張 霄,胡曉丹,仲建鋒,武愛華,徐重新,劉 媛,張存政,謝雅晶,劉賢金
?
小菜蛾堿性磷酸酯酶受體表達(dá)與分子模擬
張 霄,胡曉丹,仲建鋒,武愛華,徐重新,劉 媛,張存政,謝雅晶,劉賢金
(江蘇省農(nóng)業(yè)科學(xué)院食品質(zhì)量安全與檢測(cè)研究所/江蘇省食品質(zhì)量安全重點(diǎn)實(shí)驗(yàn)室-省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地/農(nóng)業(yè)部農(nóng)產(chǎn)品質(zhì)量安全 控制技術(shù)與標(biāo)準(zhǔn)重點(diǎn)實(shí)驗(yàn)室,南京 210014)
【目的】利用原核表達(dá)小菜蛾()中腸膜結(jié)合堿性磷酸酯酶(membrane-bound alkaline phosphatase, mALP)并經(jīng)Ligand blot驗(yàn)證其具有與Cry1Ac毒素結(jié)合的能力;通過同源建模和分子對(duì)接研究Cry1Ac-mALP的結(jié)合模式,預(yù)測(cè)毒素和受體結(jié)合區(qū)域及關(guān)鍵氨基酸位點(diǎn)(熱點(diǎn)殘基),為了解毒素-受體互作機(jī)制及分子改造增強(qiáng)Cry毒素活性的研究打下基礎(chǔ)?!痉椒ā酷槍?duì)小菜蛾mALP全長設(shè)計(jì)引物,并以小菜蛾cDNA為模板擴(kuò)增mALP基因,雙酶切后用T4連接酶連接至pET-26b原核表達(dá)載體,將構(gòu)建的pET-26b-mALP載體轉(zhuǎn)化Trans1-T1克隆感受態(tài),挑取克隆并提取質(zhì)粒后進(jìn)行PCR、雙酶切和測(cè)序驗(yàn)證,將驗(yàn)證無誤的重組質(zhì)粒轉(zhuǎn)化BL21(DE3)表達(dá)感受態(tài)細(xì)胞,進(jìn)行誘導(dǎo)表達(dá)。將誘導(dǎo)表達(dá)后的mALP轉(zhuǎn)至PVDF膜上,通過Western blot和Ligand blot分別驗(yàn)證mALP是否成功表達(dá)以及是否具有與Cry1Ac毒素結(jié)合的能力。對(duì)mALP進(jìn)行同源建模、分子動(dòng)力學(xué)模擬以及模型評(píng)價(jià),獲得的mALP最佳三維結(jié)構(gòu)與Cry1Ac毒素利用PatchDOCK和FireDock程序進(jìn)行分子對(duì)接試驗(yàn),對(duì)確定的最佳毒素-受體復(fù)合物進(jìn)行結(jié)合區(qū)域和結(jié)合氨基酸位點(diǎn)分析,并通過計(jì)算機(jī)輔助的丙氨酸突變掃描試驗(yàn)確定毒素和受體參與的關(guān)鍵氨基酸殘基?!窘Y(jié)果】 擴(kuò)增出小菜蛾mALP基因并克隆至pET-26b原核表達(dá)載體,轉(zhuǎn)化BL21(DE3)表達(dá)感受態(tài)后挑取陽性克隆提取質(zhì)粒后進(jìn)行PCR、雙酶切和測(cè)序均顯示構(gòu)建正確。通過原核表達(dá)和Western blot驗(yàn)證成功表達(dá)了mALP蛋白,并經(jīng)Ligand blot試驗(yàn)證實(shí)了原核表達(dá)的mALP具有和Cry1Ac毒素結(jié)合的能力。利用同源建模成功獲得了mALP的三維結(jié)構(gòu),通過PatchDOCK和FireDock分子對(duì)接程序,獲得毒素和受體的對(duì)接復(fù)合物,通過溶劑可及表面積變化計(jì)算和Ligplot分析,確定毒素結(jié)構(gòu)域II和結(jié)構(gòu)域III均參與了受體結(jié)合,并且毒素和受體均以疏水結(jié)合和氫鍵結(jié)合模式參與結(jié)合,最后通過熱點(diǎn)殘基預(yù)測(cè)發(fā)現(xiàn)Cry1Ac毒素和mALP中分別有3個(gè)氨基酸殘基(376Asn、443Ser和486Ser)和4個(gè)氨基酸殘基(452Arg、499Thr、502Tyr和513Tyr)是參與互作的關(guān)鍵氨基酸位點(diǎn)?!窘Y(jié)論】經(jīng)原核表達(dá)的小菜蛾mALP同樣具有與Cry1Ac毒素結(jié)合的能力,并利用分子模擬技術(shù)預(yù)測(cè)了小菜蛾mALP三維結(jié)構(gòu)及與Cry1Ac毒素結(jié)合模式。
堿性磷酸酯酶;原核表達(dá);配體印跡;同源建模; 分子對(duì)接;熱點(diǎn)殘基預(yù)測(cè)
【研究意義】蘇云金芽孢桿菌(,Bt)可在其生命周期中產(chǎn)生一種專一性極強(qiáng)的晶體毒素(crystal toxin,Cry toxin),導(dǎo)致昆蟲腸道細(xì)胞溶解或引發(fā)細(xì)胞凋亡程序,從而殺死昆蟲[1-3]。Cry1Ac毒素作為應(yīng)用最為廣泛的一類微生物殺蟲蛋白,在防治大量田間害蟲中已取得巨大成效[4-5]。然而,Cry毒素的抗藥性問題已成為世界級(jí)難題,尤其是小菜蛾()被認(rèn)為是田間抗藥性最嚴(yán)重和最難防治的世界性害蟲之一[6-8]。目前認(rèn)為受體的變異或缺失導(dǎo)致毒素結(jié)合能力的改變是抗性產(chǎn)生的最主要原因[9-11]。因此研究毒素-受體結(jié)合模式對(duì)改善抗性問題顯得尤為重要,分子模擬正是針對(duì)這一問題而提出的理性解決方法[12-13]?!厩叭搜芯窟M(jìn)展】堿性磷酸酯酶(alkaline phosphatase,ALP)作為Cry毒素在害蟲體內(nèi)的靶標(biāo)受體之一[1-3],已有很多研究顯示ALP受體與害蟲抗性密切相關(guān)。Jurat-Fuentes等[14]比較分析了敏感性和抗性煙芽夜蛾()幼蟲中ALP與Cry1Ac的結(jié)合特征,推測(cè)ALP為使其產(chǎn)生抗性的重要因素;Jurat-Fuentes等[15]利用逆轉(zhuǎn)錄定量PCR(qRT-PCR)發(fā)現(xiàn)多種鱗翅目靶標(biāo)昆蟲中腸膜結(jié)合堿性磷酸酯酶(membrane- bound alkaline phosphatase,mALP)的表達(dá)量下調(diào)是導(dǎo)致其產(chǎn)生抗性的重要因素;Chen等[16]報(bào)道了敏感性和抗性棉鈴蟲ALP受體上影響與Cry毒素結(jié)合區(qū)域(toxin-binding region,TBR),首次發(fā)現(xiàn)棉鈴蟲ALP受體TBR區(qū)域?qū)ry毒素活性發(fā)揮的作用。