王海竹,徐啟江,閆海芳
(1.東北林業(yè)大學(xué) 林木遺傳育種國(guó)家重點(diǎn)實(shí)驗(yàn)室,黑龍江 哈爾濱 150040;2.東北林業(yè)大學(xué) 生命科學(xué)學(xué)院,黑龍江 哈爾濱 150040)
?
光照、糖和激素對(duì)花青素合成調(diào)控的綜述
王海竹1,2,徐啟江1,2,閆海芳2*
(1.東北林業(yè)大學(xué) 林木遺傳育種國(guó)家重點(diǎn)實(shí)驗(yàn)室,黑龍江 哈爾濱 150040;2.東北林業(yè)大學(xué) 生命科學(xué)學(xué)院,黑龍江 哈爾濱 150040)
花青素是一類黃酮類化合物,存在于植物的葉片、花、果實(shí)和種子的表皮細(xì)胞的液泡中,花青素合成不僅受到系列結(jié)構(gòu)基因和轉(zhuǎn)錄因子的調(diào)控,還受到光照、溫度、糖、激素、pH、溫度和氮等因素影響。綜述了光照、糖和激素對(duì)花青素生物合成途徑調(diào)控作用方面的研究進(jìn)展。
糖;光照;激素;花青素合成
花青素是植物體內(nèi)一類次生代謝物質(zhì),廣泛存在于開(kāi)花植物(被子植物)中,據(jù)初步統(tǒng)計(jì),已發(fā)現(xiàn)有20種花青素,但可作為食品添加劑的僅有6種[1]?;ㄇ嗨?zé)o毒、無(wú)特殊氣味,具有多種營(yíng)養(yǎng)、藥理和保健功能,在食品、化妝、醫(yī)藥方面有著巨大的應(yīng)用潛力。
花青素的合成是一個(gè)多酶途徑[2],包括苯丙氨酸解氨酶(PAL)、肉桂-4-羥化酶(C4H)、4-香豆酸輔酶A連接酶(4CL)、查耳酮合酶(CHS)、查耳酮異構(gòu)酶(CHI)、黃烷酮三羥化酶(F3H)、類黃酮3′-羥化酶(F3′H)、類黃酮3′,5′-羥化酶(F3′5′H)、二氫黃酮醇-4-還原酶(DFR)、花青素合成酶/無(wú)色花青素雙加氧酶(ANS/LDOX)、類黃酮-3-O-葡萄糖基轉(zhuǎn)移酶(UFGT)。PAL是此過(guò)程中的第一個(gè)酶,催化苯丙氨酸變成肉桂酸,而UFGT在最后一步使得花色苷轉(zhuǎn)變成穩(wěn)定的花青素[3]。
花青素合成途徑結(jié)構(gòu)基因的表達(dá)直接影響到花青素含量[4-5]。在自然條件下,與花青素合成相關(guān)且具有轉(zhuǎn)錄活性的轉(zhuǎn)錄因子能夠在特定組織中上調(diào)結(jié)構(gòu)基因的表達(dá)[6-7],轉(zhuǎn)錄因子包括R2R3-MYB轉(zhuǎn)錄因子、bHLH轉(zhuǎn)錄因子和WD40蛋白,這3種轉(zhuǎn)錄因子常常結(jié)合形成轉(zhuǎn)錄復(fù)合物調(diào)節(jié)結(jié)構(gòu)基因的表達(dá)[8-9]。
花青素合成除了受結(jié)構(gòu)基因表達(dá)水平影響外,還受光照、糖、激素、pH、溫度、氮、磷等因素所支配。本文主要綜述了光照、糖和激素對(duì)花青素合成的影響。
光作為最重要的環(huán)境因子之一,植物通過(guò)光受體可以感受光的強(qiáng)度、方向、光周期等,并通過(guò)信號(hào)轉(zhuǎn)導(dǎo)途徑調(diào)控自身的光形態(tài)建成、開(kāi)花誘導(dǎo)、生物節(jié)律以及代謝產(chǎn)物的合成等多個(gè)生長(zhǎng)發(fā)育過(guò)程[10]。
光信號(hào)通過(guò)不同的光受體作用于各種生理過(guò)程,目前發(fā)現(xiàn)的光受體有:吸收紅光和遠(yuǎn)紅光的光敏色素(PHYA、PHYB、PHYC、PHYD、PHYE)[11]、吸收藍(lán)光和UV-A的隱花色素(CRY1、CRY2、CRY3)[12]和向光素(PHOT1、PHOT2)以及UV-B敏感光受體(UVR8)[11,13-15]。
光敏色素(phytochrome)能夠調(diào)節(jié)植物的生長(zhǎng)發(fā)育進(jìn)程,例如種子萌發(fā)、下胚軸延長(zhǎng)、開(kāi)花等[16-18],此外COP1是一個(gè)指環(huán)結(jié)構(gòu)的E3泛素連接酶,是光形態(tài)建成的負(fù)調(diào)控因子,在擬南芥中發(fā)現(xiàn)COP1與光敏色素、隱花色素和向光素存在蛋白之間相互作用[19-20]。而PHYA和PHYB相互作用能夠抑制COP1的活性;COP1/SPA復(fù)合物還能夠啟動(dòng)PHYA泛素化,從而削弱遠(yuǎn)紅光信號(hào)傳遞途徑[21]。
隱花色素(cryptochrome)是一種黃素蛋白受體,參與許多次級(jí)代謝產(chǎn)物的生物合成、植物發(fā)育進(jìn)程和生物節(jié)律信號(hào)傳遞過(guò)程,推測(cè)可能存在2條CRY介導(dǎo)的光信號(hào)傳導(dǎo)途徑[22]。最近有研究表明,向光素在藍(lán)光介導(dǎo)次級(jí)代謝產(chǎn)物生物合成過(guò)程具有重要作用,具體機(jī)制尚不清楚[23]。
