• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of self-similar thermal convection from a spinning cone in anisotropic porous medium*

    2016-10-14 12:23:14AnwarUDDINReddyGORLA

    O.Anwar BéG,M.J.UDDIN,T.BéG,R.Reddy GORLA

    1.Spray Research Group,Petroleum and Gas Engineering Division,Room G77,Newton Building,School of Computing,Science and Engineering (CSE),University of Salford,M54WT,UK,E-mail:gortoab@gmail.com

    2.Department of Mathematics,American International University-Bangladesh,Dhaka,Bangladesh

    3.Engineering Mechanics Associates,Dickenson Road,Manchester,M16,England,UK

    4.Department Mechanical Engineering,Cleveland State University,Cleveland,Ohio,USA

    Numerical simulation of self-similar thermal convection from a spinning cone in anisotropic porous medium*

    O.Anwar BéG1,M.J.UDDIN2,T.BéG3,R.Reddy GORLA4

    1.Spray Research Group,Petroleum and Gas Engineering Division,Room G77,Newton Building,School of Computing,Science and Engineering (CSE),University of Salford,M54WT,UK,E-mail:gortoab@gmail.com

    2.Department of Mathematics,American International University-Bangladesh,Dhaka,Bangladesh

    3.Engineering Mechanics Associates,Dickenson Road,Manchester,M16,England,UK

    4.Department Mechanical Engineering,Cleveland State University,Cleveland,Ohio,USA

    Self-similar steady natural convection thermal boundary layer flow from a rotating vertical cone to anisotropic Darcian porous medium is investigated theoretically and numerically.The transformed non-dimensional two-point boundary value problem is reduced to a system of coupled,highly nonlinear ordinary differential equations,which are solved subject to robust surface and free stream boundary conditions with the MAPLE 17 numerical quadrature software.Validation with earlier non-rotating studies is included,and also further verification of rotating solutions is achieved with a variational finite element method (FEM).The rotational(spin) parameter emerges as an inverse function of the Grashof number.The influence of this parameter,primary Darcy number,secondary Darcy number and Prandtl number on tangential velocity and swirl velocity,temperature and heat transfer rate are studied in detail.It is found that the dimensionless tangential velocity increases whilst the dimensionless swirl velocity and temperature decrease with the swirl Darcy number,tangential Darcy number and the rotational parameters.The model finds applications in chemical engineering filtration processing,liquid coating and spinning cone distillation columns.

    self-similarity,spinning cone,finite element method (FEM),anisotropic porous medium,heat transfer,MAPLE,F(xiàn)EM

    Introduction

    Rotational thermal convection flows on bodies of axisymmetric geometry have been studied for a number of decades by engineers and mathematicians,initially due to interest in the aerospace sciences.The Coriolis forces experienced with rotation generated by the centrifugal field cause fluid to be impelled along the curved surface and substantially enhance heat transfer rates.Since the seminal review by Grief[1]interest in external rotating heat transfer has continued to flourish.These flows abound in chemical engineering processing where they arise in spinning cone distillation columns and centrifugal film evaporators[2],aeration devices and atomizers[3].Many excellent experimental,theoretical and computational studies have been communicated to elucidate the interaction of viscous,rotational and other body force effects in such flows.Chamkha and Rashad[4]investigated unsteady heat and mass transfer due to MHD mixed convection flow past rotating vertical cone with chemical reaction and soret and dufour effects.Osalusi et al.[5]examined the effect of viscous dissipation and Joule heating on unsteady MHD flow on a rotating cone in rotating fluid.Narayana et al.[6]studied free magnetohydrodynamic flow and convection from a vertical spinning cone with cross-diffusion effects.Anilkumar and Roy[7]employed Bellman-Kalaba quasi-linearization and an implicit finite difference scheme to study transient heat and mass transfer from a rotating cone,computing Sherwood numbers for a range of rotation parameters,and observing that self-similar solutions are only admitted when both the free stream angular velocity and cone rotational velocity vary as linear inverse functions of time.Raju et al.[8]studied thermophoret-ic effect on double diffusive convective flow of a chemicallyreacting fluid over a rotating cone in porous.Further studies of rotational thermal convection from a spinning body have been presented by Ece[9]for steady magnetic convection.

    The above studies have considered only pure fluid regimes external to the rotating body.In numerous energy resources areas,however the external medium is often porous i.e.,comprises a permeable material.As such extra body forces must be incorporated into the analysis to account for linear porous resistance at lower Reynolds numbers.Porous media offer excellent properties for flow control and filtration.Most porous heat transfer flow studies have used the isotropic Darcy law[10,11],which assumes that permeability in all directions is the same.A more general case is that of anisotropic porous media[12]which incorporates a variation in the permeability depending on the direction.This better characterizes many synthetic and geological materials.Anisotropy is normally results of preferential orientation or asymmetric geometry of porous matrix or fibers.It occurs in many industrial system and nature.Besides,anisotropy can also be a characteristic of artificial porous materials such as pelleting used in chemical engineering process,fiber material used in insulating purpose and packed beds used in the storage of heat energy.

    In the present study we shall therefore examine the thermal convection from a rotating cone to anisotropic Darcian porous media.This regime is relevant to filtration chemical engineering coating applications.A MAPLE numerical solution[13]to the transformed ordinary differential equations is obtained.The computations are validated with purely fluid (infinite permeability) solutions in the literature and also with a variational finite element code[14]based on linear elements.The present study presents a comprehensive examination of anisotropic permeability effects on rotating cone convection in porous media and to the authors' knowledge has not appeared in the literature thus far.

    Fig.1 Physical model for convection from a rotating cone in an anisotropic porous regime

    1.Mathematical rotating flow model

    The physical model is depicted in Fig.1.We consider steady-state,laminar,incompressible,axisymmetric,free convection boundary layer flow along a rotating cone embedded in an anisotropic saturated porous regime.