小菜蛾是田間最早報(bào)道對(duì)Cry1Ac毒素產(chǎn)生抗性的昆蟲,因而其抗性問題也一直是本領(lǐng)域的研究熱點(diǎn)[17-19]。Yang等[20]分別對(duì)敏感性和抗性小菜蛾的堿性磷酸酯酶以及其他潛在受體分別進(jìn)行表達(dá)和生物學(xué)研究,為小菜蛾抗性治理提供了指導(dǎo);劉潔等[21]克隆小菜蛾抗性、敏感種群中的部分堿性磷酸酶基因,通過與敏感種群相比發(fā)現(xiàn)抗性種群中該基因片段發(fā)生基因突變,該結(jié)果對(duì)于進(jìn)一步研究小菜蛾全基因結(jié)構(gòu)、功能有重要意義;近期Guo等[22]報(bào)道并證實(shí)了小菜蛾mALP可被MAPK(絲裂原活化蛋白激酶)信號(hào)途徑反式調(diào)控從而導(dǎo)致小菜蛾對(duì)Cry毒素的高抗性。在眾多研究毒素-受體結(jié)合模式的方法中,利用分子模擬(同源建模和分子對(duì)接)研究,在已知毒素和受體可以發(fā)生結(jié)合的情況下,正確預(yù)測(cè)復(fù)合物的結(jié)合模式是一種極為有效的途徑[23-24],Shan等[25]利用同源建模構(gòu)建了棉鈴蟲的ALP三維模型并通過生物信息學(xué)在線網(wǎng)站對(duì)ALP受體功能進(jìn)行了理論研究?!颈狙芯壳腥朦c(diǎn)】利用分子模擬研究Cry1Ac和小菜蛾mALP的結(jié)合模式還未見報(bào)道?!緮M解決的關(guān)鍵問題】原核表達(dá)具有Cry1Ac毒素結(jié)合活性的mALP受體,用于體外進(jìn)行與毒素模擬物的結(jié)合分析,并利用分子模擬研究毒素和受體互作模式以及參與互作的關(guān)鍵氨基酸位點(diǎn),進(jìn)一步了解Cry毒素與mALP的互作機(jī)制,為利用分子改造提升Cry毒素與受體結(jié)合能力以增強(qiáng)Cry毒素活性的研究提供新的研究思路和技術(shù)途徑。
試驗(yàn)于2015年12月至2016年7月在江蘇省農(nóng)業(yè)科學(xué)院食品質(zhì)量安全與檢測(cè)研究所完成。
1.1 材料
1.1.1 供試?yán)ハx、表達(dá)載體及菌株 小菜蛾( 4齡幼蟲)由筆者實(shí)驗(yàn)室于室內(nèi)飼養(yǎng)多年,期間未施任何殺蟲劑;表達(dá)載體pET-26b(+)購于Novagen公司;Trans1-T1、BL21(DE3)感受態(tài)細(xì)胞購自北京全式金生物技術(shù)有限公司。
1.1.2 試驗(yàn)試劑 Trizol和Super script III反轉(zhuǎn)錄試劑盒購自Invitrogen公司;Fast Pfu DNA聚合酶購自近岸蛋白質(zhì)科技有限公司;卡那霉素和IPTG購自Sigma公司;PCR純化試劑盒購自Promega公司;膠回收試劑和質(zhì)粒提取試劑盒購自Axygen公司;I、I內(nèi)切酶、T4 DNA連接酶購自美國NEB公司;HRP標(biāo)記Anti His-Tag鼠單抗、HRP-羊抗兔IgG購自GE Healthcare公司;蛋白Marker購自Thermo公司;增強(qiáng)型HRP-DAB底物顯色試劑盒購自天根生化科技(北京)有限公司;PVDF膜購自BIOSHRP;其他試劑均為分析純級(jí)試劑。
1.2 方法
1.2.1 小菜蛾mALP基因擴(kuò)增 將小菜蛾4齡幼蟲置冰上冷凍,從其尾部拉取中腸,用0.5%的生理鹽水清洗干凈,放入勻漿器中,利用Trizol法提取總RNA,用反轉(zhuǎn)錄試劑盒將RNA反轉(zhuǎn)錄為cDNA第一鏈(按說明書方法)。根據(jù)Genbank公布的小菜蛾mALP基因序列(登錄號(hào):GenBank KC841472.2)設(shè)計(jì)全長引物。上游引物mALP-F:5′-CATGCCTCTC GCGTGGCGCGCCAGGTATC-3′(下劃線為I酶切位點(diǎn),CATG:保護(hù)堿基,CC:防止移碼所加堿基);下游引物mALP-R:5′-AATTAATAAGC GTCTCAGATACG-3′(下劃線為I酶切位點(diǎn),AAT:保護(hù)堿基)。PCR擴(kuò)增條件:95℃預(yù)變性2 min;94℃變性30 s,57℃退火30 s,72℃延伸1 min,共30個(gè)循環(huán);最后72℃終延伸10 min,4℃保存。擴(kuò)增產(chǎn)物經(jīng)1.0%瓊脂糖凝膠電泳后,PCR產(chǎn)物純化試劑盒純化目的片段。
1.2.2 重組質(zhì)粒pET-26b-mALP的構(gòu)建及鑒定 純化后的mALP基因片段和提取的pET-26b表達(dá)載體,同時(shí)進(jìn)行Ⅰ和Ⅰ限制性內(nèi)切酶酶切,純化回收酶切產(chǎn)物,經(jīng)T4連接酶連接過夜,次日轉(zhuǎn)化至Trans1- T1感受態(tài)細(xì)胞并涂布于含50 μg·mL-1卡那霉素的LB平板上進(jìn)行陽性轉(zhuǎn)化子篩選,挑取陽性克隆過夜培養(yǎng)后提取質(zhì)粒進(jìn)行PCR鑒定、雙酶切鑒定及序列測(cè)定(由上海生工生物工程公司完成),并將測(cè)序結(jié)果提交至GenBank進(jìn)行序列同源性比對(duì)。
1.2.3 pET-26b-mALP在BL21(DE3)中的誘導(dǎo)表達(dá)和Ligand blot試驗(yàn)鑒定將pET-26b-mALP重組質(zhì)粒轉(zhuǎn)化至BL21(DE3)。挑取陽性克隆,經(jīng)測(cè)序及雙酶切驗(yàn)證后接種于含50 μg·mL-1卡那霉素的LB培養(yǎng)基中過夜培養(yǎng),以pET-26b空載作為對(duì)照。次日按1%比例轉(zhuǎn)接于含0.5%葡萄糖和50 μg·mL-1卡那霉素的LB培養(yǎng)基中,37℃,250 r/min振蕩培養(yǎng)至OD600約為0.6—0.8,加入終濃度為0.5 mmol·L-1IPTG,25℃誘導(dǎo)表達(dá)16 h,過夜誘導(dǎo)表達(dá)產(chǎn)物與變性上樣緩沖液混勻煮沸后經(jīng)SDS-PAGE電泳分離后,用濕轉(zhuǎn)法將蛋白轉(zhuǎn)移至PVDF膜上,5% MPBS(含5%脫脂奶粉的PBS)室溫封閉過夜,用PBST(含0.5%吐溫-20的PBS)洗膜3次每次10 min,加入HRP標(biāo)記的Anti His-Tag鼠單抗(1﹕3 000)作為二抗,室溫孵育2 h后洗膜,用增強(qiáng)型HRP-DAB底物顯色試劑盒顯色,檢測(cè)目的蛋白的表達(dá)。