光信號(hào)除了通過(guò)光受體影響植物發(fā)育進(jìn)程,還可以利用信號(hào)轉(zhuǎn)導(dǎo)因子調(diào)控啟動(dòng)子與轉(zhuǎn)錄子結(jié)合的強(qiáng)弱,直接或間接調(diào)節(jié)一些關(guān)鍵酶的合成,從而調(diào)節(jié)花青素合成途徑中結(jié)構(gòu)基因的表達(dá),進(jìn)而影響花青素的合成[24-25]。經(jīng)過(guò)對(duì)葡萄、蘋果、梨等植物研究發(fā)現(xiàn)很多與花青素合成相關(guān)的關(guān)鍵轉(zhuǎn)錄因子,R2R3-MYB作為主要調(diào)節(jié)因子通過(guò)激活或抑制合成途徑中結(jié)構(gòu)基因的表達(dá)來(lái)直接影響花青素的合成[26-28]。研究者發(fā)現(xiàn)一些R2R3-MYB轉(zhuǎn)錄因子也能夠響應(yīng)光信號(hào),HY5是一個(gè)具有鋅指結(jié)構(gòu)的R2R3-MYB轉(zhuǎn)錄因子,也是COP1的靶基因,能夠啟動(dòng)光形態(tài)建成[25,29-30]。在可見(jiàn)光條件下,COP1從細(xì)胞核中移出,HY5便能夠穩(wěn)定存在,與其他轉(zhuǎn)錄因子形成復(fù)合物啟動(dòng)花青素合成結(jié)構(gòu)基因表達(dá),產(chǎn)生花青素;在黑暗條件下,COP1存在于細(xì)胞核中,COP1/SPA復(fù)合物使得HY5泛素化,進(jìn)而被降解,從而抑制花青素的合成,并且在cop1突變體中,明顯發(fā)現(xiàn)花青素積累[31-32]。與在可見(jiàn)光下不同,UV-B照射下,COP1是一個(gè)正調(diào)控因子,并且UV-B光信號(hào)受體UVB8由二聚體變成單體,此時(shí)的單體會(huì)與COP1相互作用促進(jìn)HY5的表達(dá),從而增加花青素含量,但是有研究者也發(fā)現(xiàn)在葡萄中卻沒(méi)有這種響應(yīng)機(jī)制[33-35],并推測(cè)可能存在響應(yīng)UV-A的光受體,但目前仍不能確定[35-36]。
糖是作為常見(jiàn)調(diào)節(jié)因子,能夠調(diào)節(jié)一些參與光合作用、糖代謝和花青素合成等的信號(hào)表達(dá),其信號(hào)途徑已經(jīng)在細(xì)菌[37]等微生物中得到研究和應(yīng)用。蔗糖作為外源物質(zhì)可以調(diào)節(jié)葡萄果皮中花青素合成基因表達(dá)[38];擬南芥經(jīng)外源蔗糖、葡萄糖和果糖處理12 h后,花青素苷合成結(jié)構(gòu)基因CHS、CHI、F3H、F3′H、DFR和LDQZ的表達(dá)量均明顯上調(diào)[39]。蔗糖不僅可以調(diào)控結(jié)構(gòu)基因的表達(dá),而且還可以特異性地調(diào)控調(diào)節(jié)基因的表達(dá),但是葡萄糖和果糖對(duì)MYB75/PAP1的表達(dá)無(wú)影響[39]。此外,還發(fā)現(xiàn)蔗糖對(duì)花青素合成結(jié)構(gòu)基因的影響要超過(guò)正調(diào)控因子GL3、TT8和PAP1等,超過(guò)了負(fù)調(diào)控因子MYBL2的調(diào)控能力[40]。
擬南芥中有9種蔗糖轉(zhuǎn)運(yùn)蛋白(Suc transporters,SUCs),光照、溫度和糖等因素會(huì)影響SUCs的表達(dá)[40]。不同種類的糖可以對(duì)SUC1基因的表達(dá)和花青素的積累產(chǎn)生不同的效果,蔗糖和麥芽糖等一些可代謝類雙糖能夠調(diào)節(jié)花青素的形成,而蔗糖受體基因SUC1的表達(dá)主要受單糖的誘導(dǎo)和調(diào)節(jié),如葡萄糖和果糖,甘露糖卻不能產(chǎn)生同樣的效果。蔗糖和麥芽糖等二糖或葡萄糖和果糖的分解產(chǎn)物都能夠激活糖信號(hào)途徑,進(jìn)而調(diào)節(jié)花青素合成,并且花青素合成被蔗糖和麥芽糖的二糖代謝優(yōu)先誘導(dǎo),而葡萄糖和果糖等單糖能有效誘導(dǎo)SUC1表達(dá)[40]。但是蔗糖轉(zhuǎn)運(yùn)蛋白SUC1在植物根中表達(dá)[41],花青素積累則在葉表皮細(xì)胞[40,42],因此在根中表達(dá)的SUC1如何參與葉中花青素合成仍需要進(jìn)一步探索。
4.1生長(zhǎng)素對(duì)花青素合成的調(diào)控
生長(zhǎng)素作為植物生理過(guò)程中重要的激素,能夠調(diào)控植物的器官發(fā)生和形態(tài)建成[43-44]、黃酮類積累[45]等。生物體內(nèi)生長(zhǎng)素主要以天然的吲哚-3-乙酸(Indole-3-acetic acaid,IAA)的形式存在[46]。用IAA處理擬南芥幼苗,發(fā)現(xiàn)花青素合成途徑結(jié)構(gòu)基因CHS、CHI、F3′H的表達(dá)量上調(diào),相關(guān)轉(zhuǎn)錄因子TTG1、PAP1和MYB12的表達(dá)量也增加,說(shuō)明生長(zhǎng)素對(duì)花青素合成具有一定的促進(jìn)作用[45]。