    Tortuosity and thermal dispersion effects in the porous medium are neglected.The Darcy model is employed[15].The cone surface is isothermal.Rotation is sufficiently slow to ignored compressibility effects.The X direction is parallel to the cone slant surface,the Y direction normal to this and θ designates the angle in a plane perpendicular to the vertical symmetry axis.The cone may represent for example a chemical engineering mixing device.The governing equations for the flow regime can be posed as follows with reference to an (X ,Y,θ) coordinate system:

    Mass

    Momentum

    Momentum

    Energy

    The Boussinesq approximation has been used so that buoyancy effects only appear in the X-direction momentum Eq.(2),which is coupled to the energy equation,constituting a free convection regime.Using separate permeabilities in the X and θ directions(due to anisotropy),two porous media drag force terms are present,one in each of Eqs.(2) and (3) i.e.,the primary and secondary Darcian impedance.Viscous dissipation and cross-diffusion (Soret/Dufour) effects are ignored.The corresponding boundary conditions at the surface and far from the cone are:

    where the following notation applies:X is the coordinate parallel to cone surface,Y is the coordinate normal to cone surface,θis the angular coordinate,R is the radial coordinate,ris the local radius of the cone,Uis the velocity component inX direction,V is the velocity component inY direction,Wis the velocity component in θ direction,Tis the fluid temperature,Twis the cone surface temperature,T∞is the free stream temperature,U*is the reference velocity,gis the gravitational acceleration,νis the kinematic viscosity of fluid,ρis the density of fluid,KXis the permeability inX direction,Kθis the permeability in θ direction,α is the thermal diffusivity of the fluid,β is the coefficient of thermal expansion of the fluid,? is the rotational velocity of the cone (spin velocity about symmetry axis),φ is the semi-vertex angle of cone.The boundary layer Eqs.(1)to (4) are highly coupled,parabolic and nonlinear.An analytical solution is clearly intractable and in order to obtain a robust solution,we next non-dimensionalize the model.Proceeding with the analysis,we introduce the following transformations:

    The transport equations are thereby reduced to the following dimensionless equations:

    Mass

    Tangential momentum

    Swirl momentum

    Thermal energy (heat)

    The boundary conditions are also transformed into:

    In Eqs.(8)-(13),the following notation applies:F is the similarity boundary layer stream function,G is the similarity boundary layer rotational (swirl) velocity,His the similarity boundary layer temperature function,xis the trans formed X coordinate,yis the trans formed Y coordinate,r is the transformed local cone radius,u is the trans formed X velocity,vis the trans formed Y velocity,w is the trans formed θ velocity,D a is the tangential Darcy number,Daθ(swirl Darcy number),Pr is the Prandtl number,Φ is the non-dimensional temperature function,Gr is the modified Grash of number,Re is the rotational Reynolds number,L-reference scale length.The nondimensional Eqs.(9) to (12) can be further simplified by employing appropriate similarity transformations.We first define a dimensional stream function,ψ,following Ece[9]:

    The boundary layer variables are now re-scaled as follows,with r=xsinθ:

    Introducing these relations into Eqs.(8)-(13),generates the following system of “self-similar “ordinary differential equations:

    Tangential momentum

    Swirl momentum

    Energy

    whereF is the boundary-layer stream function,G is the boundary-layer rotational (swirl) velocity,H is the boundary-layer temperature,DaxandDaθdenote the x -direction and θ-direction Darcy numbers,and NR=(R esinj)2/Gris the rotational (spin) parameter.We note that for the purely fluid case,Dax(tangential Darcy number)→∞and Daθ(swirl Darcy number)→∞since the permeability of the anisotropic regime becomes infinite.For the case of an isotropic porous medium,Dax=Daθ.The self-similar momentum Eqs.(16) and (17) then reduce to exactly the non-magnetic case of the generalized hydromagnetic equations solved by Ece[9]:

    Equation (18) is identical also to the similarity heat transfer equation solved by Ece[10].The transformed boundary conditions are also identical to those solved by Ece[10]and for the current problem take the form:

    F (0)=0,F(xiàn)′(0)=0,G (0)=1at the cone surface

    F′(y)→0,G( y)→ (0),H( y)→0

    2.Numerical solution by Maple 17

    The self-similar nonlinear two-point boundary value problem is solved using MAPLE17[16]quadrature.This approach has been extensively implemented in a diverse array of nonlinear multi-physical flow problems in chemical and materials engineering sciences including annular magnetohydrodynamics[17],nano-structural mechanics[18],and nanofluid convection flows[19].A Runge-Kutta-Fehlberg fourth-fifth order numerical algorithm (RKF45) is employed,available in the symbolic computer software Maple 17.This utilizes a collocation method in which a finite-dimensional space of candidate solutions is selected(usually,polynomials up to a certain degree) and a number of points in the domain (called collocation points),and a solution selected which satisfies the given equation at the collocation points.The RFK45 algorithm is adaptive since it adjusts the quantity and location of grid points during iteration and thereby constrains the local error within acceptable specified bounds.In the current problem,the asymptotic boundary conditions given in Eq.(21) are replaced by a finite value in the range 15-20 depending on the parameters values.The choice of infinity must be selected judiciously to ensure that all numerical solutions approached to the asymptotic values correctly.The selection of sufficiently large value for infinity is imperative for maintaining desired accuracy in boundary layer flows,and is a common pitfall encountered in numerous studies.The stepping formulae used to solve Eqs.(16)-(18) under conditions (21) via fifth-fourth order Runge-Kutta-Fehlberg algorithms are given below[18]:

    Table 1 Values of F′(0)for free-convection boundary-layer flow over a spinning cone with Dax→∞and Daθ→∞(purely fluid case)

    Table 2 Values of -H′(0)for free-convection boundary-layer flow over a spinning cone with Dax→∞and Daθ→∞(purely fluid case)

    Here y denotes fourth-order Runge-Kutta phase and zis the fifth-order Runge-Kutta phase.An estimate of the error is achieved by subtracting the two values obtained.If the error exceeds a specified threshold,the results can be recalculated using a smaller step size.The approach to estimating the new step size is shown below

    3.Galerkin finite element computations

    The MAPLE numerical solutions have been validated using a Galerkin finite element method (FEM)[20].FEM also uses integration approximations,as with numerical quadrature.Applying the Galerkin finite element method to Eqs.(16) to (18) over the element(e)(yi≤y≤yk),we have[21]:

