Galerkin formulation

    3. Numerical scheme

    The system of hyperbolic equations can be written in the conservative form as given by Eq.(12). In this system,U,F(xiàn), andS are the vectors of unknown variables, fluxes, and source terms, respectively, and are described in Eqs.(13) and (14). In the continuous finite element approach, the field variables(U)are forced to be continuous across the boundary,

    In discretizing the governing equations, numerical integration for the terms containing spatial derivatives can be written in a general form as ?(?ψ/?x)(such as 1st and 2nd terms in the source term of the momentum equation) and can be approximated using Eq.(16), where C1and C2are considered constants during integration[24,25].

    As explicit time stepping schemes are used, each equation is integrated and solved independently. The integral forms of the mass and momentum equations are shown in Eqs.(7) and (8), respectively, where x1and x2are the end coordinates of an element and νi(i=1,2)are linear test or weight functions. In these equations, the flux terms are integrated by parts,where P( x, t)=Qis the flux term for the continuity equation andG( x, t)=Q2/Ais the flux function for the momentum equation. These flux functions at the element boundaries are calculated using approximate Riemann solvers. The approximate variablesandaswell as any functionare given by Eq.(9), whereνj(j=1,2)are linear shape or interpolating functions. For the Galerkin method, the test and shape functions are the same. To perform the integration, the global coordinates in Eqs.(7) and (8) are transformed to local coordinates.

    Fig.2 Wave structure for the approximate Riemann problem,where SLand SRare shock/rarefaction waves and S*is a contact wave

    Table 1 Parameters involved in HLL and HLLC flux functions

    Fig.3 Water level(h)and volume flow rate(Q)for the Taipei case over fixed bed at 0.303 s

    Fig.4 Water surface (WS) and bed elevation (BE) profiles for the Taipei case after the dam break

    To close the system of equations, the bed deformation must be determined in each time step based on the combination of deposition/entrainment as well as equilibrium/non-equilibrium bed load transport rate difference as given by Eq.(21). The expression on the right hand side of the equation is evaluated at the previous time step.

    4. Model performance

    The accuracy of the developed model is examined in fixed and erodible bed dam break cases. Two sets of laboratory experiments are selected to verify the performance of the model in simulating flow and morphological changes after dam break event. Capart and Young[30]reported an experiment results for dam break flow over erodible bed in University of Taiwan,called Taipei case. Fraccarollo and Capart[8]presented another similar laboratory experimental data conducted in the University of Louvain, called Louvain case. Both experiments were performed in horizontal, rectangular cross section flumes. The Taipei case was conducted in a 1.2 m long, 0.2 m wide, and 0.7 m deepflume using sediment particles of 6.1×10-3m in3diameter. The density of sediment was 1 048 kg/m and settling velocity was 7.6×10-2m/s. In the Louvain case,sediment particles of 3.53×10-3m in diameter with density of 1 540 kg/m, and settling velocity of 0.18 m/s were used. A 2.5 m long, 0.1 m wide, and 0.25 m deep flume was used for the test. In both cases,before the removal of the dam, the water depth upstream of the dam was 0.1 m and the downstream bed was dry. The dams were located at mid-length and spanned the whole width of the channel. The dams are placed at x=0for simulating these tests.

    Fig.5 Water surface (WS) and bed elevation (BE) profiles for the Louvain case after the dam break

    To simulate the Taipei and Louvain cases, the domains are discretized using element sizes of 5× 10-3m, 2.5×10-3m, and 10-3cm, and time steps of 0.001 s, 0.000375 s, and 0.0001 s, respectively. The stability of explicit scheme is subject to the Courant-Friedrichs-Lewy (CFL) condition, the maximum CFL criteria of 0.38 for Taipei case and 0.24 for Louvain case are used. The sensitivity of the simulated results to element and time step sizes is investigated by considering three different time steps/element size. Results showed that by restricting the maximum CFL criteria, the model is not sensitive to time step/element size. In order to simulate the dry bed, two different approaches are tested[11,22]. In the first method, for the initial dry bed downstream of the dam a small depth (ε= 10-6m) and zero discharge are specified. During simulation, if the computed depth at a node is less than ε, the depth is set toεand discharge is set to zero at that node. In the second approach, a small depth,ε,is used as a check to track wet/dry front. The water depth is set to zero for the dry bed area. If the computed water depth at a node is less thanε, the velocity and discharge are set to zero. Both approaches provided same level of accuracy for tests conducted in this paper. However, the results shown are based on the second approach. In both tests, Van Rijn's formulation is used for determining equilibrium near bed concentration for suspended load. The comparison between the Van Rijn's and Zyserman-Freds?e's formulations for the equilibrium near bed concentration is provided later. Figure 3 shows the water surface as well as the volume flow rate for the Taipei test over fixed bed at 0.30 3 safte r the removal of thedam.The measured data forthewatersurfaceprofileforthefixedbedisnot available. The test was conducted using HLL and HLLC flux functions and provided similar results for the water surface profile and volume flow rate. The aim of the test is to show that scheme can model the dam break flow accurately without any oscillations.