Ligand blot前期步驟均與Western blot一致,并增加pET26b空載誘導(dǎo)產(chǎn)物對(duì)照和mALP轉(zhuǎn)膜后不與Cry毒素孵育對(duì)照,排除非特異性和假陽性。過夜封閉洗膜后,加入Cry1Ac毒素孵育2 h后洗膜,加入親和純化后的兔抗Cry1Ac多抗(筆者實(shí)驗(yàn)室自己制備)孵育2 h后洗膜,加入HRP-羊抗兔IgG(1﹕3 000)孵育2 h后洗膜,增強(qiáng)型HRP-DAB底物顯色試劑盒顯色,檢測(cè)目的蛋白是否具有與Cry1Ac毒素結(jié)合能力。
1.2.4 小菜蛾mALP同源建模及模型評(píng)價(jià) 將本研究獲得的mALP基因翻譯后的氨基酸序列作為目標(biāo)蛋白,用BLAST中的blastp suite對(duì)PDB蛋白結(jié)構(gòu)數(shù)據(jù)庫(http://blast.ncbi.nlm.nih.gov/Blast.cgi)分別進(jìn)行多序列同源性搜索,取同源性最高的晶體結(jié)構(gòu)(PDB ID:1K7H)作為同源建模模板,同步將蛋白序列提交至I-TASSER進(jìn)行建模。Cry1Ac在PDB數(shù)據(jù)庫中已有晶體結(jié)構(gòu)(PDB ID:4ARY),可直接下載其pdb文件。利用Swiss-Model(http://swissmodel. expasy.org/)和I-TASSER(http://zhanglab.ccmb.med.umich.edu/I- TASSER/),分別預(yù)測(cè)mALP的三維結(jié)構(gòu)。將模型能量最小化后,采用OpenMM Zephyr程序?qū)ζ溥M(jìn)行分子動(dòng)力學(xué)模擬。最終將獲得的模型結(jié)構(gòu)采用生物信息學(xué)在線網(wǎng)站http://services.mbi.ucla.edu/SAVES/中的PROCHECK、ERRAT以及Verify3D模塊進(jìn)行評(píng)估,檢測(cè)其合理性,比較分析后選取最佳mALP三維模型進(jìn)行后續(xù)研究。
1.2.5 小菜蛾mALP與Cry1Ac分子對(duì)接 將Cry1Ac和mALP的pdb文件利用PatchDOCK對(duì)接程序分析(http://bioinfo3d.cs.tau.ac.il/PatchDock/),得到200個(gè)對(duì)接復(fù)合物,進(jìn)一步利用其FireDock的refine模塊,獲得綜合打分排序的復(fù)合物,同樣進(jìn)行能量最小化和分子動(dòng)力學(xué)模擬驗(yàn)證。驗(yàn)證后的對(duì)接復(fù)合物進(jìn)行ASA計(jì)算,分析毒素和受體參與結(jié)合的區(qū)域;并進(jìn)一步通過Ligplot分析毒素和受體結(jié)合區(qū)域中參與互作的氨基酸位點(diǎn)。
1.2.6 關(guān)鍵氨基酸位點(diǎn)預(yù)測(cè) 利用DrugscorePPI在線服務(wù)(http://cpclab.uni-duesseldorf.de/dsppi/main.php),提交毒素-受體對(duì)接復(fù)合物pdb文件,基于丙氨酸掃描突變,計(jì)算出突變前后結(jié)合自由能的變化值,當(dāng)結(jié)合自由能的變化值>2 kJ·mol-1時(shí)被認(rèn)為是關(guān)鍵氨基酸位點(diǎn),通過計(jì)算分別預(yù)測(cè)出毒素和受體參與結(jié)合的關(guān)鍵氨基酸位點(diǎn)。
2.1 小菜蛾mALP基因擴(kuò)增
提取小菜蛾4齡幼蟲中腸總RNA,利用反轉(zhuǎn)錄試劑盒成功制備cDNA。通過針對(duì)mALP全長設(shè)計(jì)的引物,PCR擴(kuò)增獲得了大小約為1 655 bp的條帶,與預(yù)期大小一致(圖1)。
M:DNA Marker;1:mALP 基因PCR擴(kuò)增產(chǎn)物 PCR product of mALP gene
2.2 重組質(zhì)粒pET-26b-mALP的構(gòu)建及鑒定
將純化后的PCR產(chǎn)物連接至pET-26b載體中,經(jīng)PCR驗(yàn)證條帶大小與預(yù)期大小一致(約1 700 bp)(圖2-A),經(jīng)Ⅰ和Ⅰ酶切得到mALP片段(圖2-B),并對(duì)其序列進(jìn)行測(cè)定。序列分析結(jié)果表明該小菜蛾mALP基因編碼區(qū)序列為1 632 bp,編碼567個(gè)氨基酸,理論預(yù)測(cè)分子量約為62 kD。經(jīng)NCBI網(wǎng)站Blastp搜索比對(duì)后發(fā)現(xiàn)與已公布的小菜蛾mALP序列一致性為99%(僅有6個(gè)氨基酸存在差異)(圖2-C)。說明pET-26b-mALP載體構(gòu)建成功。
2.3 pET-26b-mALP在BL21中的誘導(dǎo)表達(dá)和Ligand blot鑒定
將鑒定無誤的陽性克隆在25℃,轉(zhuǎn)速220 r/min,終濃度為0.5 mmol·L-1IPTG條件下,誘導(dǎo)培養(yǎng)16 h進(jìn)行表達(dá)。經(jīng)SDS-PAGE電泳發(fā)現(xiàn),全菌液在預(yù)期大小處出現(xiàn)明顯的特異性蛋白條帶(62 kD)并經(jīng)Western blot證實(shí)了成功表達(dá)出小菜蛾mALP蛋白(圖3-A、3-B),Ligand blot試驗(yàn)則進(jìn)一步證實(shí)了通過原核表達(dá)的mALP具有與Cry1Ac體外結(jié)合的能力(圖3-C)。
2.4 小菜蛾mALP同源建模及模型評(píng)價(jià)