在生長(zhǎng)素信號(hào)途徑中,生長(zhǎng)素/吲哚乙酸蛋白基因家族(AUX/IAAs),是一類轉(zhuǎn)錄抑制因子,能夠被生長(zhǎng)素響應(yīng)因子蛋白家族(ARFs)降解,在此過(guò)程中ARFs作為正調(diào)控因子增強(qiáng)靶基因表達(dá),從而影響植物生長(zhǎng)與發(fā)育[47];運(yùn)輸抑制劑響應(yīng)蛋白1(TIP1)目前發(fā)現(xiàn)的一種真正意義上的生長(zhǎng)素受體,是一個(gè)E3泛素連接酶,能夠降解轉(zhuǎn)錄抑制因子,從而誘導(dǎo)基因表達(dá)[48]。在突變體tip1中,發(fā)現(xiàn)轉(zhuǎn)錄因子TTG1、PAP1和MYB12表達(dá)量減少相當(dāng)明顯,表明TIP1在生長(zhǎng)素影響花青素合成途徑具有重要作用[45]。
4.2細(xì)胞分裂素對(duì)花青素合成的調(diào)控
細(xì)胞分裂素(cytokinin,CK)對(duì)花青素合成的促進(jìn)作用已經(jīng)在很多植物中得到驗(yàn)證,如胡蘿卜(DaucuscarotaL.var.carota)、玫瑰(Rosaceae)和油菜(BrassicacampestrisL.)等[49]。用細(xì)胞分裂素同樣處理長(zhǎng)在MS培養(yǎng)基上的擬南芥幼苗,在黑暗條件下沒(méi)有花青素積累,而在光照條件下可以明顯觀察到有花青素的合成,由此說(shuō)明細(xì)胞分裂素促進(jìn)花青素合成需要光照的存在[50]。
細(xì)胞分裂素信號(hào)途徑參與花青素合成的細(xì)胞分裂素受體有組蛋白激酶(AHK2、AHK3和AHK4)和B型響應(yīng)調(diào)節(jié)因子(ARR1、ARR10和ARR12)[51]。組蛋白激酶是細(xì)胞分裂素信號(hào)途徑正調(diào)控因子[52-54],用糖和細(xì)胞分裂素處理雙重突變體ahk2/3和ahk3/4后明顯發(fā)現(xiàn)花青素積累減少了[51]。B型響應(yīng)調(diào)節(jié)因子(ARRs)能夠激活上游A型響應(yīng)調(diào)節(jié)因子ARR基因表達(dá)[55-56]。在擬南芥中發(fā)現(xiàn)的11種B型響應(yīng)調(diào)節(jié)因子(ARRs),其中有7種ARRs與細(xì)胞分裂素信號(hào)途徑有關(guān)[57]。研究者發(fā)現(xiàn)在單突變體arr1、arr10和arr12,雙突變體arr1/10、arr1/12和arr10/12,三重突變體arr1/10/12中,蔗糖誘導(dǎo)花青素合成途徑中花青素積累較少,此研究表明:細(xì)胞分裂素通過(guò)光電子傳遞信號(hào)途徑轉(zhuǎn)錄激活正調(diào)控因子PAP1、(E)GL3和TT8,抑制負(fù)調(diào)控因子MYBL2轉(zhuǎn)錄水平,從而參與蔗糖誘導(dǎo)花青素積累[51,58]。
4.3脫落酸對(duì)花青素合成的調(diào)控
脫落酸(abscisic acid,ABA)是以異戊二烯為基本單位的倍半萜羧酸。脫落酸噴灑處理葡萄能夠促進(jìn)花青素的合成積累[59-60]。通過(guò)對(duì)擬南芥的研究發(fā)現(xiàn),ABA單獨(dú)處理植株,只影響PAP2和ATT表達(dá);當(dāng)有糖存在時(shí),ABA處理植株發(fā)現(xiàn)大部分與花青素合成相關(guān)基因的表達(dá)都呈現(xiàn)上調(diào)趨勢(shì)包括PAP1,表明ABA促進(jìn)花青素合成可能需要糖的存在[61-62]。也有研究者認(rèn)為ABA對(duì)花青素合成的影響并嚴(yán)格依賴于糖的存在。
在玉米ABA不敏感突變體vp1研究中發(fā)現(xiàn)一個(gè)與PAP1和PAP2功能相近的MYB正調(diào)控轉(zhuǎn)錄因子C1基因不表達(dá),并且該基因啟動(dòng)子活性受ABA調(diào)節(jié),間接證明ABA與花青素合成有關(guān)[63]。ABA信號(hào)與一些延伸因子相關(guān),這些延伸因子的突變體植株,部分與花青素合成相關(guān)基因的表達(dá)呈現(xiàn)下調(diào)趨勢(shì),由于延伸因子是在mRNA翻譯時(shí)促進(jìn)多肽鏈延伸的蛋白質(zhì)因子,因而研究者猜測(cè)其作用機(jī)制可能是直接作用于MYBL2基因轉(zhuǎn)錄延伸[64],進(jìn)而參與調(diào)節(jié)花青素生物合成。但是ABA使得花青素積累究竟是通過(guò)增加ABA含量還是影響ABA信號(hào)轉(zhuǎn)導(dǎo)仍需要進(jìn)一步研究。
4.4赤霉素對(duì)花青素合成的調(diào)控
赤霉素(gibberellin,GA)是一類四環(huán)二萜類化合物,是植物六大激素之一,在植物的胚胎發(fā)育、種子休眠、果實(shí)成熟及逆境脅迫等許多方面存在廣泛的生理效應(yīng),也是花青素合成途徑中負(fù)調(diào)控因子[65]。大多數(shù)GAs都是生物活性物質(zhì)的前體或是失活的代謝物,只有少數(shù)(GA1、GA3、GA4和GA7)具有生物學(xué)活性[66]。