    Fig.6 Total load sediments concentration

    Fig.7 Comparison of two empirical formulas for the equilibrium near bed concentration of suspended load

    Figure 4 shows the simulated and measured bed and water surface profiles for the Taipei case at three different times after the removal of the dam using the HLLC flux function. The calibration factor,β, is found to be 2.1 for this case. The non-equilibrium adaptation length for the bed load,Lb, is found to be 0.25 m and the non-equilibrium adaptation coefficient is determined usingαovalue of 2.0. The values for the calibration factor, non-equilibrium adaptation length, andαoare determined to achieve the best fit with the measured data. As shown in Fig.4, the bed deformations are simulated accurately, however the simulated hydraulic jumps are located upstream compared to the measured data. The predicted water surface profiles agree better with the measured data at later stages of the test.

    In Fig.5, the simulated results for the Louvain test are compared with the measured data at three different times after the dam removal using the HLLC flux function. In this case, the calibration factor,β,is found to be 1.2. Similar to the Taipei test, the values for the non-equilibrium adaptation length for the bed load and αoare found to be 0.25 m and 2.0, respectively. The hydraulic jump locations in this test are approximately at the dam location and are simulated accurately. The bed profiles are predicted accurately especially at later stages. The water surface profiles upstream and downstream of the jump are predicted accurately. At the jump locations, which are predictedat the points of maximum bed scour, the predicted water depth are lower than the measured data.

    The total load sediment concentrations for both tests are shown in Fig.6. The smooth profiles of the sediment concentration are in good agreement with other simulated results[5,8]and indicate the stability of the scheme. The simulated results for water surface profiles, bed profiles, and sediment concentration using the discontinuous Galerkin framework are similar to that reported by other researchers using the finite volume method with Godunov scheme for flux approximation[5]and Riemann techniques developed in gas dynamics for modeling homogenous hyperbolic equations[8].

    The HLL flux function was also evaluated for the two test cases and the results were found to be similar to that with the HLLC flux function. The simulations were also performed using the Zyserman-Freds?e's formulation for equilibrium near bed concentration for suspended load. The simulated results are shown in Fig.7 and compared with the measured results at 0.303 s after the dam removal. The results show that maximum bed scour location and location of the hydraulic jump moves downstream with the use of Zyserman-Freds?e's formulation. Except at the location of the hydraulic jump, the water surface profiles based on Van Rijn's and Zyserman-Freds?e's formulations are similar. The bed elevation is over predicted using Zyserman-Freds?e's formulation when compared to the van Rijn's formulation.

    5. Conclusion

    A 1-D shallow water flow and sediment transport model in discontinuous Galerkin framework has been developed. Coupled continuity, momentum, suspended load, bed load, and bed changes are explicitly solved using non-equilibrium sediment transport formulations. The HLL and HLLC flux functions for the 1-D shallow water flow equations are extended to include the suspended sediment and bed load flux terms. Two well-known experimental test cases (Taipei and Louvain cases) are simulated using the developed model. The two flux functions provide similar accuracy. The results show that bed profiles can be predicted accurately, albeit with the modification of the current sediment transport formulae for highly unsteady flows. The computed water surface profiles are in good agreement with the measured data except at the location of the hydraulic jump. Two empirical formulas for the equilibrium near bed concentration for suspended load are considered, results show that Zyserman-Freds?e's formula provide better accuracy by moving the hydraulic jump location to downstream, however,the bed profile is over predicted.

    References

    [1] GRAHAM W. J., MAJOR U. S. dam failures: Their cause,resultant losses, and impact on dam safety programs and engineering practice[C]. Great River History Symposium at World Environmental and Water Resources Congress. Kansas City, Missouri, USA, 2009.

    [2] COZZOLINO L., MORTE R. D. and GIUDICE G. D. et al. A well-balanced spectral volume scheme with the wetting-drying property for the shallow-water equations[J]. Journal of Hydroinformatics, 2012, 14(3): 745-760.