通過SWISS-MODEL和I-TASSER,分別構(gòu)建了mALP的三維結(jié)構(gòu)模型、能量最小化和分子動(dòng)力學(xué)模擬后,利用在線模型評(píng)價(jià)方法對(duì)其三維結(jié)構(gòu)進(jìn)行評(píng)價(jià)比較分析,結(jié)果發(fā)現(xiàn)I-TASSER方法構(gòu)建的mALP三維結(jié)構(gòu)最佳(圖4-A)。mALP的三維結(jié)構(gòu)以及與模板的RMSD值為0.24(圖4-B);經(jīng)分子動(dòng)力學(xué)模擬,模型構(gòu)像趨于穩(wěn)定后(圖4-C)進(jìn)行模型評(píng)價(jià),結(jié)果表明構(gòu)建的模型各項(xiàng)參數(shù)指標(biāo)(表1)均顯示模型是合理可信的,可用于后續(xù)分子對(duì)接試驗(yàn)。
M:DNA Marker。A:1:重組質(zhì)粒PCR產(chǎn)物 PCR product amplified by pET-26b-mALP recombinant plasmid;B:1:pET-26b-mALP重組質(zhì)粒 pET-26b-mALP recombinant plasmid;2:重組質(zhì)粒雙酶切產(chǎn)物 Recombinant plasmid digested production by NcoⅠand NotⅠ;C: 本研究mALP(Query)與公布的小菜蛾mALP(Sbjet)序列比對(duì)Amino acid sequence alignment between mALP in this study (Query) and mALP in GenBank (GenBank ID: KC841472.2) (Sbjet)
M:蛋白Marker Protein Marker。A、B: 1:pET-26b空載 Empty pET-26b vector;2:誘導(dǎo)表達(dá)mALP Expression of mALP after IPTG induction; C:1、2:pET-26b 空載和誘導(dǎo)表達(dá)mALP與Cry1Ac毒素和抗體孵育 Expression productions of empty pET-26b vector and mALP were incubated with Cry toxin and anti-Cry toxin antibody;3:誘導(dǎo)表達(dá)mALP與CBS緩沖液和抗體孵育 Expression of mALP were incubated with CBS buffer and anti-Cry toxin antibody
圖4 mALP三維結(jié)構(gòu)(A)、與模板(紅色)結(jié)構(gòu)比對(duì)(B)、分子動(dòng)力學(xué)模擬-RMSD值(C)及拉氏圖分析(D)
表1 模型評(píng)價(jià)
2.5 小菜蛾mALP與Cry1Ac分子對(duì)接
利用PatchDOCK對(duì)接程序分析,得到200個(gè)對(duì)接復(fù)合物,進(jìn)一步利用其FireDock的refine模塊,獲得綜合打分排序的復(fù)合物,同樣經(jīng)過能量最小化和分子動(dòng)力學(xué)模擬,最終確定最佳的對(duì)接復(fù)合物(圖5-A)。通過溶劑可及表面積變化值(solvent accessible surface areas,ASA)計(jì)算分析發(fā)現(xiàn)Cry1Ac毒素Domain II和Domain III的ASA值分別為823 ?2和622 ?2,對(duì)結(jié)合受體的貢獻(xiàn)相對(duì)最重要,其中Loop環(huán)2的ASA值為586 ?2,受體中參與結(jié)合的氨基酸總的ASA變化值為1186 ?2(表2)。進(jìn)一步利用Ligplot分析發(fā)現(xiàn)毒素和受體分別都有6個(gè)氨基酸殘基參與互作,并且都有大量的氨基酸殘基以疏水形式參與結(jié)合(圖5-B)。
表2 溶劑可及表面積變化值計(jì)算
B:形成氫鍵氨基酸中紅色氨基酸字母與數(shù)字代表Cry1Ac毒素,綠色氨基酸字母與數(shù)字代表mALP受體;形成疏水性氨基酸中藍(lán)色氨基酸字母與數(shù)字代表Cry1Ac毒素,黑色氨基酸字母與數(shù)字代表mALP受體 In formation of the hydrogen bonds amino acids the red amino acid names and numbers represented as Cry1Ac toxin, the green amino acid names and numbers represented as mALP receptor, respectively. While in formation of the hydrophobic interaction the blue amino acid names and numbers represented as Cry1Ac toxin, the black amino acid names and numbers represented as mALP receptor
2.6 關(guān)鍵氨基酸位點(diǎn)預(yù)測(cè)
經(jīng)過DrugscorePPI計(jì)算預(yù)測(cè)對(duì)接復(fù)合物結(jié)合區(qū)域中主要參與結(jié)合的各殘基結(jié)合自由能變化值,結(jié)果如圖6-A所示,毒素和受體結(jié)合位點(diǎn)中分別有3個(gè)氨基酸殘基(376ASN、443SER和486SER)和4個(gè)氨基酸殘基(452ARG、499THR、502TYR和513TYR)為參與互作的關(guān)鍵氨基酸位點(diǎn)(結(jié)合自由能的變化值>2 kJ·mol-1);這些關(guān)鍵氨基酸位點(diǎn)的分布情況如圖6-B所示。
A:DrugscorePPI計(jì)算預(yù)測(cè)復(fù)合物中主要參與結(jié)合的各殘基結(jié)合自由能變化DrugscorePPI calculated the change of binding free energy of each residue in the predicted complexes;B:粉紅色骨架區(qū)Pink ribbon region:Cry1Ac毒素 Cry1Ac toxin;紅色球形氨基酸Red spherical amino acids:Cry毒素關(guān)鍵氨基酸位點(diǎn)Key amino acids of Cry1Ac toxin;黃色骨架區(qū)Yellow ribbon region:mALP receptor;藍(lán)色球形氨基酸Blue spherical amino acids:mALP受體關(guān)鍵氨基酸位點(diǎn)Key amino acids of mALP receptor