利用缺乏赤霉素應(yīng)答的擬南芥突變植株ga1,發(fā)現(xiàn)該突變體無(wú)法完成催化赤霉素合成途徑中牻牛兒基焦磷酸向古巴焦磷酸轉(zhuǎn)變的合成,直接導(dǎo)致GA前體無(wú)法生成,從而使得具有活性的內(nèi)源赤霉素的含量較低,抑制作用降低,進(jìn)而觸發(fā)了參與花青素合成途徑基因PAP1等基因表達(dá)上調(diào),因此植株花青素含量增加[61]。還發(fā)現(xiàn)GA3能夠抑制花青素合成途徑中結(jié)構(gòu)基因DFR和轉(zhuǎn)錄因子PAP1和PAP2表達(dá)水平[61]。
赤霉素抑制花青素合成依賴于赤霉素信號(hào)途徑中負(fù)調(diào)控因子DELLA蛋白,該蛋白在擬南芥中有5種,即GAI、RGA、RGLA1、RGL2和RGL3[67-68],作用于GA受體,但并不影響植物體內(nèi)赤霉素含量[69]。DELLA位于細(xì)胞核內(nèi),屬于GRAS轉(zhuǎn)錄調(diào)節(jié)因子家族[70],能有效降解是GA發(fā)揮正常生理功能的標(biāo)志,GA結(jié)合其可溶性受體GID1引起GID1構(gòu)象變化,該構(gòu)象下的GID4-GA能夠與DELLAs結(jié)合并形成復(fù)合物,隨后此復(fù)合物結(jié)合到SCF復(fù)合物上,依賴于SCFSLY1E3泛素連接酶,經(jīng)泛素-蛋白酶體途徑降解[71-72]。通過(guò)觀察gai突變體表型發(fā)現(xiàn)突變體植株明顯呈現(xiàn)深綠色,說(shuō)明DELLA在GA抑制花青素合成中發(fā)揮重要作用[73]。
4.5乙烯對(duì)花青素合成的調(diào)控
乙烯對(duì)花青素合成抑制作用已經(jīng)在很多實(shí)驗(yàn)中被證實(shí),例如在黑暗條件下用乙烯處理甘藍(lán),其葉片顏色由紅色變成白色[74-75]。轉(zhuǎn)基因煙草中轉(zhuǎn)入的乙烯受體基因證明其在乙烯抑制花青素合成中有重要作用。在煙草花瓣中過(guò)表達(dá)突變的乙烯受體基因(ETR1H69A)[76],花青素含量會(huì)增加。
在擬南芥的內(nèi)質(zhì)網(wǎng)上發(fā)現(xiàn)能夠感知乙烯信號(hào)的受體,如ETR1、ETR2、ERS1、ERS2和EIN4等,由ETRs和ERSs等編碼的與下游類似于Raf的蛋白激酶CTR1協(xié)同負(fù)調(diào)控乙烯反應(yīng);EIN2及其下游的EIN3/EILs位于CTR1下游,正調(diào)控乙烯反應(yīng)。在突變體etr1-1、ein2-1、ein3和eil1擬南芥植株中花青素含量明顯增加,同時(shí)這些受體在功能上有重疊,如在ein3和eil1雙重突變體中花青素含量顯著增加[58]。因此,乙烯誘導(dǎo)花青素合成途徑的抑制作用可能涉及乙烯三重反應(yīng)[40]。
乙烯抑制花青素積累常常通過(guò)在轉(zhuǎn)錄水平下調(diào)正調(diào)控轉(zhuǎn)錄因子bHLHs(GL3、EGL3和TT8)和MYBs(PAP1和PAP2)以及上調(diào)負(fù)調(diào)控轉(zhuǎn)錄因子MYBL2[58]。當(dāng)有乙烯信號(hào)突變體存在時(shí),抑制乙烯啟動(dòng)MYBL2表達(dá),進(jìn)而無(wú)法形成MYBL2-bHLH-WD40(M(L2)BW)轉(zhuǎn)錄復(fù)合物,或者即使M(L2)BW轉(zhuǎn)錄復(fù)合物能夠形成,還存在高濃度有活性的MYB-bHLH-WD40(MBW)復(fù)合物,在這種情況下MBW復(fù)合物占主導(dǎo)位置,因此花青素含量增加。但是乙烯信號(hào)途徑中關(guān)鍵的轉(zhuǎn)錄因子是否直接調(diào)節(jié)M(L2)BW轉(zhuǎn)錄復(fù)合物仍需要進(jìn)一步研究。
4.6茉莉酸對(duì)花青素合成的調(diào)控
茉莉酸家族(JAs)包括茉莉酸、茉莉酸前體環(huán)戊烷和環(huán)戊烯酮,能夠促進(jìn)花青素積累[61]。他們可以響應(yīng)許多生物和非生物脅迫[77-79]。對(duì)于擬南芥幼苗,僅僅用茉莉酸處理并不能影響花青素生物合成途徑和轉(zhuǎn)錄因子PAP1和PAP2表達(dá)。當(dāng)茉莉酸和糖同時(shí)存在時(shí),茉莉酸能夠增強(qiáng)合成途徑中CHI和其下游基因以及PAP1和PAP2的表達(dá)水平,這種協(xié)同影響常常表現(xiàn)在mRNA水平和相關(guān)的花青素積累上。因此糖的存在是茉莉酸發(fā)揮作用的前提。