    [3] DüBEN P. D., KORN P. and AIZINGER V. A discontinuous/continuous low order finite element shallow water model on the sphere[J]. Journal of Computational Physics, 2012, 231(6): 2396-2413.

    [4] KHAN A. A., BARKDOLL B. Two-dimensional depthaveraged models for flow simulation in river bends[J]. International Journal of computational Engineering Science, 2001, 2(3): 453-467.

    [5] WU W., WANG S. S. One-dimensional modeling of dambreak flow over movable beds[J]. Journal of Hydraulic Engineering, ASCE, 2007, 133(1): 48-58.

    [6] CAO Z., LI Z. and PENDER G. et al. Non-capacity or capacity model for fluvial sediment transport[J]. Proceedings of the ICE-Water Management, 2012, 165(4): 193-211.

    [7] WU W., VIEIRA D. and WANG S. One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks[J]. Journal of Hydraulic Engineering, ASCE, 2004, 130(9): 914-923.

    [8] FRACCAROLLO L., CAPART H. Riemann wave description of erosional dam-break flows[J]. Journal of Fluid Mechanics, 2002, 461: 183-228.

    [9] CAO Z., PENDER G. and WALLIS S. et al. Computational dam-break hydraulics over erodible sediment bed[J]. Journal of Hydraulic Engineering, ASCE, 2004, 130(7): 689-703.

    [10] SIMPSON G., CASTELLTORT S. Coupled model of surface water flow, sediment transport and morphological evolution[J]. Computers and Geosciences, 2006, 32(10): 1600-1614.

    [11] YING X., KHAN A. A. and WANG S. S. Y. An upwind method for one-dimensional dam break flows[C]. Proceedings of XXX IAHR Congress. Thessaloniki, Greece,2003.

    [12] YING X., KHAN A. A. and WANG S. S. Y. Upwind conservative scheme for the Saint Venant equations[J]. Journal of Hydraulic Engineering, ASCE, 2004, 130(10): 977-987.

    [13] ABDERREZZAK K. E., PAQUIER A. One-dimensional numerical modeling of sediment transport and bed deformation in open channels[J]. Water Resources Research,2009, 45(5): 641-648.

    [14] WU W. Computational river dynamics[M]. Abingdon,UK: CRC Press, Taylor and Francis Group, 2007.

    [15] CUI Y., PAOLA C. and PARKER G. Numerical simulation of aggradation and downstream fining[J]. Journal of Hydraulic Research, 1996, 34(2): 185-204.

    [16] GOUTIèRE L., SOARES-FRAZ?O S. and SAVARY C. et al. One-dimensional model for transient flows involving bed-load sediment transport and changes in flow regimes[J]. Journal of Hydraulic Engineering, ASCE, 2008,134(6): 726-735.

    [17] ZHANG S. Numerical study of sediment transport under unsteady flow[D]. Doctoral Thesis, Tucson, USA: The University of Arizona, 2011.

    [18] Van RIJN L. Sediment transport, Part II: Suspended load transport[J]. Journal of Hydraulic Engineering, ASCE,1984, 110(11): 1613-1641.

    [19] ZYSERMAN J., FREDS?E J. Data analysis of bed concentration of suspended sediment[J]. Journal of Hydraulic Engineering, ASCE, 1994, 120(9): 1021-1042.

    [20] WU W., WANG S. Formulas for sediment porosity and settling velocity[J]. Journal of Hydraulic Engineering,ASCE, 2006, 132(8): 858-862.

    [21] ZHOU J. G., CAUSON D. M. and MINGHAM C. G. et al. The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168(1): 1-25.

    [22] LAI W., KHAN A. A. Discontinuous Galerkin method for 1-D shallow water flow in nonrectangular and nonprismatic channels[J]. Journal of Hydraulic Engineering,ASCE, 2012, 138(3): 285-296.

    [23] LAI W., KHAN A. A. A discontinuous Galerkin method for two-dimensional shallow water flows[J]. International Journal of Numerical Methods in Fluids, 2012,70(8): 939-960.

    [24] LAI Wencong, KHAN Abdul A. Modeling dam-break flood over natural rivers using discontinuous Galerkin method[J]. Journal of Hydrodynamics, 2012, 24(4): 467-478.

    [25] LAI W., KHAN A. A. Discontinuous Galerkin method for 1D shallow water flows in natural rivers[J]. Engineering Applications of Computational Fluid Mechanics, 2012,6(1): 74-86.

