• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EQUIVALENCE BETWEEN TIME AND NORM OPTIMAL CONTROL PROBLEMS OF THE HEAT EQUATION WITH POINTWISE CONTROL CONSTRAINTS

    2016-10-13 08:12:09CHENGXiaohong
    數(shù)學(xué)雜志 2016年5期
    關(guān)鍵詞:最優(yōu)控制范數(shù)等價(jià)

    CHENG Xiao-hong

    (School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

    EQUIVALENCE BETWEEN TIME AND NORM OPTIMAL CONTROL PROBLEMS OF THE HEAT EQUATION WITH POINTWISE CONTROL CONSTRAINTS

    CHENG Xiao-hong

    (School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)

    In this paper,we study the problem of the equivalence of the heat equation with pointwise control constraints.By making use of the uniqueness of time optimal control,controllability properties and the characterization of norm optimal controls through variational methods,we establish the equivalence between time and norm optimal control problems of the heat equation with pointwise control constraints,and extend the results in the related literature.

    bang-bang property;time optimal control;norm optimal control

    2010 MR Subject Classification:35K05;49J20;49J30

    Document code:AArticle ID:0255-7797(2016)05-0909-11

    1 Introduction

    There are the following two distinct versions of time optimal control problems[1]:

    (i)to reach the target set at a fixed time while delaying initiation of active control as late as possible;

    (ii)immediate activation of the control to reach the target set in the shortest time.

    In this paper,we shall establish the equivalence between the above two versions of time optimal control problems for an internally controlled heat equation with pointwise control constraints,and their corresponding norm optimal control problems.Let ? be a bounded domain in RN,N≥1,with a sufficiently smooth boundary??.Let ω be an open subset of? and C0(?)=.We formulate time optimal control problems and corresponding norm optimal control problems considered in this paper as follows.

    For the first version of time optimal control problems studied in this paper,let T>0 be fixed.Consider the controlled heat equation

    where χ(τ,T)×ωis characteristic function of the set(τ,T)×ω,0≤τ<T,y1∈C0(?)is a given function,and u(t,x)is a control function taken from the set of functions as follows

    here M is a positive constant.It is well-known that for each u∈L∞((0,T)×?),equation(1.1)has a unique solution,denoted by y(t,x;y1,χ(τ,T)×ωu)in C([0,T];C0(?)).In what follows, we writefor the product sets(0,T)×?,(0,T)×??,(τ,T)×ω and(0,T)×ω,respectively.We shall omit variables t and x for functions of(t,x)and omit the variable x for functions of x,if there is no risk of causing confusion.Now,we are prepared to state the first version of time optimal control problems under consideration

    Without loss of generality,we assume that‖y(T,·;y1,0)‖C0(?)>1.We call

    the optimal time for problem(PM)andthe associated time-optimal control(or optimal control for simplicity)with corresponding state,solution of(1.1),satisfying.We call a control u∈UMan admissible control for problem(PM),if there exists some τ∈[0,T)such that‖yu)‖C0(?)≤1.Since the value of the control inhas no effect on the control system(1.1),we consistently assign the control to have the value 0 in

    Let τ∈[0,T)be fixed.The norm optimal control problem corresponding to(PM)reads as follows

    For the second version of time optimal control problems studied in this paper,we consider the following controlled heat equation

    where y2∈C0(?)is a given function,and v(t,x)is a control function taken from the set of functions as follows:

    VM≡{v:(0,+∞)×?→R measurable;|v(t,x)|≤M for almost all(t,x)∈(0,+∞)×?},here M is a positive constant.For each v∈L∞((0,+∞)×?),we denote the unique solution of(1.2)by y(t,x;y2,v).Now,we state the second version of time optimal control problems under consideration

    To the beest of our knoewledge,there are few works about equivalence between time and norm optimal control problems for parabolic equations,see[2,3].In[2],the equivalence of time optimal control and the norm optimal control was established for abstract equations in Banach spaces.The main differences between[2]and our paper are as follows

    (i)The time optimal control problem in[2]is of the second version,while we consider two versions of time optimal control problems.

