• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Calculation of tip vortex cavitation flows around three-dimensional hydrofoils and propellers using a nonlinear k -ε turbulence model*

    2016-10-14 12:23:20ZhihuiLIU劉志輝BenlongWANG王本龍XiaoxingPENG彭曉星DengchengLIU劉登成

    Zhi-hui LIU (劉志輝),Ben-long WANG (王本龍),Xiao-xing PENG (彭曉星),Deng-cheng LIU (劉登成)

    1.Department of Engineering Mechanics and Key Laboratory of Hydrodynamics of Ministry of Education,Shanghai Jiao Tong University,Shanghai 200240,China,E-mail:lzh119160@163.com

    2.China Ship Scientific Research Center,Wuxi 214082,China

    Calculation of tip vortex cavitation flows around three-dimensional hydrofoils and propellers using a nonlinear k -ε turbulence model*

    Zhi-hui LIU (劉志輝)1,Ben-long WANG (王本龍)1,Xiao-xing PENG (彭曉星)2,Deng-cheng LIU (劉登成)2

    1.Department of Engineering Mechanics and Key Laboratory of Hydrodynamics of Ministry of Education,Shanghai Jiao Tong University,Shanghai 200240,China,E-mail:lzh119160@163.com

    2.China Ship Scientific Research Center,Wuxi 214082,China

    Simulations of tip vortex wetted flows and cavitating flows are carried out by using a RANS model.Two types of turbulence models,with and without the Boussinesq turbulent-viscosity hypothesis,are adopted in comparing with experimental results regarding the vorticity,the strain rate and the Reynolds shear stress distributions in the vortex region.The numerical results imply that the spatial phase shift between the mean strain rate and the Reynolds stresses can be accurately modeled by the nonlinear k-ε turbulence model,the tip vortex cavitation region can only be predicted using the nonlinear k-ε turbulence model.The mechanism of the over-dissipation due to the turbulence model is analyzed in terms of the turbulence production,which is one of the dominant source terms in the transport equations of energy.

    tip vortex,tip vortex cavitation,Boussinesq turbulence viscosity model,nonlinear turbulence model,Open FOAM

    Introduction

    Tip vortex flows are found in various situations,including those around air foils,helicopter blades,wind turbines,hydrofoils and marine propellers.In the marine engineering,the tip vortex flows also accompany the tip vortex cavitation due to the large tangential velocity and pressure drops.The tip vortex cavitation results in vibrations and cavitation erosions of propellers and rudders,particularly for high-speed ships.The experimentation has been the primary tool for studying the formation and the flow characteristics of the tip vortex cavitation of hydrofoils and propellers over a long time[1].Measurements of the tip vortex flows are usually difficult and time-consuming.Dueto the interface between the liquid and the vapor phases,detailed optical observations of the cavitating flow field inside the vortex region are very difficult,using advanced computational fluid dynamics to accurately predict the tip vortex flows is not simple but is possible.The most challenging task is to properly simulate the tip vortex cavitation.

    Although the detached eddy simulations and the large eddy simulation have been successfully applied for cavitating flows[2,3],the Reynolds averaged Navier-Stokes equations remain the primary CFD solver used in practical applications due to their low computational cost.However,the widely used two-equation turbulence models perform poorly for highly rotational flows.The intrinsic assumption of the Boussinesq turbulent-viscosity hypotheses,which states that the shear stress is locally determined by the mean strain rate,has no general validity[4].

    Chow et al.[5]measured the distribution of the strain rate and the Reynolds shear stresses in the tip vortex region.It is found that the four-leaf clover pattern of these two contours is not aligned spatially,indicating that the flow is not isotropic.We denote this type of rotation as a spatial phase shift in the present work.Similar experimental results for flows atdifferent angles of attack and Reynolds numbers were obtained recently by Giuni[6].The Boussinesq turbulent-viscosity hypothesis assumes that the Reynolds shear stresses depend linearly on the shear strains.These detailed experimental data imply that the turbulence models based on the Boussinesq turbulent-viscosity hypothesis are not capable of describing the vortex evolution in the near wake of hydrofoils and propellers.Churchfield and Blaisdell[7]explored several turbulence models and corrections for system rotation and streamline curvature,including a one-equation model,two-equation models and a shear stress transport model.It is found that none of these turbulence models can accurately capture the spatial lag between the Reynolds stress components and the corresponding strain rate components within the vortex.

    Using two-equation turbulence models under the Boussinesq hypothesis,the sheet cavitations on the blade and the hydrodynamic loading can be accurately predicted,as reported by Liu et al.[8]and Zhu and Fang[9]using an RNG k-εmodel and by Yang et al.[10]using thek-ωmodel.However,these models could not correctly capture the cavitating tip vortex.On the other hand,an explicit algebraic Reynolds stress model was successfully used to simulate the tip vortex cavitation flow around an elliptical hydrofoil[11].Good agreement with experimental results was obtained for the desinence cavitation number and the cavitating tip vortex.

    To correctly predict the vortex cavitating flows,the performance of the turbulent models without the Boussinesq hypothesis is studied in this paper.The standard k-εmodel and the nonlinear k-εturbulence models are compared with experimental data.Then the tip vortex cavitating flows near a propeller blade are investigated.

    1.Numerical models

    1.1 Governing flow equations

    To simulate the cavitating flow around airfoils or propellers,the assumption of a homogeneous mixed fluid of water and vapor is adopted,the liquid and vapor phases are assumed to be fully mixed and share the same velocity and pressure in the flow field.The turbulent viscous flows are solved using the Reynolds averaged Navier-Stokes equations.Specifically,there are two regions in the computational domain:the internal region and the external region.In the internal region,a rotating reference frame is employed to simulate the flows around the propeller,where the RANS equations are:

    In the external region,the typical RANS equations in static coordinates are solved as

    where xiand tare the spatial coordinates and the time,respectively,pis the pressure,andandare the Reynolds averaged velocities.The superscripts of I and R represent the absolute and relative velocity components in the rotating frame,respectively.The relationship betweenandisis the angular velocity of the rotating frame andriis the rotating radius.ρmand μmare the average density and the molecule viscous coefficient of the water and vapor mixture,respectively,αland αvare the volume fractions of the liquid phase and the vapor phase in each computational cells,respectively,τi jis the Reynolds stress due to the fluctuating velocity field.To close the flow equations,turbulence models are required to calculate the Reynolds stress τij.