研究者通過(guò)對(duì)擬南芥茉莉酸信號(hào)途徑冠菌素不敏感突變體coi1和茉莉酸不敏感突變體jar1的研究發(fā)現(xiàn)[80-81]:擬南芥對(duì)茉莉酸的響應(yīng)需要COI1存在,因此冠菌素不敏感突變體coi1不能表達(dá)經(jīng)茉莉酸誘導(dǎo)的基因[80,82-83]。Kim和Devoto等利用糖存在的情況下用茉莉酸處理擬南芥coi1突變體,結(jié)果顯示并未檢測(cè)到參與花青素合成基因的表達(dá)[59,84-85]。2008年Loreti等選用coi1同源突變體coi1-1植株,用其葉條作為實(shí)驗(yàn)材料,發(fā)現(xiàn)用糖處理與用糖和茉莉酸共同處理的coi1-1植株葉條的DFR基因表達(dá)都被正調(diào)控,僅僅用茉莉酸處理的coi1-1植株葉條只是在光合作用組織中含糖量增加,但是與野生型相比,不論是用糖處理,還是用糖與茉莉酸共同處理的植株葉條相比DFR基因的表達(dá)還是減少,此研究結(jié)果表明,在coi1-1突變體植株中不僅僅茉莉酸幾乎發(fā)揮作用,而且糖對(duì)花青素合成途徑正調(diào)控作用也受到一定程度的影響[61]。綜上所述,COI1是茉莉酸介導(dǎo)的花青素合成途徑所必需的。
研究者發(fā)現(xiàn)了一類JAZ蛋白家族,該蛋白家族是茉莉酸信號(hào)途徑中關(guān)鍵的調(diào)控蛋白[86],是SCFCOI1復(fù)合物的作用底物,是茉莉酸信號(hào)途徑的負(fù)調(diào)控因子[87-88]。通過(guò)蛋白質(zhì)之間相互作用研究發(fā)現(xiàn)JAZs可以直接與MBW復(fù)合物中bHLHs(TT8、GL3和EGL3)和R2R3-MYBs轉(zhuǎn)錄因子(PAP1和GL1)相互作用[89],進(jìn)而影響花青素合成。近期在茉莉酸信號(hào)途徑中發(fā)現(xiàn):COI1在茉莉酸途徑中也具有重要作用,COI1可以招募JAZs到SCFCOI1復(fù)合物上使其泛素化,隨后被蛋白酶體降解,使得JAZs釋放MBW復(fù)合物,從而激活茉莉酸誘導(dǎo)的花青素合成。
注:PAL為苯丙氨酸解氨酶;C4H為肉桂酸經(jīng)化酶;4CL為香豆酰-CoA連接酶;CHS為查爾酮合成酶;CHI為查爾酮異構(gòu)酶;F3H為黃烷酮-3-羥基化酶;F3′H為類黃酮-3′-羥基化酶;F3′5′H為類黃酮-3′, 5′-羥基化酶;DFR為二氫黃酮醇還原酶;ANS為花青素合成酶;UFGT為UDP-葡萄糖類黃酮-3-葡萄糖轉(zhuǎn)移酶;Anthocyanin為花青素;→表示促進(jìn)作用;┴表示抑制作用。
圖1光照、糖和激素調(diào)控花青素合成示意圖
花青素合成受到光照、糖和激素的信號(hào)途徑的調(diào)控如圖1,除此之外也可能與Ca2+信號(hào)途徑有關(guān),但具體的機(jī)制并不清楚。很多研究已經(jīng)表明光照是激素調(diào)節(jié)的花青素合成過(guò)程關(guān)鍵因子,而且糖和激素之間具體的相互作用也被闡明[58]。接下來(lái)可能要著眼于研究在UVR8、糖或激素等其他刺激的影響下,相關(guān)轉(zhuǎn)錄因子轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)節(jié),并且不同激素之間相互作用影響花青素合成也需要考慮。未來(lái)可以通過(guò)在蛋白質(zhì)和基因組水平更深層次明確花青素合成調(diào)節(jié)。
[1] Glover B J, Martin C. Anthocyanins[J]. Current Biology, 2012, 22(5): R147-R150.
[2] Zhang Y, Hu Z, Chu G, et al. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (SolanummelongenaL.)[J]. Journal of Agricultural and Food Chemistry, 2014, 62(13): 2906-2912.
[3] Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiology, 2001, 126(2): 485-493.
[4] Crifò T, Petrone G, Lo Cicero L, et al. Short cold storage enhances the anthocyanin contents and level of transcripts related to their biosynthesis in blood oranges[J]. Journal of Agricultural and Food Chemistry, 2011, 60(1): 476-481.
[5] Yuan Y, Chiu L W, Li L. Transcriptional regulation of anthocyanin biosynthesis in red cabbage[J]. Planta, 2009, 230(6): 1141-1153.
[6] Butelli E, Licciardello C, Zhang Y, et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges[J]. Plant Cell, 2012, 24(3): 1242-1255.