    We postulate linear piecewise approximate solutions forF′,G,H with appropriate shape functions (interpolation functions).In order to prove the convergence and stability of the Galerkin finite element method,the Matlab program SPIN-FEM is executed with slightly modified values of the mesh distance in the y -direction i.e.,j,and no significant change is observed in the values of the velocity components.Mesh independence of solutions is therefore achieved with excellent stability and convergence[20].The boundary conditions (10) are easily specified in SPIN-FEM.The porous medium is discretized into a domain which is divided into smaller elements (sub-domains) of finite dimensions called “finite elements”.The collection of elements is called the finite-element mesh or grid.The element matrix,which is called a stiffness matrix,is constructed by using element interpolation functions.The algebraic equations so obtained are assembled by imposing the inter-element continuity conditions.This yields a large number of algebraic equations defining the global finite element model,which governs the whole domain.The essential and natural boundary conditions are imposed on the assembled equations.The assembled equations so obtained can be solved by any “matrix” numerical technique e.g.Householder's approach,LU Decomposition method etc..Further details are readily available in Ref.[21].Criteria for the selection of elements are also documented in the extensive review by Bég[22].The non-linear algebraic system of equations is solved iteratively.An accuracy of 10-7is used.A convergence criterion based on the relative difference between the current and previous iterations is employed.When these differences reach the desired accuracy,the solution is assumed to have converged and the iterative process is terminated.Two-point Gaussian quadrature is implemented for solving the integrations.The FEM algorithm has been executed in MATLAB running on an Octane SGI desktop workstation and takes 6 s-10 s on average.Excellent correlation is achieved with[9]as shown in Tables 1,2.

    Both MAPLE and SPIN-FEM correlate very closely with the infinite permeability solutions of Ece[9].Confidence in the MAPLE code is therefore high.

    Fig.2 Tangential velocity(F′)for various NRfor isotropic case(Pr=0.7,Dax=Daθ=1.0)

    4.Maple computations,results and discussion

    Extensive computations are conducted to simulate the variation of the tangential velocity(F′),swirl velocity (G)and temperature (H)with distance,y,into the boundary layer (transverse to the cone surface),5 thermophysical parameters are analyzed-Prandtl number(P r),magnetohydrodynamic number(N m),x -direction Darcy number (Dax),θ-direction Darcy number(Daθ)and rotational parameter (NR).The regime has high permeability in both the x -and θ-direction so that high values are prescribed for Daxand Daθ.i.e.,1.0,unless otherwise stated.Pris prescribed as 0.7 (accurate for air),NR=2.0(inertial rotation effects dominant buoyancy effects) unless otherwise indicated.All computations were conducted with MAPLE17 and are illustrated in Figs.2-17.Infinity is prescribed at 12 to ensure asymptotically smooth solutions are attained in the free stream.

    Fig.3 Swirl velocity(G)for various NR(Pr=0.7,Daθ= Dax=1.0)

    Fig.4 Temperature(H)for various NR(Pr=0.7,Daθ= Dax=1.0)

    In Figs.2-5 the effects of rotational parameter,NR=(Resinφ)2/Gron tangential and swirl velocities,temperature and Nusselt number function (cone surface temperature gradient) are presented.

    In these figures,Dax=Daθ=1.0i.e.,the regime is isotropic.Figure 2 shows that an increase in the spin parameter,NR,strongly elevates tangential velocity,due to the induced axial flow,in particular close to the cone surface(y=0),this pattern has been observed also by Ece[9].The principal influence of NRwill be on the tangential momentum since this parameter arises in the tangential momentum Eq.(16),although itis coupled to the swirl momentum.This parameter effectively entails the swirl momentum effect on the tangential momentum.Tangential momentum boundary layer thickness decreased close to the cone surface.Swirl velocity (Fig.3) weakly decreased near the cone surface implying that swirl momentum boundary layer thickness slightly increased in this vicinity.Temperature,H ,(Fig.4) is quite significantly reduced with increasing NRmanifesting with a decrease in thermal boundary layer thickness.In consistency with Fig.4 the heat transfer rate magnitudes (Fig.5) are elevated near the cone surface.The decrease in temperatures in the thermal boundary layer is caused by an enhancement in heat flux to the cone surface which cools the boundary layer.

    Fig.5 Temperature gradient(H ′)for various NR(Pr=0.7,Daθ=Dax=1.0)

    Fig.6 Tangential velocity (F′)for various Daθ(P r=0.7,NR=5.0,Dax=1.0)

    Fig.7 Swirl velocity (G)for various Daθ(P r=0.7,NR= 5.0,Dax=1.0)

    Fig.8 Temperature (H)for various Daθ(P r=0.7,NR= 5.0,Dax=1.0)

    Fig.9 Temperature gradient (H ′)for various Daθ(P r=0.7,NR=5.0,Dax=1.0)

    Figures 6-9 illustrate the influence of tangential Darcy number,Daθi.e.,θ-direction permeability function on the flow characteristics.IncreasingDaθmarkedly elevates the tangential velocity,F(xiàn)′,close to the wall (Fig.6),further from the cone surface however the effect is reversed and there is a slight decrease in tangential velocities as we progress further into the boundary layer.In close proximity to the wall,the decreased porous media drag caused by a reduction in the presence of porous media fibers in the θ-direction (i.e.,an increase inDaθ) will act to accelerate the flow.Skin friction i.e.,surface shear stress will therefore also be augmented considerably with increasingDaθvalues.Swirl velocity (Fig.7) exhibits a very different response pattern,peakGvalues alwaysarise at the wall and decay smoothly to a minimum in the free stream.However the increase in Daθi.e.,slightly enhances the swirl velocity throughout the boundary layer (the flow is accelerated).Irrespective of the value ofDaθthere never arises any flow reversal in the boundary layer regime.The influence of tangential Darcy number however extends more deeply into the boundary layer transverse to the cone surface for tangential flow compared with swirl flow.With increasingDaθ,temperatures (Fig.8) are substantially reduced in the boundary layer regime.Increasing permeability decreases the concentration of solid particles in the regime i.e.,increases the presence of voids.This serves to suppress thermal conduction heat transfer in the regime and acts to reduce temperatures.There will be a corresponding increase with heat transfer rate magnitudes (Fig.9) to the cone surface however with increasing values ofDaθThe influence Daθ,on the temperature field is less prominent than on the tangential and swirl velocity fields,since Darcy impedance body forces do not feature in the energy conservation Eq.(18).It is therefore expected that a change inDaθ,will affect tangential and swirl velocities to a much greater extent as demonstrated by Figs.6,7.We further note that the swirl velocities are influenced more strongly by thekθthan the tangential velocities,since Daθarises only in the swirl momentum Eq.(17) and will,via coupling,indirectly influence the tangential momentum Eq.(16).