    1.2 Standard k-ε model

    The Boussinesq turbulent-viscosity hypothesis has been used successfully in many turbulence flows.One type of closure model is the standard k-εturbulence model,which will be examined first.Under the Boussinesq assumption,the deviatoric Reynolds stress part (or Reynolds shear stress)is linearly proportional to the mean rate of strain:

    where μtis the turbulent viscosity (i.e.,the eddy viscosity),δijis the Kronecker delta,andkis the turbulent kinetic energy.The turbulent viscosity can be calculated asμtin the standard k-εturbulence model[16]with Cμ=0.09 and a turbulent kinetic dissipation rate expressed as

    1.3 Nonlinear k-εmodel

    The Boussinesq turbulent-viscosity hypothesis was proposed initially for pure shear flows.As a result,the orientations of the strain rate tensor and the Reynolds stress tensor are assumed to coincide.However,this type of linear models fail when the flow stream is curved or strongly rotated[12].Experimental observations show that the strain rate and the Reynolds stress are not aligned in their tip vortex region[5,6].Thus,a nonlinear k-εmodel is employed in the present study.Note that the nonlineark-εmodel is not a simple extension of the standardk-εmodel.Essentially,the Boussinesq turbulent-viscosity hypothesis is discarded in the nonlineark-εmodel.The nonlinear relationship between the Reynolds shear stress and the strain rate satisfies the non-isotropic constitutive relation by summation of the strain rate tensor and the rotation rate tensor[4].

    Although the theoretical foundation of the nonlinear k-εmodel is significantly different from that of the standardk-εmodel,the numerical implementation is straightforward by extension of the standard k-εmodel.The relationship between the shear stress and the strain rate is

    where

    In this turbulence model,the rotation rate is also included in the constitutive relationship.The nonlinear k-εmodel is a high-Reynolds-number model with wall functions,denoted as Nonlinear KEShih in Open FOAM,which is also known as the realizable Reynolds stress algebraic equation model.The rotational effect of the mean flow is described byCd.

    1.4 Cavitation model

    The phase transition strongly depends on the saturation pressure of the water vapor and other factors,pv=2300 Pais assumed in the present work.To simulate the phase transition between the liquid and vapor phases,a cavitation model is needed.The transport equation model has been widely used in recent numerical studies of cavitating flows.Examples of such models were given by Schnerr and Sauer[13],Singhal et al.[14]and Zawart et al.[15].These types of cavitation models have been successfully used in simulations of various unsteady cavitating flows.The transport equation of Schnerr and Sauer is used in the present work.

    Fig.1 Illustration of mesh in the computational domain and on the surface of a hydrofoil

    Fig.2 Iso-surface with Q =103,at the same mesh resolution

    Fig.3 Distributions of dimensionless vortex contours at different locations

    2.Numerical method and implementations

    The numerical models detailed in the previous section are solved by using a finite volume method based on the OpenFOAM package.The PISO scheme is used to solve for the velocity/pressure coupling between the momentum and continuity equations.A second-order upwind scheme is used for the spatial discretization in the momentum and transport equations forkandε.The QUICK scheme is used in the advection of the volume fraction function.The viscous terms are solved using a second-order central difference scheme.

    Four types of boundaries are used:(1) the upstream inlet boundary condition,where the velocity is specified and the values of the VOF function are set to αv=0,(2) the outlet boundary condition or the downstream far field condition,where the pressure is prescribed according the cavitation number and the normal gradient of the velocity and other scalar functions are set to zero,(3) the no slip boundary condition at a solid surface (e.g.,on airfoils,propeller blades),where the velocity components are all set to zero on the wall surface,and the normal gradient of the scalar function (e.g.,the pressure or the VOF function) is set to zero,(4) the symmetry conditions,where no material flux across the symmetry boundary,and thus the gradient of the normal velocity and the normal gradient of the scalar functions (e.g.,the pressure or the density) are set to zero.

    The boundary conditions forkand ε are specified at the inlet:,which are also given as the initial conditions in the computational domain.U is the incoming velocity,I=0.05 is the turbulence intensity,and l is the characteristic length,or the chord length for hydrofoils and the diameter for propellers.

    3.Tip vortex flows of a three dimensional hydrofoil

    Although the elliptical foils or propellers are common underwater structures,the tip vortices around a truncated plane airfoil can provide significant information without the interference of other complex flows.To study the details of the turbulent flows,we focus on the vorticity,the strain rate and the Reynolds stress distributions instead of the integration quantities,such as the hydrodynamic loads,in the present work.

    Fig.4 Comparison of spatial distribution of negative strain rate and deviatoric Reynolds stress between experiment results and numerical simulations:NACA0015,attack angle α=10o,Re=4.6× 106,x=1.452C .(XV,YV)=(0,0)is the center of the vortex

    3.1 Structure of tip vortex

    First,we study the tip vortices around a rectangular,square-tipped NACA0015 hydrofoil,which is the most simple tip vortex flow and can reflect the flow structure in a straightforward way.The three-dimensional flow structures of a tip vortex in the near wake of a rectangular,square-tipped NACA0015 airfoil were measured using a seven-hole pressure probe atRe=2.01× 105[16].The ratio of the span to the chord length is 1.5.In this subsection,we compare the numerical results with experimental data for the vortex strength and structure in the near wake region.The mesh convergence test is conducted for the drag and lift6force.The final mesh includes approximately 1.2× 10 computational cells,as shown in Fig.1.The local adaptive mesh refinement is applied in the tip region.

    At the same mesh resolution,the computational results are shown in Fig.2 for a value of Q,which identifies the vortex structures in the turbulence flow.The range of the is o-surface of Q extends much more farther in the nonlinear k-ε turbulence model than in the standard k-εmodel.The tertiary vortex could be captured in the simulation with the nonlinear k-ε turbulence model.