[7] Chiu L W, Zhou X, Burke S, et al. The purple cauliflower arises from activation of aMYBtranscription factor[J]. Plant Physiology, 2010, 154(3): 1470-1480.
[8] Albert N W, Lewis D H, Zhang H, et al. Members of anR2R3-MYBtranscription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning[J]. Plant J, 2011, 65(5): 771-784.
[9] Spelt C, Quattrocchio F, Mol J N, et al. anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes[J]. Plant Cell, 2000, 12(9): 1619-1631.
[10] Batschauer A. Photoreceptors of higher plants[J]. Planta, 1998, 206(4): 479-492.
[11] Nagatani A. Phytochrome: structural basis for its functions[J]. Curr Opin Plant Biol, 2010, 13(5): 565-570.
[12] Chaves I, Pokorny R, Byrdin M, et al. The cryptochromes: blue light photoreceptors in plants and animals[J]. Annu Rev Plant Biol, 2011, 62(1): 335-364.
[13] Rizzini L, Favory J J, Cloix C, et al. Perception of UV-B by theArabidopsisUVR8 protein[J]. Science, 2011, 332(6025): 103-106.
[14] Casal J J. Photoreceptor signaling networks in plant responses to shade[J]. Annu Rev Plant Biol, 2013, 64(1): 403-427.
[15] Heijde M, Ulm R. UV-B photoreceptor-mediated signaling in plants[J]. Trends Plant Sci, 2012, 17(4): 230-237.
[16] Rockwell N C, Su Y-S, Lagarias J C. Phytochome structure and signaling mechanisms[J]. Annu Rev Plant Biol, 2006, 57(57): 837-858.
[17] Khanna R, Huq E, Kikis E A, et al. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors[J]. The Plant Cell, 2004, 16(11): 3033-3044.
[18] Leivar P, Quail P H.PIFs: pivotal components in a cellular signaling hub[J]. Trends Plant Sci, 2011, 16(1): 19-28.
[19] Jang I C, Henriques R, Seo H S, et al. ArabidopsisPHYTOCHROMEINTERACTINGFACTORproteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus[J]. The Plant Cell, 2010, 22(7): 2370-2383.
[20] Li J G, Li G, Wang H Y, et al. Phytochrome signaling mechanisms[J]. Arabidopsis Book, 2004, 3(3): e74.
[21] Zuo Z, Liu H, Liu B, et al. Blue light-dependent interaction ofCRY2 withSPA1 regulatesCOP1 activity and floral initiation inArabidopsis[J]. Curr Biol, 2011, 21(10): 841-847.
[22] Liu H, Yu X, Li K, et al. PhotoexcitedCRY2 interacts withCIB1 to regulate transcription and floral initiation inArabidopsis[J]. Science, 2008, 322(5907): 1535-1539.
[23] Kadomura-Ishikawa Y, Miyawaki K, Noji S, et al. Phototropin 2 is involved in blue light-induced anthocyanin accumulation inFragariaxananassafruits[J]. J Plant Res, 2013, 126(6): 847-857.
[24] Zoratti L, Karppinen K, Escobar A L, et al. Light-controlled flavonoid biosynthesis in fruits[J]. Frontiers in Plant Science, 2014, 5(5): 534.
[25] Lee J, He K, Stolc V, et al. Analysis of transcription factorHY5 genomic binding sites revealed its hierarchical role in light regulation of development[J]. The Plant Cell, 2007, 19(3): 731-749.
[26] Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs[J]. Plant Sci, 2011, 181(3): 219-229.
[27] Czemmel S, Heppel S C, Bogs J.R2R3MYBtranscription factors: key regulators of the flavonoid biosynthetic pathway in grapevine[J]. Protoplasma, 2012, 249(2): 109-118.
[28] Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits[J]. Trends Plant Sci, 2013, 18(9): 477-483.
[29] Stracke R, Favory J J, Gruber H, et al. TheArabidopsisbZIPtranscription factorHY5 regulates expression of thePFG1/MYB12 gene in response to light and ultraviolet-B radiation[J]. Plant, Cell Environ, 2010, 33(1): 88-103.
[30] Maier A, Schrader A, Kokkelink L, et al. Light and the E3 ubiquitin ligaseCOP1/SPAcontrol the protein stability of theMYBtranscription factorsPAP1 andPAP2 involved in anthocyanin accumulation in Arabidopsis[J]. The Plant Journal, 2013, 74(4): 638-651.
[31] Vierstra R D. The ubiquitin-26S proteasome system at the nexus of plant biology[J]. Nature Reviews Molecular Cell Biology, 2009, 10(6): 385-397.
[32] Lau O S, Deng X W. The photomorphogenic repressorsCOP1 andDET1: 20 years later[J]. Trends Plant Sci, 2012, 17(10): 584-593.
[33] Liu L, Gregan S, Winefield C, et al. From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon blanc grape berry[J]. Plant, Cell Environ, 2015, 38(5): 905-919.
[34] Peng T, Saito T, Honda C, et al. Screening of UV-B-induced genes from apple peels bySSH: possible involvement ofMdCOP1-mediated signaling cascade genes in anthocyanin accumulation[J]. Physiol Plant, 2013, 148(3): 432-444.
[35] Guo J, Wang M H. Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (SolanumlycopersicumL.)[J]. Plant growth regulation, 2010, 62(1): 1-8.
[36] Wang Y, Zhou B, Sun M, et al. UV-A light induces anthocyanin biosynthesis in a manner distinct from synergistic blue+ UV-B light and UV-A/blue light responses in different parts of the hypocotyls in turnip seedlings[J]. Plant and Cell Physiology, 2012, 53(8): 1470-1480.