    Fig.10 Tangential velocity (F′)for various Dax(P r=0.7,NR=Daθ=1.0)

    Fig.11 Swirl velocity (G)for various Dax(P r=0.7,NR= Daθ=1.0)

    Fig.12 Temperature (H)for various Dax(P r=0.7,NR= Daθ=1.0)

    Fig.13 Temperature gradient(H ′)for various Dax(P r= 0.7,NR=Daθ=1.0)

    Figures 10-13 illustrate the influence of swirl Darcy number,Daxi.e.,x -direction permeability function on the flow characteristics.A significant acceleration in the tangential velocity is observed in Fig.10,this effect is sustained to a considerable extent into the boundary layer.In the tangential momentum Eq.(16) the Daxparameter arises in the Darcian retarding force term,-F′ Dax.Increasing Daxwill act to decrease the Darcian drag force which will effectively accelerate tangential flow.In Fig.11 we note that a small decrease in the swirl velocity is computed with increasing theDaxparameter.The dominant influence is on the tangential flow (Fig.5).Temperature,His however found to be strongly decreased with increasing Dax.As indicated earlier with progressive increase in permeability,the regime comprises a lower quantity of solid material fibers,this suppresses thermal conduction and acts to cool the boundary layer.This is important in spin coating operations since it achieves excellent thermal control.Surface temperature gradient (H ′)is enhanced in magnitude with increasing swirl Darcy number (Fig.13) in particular close to the cone surface.The flux of heat away from the body of fluid (boundary layer) to the wall therefore decreases thermal boundary layer thickness.

    Fig.14 Tangential velocity(F′)for variousPr (Daθ=NR=Dax=1.0)

    Fig.15 Swirl velocity(G)for variousPr (Daθ=NR= Dax=1.0)

    Finally Figs.14-17,present the influence of Prandtl number(P r)on the velocity functions and temperature field.Larger Pr values (e.g.,Pr =7,corresponds to certain water-based polymeric solutions) and are associated with a thinner thermal boundary layer thickness and more uniform temperature distributions across the boundary layer.Smaller Pr fluids(e.g.,Pr =0.1corresponds to gaseous suspensions)which possess higher thermal conductivities allow heat to diffuse away from the cone surface faster than for higher Pr fluids (low Pr fluids correspond to thicker thermal boundary layers).Pr defines the ratio of momentum diffusivity to thermal diffusivity for a given fluid implying that for lower Pr fluids,heat diffuses faster than momentum and vice versa for higher Pr fluids.For Pr =1the momentum and thermal boundary layers are of the same thickness.For Pr?1,(e.g.,10) the thermal boundary layer is embedded in the momentum boundary layer since the Prandtl number is much larger than unity and free convection effects are damped thereby contributing less to driving the fluid motion.With increasing Pr ,the tangential velocity (Fig.14) is very strongly decelerated,swirl velocity (Fig.15) is however slightly elevated owing to a re-distribution in momentum in the regime.Temperature,H ,as expected,is markedly suppressed throughout the boundary layer regime(Fig.16),with an increase in Pr .Maximum H corresponds to the lowest Pr value (0.7) since thermal conductivities are much higher for such cases.Heat transfer rates (Fig.17) are elevated in magnitude,in particular close to the cone surface with an increase in Prandtl number.Larger Prandtl number fluids therefore achieve a consistent cooling of the thermal boundary layer.

    Fig.16 Temperature (H)for various Pr (Daθ=NR= Dax=1.0)

    Fig.17 Temperature gradient(H ′)for variousPr (Daθ= NR=Dax=1.0)

    Tables 1 and 2 further show that with an increase in spin parameter,the primary skin friction (tangential velocity gradient) i.e.,(F ′)is very strongly enhanced whereas with an increase in Prandtl number it is depressed.The near the surface of rotation is forced radially outwards with a simultaneous upward flow induced tangential to the spinning body surface.The NR=(R esinj)2/Grparameter relates inertial forces to buoyancy forces.As this parameter increases the tangential momentum is boosted and this accelerates the tangential flow leading to a rise in primary skin friction.The increase in Prandtl number has the opposite effect.WhenPris larger,heat diffuses very slowly compared to the velocity (momentum).The thickness of thermal boundary layers is much lower than the velocity boundary layer.The thickening of the momentum boundary layer corresponds to a deceleration in the flow which explains the fall in primary skin friction (tangential velocity gradient) i.e.,(F ′)with larger Prandtl numbers.

    5.Conclusion

    A mathematical model has been developed for the free convection flow from a rotating cone embedded in an anisotropic Darcian highly permeable medium.The governing equations have been rendered into self-similar form with appropriate scaling transformations,subject to physically realistic boundary conditions.MAPLE quadrature numerical solutions are developed for the resulting ordinary differential boundary value problem.Validation is achieved with previous solutions[9]and a Galerkin finite element code,showing excellent agreement.Tangential and swirl velocities have been found to be generally elevated with increasing permeability functions (i.e.,Darcy parameters) owing to a corresponding reduction in the Darcian body forces.Increasing spin velocity of the cone has been shown to boost the tangential velocities but only slightly reduce the swirl velocity.Heat transfer rates are also found to be strongly affected by anisotropic Darcy numbers and the spin parameter.The present model is Newtonian.Future studies will examine non-Newtonian nanofluids[23]and will be communicated imminently.

    [1]KREITH F.Convection heat transfer in rotating systems[J].Advances in Heat Transfer,1968,5:129-251.

    [2]MAKARYTCHEV S.V.,LANGRISH T.A.G.and PRINCE R.G.H.Thickness and velocity of wavy liquid films on rotating conical surfaces[J].Chemical Engineering Science,2001,56(1):77-87.

    [3]ADACHI T.Oxygen transfer and power consumption in an aeration system using mist and circulation flow generated by a rotating cone[J].Chemical Engineering Science,2015,126:625-632.

    [4]CHAMKHA A.J.,RASHAD A.M.Unsteady heat and mass transfer by MHD mixed convection flow from a rotating vertical cone with chemical reaction and Soret and Dufour effects[J].The Canadian Journal of Chemical Engineering,2014,92(4):758-767.