    Figure 3 shows the representative normalized streamwise vorticity contour of the tip vortex,i.e.,?11C/2U∞,at different locations of x=0.5C,0.9C and1.5C ,in which U∞is the streamwise velocity,?11is the strength of the rotation rate,and Cis the chord length.The planes x =0and x=Care the sides cutting the leading edge and the trailing edge of the hydrofoil.Three vortex structures are well captured by the nonlineark-εturbulence model at the locations around the foil (i.e.,0.5C≤x≤0.9C).During the evolution of the three vortexes further downstream,as shown in Figs.2 and 3,a single vortex is formed by the convergence of the other two at x= 1.5C.However,only a primary vortex and a secondary vortex can be resolved by the standard k-εturbulence model.

    3.2 Spatial distribution of strain rate and Reynolds stress

    The measurements of the tip vortex flow at various attach angles (4o-12o)and Reynolds numbers (5× 105-4.6× 106) were conducted[5,6].Four-lobe patterns were found for both the strain rate and the Reynolds stress in these experimental results.All experimental results show that there is a spatial phase shift of the four-lobe pattern between the strain rate and the Reynolds stress,as shown in Fig.4(a):a phase shift ofπ/4can be observed between the strain rates εxy,εyzand the corresponding components of the Reynolds stress,and a phase shift ofπ/2can also be observed between the strain rateεxzand the Reynolds stress

    For a rounded wingtip NACA0012 hydrofoil,the numerical simulation is conducted to study the spatial distribution of the strains and the Reynolds stresses.The Reynolds number is Re=4.6× 106,and the angle of attack is α=10o.The computational mesh is similar to that in Fig.1 except the rounded wingtip geometry is used.The numb6er of the total mesh cells is approximately 4.5×10 due to the high Reynolds number.

    If the eddy viscosity remains constant in the core region of the vortex,this type of phase shift indicates that the linear relationship between the strain rate and the Reynolds stress does not hold.The Boussinesq turbulent-viscosity hypothesis in Eq.(5) is not suitable for the tip vortex turbulence flow[17].In fact,the Boussinesq turbulent-viscosity hypothesis is based on the pure shear turbulence flows,thus,the Reynolds stress depends only on the strain rate Sij.For the tip vortex flow,the contribution of the rotation rate?ijis significant but absent in Eq.(5).These experimental observations show why non-Boussinesq turbulence models have to be used to describe the tip vortex flows.

    The numerical results of two different turbulence models are given in Figs.4(b) and 4(c).The numerical results of the standard k-εmodel shows that the distributions of the strain rate and the Reynolds stress are in the same four-lobe pattern,which is a consequence of the linear relationship between the strain rate and the Reynolds stress under the Boussinesq turbulent-viscosity hypothesis.On the other hand,the numerical results of the nonlinear k-εmodel show a significant improvement in the spatial distributions of the Reynolds stress,particularly in the components of

    3.3 Turbulence production and analysis of energy dissipation

    Numerical results of both the vortex structure and the distribution of the stain rate and the Reynolds stress verify the advantages of the nonlinear k-ε model in the numerical simulations of the tip vortex flows.The advantages of this model can be explained from the perspective of an energy budget.Defining the kinetic energy of the mean flowto be E=UiUi/2 and the turbulent kinetic energy to bek ,the transport equations of these two types of energy are:

    whereD/Dt is the total derivative,is the viscous dissipation rate of the mean flow stain rate due to the molecule viscosity,ρmεis the turbulent kineticdissipation rate,related with the strain rate of the fluctuate velocity field,Tand T′are the convections of the Reynolds stress,the pressure stress and the molecule viscosity by the mean and fluctuated velocities,respectively[4],and T′is modeled by (μm+μt/ σk)?k/?xjin the standard k-ε model.

    Recalling the definition of the production P=due to the fact that the turbulent eddy viscosity is much larger than the molecular viscosity μt?μm.Therefore,the primary source in the right hand side of Eq.(8) is contributed by the production term P.The production Pextracts the total kinetic energy from the mean flow and transfers it to the turbulent kinetic energy.The production Pthus serves as a sink term in Eq.(8) and a source term in Eq.(9).The correct prediction of the magnitude of the production Pinfluences the energy transfer between the mean and fluctuating flows.Finally,the amount of the transfer energy is dissipated at the turbulent kinetic dissipation rate ρmε.For homogeneous and steady turbulent flows,we haveP≈ε.Therefore,the turbulent dissipation may be estimated by the magnitude of the productionP.IfP is over-estimated,the strength of the vortex will be under-estimated.

    Fig.5 Effects of phase shift on the production term.Positive value is shown in solid lines and negative value in dashed lines

    To illustrate the effects of the phase shift on the production term,a typical four-lobe distribution of the strain rate and the Reynolds stress components is plotted at a prescribed circle around the vortex center in Fig.5.For turbulence models based on the Boussinesq hypothesis,the strain rate and the Reynolds stress have the same sign along the circle and thus a maximum production termis obtained.In the nonlinear k-εmodel,there is a phase shift between the strain rate and the Reynolds stress,as observed experimentally[9,10].Thus the integration ofover the cross-section will be partially canceled.Therefore,the nonlinear k-ε model must have less production (i.e.,turbulence dissipation) than the standard k-ε model.

    Fig.6 Distribution of production term at x=1.452C

    The numerical integration of Pat x=1.452C can now be compared between the two turbulence models.Expanding the production term yields

    The magnitude of the production integral Et=predicted by the nonlinear k-ε model is 2.83 at x=1.452C,much smaller than that of the standard k-ε model,which is 4.08,as shown in Fig.6.This conclusion can be easily obtained by a direct comparison of the distribution of the strain rate and the Reynolds stress shown in Fig.4.For the numerical results of the standard k-ε model,there is no phase shift of the four-lobe pattern; the productions of the strain rateandthus reach the maximum valuesin each lobe.Once there is a phase shift,as shown in the experimental results and the numerical results of the nonlinear k-ε model,the integration will be partially cancelled,while the production calculated under the Boussinesq turbulent-viscosity hypothesis is at its maximum,i.e.,the linear turbulence model introduces a significant turbulent dissipation.To capture the spatial phase shift can be taken as a pre-requirement of the success of the tip vortex simulation.