    [26] HARTEN A., LAX P. and Van LEER B. On upstream differencing and Godunov type methods for hyperbolic conservation laws[J]. SIAM Review, 1983, 25(1): 35-61.[27] TORO E. F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction[M]. Dordrecht, The Netherlands: Springer Science+ Business Media, 2009.

    [28] MALEKI Farzam Safarzadeh, KHAN Abdul A. Effect of channel shape on selection of time marching scheme in the discontinuous galerkin method for 1-D open cha- nnel flow[J]. Journal of Hydrodynamics, 2015, 27(3): 413-426.

    [29] KHAN A. A., LAI W. Modeling shallow water flows using the discontinuous Galerkin method[M]. Abingdon,UK: CRC Press, Taylor and Francis Group, 2014.

    [30] CAPART H., YOUNG D. L. Formation of a jump by the dam-break wave over a granular bed[J]. Journal of Fluid Mechanics, 1998, 372: 165-187.

    10.1016/S1001-6058(16)60658-3

    January 23, 2015, Revised September 11, 2015)

    * Biography: Farzam Safarzadeh MALEKI (1983-),Male, Ph. D., Assistant Professor

    Corresponging author: Abdul A. KHAN,E-mail: abdkhan@clemson.edu

    2016,28(4):534-543

    成人三级做爰电影| 欧美日韩亚洲综合一区二区三区_| 看片在线看免费视频| 一本一本综合久久| www.999成人在线观看| 久久久久亚洲av毛片大全| 成人一区二区视频在线观看| 精品久久久久久久末码| 免费在线观看完整版高清| 在线观看一区二区三区| 亚洲成人免费电影在线观看| 久久 成人 亚洲| 国产区一区二久久| 久久人妻福利社区极品人妻图片| 18禁国产床啪视频网站| 亚洲熟女毛片儿| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久视频播放| 国产欧美日韩一区二区三| 757午夜福利合集在线观看| 国产精品久久电影中文字幕| 视频区欧美日本亚洲| 99国产极品粉嫩在线观看| 最新美女视频免费是黄的| 一个人免费在线观看电影 | 男女那种视频在线观看| 中国美女看黄片| 香蕉丝袜av| 色在线成人网| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产清高在天天线| 午夜福利高清视频| 久久香蕉精品热| 国产精品久久久久久久电影 | 久久中文看片网| 亚洲va日本ⅴa欧美va伊人久久| 丰满人妻熟妇乱又伦精品不卡| 欧美在线一区亚洲| 草草在线视频免费看| 激情在线观看视频在线高清| 久久久久久久久免费视频了| xxxwww97欧美| 一个人免费在线观看电影 | 少妇粗大呻吟视频| 亚洲电影在线观看av| 国内精品久久久久精免费| 欧美乱妇无乱码| 国产一区二区三区在线臀色熟女| 国产av在哪里看| 老司机在亚洲福利影院| 热99re8久久精品国产| 国产精品爽爽va在线观看网站| 