    (ii)The methods for the study of the equivalence between time and norm optimal control problems are different.In[2],necessary and sufficient conditions for both time and norm optimal controls were obtained,using the argument of separation of target sets from attainable sets.Since those sufficient and necessary conditions have the same form,the equivalence between time and norm optimal controls follows.In our paper,we derive the equivalence directly by making use of the uniqueness of time optimal control,the well known controllability properties and the characterization of norm optimal controls through variational methods as in[4].

    (iii)The paper[2]developed an abstract theory whose applications are limited to the case where the control is distributed in the whole domain which corresponds to the case of ω=? in our study.In our paper,ω is an arbitrarily open subset of ?.The idea of our paper utilizes the approach from[3].However,there are some main differences between[3]and our paper

    (i)The time optimal control problem in[3]was of the second version,while we consider two versions of time optimal control problems.

    (ii)The procedure for the study of the equivalence between time and norm optimal control problem is different.We start by researching the optimal norm as a function of time, i.e.,the functionsandWhile in[3],they began with study of the optimal time as a function of control bounde.

    (iii)In our paper,the control constraint is in pointwise form and the target set is a closed ball in C0(?),while in[3],the control constraint is in integral form and the target setwas a closed ball in L2(?)or 0.Recently,in[5],the equivalence of optimal target control problems,optimal time control problems and optimal norm control problems were discussed for the heat equation with internal controls.

    The main results of this paper are as follows.

    Theorem 1.1Let τ∈[0,T).Then τ=Furthermore,has a unique solution and this solution is also the optimal control to(PN?∞(τ)).Conversely,for eachthe optimal control to(PM)is also the solution toTheorem 1.2 T=T?,?T∈(0,T0],where T0=inf{T:‖y(T,·;y2,0)‖C0(?)≤1,T>0}.Furthermore,has a unique solution and this solution,when it is exe tended over R+by taking zero value over(T,+∞),is also the optimal control toConversely,for each M∈[0,+∞),the optimal control to,when it is restricted over(0,T?(M)),is also the solution to

    It should be pointed out that in[6],by establishing the connections between(PM) andandas well as strict monotonicity ofandnecessary and suefficient coneditions for optimal time and optimal control of(PM)andewere obtained in[6].However,the equivalence between time and norm optimal control problems is not proved.

    The rest of this paper is organized as follows.In Section 2 and Section 3,we shall give the proofs of Theorem 1.1 and Theorem 1.2,respectively.

    2 Equivalence between)PM)and

    In this section,we shall prove Theorem 1.1.To this end,we first cite the following lemmas(see[6]).

    Lemma 2.1(i)Assume that τ?(M)is the optimal time for(PM).Then(PM)has a unique solution,denoted byMoreover=M for almost all(t,x)∈

    Now,we give some properties about the function τ?(·).

    ProofThe proof is split into five steps.

    It suffices to show that if there exists a control u with‖u‖L∞(QT)≤(0)such thatfor a certain τ∈[0,T),then τ=0.By contradiction,τ>0. Then on one hand,by(ii)in Lemma 2.1,we have that

    On the other hand,by the definition ofwe get thatThis together with(2.1)implies thatwhich leads to a contradiction and completes the proof.

    Step 2 τ?(·):→[0,T)is strictly increasing.

    Let M1>M2≥Letbe the optimal control to(PM2).Then

    which,combined with the fact that∈UM1,indicates thatis the optimal control to(PM1).Hence,by(i)in Lemma 2.1,we get that=M1.This contradicts with the first inequality in(2.2).

    Step 3 τ?(·)→[0,T)is right continuous.