    [5]OSALUSI E.,SIDE J.and HARRIS R.et al.The effect of combined viscous dissipation and Joule heating on unsteady mixed convection MHD flow on a rotating cone in a rotating fluid with variable properties in the presence of Hall and ion-slip currents[J].International Communications in Heat and Mass Transfer,2008,35(4):413-429.

    [6]NARAYANA M.,AWAD F.G.and SIBANDA P.Free magnetohydrodynamic flow and convection from a vertical spinning cone with cross-diffusion effects[J].Applied Mathematical Modelling,2013,37(5):2662-2678.

    [7]ANILKUMAR D.,ROY S.Unsteady mixed convection flow on a rotating cone in a rotating fluid[J].Applied Mathematics and Computation,2004,155(2):545-561.

    [8]RAJU S.H.,MALLIKARJUNA B.and VARMA S.V.K.Thermophoretic effect on double diffusive convective flow of a chemically reacting fluid over a rotating cone in porous Medium[J].International Journal of Scientific and Engineering Research,2015,6(1):198-204.

    [9]ECE M.C.Free convection flow about a vertical spinning cone under a magnetic field[J].Applied Mathematics and Computation,2006,179(1):231-242.

    [10]VAFAI K.Handbook of porous media[M].New York,USA:Marcel Dekker,2005.

    [11]BéG O.A.,ZUECO J.and TAKHAR H.S.et al.Transient non-linear optically-thick radiative-convective double-diffusive boundary layers in a Darcian porous medium adjacent to an impulsively started surface:Network simulation solutions[J].Communications in Nonlinear Science and Numerical Simulation,2009,14(11):3856-3866.

    [12]MCKIBBIN R.Convection and heat transfer in layered and anisotropic porous media (QUINTARD M.,TODOROVIC M.Editors.Heat and mass transfer in porous media)[M].Amsterdam,The Netherlands:Elsevier,1992,327-336.

    [13]WHITE R.E.,SUBRAMANIAN V.R.Computational methods in chemical engineering with maple[M].Berlin,Heidelberg,Germany:Spring-Verlag,2010.

    [14]BHARGAVA R.,SHARMA S.and BéG O.A.et al.Finite element study of nonlinear two-dimensional deoxygenated biomagnetic micropolar flow[J].Communications in Nonlinear Science and Numerical Simulation,2010,15(5):1210-1223.

    [15]BéG O.A.,LIK S.and ZUECO J.et al.Numerical study of magnetohydrodynamic viscous plasma flow in rotating porous media with Hall currents and inclined magnetic field influence[J].Communications in Nonlinear Science and Numerical Simulation,2010,15(2):345-359.

    [16]BéG O.A.,UDDIN M.J.and KHAN W.A.Bioconvective non-Newtonian nanofluid transport in porous media containing micro-organisms in a moving free stream[J].Journal of Mechanics in Medicine and Biology,2015,15(5):1550071.

    [17]MAKINDE O.D.,BéG O.A.and TAKHAR H.S.Magnetohydrodynamic viscous flow in a rotating porous medium cylindrical annulus with an applied radial magnetic field[J].International Journal of Applied Mathematics and Mechanics,2009,5(6):68-81.

    [18]SEMMAH A.,BéG O.A.and MAHMOUD S.R.et al.Thermal buckling properties of zigzag single-walled carbon nanotubes using a refined nonlocal model[J].Advances in materials Research,2014,3(2):77-89.

    [19]UDDIN M.J.,YUSOFF N.H.M.and BéG O.A.et al.Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation[J].Physica Scripta,2013,87(2):25401-25414.

    [20]CHUNG T.J.The finite element method in fluid flow[M].New York,USA:Wiley,1978.

    [21]BéG O.A.,RAWAT S.and ZUECO J.et al.Finite element and network electrical simulation of rotating magnetofluid flow in nonlinear porous media with inclined magnetic field and Hall currents[J].Theoretical and Applied Mechanics,2014,41(1):1-35.

    [22]BéG O.A.Numerical methods for multi-physical magnetohydrodynamics,Chapter 1 (New developments in hydrodynamics research)[M].New York,USA:Nova Science,2012,1-112.

    [23]PRASAD V.R.,GAFFAR S.A.and BéG O.A.Heat and mass transfer of a nanofluid from a horizontal cylinder to a micropolar fluid[J].Journal of The rmophysics and Heat Transfer,2014,29(1):1-13.

    10.1016/S1001-6058(16)60620-0

    (Received May 11,2015,Revised June 25,2015)