国产黄片美女视频| 日韩大尺度精品在线看网址| bbb黄色大片| 性色av乱码一区二区三区2| 国产精品久久久久久亚洲av鲁大| 久久精品国产综合久久久| 欧美大码av| 免费看日本二区| 亚洲精品国产一区二区精华液| 五月玫瑰六月丁香| 亚洲色图av天堂| 欧美日韩亚洲国产一区二区在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲熟妇中文字幕五十中出| 国产精品一区二区精品视频观看| 九色国产91popny在线| 黄片大片在线免费观看| 少妇被粗大的猛进出69影院| 12—13女人毛片做爰片一| 亚洲av五月六月丁香网| 99热这里只有精品一区 | 国产伦一二天堂av在线观看| 成人高潮视频无遮挡免费网站| 欧美激情久久久久久爽电影| 我的老师免费观看完整版| 日本免费一区二区三区高清不卡| 又粗又爽又猛毛片免费看| 久久精品人妻少妇| 黄色女人牲交| 最近视频中文字幕2019在线8| 桃红色精品国产亚洲av| 欧美色视频一区免费| 夜夜夜夜夜久久久久| 久久99热这里只有精品18| 国产精品一区二区精品视频观看| 国产成人av激情在线播放| 无人区码免费观看不卡| 亚洲精品粉嫩美女一区| 嫩草影院精品99| 中亚洲国语对白在线视频| 操出白浆在线播放| 一本精品99久久精品77| 久久 成人 亚洲| 欧美绝顶高潮抽搐喷水| 日韩精品中文字幕看吧| 曰老女人黄片| 香蕉久久夜色| 国产1区2区3区精品| 国产精品永久免费网站| 99热这里只有精品一区 | 欧美黑人欧美精品刺激| 一区福利在线观看| 91麻豆精品激情在线观看国产| 国产精品久久久久久久电影 | 国产激情欧美一区二区| 国产av一区二区精品久久| 欧美乱色亚洲激情| 俺也久久电影网| 最好的美女福利视频网| 欧美不卡视频在线免费观看 | 波多野结衣高清无吗| 国产午夜精品论理片| 亚洲男人的天堂狠狠| 成年女人毛片免费观看观看9| 一卡2卡三卡四卡精品乱码亚洲| 国产成人av激情在线播放| 久久久久免费精品人妻一区二区| 三级男女做爰猛烈吃奶摸视频| 国产精品免费视频内射| 亚洲av成人不卡在线观看播放网| 色噜噜av男人的天堂激情| 国产真人三级小视频在线观看| 嫩草影视91久久| 国产三级中文精品| 在线观看www视频免费| 成人永久免费在线观看视频| 亚洲精品av麻豆狂野| 国产成人av激情在线播放| www.精华液| 日韩欧美国产在线观看| 精品国内亚洲2022精品成人| 欧美性长视频在线观看| 亚洲国产欧美网| 久久久久久亚洲精品国产蜜桃av| 精品午夜福利视频在线观看一区| 最新美女视频免费是黄的| 国产午夜精品论理片| 精品久久久久久久久久免费视频| aaaaa片日本免费| 欧美黄色淫秽网站| 在线播放国产精品三级| 欧美日本视频| 一区二区三区国产精品乱码| 亚洲av电影不卡..在线观看| 欧美黄色淫秽网站| 18禁黄网站禁片午夜丰满| 在线观看日韩欧美| 狂野欧美白嫩少妇大欣赏| 黄色片一级片一级黄色片| 黄片大片在线免费观看| 在线观看日韩欧美| 香蕉国产在线看| 国产高清有码在线观看视频 | 搡老妇女老女人老熟妇| 国产精品,欧美在线| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久久精品电影| 国产精品香港三级国产av潘金莲| 亚洲成人久久性| 久久精品国产综合久久久| 亚洲在线自拍视频| 久久性视频一级片| 国产亚洲欧美在线一区二区| 亚洲全国av大片| 特级一级黄色大片| 一二三四在线观看免费中文在| 一卡2卡三卡四卡精品乱码亚洲| 禁无遮挡网站| 国产高清有码在线观看视频 | 久久天躁狠狠躁夜夜2o2o| 制服丝袜大香蕉在线| 90打野战视频偷拍视频| 岛国在线免费视频观看| 一个人免费在线观看电影 | 99在线人妻在线中文字幕| 欧美午夜高清在线| 国产一区在线观看成人免费| 国产av不卡久久| 琪琪午夜伦伦电影理论片6080| 69av精品久久久久久| 国产精品九九99| 久久精品综合一区二区三区| 精品免费久久久久久久清纯| 亚洲欧美日韩高清专用| 久久草成人影院| 观看免费一级毛片| 亚洲欧洲精品一区二区精品久久久| svipshipincom国产片| 