目前,利用真核表達(dá)體系(桿狀病毒-昆蟲細(xì)胞)已成功表達(dá)了大量具Bt Cry毒素結(jié)合活性的各類受體[26-28],其中ALP主要依靠真核表達(dá)的糖基化位點(diǎn)并利用糖基錨定(GPI-anchored)位點(diǎn)導(dǎo)致細(xì)胞穿孔[29]。而原核表達(dá)(大腸桿菌)作為應(yīng)用最為廣泛和成功的系統(tǒng),也被研究者們應(yīng)用于Cry毒素受體的表達(dá)和功能活性鑒定[30-31],Chen等利用pET系統(tǒng)成功表達(dá)并鑒定了煙芽夜蛾和棉鈴蟲的ALP具有和Cry毒素結(jié)合的能力[16,32]。本研究將小菜蛾mALP基因克隆至pET-26b載體進(jìn)行原核表達(dá)和配體印跡試驗(yàn),證實(shí)了經(jīng)原核表達(dá)的mALP同樣具有與Cry1Ac毒素體外結(jié)合的能力。在原核表達(dá)試驗(yàn)中,分別優(yōu)化了IPTG濃度、誘導(dǎo)溫度、轉(zhuǎn)速和誘導(dǎo)時(shí)間,但在所有優(yōu)化的條件下,發(fā)現(xiàn)mALP均會(huì)形成一定量的包涵體,且經(jīng)尿素溶解蛋白變性后的mALP在配體印跡試驗(yàn)中同樣具有Cry毒素結(jié)合活性(結(jié)果未顯示),說明mALP參與毒素結(jié)合的關(guān)鍵氨基酸表位極有可能是線性表位而非空間構(gòu)象,這與Fernandez等[33]通過分段表達(dá)埃及伊蚊()ALP受體蛋白區(qū)域與Cry11Aa毒素在變形條件下進(jìn)行配體印記試驗(yàn)發(fā)現(xiàn)ALP具有兩個(gè)結(jié)合表位區(qū)域相一致。
通過比較Cry毒素和靶標(biāo)昆蟲潛在受體(敏感性和抗性)在結(jié)合模式下參與互作氨基酸的變化,對(duì)了解毒素-受體作用的分子機(jī)理和利用蛋白質(zhì)工程方法提高Cry毒素殺蟲效果具有重要意義[34-35]。但由于Cry毒素種類繁多以及其在不同昆蟲中的潛在受體不斷被發(fā)現(xiàn)且分子量普遍偏大,而目前在蛋白質(zhì)數(shù)據(jù)庫(protein data bank,PDB)中僅有十幾種Cry毒素晶體結(jié)構(gòu)和雙翅目昆蟲瘧蚊的氨基肽酶受體APN晶體結(jié)構(gòu)被解析[36-37]。所以利用同源建模和分子對(duì)接可為研究毒素-受體結(jié)合模式提供強(qiáng)有力的支撐[38-39]。雖然配體印跡試驗(yàn)是在受體蛋白變形條件下進(jìn)行的,但結(jié)果證實(shí)了ALP結(jié)合Cry毒素是不依賴其空間構(gòu)象的,在非變性條件下同樣具備和Cry毒素結(jié)合的能力[29],所以可以利用預(yù)測(cè)的小菜蛾ALP三維結(jié)構(gòu)與Cry毒素進(jìn)行分子模擬研究。利用Swiss-Model和I-TASSER分別進(jìn)行了mALP的三維建模,經(jīng)過能量最小化和分子動(dòng)力學(xué)分析,以及模型評(píng)價(jià)分析,最終確定了I-TASSER構(gòu)建的mALP三維模型最佳,可一步通過分子對(duì)接分析其結(jié)合表位特征。
通過PatchDOCK和FireDock程序以及分子動(dòng)力學(xué)模擬方法,對(duì)Cry1Ac-mALP進(jìn)行分子對(duì)接和對(duì)接復(fù)合物評(píng)價(jià),獲得參數(shù)最優(yōu)的對(duì)接復(fù)合物,經(jīng)溶劑可及表面積變化和Ligplot氫鍵及疏水性分析,發(fā)現(xiàn)Cry1Ac毒素的結(jié)構(gòu)域II和結(jié)構(gòu)域III均參與受體結(jié)合,結(jié)構(gòu)域II中的Loop2和Loop3區(qū)域?qū)κ荏w結(jié)合的貢獻(xiàn)相對(duì)更大;Loop3區(qū)域中有2個(gè)氨基酸殘基與受體形成氫鍵,而Loop2區(qū)域中有多達(dá)7個(gè)氨基酸與受體可形成疏水結(jié)合作用,這對(duì)形成穩(wěn)定和牢靠的復(fù)合物至關(guān)重要,且與目前報(bào)道的Cry毒素Loop2區(qū)域主要參與結(jié)合ALP的研究相一致[40-41]。mALP有6個(gè)氨基酸與毒素形成氫鍵結(jié)合,更多的氨基酸則是通過疏水作用與受體結(jié)合。經(jīng)過計(jì)算機(jī)輔助丙氨酸突變掃描,預(yù)測(cè)了毒素和受體中參與互作的關(guān)鍵氨基酸殘基-“熱點(diǎn)”(Hot-Spots),它們對(duì)蛋白質(zhì)間的結(jié)合自由能(?GBind)有著顯著的貢獻(xiàn),是毒素與受體相互作用主要依賴的少數(shù)幾個(gè)氨基酸殘基[42]。本研究中預(yù)測(cè)出的這些熱點(diǎn)殘基可以在接下來的試驗(yàn)中進(jìn)一步通過生物分子互作試驗(yàn)(例如Biacore)驗(yàn)證,并且mALP的熱點(diǎn)殘基對(duì)于今后認(rèn)知和定位受體的毒素結(jié)合區(qū)域以及在比較敏感型和抗性昆蟲受體氨基酸變異上有很大幫助,同時(shí)Cry毒素中的熱點(diǎn)殘基也是今后利用現(xiàn)代分子生物學(xué)手段改造毒素用于提高毒素活力和改善抗性的首要選擇。
利用原核表達(dá)系統(tǒng),成功制備了能夠結(jié)合Cry1Ac毒素的小菜蛾mALP;預(yù)測(cè)出小菜蛾mALP的三維結(jié)構(gòu)及與毒素的結(jié)合模式,并在此基礎(chǔ)上通過計(jì)算機(jī)輔助丙氨酸突變掃描獲得毒素-受體結(jié)合的關(guān)鍵氨基酸位點(diǎn),為進(jìn)一步闡明Cry毒素與mALP的互作機(jī)制及分子改造增強(qiáng)Cry毒素活性的研究打下基礎(chǔ)。
[1] 喻子牛, 孫明, 劉子鐸, 戴經(jīng)元, 陳亞華, 喻凌, 羅曦霞. 蘇云金芽孢桿菌的分類及生物活性蛋白基因. 中國生物防治, 1996, 12(2): 85-89.