    * Biography:O.Anwar BéG (1969-),Male,Ph.D.,Professor

    M.J.UDDIN,E-mail:jashim_74@yahoo.com

    2016,28(2):184-194

    亚洲成国产人片在线观看| 婷婷色综合大香蕉| 高清黄色对白视频在线免费看| 免费观看av网站的网址| 国产一区二区三区av在线| 久久99蜜桃精品久久| 中文字幕人妻熟女乱码| 菩萨蛮人人尽说江南好唐韦庄| av网站在线播放免费| 美女xxoo啪啪120秒动态图| 日韩成人av中文字幕在线观看| 热re99久久国产66热| 老司机影院成人| 最近手机中文字幕大全| 国产欧美日韩一区二区三区在线| 亚洲精品一二三| 狠狠婷婷综合久久久久久88av| 国产 一区精品| 国产片内射在线| 精品国产国语对白av| 国产精品蜜桃在线观看| 人妻一区二区av| 男女啪啪激烈高潮av片| 伦理电影免费视频| 麻豆乱淫一区二区| 日韩精品免费视频一区二区三区| 视频在线观看一区二区三区| 丝袜人妻中文字幕| av一本久久久久| av国产精品久久久久影院| 人妻系列 视频| 日韩制服丝袜自拍偷拍| 亚洲,欧美精品.| 免费高清在线观看日韩| 两性夫妻黄色片| 亚洲av.av天堂| 伦理电影免费视频| 在线 av 中文字幕| 久久精品国产鲁丝片午夜精品| 国产xxxxx性猛交| 国产不卡av网站在线观看| 久久国产精品大桥未久av| 纵有疾风起免费观看全集完整版| 亚洲国产av新网站| 多毛熟女@视频| 国产1区2区3区精品| 国产精品熟女久久久久浪| 成人二区视频| 午夜福利一区二区在线看| 女人久久www免费人成看片| 久久99蜜桃精品久久| 爱豆传媒免费全集在线观看| 高清不卡的av网站| 最近2019中文字幕mv第一页| 午夜精品国产一区二区电影| 午夜免费男女啪啪视频观看| 国产成人精品久久久久久| 黄片无遮挡物在线观看| 免费av中文字幕在线| 男女国产视频网站| 一本大道久久a久久精品| 中文乱码字字幕精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 看十八女毛片水多多多| 91午夜精品亚洲一区二区三区| 亚洲av成人精品一二三区| 国产亚洲午夜精品一区二区久久| 嫩草影院入口| 亚洲国产成人一精品久久久| 日韩在线高清观看一区二区三区| 亚洲色图 男人天堂 中文字幕| 午夜激情久久久久久久| 卡戴珊不雅视频在线播放| 国产精品99久久99久久久不卡 | 精品一区二区免费观看| 免费av中文字幕在线| 国产免费一区二区三区四区乱码| 欧美成人精品欧美一级黄| 国产免费又黄又爽又色| 伦理电影大哥的女人| 久久久亚洲精品成人影院| 日韩不卡一区二区三区视频在线| 两个人看的免费小视频| 丰满饥渴人妻一区二区三| 精品一品国产午夜福利视频| 亚洲av电影在线进入| 最新的欧美精品一区二区| av免费在线看不卡| 久久 成人 亚洲| 最近2019中文字幕mv第一页| 丁香六月天网| 90打野战视频偷拍视频| 91国产中文字幕| 两个人看的免费小视频| 久久久久国产精品人妻一区二区| 精品国产一区二区三区四区第35| 你懂的网址亚洲精品在线观看| 91aial.com中文字幕在线观看| 国产一区亚洲一区在线观看| 精品国产国语对白av| 婷婷色av中文字幕| 日韩视频在线欧美| av.在线天堂| 免费观看a级毛片全部| 日本猛色少妇xxxxx猛交久久| 亚洲国产欧美网| 亚洲三区欧美一区| 少妇被粗大的猛进出69影院| 亚洲欧美精品自产自拍| 青草久久国产| 老汉色av国产亚洲站长工具| 2021少妇久久久久久久久久久| 精品第一国产精品| 国产精品人妻久久久影院| 欧美精品一区二区免费开放| 亚洲经典国产精华液单| 国产成人精品久久久久久| 久久久国产精品麻豆| 黄色一级大片看看| 日韩在线高清观看一区二区三区| 黄片小视频在线播放| 亚洲视频免费观看视频| 丝袜在线中文字幕| 最近2019中文字幕mv第一页| 人妻系列 视频| 高清欧美精品videossex| 久久精品夜色国产| 天天躁狠狠躁夜夜躁狠狠躁| 肉色欧美久久久久久久蜜桃| 国产成人免费观看mmmm| 2018国产大陆天天弄谢| 中文乱码字字幕精品一区二区三区| 十八禁高潮呻吟视频| 99国产精品免费福利视频| 日韩人妻精品一区2区三区| 这个男人来自地球电影免费观看 | 国产精品麻豆人妻色哟哟久久| 欧美成人午夜精品| 久久精品久久久久久久性| 晚上一个人看的免费电影| 国产一级毛片在线| 亚洲国产成人一精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产精品麻豆| 免费人妻精品一区二区三区视频| 日韩中文字幕视频在线看片| 日日爽夜夜爽网站| 侵犯人妻中文字幕一二三四区| 在线观看一区二区三区激情| 捣出白浆h1v1| 菩萨蛮人人尽说江南好唐韦庄| 成年人午夜在线观看视频| 熟女av电影| 少妇被粗大猛烈的视频| av女优亚洲男人天堂| 欧美老熟妇乱子伦牲交| 一级毛片 在线播放| 下体分泌物呈黄色| 不卡视频在线观看欧美| 日韩一本色道免费dvd| 黄色怎么调成土黄色| 在线免费观看不下载黄p国产| 丁香六月天网| 成人亚洲精品一区在线观看| 少妇人妻久久综合中文| 国产成人免费无遮挡视频| 久久久久久免费高清国产稀缺| 国产av一区二区精品久久| 国产免费福利视频在线观看| 亚洲一级一片aⅴ在线观看| 久久精品国产综合久久久| 不卡av一区二区三区| 国产爽快片一区二区三区| 国产一区二区三区综合在线观看| 熟女电影av网| 国产97色在线日韩免费| 久久国内精品自在自线图片| 黄色配什么色好看| 国产一区二区在线观看av| 一区二区三区四区激情视频| 飞空精品影院首页| 亚洲av电影在线进入| 亚洲国产av新网站| 五月天丁香电影| 国产一区有黄有色的免费视频| 精品国产乱码久久久久久男人| 美女国产视频在线观看| 久久精品久久精品一区二区三区| 日韩精品免费视频一区二区三区| 91午夜精品亚洲一区二区三区| 欧美少妇被猛烈插入视频| 下体分泌物呈黄色| 