精品久久久久久久人妻蜜臀av| 麻豆一二三区av精品| 精品高清国产在线一区| 亚洲欧美日韩高清在线视频| 午夜久久久久精精品| 99热这里只有精品一区 | 欧美性猛交黑人性爽| 老汉色av国产亚洲站长工具| 长腿黑丝高跟| 91成年电影在线观看| 久久久久久久午夜电影| 天天添夜夜摸| cao死你这个sao货| 男女之事视频高清在线观看| 成人午夜高清在线视频| 亚洲精品久久国产高清桃花| 丝袜人妻中文字幕| 国产亚洲av嫩草精品影院| 嫩草影院精品99| 免费在线观看完整版高清| 99精品欧美一区二区三区四区| 亚洲男人天堂网一区| 亚洲精品在线观看二区| 久久精品91蜜桃| 免费在线观看影片大全网站| 久久精品人妻少妇| 99久久99久久久精品蜜桃| 欧美最黄视频在线播放免费| 男男h啪啪无遮挡| 久久久久免费精品人妻一区二区| 99热这里只有精品一区 | 国产三级黄色录像| 亚洲熟妇中文字幕五十中出| 琪琪午夜伦伦电影理论片6080| a在线观看视频网站| 亚洲avbb在线观看| 两个人看的免费小视频| 欧美日本视频| 欧美精品亚洲一区二区| av中文乱码字幕在线| 国产欧美日韩一区二区三| 国产精品精品国产色婷婷| 九九热线精品视视频播放| 久久中文字幕一级| 精品久久久久久久毛片微露脸| 在线观看美女被高潮喷水网站 | 又黄又粗又硬又大视频| www.熟女人妻精品国产| 欧洲精品卡2卡3卡4卡5卡区| 美女扒开内裤让男人捅视频| 一级毛片女人18水好多| 男女那种视频在线观看| 精品久久久久久久久久免费视频| 国产99久久九九免费精品| 久久精品国产综合久久久| 日韩精品中文字幕看吧| 在线永久观看黄色视频| 国产成年人精品一区二区| or卡值多少钱| 亚洲av熟女| 俺也久久电影网| 99国产精品一区二区蜜桃av| 性色av乱码一区二区三区2| 亚洲av电影在线进入| 一个人观看的视频www高清免费观看 | 桃红色精品国产亚洲av| 中文字幕精品亚洲无线码一区| 高清毛片免费观看视频网站| av超薄肉色丝袜交足视频| 午夜福利视频1000在线观看| 欧美色视频一区免费| 亚洲成av人片免费观看| 久99久视频精品免费| 精品无人区乱码1区二区| 亚洲欧洲精品一区二区精品久久久| 免费一级毛片在线播放高清视频| 欧美精品啪啪一区二区三区| 黄色成人免费大全| 欧美一区二区精品小视频在线| 身体一侧抽搐| 国产高清视频在线播放一区| 大型黄色视频在线免费观看| 亚洲国产欧洲综合997久久,| 女生性感内裤真人,穿戴方法视频| 免费在线观看完整版高清| 久久久国产欧美日韩av| 美女大奶头视频| 久久99热这里只有精品18| 国产黄a三级三级三级人| 少妇裸体淫交视频免费看高清 | 可以在线观看的亚洲视频| 中文字幕精品亚洲无线码一区| 免费在线观看成人毛片| 好男人在线观看高清免费视频| av片东京热男人的天堂| 在线观看免费午夜福利视频| 日韩有码中文字幕| 国产麻豆成人av免费视频| 热99re8久久精品国产| 欧美丝袜亚洲另类 | 国产真人三级小视频在线观看| 亚洲男人天堂网一区| 亚洲国产欧洲综合997久久,| 日本 av在线| 在线视频色国产色| 久久精品夜夜夜夜夜久久蜜豆 | 免费看美女性在线毛片视频| 极品教师在线免费播放| 国产成人精品久久二区二区91| 精品欧美国产一区二区三| 国产v大片淫在线免费观看| 久久久精品大字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 老司机靠b影院| 美女免费视频网站| 国产三级黄色录像| 中文字幕人妻丝袜一区二区| 亚洲七黄色美女视频| 久久久久久久精品吃奶| 制服诱惑二区| 久9热在线精品视频| 午夜精品久久久久久毛片777| 婷婷丁香在线五月| 成人三级做爰电影| 制服人妻中文乱码| 国产成人av激情在线播放| 国产亚洲精品久久久久久毛片| av国产免费在线观看| 久久精品国产清高在天天线| 亚洲av成人av| 欧美日韩中文字幕国产精品一区二区三区| 最近最新免费中文字幕在线| 99热6这里只有精品| 夜夜躁狠狠躁天天躁| 亚洲av五月六月丁香网| 婷婷精品国产亚洲av在线| 中文字幕人妻丝袜一区二区| 国产精品精品国产色婷婷| 好男人在线观看高清免费视频| 