Yu Z N, Sun M, Liu Z D, Dai J Y, Chen Y H, Yu L, Luo X X. The classification ofand their biological active protein genes., 1996, 12(2): 85-89. (in Chinese)
[2] Bravo A, Likitvivatanavong S, Gill S S, Soberón M.: a story of a successful bioinsecticide., 2011, 41(7): 423-431.
[3] Vachon V, Laprade R, Schwartz J L. Current models of the mode of action ofinsecticidal crystal proteins: a critical review., 2012, 111(1): 1-12.
[4] Fabrick J A, Tabashnik B E. Binding oftoxin Cry1Ac to multiple sites of cadherin in pink bollworm., 2007, 37(2): 97-106.
[5] 潘家榮, 喬艷紅, 張維, 林敏, 張杰. Bt晶體蛋白CrylAc放射免疫檢測(cè)技術(shù)研究. 核農(nóng)學(xué)報(bào), 2006, 20(6): 544-547.
Pan J R, Qiao Y H, Zhang W, Lin M, Zhang J. Study on radioimmunoassary of Bt Cry1Ac., 2006, 20(6): 544-547. (in Chinese)
[6] Lee D W, Choi J Y, Kim W T, Je Y H, Song J T, Chung B K, Boo K S, Koh Y H. Mutations of acetylcholinesterase1 contribute to prothiofos-resistance in(L.)., 2007, 353: 591-597.
[7] 李怡萍, 梁革梅, 仵均祥, 陳豪, 馬康生, 吳孔明, 郭予元. 蘇云金芽孢桿菌殺蟲機(jī)理及害蟲對(duì)其抗性機(jī)制的研究進(jìn)展. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 38(9): 118-128.
Li Y P, Liang G M, Wu J X, Chen H, Ma K S, Wu K M, Guo Y Y. Progress in insecticidal mechanism of Bt and resistance mechanism of pest insect to Bt., 2010, 38(9): 118-128. (in Chinese)
[8] 張麗陽, 劉承蘭. 昆蟲抗藥性機(jī)制及抗性治理研究進(jìn)展. 環(huán)境昆蟲學(xué)報(bào), 2016, 38(3): 640-647.
Zhang L Y, Liu C L. Research progress on mechanism of insect resistance to insecticides and its management., 2016, 38(3): 640-647. (in Chinese)
[9] Hecke D G, Gahan L J, Baxter S W, Zhao J Z, Shelton A M, Gould F, Tabashnik B E. The diversity of Bt resistance genes in species of Lepidoptera., 2007, 95: 192-197.
[10] 譚聲江, 陳曉峰, 李典謨. 昆蟲對(duì)Bt毒素的抗性機(jī)理研究進(jìn)展. 昆蟲知識(shí), 2001, 38(1): 12-17.
Tan S J, Chen X F, Li D M. Research progresses on mechanism of insect resistance totoxin., 2001, 38(1): 12-17. (in Chinese)
[11] Pigott C R, Ellar D J. Role of receptors incrystal toxin activity., 2007, 71(2): 255-281.
[12] 張長勝, 來魯華. 蛋白質(zhì)相互作用預(yù)測(cè)、設(shè)計(jì)與調(diào)控. 物理化學(xué)學(xué)報(bào), 2012, 28(10): 2363-2380.
Zhang C S, Lai L H. Protein-protein interaction: Prediction, design, and modulation.,2012, 28(10): 2363-2380. (in Chinese)
[13] Rosenfeld L, Heyne M, Shifman J M, Papo N. Protein engineering by combined computational andevolution approaches., 2016, 41(5): 421-433.
[14] Jurat-Fuentes J L, Adang M J. Characterization of a Cry1Ac- receptor alkaline phosphatase in susceptible and resistantlarvae., 2004, 271: 3127-3135.
[15] Jurat-Fuentes J L, Karumbaiah L, Jakka S R K, Ning C, Liu C, Wu K, Jackson J, Gould F, Blanco C, Portilla M, Perera O, Adang M. Reduced levels of membrane-bound alkaline phosphatase are common to Lepidopteran strains resistant to Cry toxins from, 2011, 6(3): e17606.
[16] Chen W, Liu C, Xiao Y, Zhang D, Zhang Y, Li X, Tabashnik B E, Wu K. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant., 2015, 10(4): e0126288.
[17] 楊峰山, 吳青君, 徐寶云, 曹麗波, 朱國仁, 張友軍. 小菜蛾對(duì)Bt毒素Cry1Ac和Bt制劑抗性的選育及其抗性種群的生物學(xué)適應(yīng)性. 昆蟲學(xué)報(bào), 2006, 49(1): 64-69.