国产av一区二区精品久久| 亚洲激情五月婷婷啪啪| 国产视频首页在线观看| 亚洲欧美日韩另类电影网站| 赤兔流量卡办理| 熟女电影av网| 久久99精品国语久久久| 久久久精品国产亚洲av高清涩受| 国产欧美日韩综合在线一区二区| 最新中文字幕久久久久| 18禁裸乳无遮挡动漫免费视频| 国产成人精品婷婷| 成人影院久久| 美女福利国产在线| 亚洲精品国产av成人精品| 麻豆乱淫一区二区| 婷婷成人精品国产| 在线观看人妻少妇| 日韩欧美一区视频在线观看| 久久精品熟女亚洲av麻豆精品| 欧美黄色片欧美黄色片| 国产一区二区激情短视频 | 久久亚洲国产成人精品v| 国产一区二区激情短视频 | 在线观看国产h片| 国产黄色视频一区二区在线观看| 欧美av亚洲av综合av国产av | 人人妻人人澡人人爽人人夜夜| av网站在线播放免费| 久久久久久人人人人人| 国产一区二区 视频在线| 日韩伦理黄色片| 成人影院久久| 五月天丁香电影| 人妻少妇偷人精品九色| 精品99又大又爽又粗少妇毛片| 日本黄色日本黄色录像| 精品一区二区三区四区五区乱码 | 国产精品免费视频内射| 最黄视频免费看| 日日摸夜夜添夜夜爱| 国产爽快片一区二区三区| 免费高清在线观看日韩| 夫妻午夜视频| 国产精品久久久久久精品古装| 老汉色av国产亚洲站长工具| 亚洲av中文av极速乱| 两个人看的免费小视频| 蜜桃国产av成人99| 熟女电影av网| 久久ye,这里只有精品| 三级国产精品片| 亚洲久久久国产精品| 观看av在线不卡| 啦啦啦视频在线资源免费观看| 9热在线视频观看99| 亚洲综合精品二区| 久久热在线av| 精品久久久精品久久久| www日本在线高清视频| 2021少妇久久久久久久久久久| 久久久精品区二区三区| 在线观看人妻少妇| 伦精品一区二区三区| www.av在线官网国产| 制服丝袜香蕉在线| 视频区图区小说| 久久久久国产一级毛片高清牌| 黑人欧美特级aaaaaa片| 亚洲av免费高清在线观看| 色婷婷久久久亚洲欧美| 人妻 亚洲 视频| 日韩av不卡免费在线播放| 中文欧美无线码| 啦啦啦在线免费观看视频4| 国产深夜福利视频在线观看| 国产成人精品久久二区二区91 | 秋霞在线观看毛片| 日韩,欧美,国产一区二区三区| 少妇人妻 视频| 亚洲情色 制服丝袜| 热re99久久精品国产66热6| 午夜福利在线免费观看网站| 啦啦啦在线观看免费高清www| 少妇熟女欧美另类| 日韩熟女老妇一区二区性免费视频| 亚洲精品乱久久久久久| 精品国产超薄肉色丝袜足j| 精品少妇黑人巨大在线播放| 日韩人妻精品一区2区三区| 综合色丁香网| 涩涩av久久男人的天堂| 日韩一本色道免费dvd| 亚洲精品久久午夜乱码| 日本91视频免费播放| 男女免费视频国产| 国产日韩一区二区三区精品不卡| 18禁观看日本| 伦精品一区二区三区| 色婷婷av一区二区三区视频| 一级a爱视频在线免费观看| 欧美人与善性xxx| 亚洲欧美成人综合另类久久久| 国产精品熟女久久久久浪| 国产淫语在线视频| 最新中文字幕久久久久| 亚洲综合精品二区| 日韩欧美一区视频在线观看| 国产国语露脸激情在线看| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三区在线| 久久久亚洲精品成人影院| 国产亚洲欧美精品永久| 一二三四中文在线观看免费高清| 秋霞伦理黄片| av免费观看日本| 亚洲国产最新在线播放| 久久精品熟女亚洲av麻豆精品| 国产精品偷伦视频观看了| 日日爽夜夜爽网站| 亚洲中文av在线| 亚洲精品久久午夜乱码| 人妻少妇偷人精品九色| 欧美 日韩 精品 国产| 午夜日本视频在线| 最近2019中文字幕mv第一页| 日韩av不卡免费在线播放| 国产精品熟女久久久久浪| 人体艺术视频欧美日本| videossex国产| 伦理电影大哥的女人| 日本av手机在线免费观看| av视频免费观看在线观看| 大片电影免费在线观看免费| 国产成人精品一,二区| 久久久精品国产亚洲av高清涩受| 亚洲精品国产av蜜桃| 黄片无遮挡物在线观看| 成人二区视频| 中文字幕人妻熟女乱码| 国产爽快片一区二区三区| 一级,二级,三级黄色视频| 国产一区亚洲一区在线观看| 精品国产乱码久久久久久小说| 亚洲国产欧美网| 久久这里有精品视频免费| 日本av免费视频播放| 亚洲国产欧美网| 亚洲国产看品久久| 亚洲精品自拍成人| 国产成人a∨麻豆精品| 欧美av亚洲av综合av国产av | 国产高清不卡午夜福利| 国产精品免费大片| 成人二区视频| 久久99一区二区三区| 中国国产av一级| 国产在线一区二区三区精| 男的添女的下面高潮视频| 黄片播放在线免费| av在线老鸭窝| 亚洲熟女精品中文字幕| 美女国产高潮福利片在线看| 免费大片黄手机在线观看| 免费av中文字幕在线| 天堂俺去俺来也www色官网| 天堂中文最新版在线下载| 咕卡用的链子| 国产熟女欧美一区二区| 我要看黄色一级片免费的| 欧美日韩综合久久久久久| 嫩草影院入口| 99国产综合亚洲精品| 午夜老司机福利剧场| 色网站视频免费| 亚洲欧美一区二区三区久久| 夫妻性生交免费视频一级片| 一本大道久久a久久精品| 肉色欧美久久久久久久蜜桃| 亚洲精品日本国产第一区| 亚洲av日韩在线播放| 在线 av 中文字幕| 1024视频免费在线观看| 精品国产超薄肉色丝袜足j| 中文欧美无线码| 妹子高潮喷水视频| 一区在线观看完整版| 亚洲av综合色区一区| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影小说| 天天影视国产精品| tube8黄色片| 午夜日本视频在线| 日韩欧美精品免费久久| 秋霞伦理黄片| 成人国产麻豆网| 欧美精品亚洲一区二区| 美女高潮到喷水免费观看| 久久久久视频综合| 国产成人欧美| 亚洲激情五月婷婷啪啪| 天天躁日日躁夜夜躁夜夜| 亚洲欧美成人精品一区二区| 精品一区二区三区四区五区乱码 | 岛国毛片在线播放| 亚洲内射少妇av| 免费黄网站久久成人精品| 视频在线观看一区二区三区| 成人二区视频| 久久这里只有精品19| 高清在线视频一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 美女午夜性视频免费| 欧美精品国产亚洲| 国产av一区二区精品久久| 国产精品一区二区在线不卡| 99re6热这里在线精品视频| 日本爱情动作片www.