    Let M?∈be fixed.By Step 2,we infer that τ?(M)exists.We claim that this limit is equal to τ?(M?).If not,there would exist a sequence Mn↓M?such that

    Hence there exist a subsequence ofstill denoted by itself,and∈L∞(QT),such that

    and

    It follows from(2.3)and(2.4)that

    Hence by(2.5)and the above inequality,we get τ?(M?)+δ≤τ?(M?).This leads to a contradiction.

    Let M?∈be fixed and Mn↑M?.It suffices to show that

    Consider the following equation

    Here δn∈(0,τ?(M?))will be determined later.It is obvious that(2.8)can be rewritten as

    and

    where

    It follows from Theorem 3.1 in[9]and(2.8)-(2.11)that there exists a control,denoted by un,such that the solution of(2.8)corresponding to un,denoted by zn,satisfies

    Moreover,

    and

    where c1and c2are positive constants independent of n.

    and

    Denote

    It follows from(2.15)-(2.17)that

    Take

    This,together with(2.13),(2.14),(2.17)and(2.18),indicates

    and

    By(2.20)and(2.21),we infer that τ?(M?)-δn≤τ?(Mn),which,combined with the fact that τ?(Mn)≤τ?(M?)and(2.19),implies(2.7).

    Hence

    Consider the following equation:

    It follows from Theorem 3.1 in[9]and the same arguments to get(2.12)-(2.14)that there exists a control,denoted by uδ,such that the solution of(2.23)corresponding to uδ,denoted by yδ,satisfies

    Moreover,

    and

    here c3is a positive constant.Since Mn↑+∞,by(2.25)and(2.26),we can fix such an n that‖uδ‖L∞(QT)≤Mn.This combined with(2.23)and(2.24)implies τ?(Mn)≥T-2-1δ,which contradicts with(2.22).

    Then we give the proof of Theorem 1.1.

    ProofWe first show that

    Let τ∈[0,T)and u be a solution to).Then

    and

    Next,we notice that by(2.27)is the same asThen by(iii)in Lemma 2.1,we deduce that)has a unique solution and this solution is also the optimal control to

    3 Equivalence betweenand

    In this section,we shall give the proof of Theorem 1.2.For this purpose,we first notice that T0<+∞(see Lemma 5.6 in[6])and cite the following lemmas(see[6]).

    Lemma 3.1(i)Let T?(M)be the optimal time for.Thenhas a unique solution,denoted byMoreover=M for almost all(t,x)∈

    (iii)Let T?(M)be the optimal time forThen problemhas a unique solution.This solution,after being extended to be 0 on[T?(M),+∞)×?,is the optimal control for

    Now,we give some properties about the function T?(·).

    Lemma 3.2T?(·):[0,+∞)→(0,T0]is strictly decreasing,continuous,T?(0)=T0andT?(M)=0.

    ProofWe only show that T?(·):[0,+∞)→(0,T0]is left continuous.Proofs of the remainder are similar as those of[3]or Lemma 2.2.Now,fix M∈(0,+∞)and Mn↑M,we claim that

    be the solution to the following equation

    By(1.2),(3.2),Lp-estimate for parabolic equation and embedding theorem(see Theorem 1.14 of Chapter in[7]and Theorem 1.4.1 in[8]),we obtain that

    Consider the following equation

    where Tn∈(0,1)will be determined later.Define

    and

    It follows from(3.5),(3.6)and(3.7)that

    It is easy to check that there exists a positive constantindependent on n such that

    From the latter equality and(3.10),we infer that

    Moreover,it follows from(3.2)and(3.4)that

    which,together with(3.11),implies

    This combined with the limit in(3.11)indicates(3.1)and completes the proof.

    Then by the similar arguments as those in[3](or Theorem 1.1)and Lemma 3.2,we can get Theorem 1.2.

    References

    [1]Mizel V J,Seidman T I.An abstract bang-bang principle and time-optimal boundary control of the heat equation[J].SIAM J.Contr.Optim.,1997,35(4):1204-1216.