Yang F S, Wu Q J, Xu B Y, Cao L B, Zhu G R, Zhang Y J. Resistance selection ofby Cry1Ac toxin and Bt formulation and biological fitness of the resistant populations., 2006, 49(1): 64-69. (in Chinese)
[18] Guo Z J, Kang S, Zhu X, Wu Q J, Wang S L, Xie W, Zhang Y J. The midgut cadherin-like gene is not associated with resistance totoxin Cry1Ac in(L.)., 2015, 126: 21-30.
[19] 張濤, 張麗麗, 魏紀(jì)珍, 肖玉濤, 梁革梅, 周瑞陽. Cry1Ac抗、感棉鈴蟲堿性磷酸酯酶(ALP1)的表達(dá)量比較. 中國農(nóng)業(yè)科學(xué), 2013, 46(17): 3580-3586.
Zhang T, Zhang L L, Wei J Z, Xiao Y T, Liang G M, Zhou R Y. The expression level of alkaline phosphatase (ALP1) in Cry1Ac-resistant and susceptible cotton bollwormHübner., 2013, 46(17): 3580-3586. (in Chinese)
[20] Yang Z X, Wu Q J, Wang S L, Chang X, Wang J H, Guo Z J, Lei Y Y, Xu B Y, Zhang Y J. Expression of cadherin, aminopeptidase N and alkaline phosphatase genes in Cry1Ac- susceptible and Cry1Ac-resistant strains of(L.).,2012, 136: 539-548.
[21] 劉潔, 文禮章, 王少麗, 吳青君, 張友軍. 小菜蛾堿性磷酸酶基因cDNA片段的克隆及其序列分析. 昆蟲知識(shí), 2010, 47(2): 270-274.
Liu J, Wen L Z, Wang S L, Wu Q J, Zhang Y J. Cloning and sequence analysis of alkaline phosphatase gene in the diamondback moth,., 2010, 47(2): 270-274. (in Chinese)
[22] Guo Z, Kang S, Chen D F, Wu Q J, Wang S L, Xie W, Zhu X, Baxter S W, Zhou X G, Juerat-Fuentes J L, Zhang Y J. MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance toCry1Ac toxin in diamondback moth., 2015, 11(4): e1005124.
[23] 李紅亮, 張林雅, 莊樹林, 倪翠俠, 韓寶瑜, 商晗武. 中華蜜蜂普通氣味結(jié)合蛋白ASP2的氣味結(jié)合功能模式分析. 中國農(nóng)業(yè)科學(xué), 2013, 46(1): 154-161.
Li H L, Zhang L Y, Zhuang S L, Ni C X, Han B Y, Shang H W. Interpretation of odorant binding function and mode of general odorant binding protein ASP2 in Chinese honeybee ()., 2013, 46(1): 154-161. (in Chinese)
[24] 莊緒靜, 尹姣, 李克斌, 曹雅忠. 華北大黑鰓金龜氣味結(jié)合蛋白HoblOBP2的生物信息學(xué)分析. 植物保護(hù), 2013, 39(1): 50-55.
Zhuang X J, Yin J, Li K B, Cao Y Z. Bioinformatics analysis of the odorant-bindig protein HoblOBP2 in olfactory sensilla of the scarab bettle.,2013, 39(1): 50-55. (in Chinese)
[25] Shan S P, Xia L Q, Ding X Z, Zhang Y M, Hu S B, Sun Y J, Yu, Z Q, Han L Z. Homology modeling of Cry1Ac toxin-binding alkaline phosphatase receptor fromand its functional interpretation., 2011, 29: 427432.
[26] Zhang X, Candas M, Griko N B, Rose-Young L, Jr Bulla L A. Cytotoxicity ofCry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells., 2005, 12: 1407-1416.
[27] 王俊華, 周小毛, 吳青君, 王少麗, 謝文, 陳得峰, 徐寶云, 張友軍. 小菜蛾中腸氨肽酶N2在昆蟲細(xì)胞中的表達(dá). 農(nóng)藥學(xué)學(xué)報(bào), 2012, 14(2): 151-157.
Wang J H, Zhou X M, Wu Q J, Wang S L, Xie W, Chen D F, Xu B Y, Zhang Y J. Expression of aminopeptidase N (APN2) frommidgut in Sf9 cells., 2012, 14(2): 151-157. (in Chinese)
[28] Zhang X B, Griko N B, Corona S K, Jr Bulla L A. Enhanced exocytosis of the receptor BT-R1 induced by the Cry1Ab toxin ofdirectly correlates to the execution of cell death., 2008, 149(4): 581-588.
[29] Ning C, Wua, K, Liu C, Gao Y, Jurat-Fuentes J L, Gao X. Characterization of a Cry1Ac toxin-binding alkaline phosphatase in the midgut from(Hübner) larvae., 2010, 56: 666-672.
[30] 李紅亮, 聶文敏, 高其康, 程家安. 中華蜜蜂氣味結(jié)合蛋白ASP2 cDNA的克隆及原核表達(dá). 中國農(nóng)業(yè)科學(xué), 2008, 41(3): 933-938.
Li H L, Nie W M, Gao Q K, Cheng J A. Cloning of cDNA encoding odorant binding protein ASP2 in working bee’s antenna ofand its prokaryotic expression., 2008, 41(3): 933-938. (in Chinese)
[31] 林慧巖, 周子珊, 束長龍, 高繼國, 張杰. APN1的原核表達(dá)及其與Cry1Ac蛋白體外結(jié)合. 植物保護(hù), 2015, 41(4): 23-28.
Lin H Y, Zhou Z S, Shu C L, Gao J G, Zhang J. Prokaryotic expression of aminopeptidase N1 fromand binding analysis with Cry1Ac toxin., 2015, 41(4): 23-28. (in Chinese)
[32] Perera O P, Willis J D, Adang M J, Jurat-Fuentes J L. Cloning and characterization of the Cry1Ac-binding alkaline phosphatase (HvALP) from., 2009, 39: 294-302.
[33] Fernandez L E, Martinez-Anaya C, Lira E, Chen J, Evans A, Hernández-Martínez S, Lanz-Mendoza H, Bravo A, Gill S S, Soberón M. Cloning and epitope mapping of Cry11Aa-binding sites in the Cry11Aa-receptor alkaline phosphatase from., 2009, 48: 8899-8907.