    4.Tip vortex and tip vortex cavitation of propellers

    The numerical simulations of the tip vortex flows around a three-dimensional hydrofoil verify the present flow solver.In this study,the INSEAN E779A four-blade propeller with a diameter D=0.227 m,the nominal pitch ratio 1.1,the hub diameter 0.0453 m is examined.The incoming velocity isU∞=5.808 m/s,and the advance ratioJ=U/ nD=0.71.The cavitation number is σn=(P-Pv)/2(n D)2=1.763in the following analysis.The full structural meshes are used in these simulations.The total number of computational cells is approximately 4.5×106after the Oct-tree refinement in the wake region of the propeller tip,the selected meshes are shown in Fig.7.

    Fig.7 Local refinement of meshes on surface of one propeller blade

    Fig.8 Comparison of the vapor volume fraction with αv=0.1

    At the same mesh resolution,the regions of the sheet cavitation and the tip vortex cavitation are shown in Fig.8 for the two turbulence models.The cavitation regions are compared with the experimental results by Salvatore et al.[18].The areas of the sheet cavitation predicted by the numerical simulations are qualitatively similar on the surface of the blade,and both agree with the experimental results.The primary differences lie in the tip vortex cavitation,which can be predicted when the nonlinear k-ε model is employed.The tip vortex cavitation also depends on the mesh resolution in the vortex region.To capture the tip vortex cavitation zone better,the mesh refinement in the near wake is necessary.

    Fig.9 Iso-surface of Q =104at the same mesh resolution

    Fig.10 Definition of each plane

    The iso-surface of the second invariance Qis shown in Fig.9 for wetted and cavitating flows.The tip vortex region is shown to be less dissipated by the turbulence as predicted by the nonlinear k-εmodel.When the tip vortex is less dissipated,the strength of the vortex can stretch over a longer distance,allowing the tip vortex cavitation region to be captured.

    Fig.11 Distributions of dimensionless vorticity

    To produce a more in-depth picture of the flow field,we define four planes,as shown in Fig.10.The plane of θ=0ocrosses the x-coordinate and the radius across the tip of one blade.The angle between the neighboring two planes is10o.We compare the dimensionless vorticity defined asand R=D /2.The distributions ofin each plane(x/ R,r/ R)are given in Fig.11 for wetted flow and cavitating flows.

    For both wetted and cavitating flows,the magnitude of the vorticitypredicted by the nonlinear k-ε modelis nearly twice of that predicted by the standard k-ε model.The vortex center detaches from the blade surface,as shown in the plane with θ=0owhen the nonlinear k-ε model is used.Another difference is that the diameter of the vortex tube is small as predicted by the nonlinear k-ε model,which implies that the total circulation is kept nearlyconstant.

    For cavitating flows,the numerical results obtained with the nonlinear k-εmodel show a multivortex structure in the wake region (e.g.,θ=10oand θ=20o) in contrast to the single vortex structure shown in wetted flows.Due to the generation of cavitation,there is a slight difference in the vortex strength between cavitating and the wetted flows.

    Similar relationships between the strain rate and the Reynolds stress can be found in both wetted and cavitating flows in the propeller's tip vortex region.Significant differences of the tip vortex length,as shown in Fig.8,and the iso-surface of Q ,as shown in Fig.9,are related with the correct prediction of the vortex strength (i.e.,turbulent dissipation ε).Due to the phase shift of the spatial distribution of the strain rate and the Reynolds stress,the accuracy of the eddy viscous dissipation can be improved by using the nonlinear k-ε model.

    For the turbulent flows around the propeller's blades,the vortex structure becomes more complex.However,the spatial distributions of the strain and the Reynolds stress show the same pattern in the numerical results with the standard k-ε model.When the nonlinear k-ε model is used,the spatial phase shift is predicted accurately.

    The integration of the production term in the plane of θ=20ois shown in Table 1.For the propeller studied,the production is much smaller when predicted by the nonlinear k-ε model than when predicted by the standard k-ε model for both wetted and cavitating flows.

    Table 1 Integral production term Et=∫∫Pds,θ=20o

    The mesh resolution is also shown to affect the vortex wake,using a fine mesh can resolve tip vortices further downstream.Therefore,an adaptive mesh refinement in the vortex wake region is important to capture the detailed flow field away from the propeller.

    5.Conclusions and remarks

    Details of the turbulent flow fields in the tip vortex regions of three-dimensional hydrofoils and propellers are obtained by using two common turbulence models:the standard k-ε model and the nonlinear k-εmodel.The most fundamental difference between these two turbulence models is with or without the Boussinesq turbulent-viscosity hypothesis.In the tip vortex region,in both wetted and cavitating flows,a spatial phase shift of distribution can be reasonably predicted by the nonlinear k-εmodel,which agrees with experimental observations.The advantages of the nonlineark-εmodel include the fact that the rotation rate is also included in the constitutive relationship between the strain and the Reynolds stress,which implies that the correction of the rotating flow is important in the tip vortex simulations.

    In the present work,investigations are performed in the same mesh for each case.In the mesh convergence tests,it is also found that the spatial distribution pattern would not change when finer resolutions are used.The numerical results shown in this paper imply that the nonlinear k-εmodel is a promising candidate for predicting the tip vortex cavitation flows in practical applications at a much lower computational cost compared to other advanced turbulence models,including the detached eddy simulations and the large eddy simulations.

    [1]ARNDT R.E.A.,ARAKERI V.H.and HIGUCHI H.Some observations of tip-vortex cavitation[J].Journal of Fluid Mechanics,1991,229:269-289.

    [2]WANG Ya-yun,WANG Ben-long and and LIU Hua.Numerical simulation of sheer cavity shedding and cloud cavitation on a 2D hydrofoil[J].Chinese Journal of Hydrodynamics,2014,29(2):175-182(in Chinese).

    [3]ZHANG Ling-xin,ZHANG Na and PENG Xiao-xing et al.A review of studies of mechanism and prediction of tip vortex cavitation inception[J].Journal Hydrodynamics,2015,27(4):488-495.