久久久久久亚洲精品国产蜜桃av| 两人在一起打扑克的视频| 国产在线精品亚洲第一网站| 天天一区二区日本电影三级| 欧美激情久久久久久爽电影| 三级男女做爰猛烈吃奶摸视频| 老汉色∧v一级毛片| 国产野战对白在线观看| 亚洲成人国产一区在线观看| 欧美性猛交╳xxx乱大交人| 日韩高清综合在线| 日本撒尿小便嘘嘘汇集6| 久久国产精品人妻蜜桃| 欧美日本视频| 欧美三级亚洲精品| 男女下面进入的视频免费午夜| 精品久久久久久,| 午夜影院日韩av| 五月玫瑰六月丁香| 国产亚洲av嫩草精品影院| 首页视频小说图片口味搜索| 中文在线观看免费www的网站 | 久久久久亚洲av毛片大全| 一a级毛片在线观看| 亚洲精品美女久久av网站| 最近最新免费中文字幕在线| 国产69精品久久久久777片 | 国产又黄又爽又无遮挡在线| 白带黄色成豆腐渣| 老汉色∧v一级毛片| 欧美+亚洲+日韩+国产| 午夜福利18| 亚洲av日韩精品久久久久久密| 十八禁人妻一区二区| 特大巨黑吊av在线直播| 亚洲中文日韩欧美视频| 精品福利观看| 国产又色又爽无遮挡免费看| 亚洲av第一区精品v没综合| 无人区码免费观看不卡| 日日摸夜夜添夜夜添小说| 女同久久另类99精品国产91| av在线播放免费不卡| 国产伦人伦偷精品视频| 久久天躁狠狠躁夜夜2o2o| 国产v大片淫在线免费观看| 亚洲国产欧美网| 国产精品国产高清国产av| 日本免费一区二区三区高清不卡| 少妇人妻一区二区三区视频| 国产蜜桃级精品一区二区三区| 亚洲国产欧洲综合997久久,| 丝袜美腿诱惑在线| 国产成人aa在线观看| 成人三级做爰电影| 欧美 亚洲 国产 日韩一| 熟女电影av网| 日韩欧美一区二区三区在线观看| 久久久久久国产a免费观看| 麻豆av在线久日| 日本三级黄在线观看| 少妇熟女aⅴ在线视频| 18禁观看日本| 免费高清视频大片| 亚洲欧美日韩高清专用| 久久久久久久久免费视频了| 欧美三级亚洲精品| 99久久精品热视频| 亚洲人成77777在线视频| 十八禁人妻一区二区| 午夜福利成人在线免费观看| 成人一区二区视频在线观看| 一区二区三区激情视频| 国产精品香港三级国产av潘金莲| 露出奶头的视频| 1024手机看黄色片| 午夜精品一区二区三区免费看| 日韩中文字幕欧美一区二区| 国产不卡一卡二| 制服丝袜大香蕉在线| 日本撒尿小便嘘嘘汇集6| 国产激情偷乱视频一区二区| 日韩欧美 国产精品| 国产黄a三级三级三级人| 可以在线观看的亚洲视频| 久久 成人 亚洲| 成人国产一区最新在线观看| 亚洲av日韩精品久久久久久密| 亚洲色图 男人天堂 中文字幕| 91大片在线观看| 妹子高潮喷水视频| 欧美黄色片欧美黄色片| 毛片女人毛片| 人妻丰满熟妇av一区二区三区| 欧美三级亚洲精品| 国产成年人精品一区二区| tocl精华| 亚洲天堂国产精品一区在线| 欧美成人午夜精品| 一个人免费在线观看的高清视频| 女警被强在线播放| 国产探花在线观看一区二区| 19禁男女啪啪无遮挡网站| 国产亚洲av高清不卡| 亚洲,欧美精品.| 国产精华一区二区三区| 国产精品美女特级片免费视频播放器 | 90打野战视频偷拍视频| 麻豆av在线久日| 国产aⅴ精品一区二区三区波| 女同久久另类99精品国产91| 亚洲熟妇中文字幕五十中出| 俺也久久电影网| 国产精品野战在线观看| 丁香欧美五月| 久久精品国产亚洲av高清一级| 亚洲欧洲精品一区二区精品久久久| 天天躁夜夜躁狠狠躁躁| 性色av乱码一区二区三区2| 天堂影院成人在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美成人性av电影在线观看| 欧美一级a爱片免费观看看 | 桃红色精品国产亚洲av| 99精品在免费线老司机午夜| 女人高潮潮喷娇喘18禁视频| 在线永久观看黄色视频| 国产精品久久久久久人妻精品电影| 波多野结衣巨乳人妻| 国产一区在线观看成人免费| 夜夜爽天天搞| 久久人妻av系列| 老熟妇仑乱视频hdxx| 俄罗斯特黄特色一大片| 亚洲天堂国产精品一区在线| 日韩精品青青久久久久久| or卡值多少钱| 欧美丝袜亚洲另类 | 国产1区2区3区精品| 18禁国产床啪视频网站| 中出人妻视频一区二区| ponron亚洲| a在线观看视频网站| 