    [2]Fattorini H O.Infinite dimensional linear control systems:the time optimal and norm optimal problems[M].North-Holland Math.Study 201,North-Holland:Elsevier,2005.

    [3]Wang Gengsheng,Zuazua E.On the equivalence of minimal time and minimal norm controls for internally controlled heat equations[J].SIAM J.Contr.Optim.,2012,50(5):2938-2958.

    [4]Fabre C,Puel J P,Zuazua E.Approximate controllability of the semilinear heat equation[J].Proc. Royal Soc.Edinburgh,1995,125 A(1):31-61.

    [5]Wang Gengsheng,Xu Yashan.Equivalence of three different kinds of optimal control problems for heat equations and its applications[J].SIAM J.Contr.Optim.,2013,51(2):848-880.

    [6]Kunisch K,Wang Lijuan.Time optimal control of the heat equation with pointwise control constraints[J].ESAIM:Contr.,Optim.Calc.Vari.,2013,19(2):460-485.

    [7]Fursikov A V.Optimal control of distributed:theory and applications[M].Providence:Amer.Math. Soc.,2000.

    [8]Wu Zhuoqun,Yin Jingxue,Wang Chunpeng.Elliptic and parabolic equations[M].New Jersey:World Sci.Publ.Corp.,2006.

    [9]Fern′andez-Cara E,Zuazua E.Null and approximate controllability for weakly blowing up semilinear heat equations[J].Annales de l'Institut Henri Poincar′e,Analyse Non Lin′eaire,2000,17(5):583-616.

    [10]Wang Xiao,Cui Cheng,Xiao Li,Liu Anping.Existence and uniqueness of solutions for differential equations with time delay and impulsive differential equations with time delay[J].J.Math.,2013,4:683-688.

    具有點(diǎn)態(tài)控制約束熱方程的時(shí)間與范數(shù)最優(yōu)控制問題的等價(jià)性

    程曉紅
    (武漢大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖北武漢430072)

    本文研究了具有點(diǎn)態(tài)控制熱方程的等價(jià)性問題.利用變分法分析時(shí)間最優(yōu)控制的唯一性,能控性以及范數(shù)最優(yōu)控制的特征,獲得了具有點(diǎn)態(tài)控制約束熱方程的時(shí)間與范數(shù)最優(yōu)控制問題之間的等價(jià)性,推廣了現(xiàn)有文獻(xiàn)的結(jié)果.

    bang-bang性;時(shí)間最優(yōu)控制;范數(shù)最優(yōu)控制

    MR(2010)主題分類號(hào):35K05;49J20;49J30O175.2

    date:2015-04-20Accepted date:2015-09-24

    Biography:Cheng Xiaohong(1989-),female,born at Hancheng,Shaanxi,master,major in distributed optimal control.