    [4]POPE S.B.Turbulent flows[M].Cambridge,UK:Cambridge University Press,2000,126,365.

    [5]CHOW J.S.,ZILLIAC G.G.and BRADSHAW P.Mean and turbulence measurements in the near field of a wingtip vortex[J].AIAA Journal,1997,35(10):1561-1567.

    [6]GIUNI M.Formation and early development of wingtip vortices[D].Doctoral Thesis,Glasgow,UK:University of Glasgow,2013.

    [7]CHURCHFIELD M.J.,BLAISDELL G.A. Numerical simulations of a wingtip vortex in the near field[J].Journal of Aircraft,2009,46(1):230-243.

    [8]LIU D.,HONG F.and ZHANG Z.et al.The CFD analysis of propeller sheet cavitation[C].8th International Conference on Hydrodynamics,Nantes,F(xiàn)rance,2008.

    [9]ZHU Zhi-feng,F(xiàn)ANG Shi-liang.Numerical investigation of cavitation performance of ship propellers[J].Journal Hydrodynamics,2012,24(3):347-353.

    [10]YANG Qiong-fang,WANG Yong-sheng and ZHANG Zhi-hong.Assessment of the improved cavitation model and modified turbulence model for ship propeller cavitation simulation[J].Journal of Mechanical Engineering,2012,48(9):178-185(in Chinese).

    [11]HAN Bao-yu,XIONG Ying and LIU Zhi-hua.Numericalstudy of tip vortex cavitation using CFD method[J].Journal of Harbin Engineering University,2011,32(6):702-707(in Chinese).

    [12]RUNG T.,THIELE F.and FU S.On the realizability of nonlinear stress-strain relationships for Reynolds stress closures[J].Flow,Turbulence and Combustion,1998,60(4):333-359.

    [13]SCHNERR G.H.,SAUER J.Physical and numerical modeling of unsteady cavitation dynamics[C].Proceeding of the 4th International Conference on multiphase Flow.New Orleans,La,USA,2001.

    [14]SINGHAL A.K.,ATHAVALE M.M.and LI H.Y.et al.Mathematical basics and validation of the full cavitation model[J].Journal of Fluids Engineering,2002,124(3):617-624.

    [15]ZWART P.J.,GERBER A.G.and BELAMRI T.A twophase flow model for predicting cavitation dynamics[C].ICMF 2004 International Conference on Multiphase Flow.Yokohama,Japan,2004.

    [16]BIRCH D.,LEE T.and MOKHTARIAN F.et al.Structure and induced drag of a tip vortex[J].Journal of Aircraft,2004,41(5):1138-1145.

    [17]SCHOT J.J.A.Numerical study of vortex cavitation on the elliptical Arndt foil[D].Master Thesis,Delft,The Netherlands:Delft University of Technology,2014.

    [18]SALVATORE F.,TESTA C.and GRECO L.A viscous/ inviscous coupled formulation for unsteady sheet cavitation modeling of marine propellers[C].Fifth International Symposium on Cavitation.Osaka,Japan,2003.

    10.1016/S1001-6058(16)60624-8

    (Received July 24,2014,Revised October 20,2014)

    * Project supported by the National Natural Science Foundation of China (Grant No.11332009),the Key Doctoral Program Foundation of Shanghai Municipality (Grant No.B206).