在线观看| 国产在线视频一区二区| 久久精品国产综合久久久| av.在线天堂| a级毛片黄视频| 伊人亚洲综合成人网| 老司机亚洲免费影院| 国产女主播在线喷水免费视频网站| 亚洲欧美一区二区三区国产| 国产精品偷伦视频观看了| 女的被弄到高潮叫床怎么办| 亚洲国产av新网站| 男人添女人高潮全过程视频| 男女国产视频网站| 在线精品无人区一区二区三| 亚洲婷婷狠狠爱综合网| 亚洲欧美一区二区三区黑人 | 日本色播在线视频| 免费黄网站久久成人精品| 七月丁香在线播放| 国产淫语在线视频| 青青草视频在线视频观看| 老汉色av国产亚洲站长工具| 欧美日韩国产mv在线观看视频| 国产精品av久久久久免费| 99九九在线精品视频| 亚洲欧美一区二区三区黑人 | 日韩精品有码人妻一区| 亚洲美女视频黄频| 日韩不卡一区二区三区视频在线| 亚洲精品第二区| 精品国产露脸久久av麻豆| 国产1区2区3区精品| 国产色婷婷99| 国产麻豆69| 成人二区视频| 最新的欧美精品一区二区| 亚洲一区中文字幕在线| 国产成人精品在线电影| xxxhd国产人妻xxx| 人人妻人人爽人人添夜夜欢视频| 大码成人一级视频| 久久精品国产亚洲av天美| 国产精品一国产av| 美女国产高潮福利片在线看| 国产av精品麻豆| 高清不卡的av网站| 亚洲欧美成人精品一区二区| 在线观看三级黄色| 亚洲少妇的诱惑av| 99香蕉大伊视频| 国产无遮挡羞羞视频在线观看| 日韩一本色道免费dvd| 国产老妇伦熟女老妇高清| 大陆偷拍与自拍| 卡戴珊不雅视频在线播放| 久久久久精品人妻al黑| 丰满迷人的少妇在线观看| 在线观看免费视频网站a站| 一本色道久久久久久精品综合| 18禁观看日本| 久久精品国产自在天天线| 蜜桃国产av成人99| 国产黄频视频在线观看| 麻豆乱淫一区二区| 日韩av不卡免费在线播放| 久久久久精品性色| 国产成人精品久久二区二区91 | 免费不卡的大黄色大毛片视频在线观看| 亚洲图色成人| 亚洲人成电影观看| 成人国语在线视频| 自线自在国产av| 国产精品无大码| 国产精品国产三级国产专区5o| 亚洲美女黄色视频免费看| 亚洲国产成人一精品久久久| 亚洲美女视频黄频| 精品亚洲乱码少妇综合久久| 色吧在线观看| 亚洲图色成人| 女人精品久久久久毛片| 精品亚洲成国产av| av又黄又爽大尺度在线免费看| 精品一区二区三卡| 又粗又硬又长又爽又黄的视频| 成人午夜精彩视频在线观看| 国产人伦9x9x在线观看 | 日日撸夜夜添| av线在线观看网站| 婷婷色综合大香蕉| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人看| 熟妇人妻不卡中文字幕| 26uuu在线亚洲综合色| 欧美 日韩 精品 国产| 99热国产这里只有精品6| 免费黄网站久久成人精品| 一区二区av电影网| av线在线观看网站| 亚洲综合色惰| 久久热在线av| 国产精品国产av在线观看| 黑人猛操日本美女一级片| 亚洲国产看品久久| 一区在线观看完整版| 国产1区2区3区精品| 欧美最新免费一区二区三区| 日韩欧美精品免费久久| 制服丝袜香蕉在线| 一二三四在线观看免费中文在| 免费人妻精品一区二区三区视频| 韩国高清视频一区二区三区| 日本av免费视频播放| 国产爽快片一区二区三区| 香蕉丝袜av| av女优亚洲男人天堂| 亚洲精品视频女| 韩国av在线不卡| 欧美日韩视频精品一区| 九九爱精品视频在线观看| 26uuu在线亚洲综合色| 精品人妻一区二区三区麻豆| 又粗又硬又长又爽又黄的视频| 国产不卡av网站在线观看| 久久久久久久精品精品| 亚洲成人av在线免费| 又黄又粗又硬又大视频| 男女边摸边吃奶| 在线观看www视频免费| 欧美bdsm另类| 99久久人妻综合| av免费在线看不卡| 国产xxxxx性猛交| 欧美中文综合在线视频| 亚洲,欧美精品.| 欧美日韩视频高清一区二区三区二| 中文字幕人妻丝袜一区二区 | 日本vs欧美在线观看视频| 国产成人精品一,二区| 伦理电影免费视频| 在线天堂中文资源库| 黄色毛片三级朝国网站| 亚洲成色77777| 日韩欧美精品免费久久| 国产高清不卡午夜福利| 欧美日韩国产mv在线观看视频| 99精国产麻豆久久婷婷| av不卡在线播放| 亚洲欧美一区二区三区黑人 | 亚洲激情五月婷婷啪啪| 三级国产精品片| 中文欧美无线码| 亚洲精品第二区| 亚洲精品日韩在线中文字幕| 一二三四在线观看免费中文在| 纵有疾风起免费观看全集完整版| 亚洲四区av| 久久免费观看电影| 亚洲精品在线美女| 免费观看a级毛片全部| 国产深夜福利视频在线观看| 成人国语在线视频| 亚洲精品国产av蜜桃| 青草久久国产| 久久久久久人人人人人| 亚洲国产av新网站| 晚上一个人看的免费电影| 日产精品乱码卡一卡2卡三| 亚洲国产欧美日韩在线播放| 国产一区二区在线观看av| 亚洲欧美色中文字幕在线| 欧美另类一区| 亚洲成av片中文字幕在线观看 | 日本黄色日本黄色录像| 午夜激情av网站| 色婷婷av一区二区三区视频| 中文字幕人妻丝袜一区二区 | 国产午夜精品一二区理论片| videossex国产| 香蕉国产在线看| 成年女人在线观看亚洲视频| 男男h啪啪无遮挡| 大香蕉久久成人网| 青春草视频在线免费观看| 嫩草影院入口| 青草久久国产| 一区福利在线观看| 精品少妇内射三级| 亚洲人成电影观看| 精品一区二区三卡| 国产免费一区二区三区四区乱码| 欧美日韩成人在线一区二区| 精品国产一区二区三区四区第35| 午夜日韩欧美国产| 免费高清在线观看视频在线观看| 国产xxxxx性猛交| 王馨瑶露胸无遮挡在线观看| 午夜av观看不卡| 午夜福利一区二区在线看| 又黄又粗又硬又大视频| 国产欧美日韩综合在线一区二区| 亚洲欧美成人精品一区二区| 成年人午夜在线观看视频| 极品人妻少妇av视频| 精品人妻熟女毛片av久久网站|