[37] Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms[J]. Annu Rev Plant Biol, 2006, 57(1): 675-709.
[38] Boss P K, Davies C, Robinson S P. Expression of anthocyanin biosynthesis pathway genes in red and white grapes[J]. Plant Mol Biol, 1996, 32(3): 565-569.
[39] Solfanelli C, Poggi A, Loreti E, et al. Sucrose-specific induction of the anthocyanin biosynthetic pathway inArabidopsis[J]. Plant Physiology, 2006, 140(2): 637-646.
[40] Jeong S W, Das P K, Jeoung S C, et al. Ethylene suppression of sugar-induced anthocyanin pigmentation inArabidopsis[J]. Plant Physiology, 2010,154(3): 1514-1531.
[41] Sivitz A B, Reinders A, Ward J M. Arabidopsis sucrose transporterAtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation[J]. Plant Physiology, 2008, 147(1): 92-100.
[42] Kubo H, Peeters A J, Aarts M G, et al.ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis[J]. Plant Cell, 1999, 11(7): 1217-1226.
[43] Bohn-Courseau I. Auxin: a major regulator of organogenesis[J]. C R Biol, 2010, 333(4): 290-296.
[44] Reinhardt D. Vascular patterning: more than just auxin?[J]. Curr Biol, 2003, 13(12): R485-R487.
[45] Lewis D R, Ramirez M V, Miller N D, et al. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks[J]. Plant Physiology, 2011, 156(1): 144-164.
[46] Woodward A W, Bartel B. Auxin: regulation, action, and interaction[J]. Ann Bot, 2005, 95(5): 707-735.
[47] Shin R, Burch A Y, Huppert K A, et al. TheArabidopsistranscription factorMYB77 modulates auxin signal transduction[J]. The Plant Cell, 2007, 19(8): 2440-2453.
[48] Kepinski S, Leyser O. TheArabidopsisF-box proteinTIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 446-451.
[49] Nakamura N, Nakamae H, Maekawa S. Effects of light and kinetin on anthocyanin accumulation in the petals ofRosahybrida,Hortcv.Ehigasa[J]. Zeitschrift für Pflanzenphysiologie, 1980, 98(3): 263-270.
[50] Wade H K, Sohal A K, Jenkins G I.ArabidopsisICX1 is a negative regulator of several pathways regulating flavonoid biosynthesis genes[J]. Plant Physiology, 2003, 131(2): 707-715.
[51] Das P K, Shin D H, Choi S B, et al. Cytokinins enhance sugar-induced anthocyanin biosynthesis inArabidopsis[J]. Molecules and cells, 2012, 34(1): 93-101.
[52] Nishimura C, Ohashi Y, Sato S, et al. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth inArabidopsis[J]. Plant Cell, 2004, 16(6): 1365-1377.
[53] Riefler M, Novak O, Strnad M, et al.Arabidopsiscytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J]. Plant Cell, 2006, 18(1): 40-54.
[54] Tran L S P, Urao T, Qin F, et al. Functional analysis ofAHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress inArabidopsis[J]. Proceedings of the National Academy of Sciences, 2007, 104(51): 20623-20628.
[55] Argyros R D, Mathews D E, Chiang Y H, et al. Type B response regulators ofArabidopsisplay key roles in cytokinin signaling and plant development[J]. Plant Cell, 2008, 20(8): 2102-2118.
[56] Ishida K, Yamashino T, Yokoyama A, et al. Three type-B response regulators,ARR1,ARR10 andARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle ofArabidopsisthaliana[J]. Plant and Cell Physiology, 2008, 49(1): 47-57.
[57] Mason M G, Mathews D E, Argyros D A, et al. Multiple type-B response regulators mediate cytokinin signal transduction inArabidopsis[J]. Plant Cell, 2005, 17(11): 3007-3018.
[58] Das P K, Shin D H, Choi S B, et al. Sugar-hormone cross-talk in anthocyanin biosynthesis[J]. Molecules and cells, 2012, 34(6): 501-507.
[59] Kim J S, Lee B H, Kim S H, et al. Responses to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn (ZeamaysL.) leaf[J]. Journal of Plant Biology, 2006, 49(1): 16-25.
[60] Mori K, Sato H, Goto-Yamamoto N, et al. Effects of abscisic acid treatment and night temperatures on anthocyanin composition in Pinot noir grapes[J]. Progress in Neuro-Psychopharmacology and Biology, 2005, 29(2): 351-353.
[61] Loreti E, Povero G, Novi G, et al. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes inArabidopsis[J]. New Phytol, 2008, 179(4): 1004-1016.
[62] Tonelli C, Cominelli E, Allegra D, et al. Plant tolerance to drought and salinity: modulation of transcription factors[C]//Proceedings of the 18th international conference onArabidopsisresearch. 2007.
[63] McCarty D R, Carson C B, Stinard P S, et al. Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize[J]. Plant Cell, 1989, 1(5): 523-532.
[64] Zhou G, Qi J, Ren N, et al. SilencingOsHI-LOXmakes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder[J]. Plant J, 2009, 60(4): 638-648.
[65] Yamaguchi S. Gibberellin metabolism and its regulation[J]. Annu Rev Plant Biol, 2008, 59: 225-251.
[66] Peter H, Stephen G T. Gibberellin biosynthesis and its regulation[J]. Biochem J, 2012, 444(1): 11-25.
[67] Jiang C, Fu X. GA action: turning on de-DELLArepressing signaling[J]. Curr Opin Plant Biol, 2007, 10(5): 461-465.