[34] 張麗麗, 梁革梅, 曹廣春, 高希武, 郭予元. 增強(qiáng)Bt Cry毒素殺蟲作用的重要途徑: 增效因子的利用及晶體蛋白的遺傳改良. 環(huán)境昆蟲學(xué)報(bào), 2010, 32(3): 525-531.
Zhang L L, Liang G M, Cao G C, Gao X W, Guo Y Y. Approaches for enhancing the insecticidal activity ofCry toxins: application of synergistic factors and genetic improvement of crystal protein., 2010, 32(3): 525-531. (in Chinese)
[35] Zhang S P, Cheng H M, Gao Y L, Wang G R, Liang G M, Wu K M. Mutation of an aminopeptidase N gene is associated withresistance toCry1Ac toxin., 2009, 39: 421-429.
[36] 束長龍, 張風(fēng)嬌, 黃穎, 李艷秋, 張杰. Bt殺蟲基因研究現(xiàn)狀與趨勢(shì). 中國科學(xué): 生命科學(xué), 2016, 46(5): 548-555.
Shu C L, Zhang F J, Huang Y, Li Y Q, Zhang J. Current status and research trends of Bt insecticidal gene.,2016, 46(5): 548-555. (in Chinese)
[37] Atkinson S C, Armistead J S, Mathias D K, Sandeu M M, Tao D Y, Borhani-Dizaji N, Tarimo B B, Morlais I, Dinglasan R R, Borg N A. Structural analysis ofmidgut aminopeptidase N reveals a novel malaria transmission- blocking vaccine B-cell epitope., 2015, 22(7): 532-539.
[38] Tajnea S, Sanam R, Gundla R, Gandhi N S, Mancera R L, Boddupally D, Vudem D R, Khareedu V R. Molecular modeling ofCry1Ac (DI-DII)-ASAL (lectin)-fusion protein and its interaction with aminopeptidase N (APN) receptor of., 2012, 33: 61-76.
[39] Ahamd A, Javed M R, Rao A Q, Khan M A, Ahad A, Din S U, Shahid A A, Husnain T.determination of insecticidal potential offusion protein against Lepidopterantargets using molecular docking., 2015, 6: Article 1081.
[40] Shao E, Lin L, Chen C, Chen H, Zhuang H H, Wu S Q, Shao L, Guan X, Huang Z P. Loop replacements with gut-binding peptides in Cry1Ab domain II enhanced toxicity against the brown planthopper,(St?l)., 2016, 6(12): e84022.
[41] Bravo A, Gómeza I, Porta H, García-Gómez B I, Rodriguez-Almazan C, Pardo L, Soberón M. Evolution ofCry toxins insecticidal activity., 2012, 6(1): 17-26.
[42] Cukuroglu E, Engin H B, Gursoy A, Keskin O. Hot spots in protein-protein interfaces: Towards drug discovery., 2014, 116(2/3): 165-173.
(責(zé)任編輯 岳梅)
Expression and molecular simulation of alkaline phosphatase receptor of
ZHANG Xiao, HU Xiao-dan, ZHONG Jian-feng, WU Ai-hua, XU Chong-xin, LIU Yuan, ZHANG Cun-zheng, XIE Ya-jing, LIU Xian-jin
(Institute of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Food Quality and Jiangsu Province-State Key Laboratory Breeding Base/Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Nanjing 210014)
【Objective】The objective of this study is to confirm the binding ability of membrane-bound alkaline phosphatase (mALP) ofwith Cry1Ac toxin using prokaryotic expression and Ligand blot, and to predict toxin-receptor binding region and key amino acid binding sites (hot-spots) employed by homology modeling and docking study of Cry1Ac-mALP binding mode. It will provide a basis for the study of toxin-receptor interaction mechanism and molecular modification to enhance the activity of Cry toxin. 【Method】The mALP offull-length primers were designed and amplified by PCR. The restricted products of mALP and pET-26b (+) were ligated by T4 DNA ligase after the dual-enzyme digestion procedures. The recombinant pET-26b-mALP vectors were transferred into the Trans1-T1 phage resistant chemically competent cells, then picked clones were analyzed by PCR amplification, dual-enzyme digestion and sanger sequencing. The positive recombinant vectors (anchoring the corrected mALP gene) were transferred into theBL21 (DE3) competent cells for prokaryotic expression. The inducible expression products of mALP were transformed onto PVDF membrane. Preparation of mALP and binding activity of Cry1Ac with malp were verified through Western blot and Ligand blot, respectively. Three-dimensional structure of mALP was predicted by homology modeling, molecular dynamics simulation and model evaluation. The toxin-receptor docking complexes were generated by using the PatchDocK and FireDock web-servers with molecular dynamics simulations. The toxin-receptor complex was analyzed to determine the interaction region and the amino acid binding sites, key amino acid residues involved in Cry toxin and ALP receptor by computer-aided alanine mutation scanning tests. 【Result】mALP gene was successfully amplified, followed with the prokaryotic expression of mALP receptor protein. Binding of Cry1Ac toxin with prepared mALP protein was verified. The three-dimensional structure of mALP was successfully obtained by homology modeling, then the Cry toxin-ALP complex was determined. By the changed solvent accessible surface areas calculation and Ligplot analysis, the results showed that the domain II and domain III of Cry toxin were involved in binding to receptor, and Cry toxin and ALP were interacted mainly depending on hydrophobic and hydrogen bonding patterns. Finally, through the computer-aided alanine mutation scanning hot residues analysis, there were three key amino acid residues (376Asn, 443Ser and 486Ser) from Cry toxin and four key amino acid residues (452Arg, 499Thr, 502Tyr and 513Tyr) from ALP were participated in the interaction of toxin-receptor complex, respectively. 【Conclusion】It can be determined that the mALP receptor also has the ability to bind Cry1Ac toxin by prokaryotic expression, the three-dimensional structure of mALP was predicted and the toxin-receptor binding model was studied using molecular simulation.
alkaline phosphatase (ALP); prokaryotic expression; Ligand blot; homology modeling; molecular docking; hot-spots prediction
2016-09-05;接受日期:2016-10-08
國家自然科學(xué)基金(31401813、31630061)、江蘇省自然基金-青年基金(BK20140744)、江蘇省食品質(zhì)量安全重點(diǎn)實(shí)驗(yàn)室-省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地自主研究課題(3201613)
張霄,E-mail:zxwin2008@126.com。通信作者劉賢金,E-mail:jaasliu@jaas.ac.cn