    Biography:Zhi-hui LIU (1985-),Male,Ph.D.Candidate

    Ben-long WANG,E-mail:benlongwang@sjtu.edu.cn

    2016,28(2):227-237

    男人爽女人下面视频在线观看| 免费看不卡的av| 国产熟女午夜一区二区三区| 免费高清在线观看视频在线观看| 欧美+亚洲+日韩+国产| 亚洲中文字幕日韩| 王馨瑶露胸无遮挡在线观看| 久久久久精品国产欧美久久久 | 久久久久久久久久久久大奶| 久久久精品区二区三区| 亚洲精品国产一区二区精华液| 观看av在线不卡| 人成视频在线观看免费观看| 日韩电影二区| 狂野欧美激情性bbbbbb| 国产一区二区 视频在线| 五月开心婷婷网| 国产不卡av网站在线观看| 一区福利在线观看| av欧美777| 日本91视频免费播放| 亚洲成人免费电影在线观看 | 新久久久久国产一级毛片| 建设人人有责人人尽责人人享有的| 天天躁日日躁夜夜躁夜夜| 热re99久久国产66热| 欧美大码av| 亚洲激情五月婷婷啪啪| 精品福利永久在线观看| 欧美在线一区亚洲| 精品久久久久久久毛片微露脸 | 激情五月婷婷亚洲| 视频区图区小说| 成年美女黄网站色视频大全免费| 精品卡一卡二卡四卡免费| 777米奇影视久久| 成年美女黄网站色视频大全免费| 欧美激情极品国产一区二区三区| 国产欧美亚洲国产| 美女午夜性视频免费| 久久精品国产a三级三级三级| www日本在线高清视频| 久久午夜综合久久蜜桃| 十分钟在线观看高清视频www| 美女大奶头黄色视频| 亚洲人成电影观看| 欧美日韩视频精品一区| 纵有疾风起免费观看全集完整版| 久久亚洲精品不卡| 国产爽快片一区二区三区| 男女午夜视频在线观看| 国产日韩欧美在线精品| 新久久久久国产一级毛片| 九色亚洲精品在线播放| 国产成人av激情在线播放| 国产精品一区二区在线不卡| 免费av中文字幕在线| 少妇人妻 视频| 又大又爽又粗| 亚洲人成77777在线视频| 人妻一区二区av| 老熟女久久久| 国产免费视频播放在线视频| 满18在线观看网站| 亚洲精品一区蜜桃| 国产97色在线日韩免费| 一级片免费观看大全| 国产在线视频一区二区| 1024香蕉在线观看| 久久人人97超碰香蕉20202| 国产精品99久久99久久久不卡| 亚洲av片天天在线观看| 男女高潮啪啪啪动态图| 多毛熟女@视频| 极品人妻少妇av视频| 成人国语在线视频| 大话2 男鬼变身卡| 亚洲欧美色中文字幕在线| 91字幕亚洲| 国产黄色视频一区二区在线观看| 精品一区在线观看国产| av片东京热男人的天堂| 少妇人妻 视频| 成人黄色视频免费在线看| 亚洲国产av新网站| 午夜老司机福利片| 久久久久久亚洲精品国产蜜桃av| 一本色道久久久久久精品综合| 色婷婷av一区二区三区视频| 成人三级做爰电影| 一级毛片电影观看| 精品一区二区三区av网在线观看 | 国产精品 国内视频| 啦啦啦 在线观看视频| 国产亚洲精品第一综合不卡| 狂野欧美激情性bbbbbb| 99久久99久久久精品蜜桃| 伦理电影免费视频| 亚洲免费av在线视频| 中文欧美无线码| 亚洲人成77777在线视频| 考比视频在线观看| www.自偷自拍.com| 亚洲精品中文字幕在线视频| 精品第一国产精品| 久久99精品国语久久久| 精品亚洲成国产av| 日韩制服丝袜自拍偷拍| 国语对白做爰xxxⅹ性视频网站| 久久热在线av| 久久久国产一区二区| 婷婷色综合大香蕉| 肉色欧美久久久久久久蜜桃| 亚洲精品美女久久久久99蜜臀 | 婷婷色麻豆天堂久久| 成在线人永久免费视频| 捣出白浆h1v1| 免费在线观看完整版高清| 国产日韩欧美在线精品| 成年av动漫网址| 亚洲欧美中文字幕日韩二区| 色播在线永久视频| 91精品国产国语对白视频| 久久 成人 亚洲| 大片电影免费在线观看免费| 99热网站在线观看| 国产一区二区三区av在线| 国产一卡二卡三卡精品| 精品人妻1区二区| 精品国产超薄肉色丝袜足j| av在线老鸭窝| 在线观看一区二区三区激情| 久久久精品区二区三区| 亚洲精品第二区| 男人爽女人下面视频在线观看| 日韩免费高清中文字幕av| 啦啦啦视频在线资源免费观看| 国产亚洲欧美精品永久| 777米奇影视久久| 日韩伦理黄色片| 日韩大片免费观看网站| 午夜免费鲁丝| 色婷婷久久久亚洲欧美| 性色av一级| 十八禁高潮呻吟视频| 日韩精品免费视频一区二区三区| 亚洲成人免费av在线播放| 美女午夜性视频免费| 熟女av电影| 免费女性裸体啪啪无遮挡网站| 最黄视频免费看| 欧美久久黑人一区二区| 2021少妇久久久久久久久久久| 国产欧美日韩一区二区三区在线| 成年动漫av网址| 精品国产一区二区三区久久久樱花| 天天添夜夜摸| 国产高清不卡午夜福利| 色精品久久人妻99蜜桃| 少妇人妻 视频| 男女下面插进去视频免费观看| 波多野结衣一区麻豆| 2018国产大陆天天弄谢| 2021少妇久久久久久久久久久| 波多野结衣av一区二区av| 亚洲九九香蕉| 狂野欧美激情性xxxx| 女人爽到高潮嗷嗷叫在线视频| 精品亚洲乱码少妇综合久久| 国产在线免费精品| 国产精品一国产av| 大片电影免费在线观看免费| 欧美人与性动交α欧美软件| 80岁老熟妇乱子伦牲交| 国产一区二区在线观看av| 午夜激情av网站| 久久免费观看电影| 黑人猛操日本美女一级片| 三上悠亚av全集在线观看| 亚洲av日韩在线播放| 国产人伦9x9x在线观看| 国产爽快片一区二区三区| 亚洲国产精品一区二区三区在线| 丁香六月欧美| 久久久欧美国产精品| 国产熟女午夜一区二区三区| 777久久人妻少妇嫩草av网站| 看免费成人av毛片| 欧美另类一区| 无遮挡黄片免费观看| 亚洲一码二码三码区别大吗| 久久国产亚洲av麻豆专区| 国产xxxxx性猛交| 中文欧美无线码| 亚洲欧美清纯卡通| 国产精品九九99| 国产精品免费大片| 男人舔女人的私密视频| 视频在线观看一区二区三区| 我要看黄色一级片免费的| 欧美老熟妇乱子伦牲交| 一边亲一边摸免费视频| 国产爽快片一区二区三区| 亚洲黑人精品在线| 