亚洲av片天天在线观看| 日韩 欧美 亚洲 中文字幕| 久久精品成人免费网站| 精品第一国产精品| 国产精品综合久久久久久久免费| videosex国产| 亚洲第一欧美日韩一区二区三区| 亚洲色图av天堂| 午夜免费观看网址| 国产欧美日韩一区二区精品| 看黄色毛片网站| 亚洲美女黄片视频| 久久亚洲真实| 91大片在线观看| av中文乱码字幕在线| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久| 国产一级毛片七仙女欲春2| 日韩三级视频一区二区三区| 国产日本99.免费观看| 超碰成人久久| 18禁国产床啪视频网站| 国产麻豆成人av免费视频| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| 日本撒尿小便嘘嘘汇集6| 国产乱人伦免费视频| 深夜精品福利| 国产视频内射| 亚洲专区国产一区二区| 精品久久久久久,| 性色av乱码一区二区三区2| 亚洲一区高清亚洲精品| 成人一区二区视频在线观看| 最好的美女福利视频网| 亚洲国产欧美一区二区综合| 91老司机精品| 免费看a级黄色片| 免费搜索国产男女视频| 欧美一级a爱片免费观看看 | 99精品久久久久人妻精品| 亚洲一区中文字幕在线| 十八禁网站免费在线| 国产97色在线日韩免费| 精品不卡国产一区二区三区| 90打野战视频偷拍视频| 成人18禁在线播放| ponron亚洲| 色精品久久人妻99蜜桃| 丁香六月欧美| 日本 av在线| 亚洲人成电影免费在线| 欧美性长视频在线观看| 久久久久久久久久黄片| 免费在线观看亚洲国产| 一本大道久久a久久精品| 欧美黑人欧美精品刺激| 亚洲第一欧美日韩一区二区三区| 日本黄大片高清| 一个人免费在线观看电影 | 精品欧美一区二区三区在线| 欧美一区二区精品小视频在线| 我要搜黄色片| 亚洲欧美日韩高清在线视频| 国产一区二区在线观看日韩 | 九色国产91popny在线| 在线视频色国产色| 久久午夜亚洲精品久久| 熟妇人妻久久中文字幕3abv| 深夜精品福利| www国产在线视频色| 动漫黄色视频在线观看| 久久中文字幕人妻熟女| 久久久久精品国产欧美久久久| 在线视频色国产色| 国产熟女午夜一区二区三区| 亚洲专区字幕在线| 久久久久久久久久黄片| 99久久综合精品五月天人人| 国产一区二区三区视频了| 亚洲av第一区精品v没综合| 亚洲在线自拍视频| 国产真人三级小视频在线观看| 久久久国产成人免费| 老司机在亚洲福利影院| 一个人免费在线观看的高清视频| 久久午夜综合久久蜜桃| 巨乳人妻的诱惑在线观看| 在线观看免费午夜福利视频| 又紧又爽又黄一区二区| 国产成人精品久久二区二区91| 搞女人的毛片| 搡老妇女老女人老熟妇| 亚洲自偷自拍图片 自拍| 最近视频中文字幕2019在线8| 久久热在线av| 亚洲国产看品久久| 夜夜夜夜夜久久久久| 两个人的视频大全免费| 色精品久久人妻99蜜桃| 老司机深夜福利视频在线观看| 九色成人免费人妻av| 伦理电影免费视频| 男人舔女人下体高潮全视频| 99热6这里只有精品| 色哟哟哟哟哟哟| 国模一区二区三区四区视频 | 国产探花在线观看一区二区| 日韩欧美一区二区三区在线观看| 欧美极品一区二区三区四区| 日韩欧美国产一区二区入口| 后天国语完整版免费观看| 在线a可以看的网站| 欧美在线一区亚洲| 亚洲国产日韩欧美精品在线观看 | 中文字幕久久专区| 香蕉av资源在线| 欧美一级毛片孕妇| 欧美又色又爽又黄视频| 两性夫妻黄色片| 777久久人妻少妇嫩草av网站| 久久中文字幕人妻熟女| 窝窝影院91人妻| 黄片小视频在线播放| 日韩欧美国产在线观看| 国产精品香港三级国产av潘金莲| 国产亚洲欧美98| 嫩草影视91久久| 午夜精品久久久久久毛片777| 夜夜看夜夜爽夜夜摸| 久久精品91无色码中文字幕| 少妇熟女aⅴ在线视频| av在线天堂中文字幕| 91九色精品人成在线观看| 国产91精品成人一区二区三区| 亚洲男人的天堂狠狠| 亚洲精品一区av在线观看| 麻豆国产av国片精品| 午夜两性在线视频| 国产精品久久视频播放| 激情在线观看视频在线高清| 亚洲av熟女| 香蕉久久夜色|