[68] Wild M, Davière J-M, Cheminant S, et al. TheArabidopsisDELLARGA-LIKE3 is a direct target ofMYC2 and modulates jasmonate signaling responses[J]. The Plant Cell, 2012, 24(8): 3307-3319.
[69] Davière J M, Achard P. Gibberellin signaling in plants[J]. Development, 2013, 140(6): 1147-1151.
[70] Bolle C. The role ofGRASproteins in plant signal transduction and development[J]. Planta, 2004, 218(5): 683-692.
[71] Sun T P, Gubler F. Molecular mechanism of gibberellin signaling in plants[J]. Annu Rev Plant Biol, 2004, 55: 197-223.
[72] Ariizumi T, Lawrence P K, Steber C M. The role of two F-box proteins,SLEEPY1 andSNEEZY, in Arabidopsis gibberellin signaling[J]. Plant Physiology, 2011, 155(2): 765-775.
[73] Jiang C, Gao X, Liao L, et al. Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis[J]. Plant Physiology, 2007, 145(4): 1460-1470.
[74] Craker L, Wetherbee P J. Ethylene, light, and anthocyanin synthesis[J]. Plant physiology, 1973, 51(3): 436-438.
[75] Kang B G, Burg S P. Role of ethylene in phytochrome-induced anthocyanin synthesis[J]. Planta, 1973, 110(3): 227-235.
[76] Takada K, Ishimaru K, Minamisawa K, et al. Expression of a mutated melon ethylene receptor geneCm-ETR1/H69Aaffects stamen development inNicotianatabacum[J]. Plant science, 2005, 169(5): 935-942.
[77] Balbi V, Devoto A. Jasmonate signalling network inArabidopsisthaliana: crucial regulatory nodes and new physiological scenarios[J]. New Phytol, 2008, 177(2): 301-318.
[79] Turner J G, Ellis C, Devoto A. The jasmonate signal pathway[J]. Plant Cell, 2002, 14(suppl 1): S153-S164.
[80] Feys B J, Benedetti C E, Penfold C N, et al.Arabidopsismutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen[J]. Plant Cell, 1994, 6(5): 751-759.
[81] Staswick P E, Tiryaki I, Rowe M L. Jasmonate response locusJAR1 and several relatedArabidopsisgenes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation[J]. The Plant Cell, 2002, 14(6): 1405-1415.
[82] Benedetti C E, Xie D, Turner J G.COI1-dependent expression of an Arabidopsis vegetative storage protein in flowers and siliques and in response to coronatine or methyl jasmonate[J]. Plant Physiology, 1995, 109(2): 567-572.
[83] Ellis C, Turner J G. A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways inArabidopsisthalianaseeds and young seedlings[J]. Planta, 2002, 215(4): 549-556.
[84] Chen Q F, Dai L Y, Xiao S, et al. TheCOI1 andDFRgenes are essential for regulation of jasmonate-induced anthocyanin accumulation inArabidopsis[J]. Journal of Integrative Plant Biology, 2007, 49(9): 1370-1377.
[85] Devoto A, Ellis C, Magusin A, et al. Expression profiling revealsCOI1 to be a key regulator of genes involved in wound-and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions[J]. Plant Mol Biol, 2005, 58(4): 497-513.
[86] Ban Y, Honda C, Hatsuyama Y, et al. Isolation and functional analysis of aMYBtranscription factor gene that is a key regulator for the development of red coloration in apple skin[J]. Plant and cell physiology, 2007, 48(7): 958-970.
[87] Xie D X, Feys B F, James S, et al.COI1: anArabidopsisgene required for jasmonate-regulated defense and fertility[J]. Science, 1998, 280(5366): 1091-1114.
[88] Xu L, Liu F, Lechner E, et al. TheSCFCOI1 ubiquitin-ligase complexes are required for jasmonate response inArabidopsis[J]. Plant Cell, 2002, 14(8): 1919-1935.
[89] Qi T, Song S, Ren Q, et al. The Jasmonate-ZIM-domain proteins interact with theWD-Repeat/bHLH/MYBcomplexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation inArabidopsisthaliana[J]. Plant Cell, 2011, 23(5): 1795-1814.
(責(zé)任編輯:曾小軍)
Summary of Regulation of Anthocyanin Synthesis by Light, Sugar and Hormone
WANG Hai-zhu1,2, XU Qi-jiang1,2, YAN Hai-fang2*
(1. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;2. College of Life Sciences, Northeast Forestry University, Harbin 150040, China)
Anthocyanin is a kind of ubiquitous flavonoids, and it exists in the vacuoles of epidermal cells of leaves, flowers, fruits and seeds of plants. Anthocyanin synthesis is not only regulated by structural genes and transcription factors, but also influenced by light, temperature, sugar, hormone, pH-value, and other factors. In this paper, the research progresses in the effects of light, sugar and hormone on anthocyanin biosynthesis pathway were reviewed.
Sugar; Light; Hormone; Anthocyanin synthesis
2016-03-11
中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(DL12CA10、2572014EA03-01);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2572014EA03);
王海竹(1991─),女,遼寧大連人,碩士研究生,研究方向:植物發(fā)育生物學(xué)和分子生物學(xué)。*通訊作者:閆海芳。
Q946.8
A
1001-8581(2016)09-0035-07
林木遺傳育種國(guó)家重點(diǎn)實(shí)驗(yàn)室創(chuàng)新項(xiàng)目(2013A06、2013B010);黑龍江省博士后科研啟動(dòng)金(LBH-Q14011)。
江西農(nóng)業(yè)學(xué)報(bào)2016年9期