99九九在线精品视频| av视频免费观看在线观看| 久久久精品国产亚洲av高清涩受| 天堂俺去俺来也www色官网| 人体艺术视频欧美日本| 中文字幕av电影在线播放| 国产精品香港三级国产av潘金莲 | 免费一级毛片在线播放高清视频 | 婷婷色av中文字幕| 考比视频在线观看| 黄频高清免费视频| 又大又黄又爽视频免费| 午夜福利视频精品| 少妇精品久久久久久久| 母亲3免费完整高清在线观看| 最新在线观看一区二区三区 | 欧美另类一区| 国产精品 欧美亚洲| 久久久久视频综合| 国产片内射在线| 国产精品 欧美亚洲| 久久精品久久精品一区二区三区| 热re99久久国产66热| 亚洲精品第二区| 乱人伦中国视频| 久久av网站| 叶爱在线成人免费视频播放| 桃花免费在线播放| 国产av国产精品国产| 一边摸一边抽搐一进一出视频| 国产精品一区二区精品视频观看| 久久国产精品影院| 另类精品久久| 欧美日韩亚洲高清精品| 日本五十路高清| www.999成人在线观看| 国产成人影院久久av| 黑人欧美特级aaaaaa片| 精品久久久精品久久久| 亚洲精品国产区一区二| 自线自在国产av| 久久精品aⅴ一区二区三区四区| 中文字幕人妻丝袜制服| 美女脱内裤让男人舔精品视频| 高清黄色对白视频在线免费看| 久久精品国产亚洲av高清一级| 黄色视频不卡| 国产女主播在线喷水免费视频网站| 日本午夜av视频| av网站在线播放免费| 亚洲专区国产一区二区| 国产主播在线观看一区二区 | 啦啦啦中文免费视频观看日本| 在线亚洲精品国产二区图片欧美| 国产成人精品在线电影| 七月丁香在线播放| 免费日韩欧美在线观看| 成年动漫av网址| 国产熟女午夜一区二区三区| 亚洲欧美一区二区三区国产| 99国产精品一区二区蜜桃av | 丝袜人妻中文字幕| 曰老女人黄片| 国产精品av久久久久免费| 精品一区二区三区av网在线观看 | 久热爱精品视频在线9| 国产av精品麻豆| 午夜免费鲁丝| 欧美黑人欧美精品刺激| 久久ye,这里只有精品| 巨乳人妻的诱惑在线观看| 人人妻人人澡人人看| 国产日韩欧美视频二区| 国产精品 国内视频| 高清欧美精品videossex| 看免费成人av毛片| 亚洲精品久久午夜乱码| kizo精华| 中文字幕最新亚洲高清| 午夜免费男女啪啪视频观看| 美女扒开内裤让男人捅视频| 国产日韩欧美在线精品| 亚洲成国产人片在线观看| 久久久久久久国产电影| 麻豆国产av国片精品| 国产视频一区二区在线看| 国产福利在线免费观看视频| 欧美人与性动交α欧美软件| 一级毛片黄色毛片免费观看视频| 9191精品国产免费久久| 成人亚洲欧美一区二区av| 亚洲欧美日韩高清在线视频 | 久久国产精品男人的天堂亚洲| 久久久精品国产亚洲av高清涩受| 伊人久久大香线蕉亚洲五| 青草久久国产| 免费看av在线观看网站| 日本av免费视频播放| 国产视频一区二区在线看| 精品福利永久在线观看| 精品福利观看| 久久久亚洲精品成人影院| 国产在视频线精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美清纯卡通| 成人亚洲欧美一区二区av| 黄色毛片三级朝国网站| 麻豆国产av国片精品| 午夜福利影视在线免费观看| 久久国产精品大桥未久av| 黄色毛片三级朝国网站| 亚洲av日韩精品久久久久久密 | 80岁老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 亚洲国产看品久久| 日韩av免费高清视频| 在线观看人妻少妇| 一级毛片 在线播放| 亚洲av成人不卡在线观看播放网 | 午夜福利视频精品| 亚洲成色77777| 丁香六月欧美| 一二三四社区在线视频社区8| 高清av免费在线| 亚洲一区中文字幕在线| 日韩,欧美,国产一区二区三区| av片东京热男人的天堂| 侵犯人妻中文字幕一二三四区| 成年美女黄网站色视频大全免费| 日本欧美国产在线视频| 男女下面插进去视频免费观看| 超碰成人久久| 国产成人精品久久二区二区91| 午夜福利影视在线免费观看| 久久人妻熟女aⅴ| 亚洲欧美清纯卡通| 亚洲七黄色美女视频| 又黄又粗又硬又大视频| 在线看a的网站| 久久精品亚洲熟妇少妇任你| 欧美在线一区亚洲| 丝袜脚勾引网站| 亚洲黑人精品在线| 亚洲精品第二区| 久久免费观看电影| 国产精品国产三级国产专区5o| 日韩人妻精品一区2区三区| 久久久久网色| 母亲3免费完整高清在线观看| 手机成人av网站| 人成视频在线观看免费观看| 久久国产精品影院| 国产精品成人在线| 蜜桃国产av成人99| 在线观看免费午夜福利视频| 久久精品国产a三级三级三级| 少妇人妻 视频| 伊人久久大香线蕉亚洲五| 国产国语露脸激情在线看| 晚上一个人看的免费电影| 久9热在线精品视频| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 久久人人97超碰香蕉20202| 国产国语露脸激情在线看| 亚洲 国产 在线| 一区二区av电影网| 丝袜喷水一区| 欧美日韩亚洲国产一区二区在线观看 | 1024香蕉在线观看| 人人妻人人添人人爽欧美一区卜| 精品少妇黑人巨大在线播放| 少妇猛男粗大的猛烈进出视频| 视频区欧美日本亚洲| 丝袜美足系列| 香蕉丝袜av| 欧美性长视频在线观看| 美女大奶头黄色视频| 一二三四在线观看免费中文在| 男女边摸边吃奶| 欧美成人午夜精品| 69精品国产乱码久久久| av线在线观看网站| 18禁裸乳无遮挡动漫免费视频| av在线老鸭窝| 多毛熟女@视频| 蜜桃在线观看..| 两个人看的免费小视频| 亚洲精品美女久久久久99蜜臀 | 精品免费久久久久久久清纯 | av福利片在线| 十八禁高潮呻吟视频| 一本—道久久a久久精品蜜桃钙片| 女人高潮潮喷娇喘18禁视频| 欧美成狂野欧美在线观看| 国产黄色视频一区二区在线观看| 免费在线观看完整版高清| 看免费成人av毛片| 亚洲欧洲精品一区二区精品久久久| 午夜免费观看性视频| 狂野欧美激情性xxxx| 欧美成人精品欧美一级黄| 超色免费av| 在线 av 中文字幕| 美女脱内裤让男人舔精品视频| 精品少妇久久久久久888优播| 亚洲国产毛片av蜜桃av| 操出白浆在线播放| 久久人人爽人人片av| 免费观看人在逋| 王馨瑶露胸无遮挡在线观看| 在线天堂中文资源库| 国产精品三级大全| 国产真人三级小视频在线观看| 首页视频小说图片口味搜索 | 久久天躁狠狠躁夜夜2o2o | 国产精品国产三级专区第一集| 欧美国产精品va在线观看不卡| 中文字幕另类日韩欧美亚洲嫩草| 午夜日韩欧美国产| 久久鲁丝午夜福利片| 欧美精品av麻豆av| 少妇被粗大的猛进出69影院| 日本猛色少妇xxxxx猛交久久| 午夜福利视频在线观看免费| 亚洲欧美成人综合另类久久久| 午夜精品国产一区二区电影| 亚洲精品日韩在线中文字幕| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美色中文字幕在线| 午夜老司机福利片| 999久久久国产精品视频| 只有这里有精品99| 在现免费观看毛片| 中文字幕人妻丝袜制服| 大片免费播放器 马上看| 国产一区二区三区综合在线观看| 多毛熟女@视频| 久久久国产欧美日韩av| 久久九九热精品免费| 欧美日韩av久久| 免费女性裸体啪啪无遮挡网站| 亚洲中文日韩欧美视频| 电影成人av| 在线av久久热| 久久毛片免费看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 欧美激情极品国产一区二区三区| 无限看片的www在线观看| 国产成人精品无人区| 久久国产精品影院| av福利片在线| 亚洲第一av免费看| 熟女av电影| 欧美久久黑人一区二区| 国产成人精品在线电影| 手机成人av网站| 亚洲美女黄色视频免费看| 天天躁夜夜躁狠狠躁躁| 久久久国产一区二区| 欧美激情 高清一区二区三区| 国产av国产精品国产| 你懂的网址亚洲精品在线观看| 国产精品99久久99久久久不卡| 日韩一本色道免费dvd| 丝袜在线中文字幕| 中文字幕色久视频| 黄片小视频在线播放| 热re99久久国产66热| 国产福利在线免费观看视频| 蜜桃国产av成人99| 可以免费在线观看a视频的电影网站| 热99久久久久精品小说推荐| 国产成人a∨麻豆精品| 满18在线观看网站| 国产一级毛片在线| 久久久久视频综合| 久久亚洲国产成人精品v| 精品高清国产在线一区| 男的添女的下面高潮视频| 精品国产超薄肉色丝袜足j| 菩萨蛮人人尽说江南好唐韦庄| 成年动漫av网址| 久久99热这里只频精品6学生| 久久中文字幕一级| 亚洲三区欧美一区| 国产成人免费观看mmmm| kizo精华| 亚洲国产最新在线播放| 18在线观看网站| 伊人久久大香线蕉亚洲五| 国产亚洲欧美精品永久| 成年人免费黄色播放视频| 2021少妇久久久久久久久久久| 超色免费av| 十八禁高潮呻吟视频| 一级毛片电影观看| 亚洲成色77777| 欧美精品亚洲一区二区| 操出白浆在线播放| 午夜福利乱码中文字幕| 亚洲 欧美一区二区三区| 亚洲欧美一区二区三区黑人| 国产无遮挡羞羞视频在线观看| 最新在线观看一区二区三区 | 久久天躁狠狠躁夜夜2o2o | 国产男女内射视频| 大香蕉久久网| 曰老女人黄片| 又大又黄又爽视频免费| 日韩欧美一区视频在线观看| 国产成人a∨麻豆精品| 母亲3免费完整高清在线观看| 国产高清视频在线播放一区 | 亚洲欧美一区二区三区国产| bbb黄色大片| 久久精品aⅴ一区二区三区四区| 黄色毛片三级朝国网站| 老鸭窝网址在线观看| 三上悠亚av全集在线观看| 熟女少妇亚洲综合色aaa.| 欧美激情极品国产一区二区三区| 欧美日韩av久久| 国产极品粉嫩免费观看在线| 日韩欧美一区视频在线观看| 亚洲成人手机| 国产成人影院久久av| 精品人妻一区二区三区麻豆| 亚洲av电影在线观看一区二区三区| 欧美日韩综合久久久久久| a级毛片黄视频| 99热国产这里只有精品6| 国产淫语在线视频| 久久久久久久久免费视频了| www.999成人在线观看| 我的亚洲天堂| 日韩熟女老妇一区二区性免费视频| 精品国产国语对白av| 国产免费福利视频在线观看| 日韩 亚洲 欧美在线| 两性夫妻黄色片| 成人国产一区最新在线观看 | 看十八女毛片水多多多| 亚洲专区国产一区二区| 亚洲av男天堂| 欧美人与善性xxx| www日本在线高清视频| av福利片在线| 国产av一区二区精品久久| 91精品伊人久久大香线蕉| 视频在线观看一区二区三区| 91成人精品电影| 人人妻人人添人人爽欧美一区卜| 国产成人精品久久二区二区91| 在线亚洲精品国产二区图片欧美| 黑人猛操日本美女一级片| 天天添夜夜摸| 国产无遮挡羞羞视频在线观看| 色综合欧美亚洲国产小说| 美女高潮到喷水免费观看| 777久久人妻少妇嫩草av网站| 亚洲国产av影院在线观看| 免费看不卡的av| 99九九在线精品视频| 国产精品成人在线| 日韩电影二区| 精品卡一卡二卡四卡免费| 国产精品偷伦视频观看了| 欧美av亚洲av综合av国产av| 啦啦啦在线免费观看视频4| av网站免费在线观看视频| 亚洲国产精品国产精品| 精品一区二区三区av网在线观看 | 国产又色又爽无遮挡免| 亚洲欧美清纯卡通| 69精品国产乱码久久久| 少妇被粗大的猛进出69影院| 无限看片的www在线观看| 中文字幕人妻熟女乱码| 国产又色又爽无遮挡免| 欧美 亚洲 国产 日韩一| 久久精品久久久久久噜噜老黄| 久久天堂一区二区三区四区| 超碰成人久久| 少妇人妻 视频| 午夜福利,免费看| 下体分泌物呈黄色| 国产成人免费观看mmmm| 老汉色av国产亚洲站长工具| 狂野欧美激情性bbbbbb| 一本色道久久久久久精品综合| 亚洲国产日韩一区二区| 国产黄色视频一区二区在线观看| 日韩大片免费观看网站| 一二三四社区在线视频社区8| 日韩 亚洲 欧美在线| 国产精品亚洲av一区麻豆| 国产一区二区激情短视频 | 亚洲久久久国产精品| 亚洲国产精品成人久久小说| 99热网站在线观看| 日韩,欧美,国产一区二区三区| 久久国产精品影院| xxx大片免费视频| 成人免费观看视频高清| 在线观看www视频免费| 亚洲欧洲日产国产| 欧美日韩亚洲综合一区二区三区_| 999精品在线视频| 国产片内射在线| 最近最新中文字幕大全免费视频 |