    猜你喜歡
    最優(yōu)控制范數(shù)等價(jià)
    條件平均場隨機(jī)微分方程的最優(yōu)控制問題
    帶跳躍平均場倒向隨機(jī)微分方程的線性二次最優(yōu)控制
    Timoshenko梁的邊界最優(yōu)控制
    n次自然數(shù)冪和的一個(gè)等價(jià)無窮大
    中文信息(2017年12期)2018-01-27 08:22:58
    基于加權(quán)核范數(shù)與范數(shù)的魯棒主成分分析
    矩陣酉不變范數(shù)H?lder不等式及其應(yīng)用
    采用最優(yōu)控制無功STATCOM 功率流的解決方案
    收斂的非線性迭代數(shù)列xn+1=g(xn)的等價(jià)數(shù)列
    一類具有準(zhǔn)齊次核的Hilbert型奇異重積分算子的范數(shù)及應(yīng)用
    環(huán)Fpm+uFpm+…+uk-1Fpm上常循環(huán)碼的等價(jià)性
    一区二区三区乱码不卡18| 久久人妻熟女aⅴ| 成人手机av| 大码成人一级视频| av电影中文网址| 香蕉精品网在线| 国产免费又黄又爽又色| 欧美精品一区二区大全| 中国三级夫妇交换| 午夜福利影视在线免费观看| 国产日韩欧美亚洲二区| 久久久久久久久久人人人人人人| 国产 一区精品| 国产精品国产三级国产av玫瑰| 啦啦啦中文免费视频观看日本| 熟女人妻精品中文字幕| 国产精品国产av在线观看| 久久人妻熟女aⅴ| av免费在线看不卡| 男男h啪啪无遮挡| 在线观看www视频免费| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久久电影| 最黄视频免费看| 在线观看国产h片| 美女国产高潮福利片在线看| 精品一品国产午夜福利视频| 久久久亚洲精品成人影院| 亚洲成国产人片在线观看| 久久韩国三级中文字幕| 天天躁夜夜躁狠狠躁躁| 国产精品一区二区在线观看99| 成人黄色视频免费在线看| 夫妻午夜视频| 久久精品夜色国产| a级片在线免费高清观看视频| 永久免费av网站大全| 最近最新中文字幕免费大全7| 国产成人免费无遮挡视频| 久久久精品区二区三区| 免费女性裸体啪啪无遮挡网站| 国产麻豆69| av国产精品久久久久影院| 三级国产精品片| 80岁老熟妇乱子伦牲交| 国产极品天堂在线| 久久午夜综合久久蜜桃| 如何舔出高潮| 久久精品人人爽人人爽视色| 国产成人免费观看mmmm| 亚洲婷婷狠狠爱综合网| 中文字幕免费在线视频6| 97超碰精品成人国产| 男的添女的下面高潮视频| 亚洲国产欧美在线一区| 亚洲人与动物交配视频| 中国美白少妇内射xxxbb| 久久国内精品自在自线图片| 午夜精品国产一区二区电影| 国产精品人妻久久久久久| 男女下面插进去视频免费观看 | 国产日韩欧美视频二区| 午夜福利,免费看| freevideosex欧美| 国产成人av激情在线播放| 亚洲欧美日韩另类电影网站| 欧美+日韩+精品| 婷婷色麻豆天堂久久| 免费av中文字幕在线| 国产 精品1| 中文字幕亚洲精品专区| 在线免费观看不下载黄p国产| 22中文网久久字幕| 国产一区二区三区av在线| 精品午夜福利在线看| 久久ye,这里只有精品| 制服人妻中文乱码| av国产精品久久久久影院| 一本大道久久a久久精品| 在线免费观看不下载黄p国产| 欧美成人精品欧美一级黄| 国产精品久久久av美女十八| 97超碰精品成人国产| 国产免费现黄频在线看| 交换朋友夫妻互换小说| 91国产中文字幕| 成人国产av品久久久| 午夜老司机福利剧场| 97在线人人人人妻| 五月开心婷婷网| 国产成人精品无人区| 国产精品无大码| 又大又黄又爽视频免费| 国产成人精品婷婷| 国产精品一区二区在线不卡| 中文字幕精品免费在线观看视频 | 亚洲av中文av极速乱| 中文字幕人妻熟女乱码| 女人精品久久久久毛片| 久久影院123| 性色avwww在线观看| 国产精品一二三区在线看| videos熟女内射| 尾随美女入室| 香蕉丝袜av| 18在线观看网站| 亚洲伊人久久精品综合| av又黄又爽大尺度在线免费看| av一本久久久久| 最近中文字幕高清免费大全6| 国内精品宾馆在线| 欧美 日韩 精品 国产| 欧美精品高潮呻吟av久久| 亚洲精品一二三| 国产在线免费精品| 你懂的网址亚洲精品在线观看| 街头女战士在线观看网站| 看非洲黑人一级黄片| 少妇的逼好多水| 亚洲高清免费不卡视频| 少妇人妻精品综合一区二区| av黄色大香蕉| 欧美激情国产日韩精品一区| 美女大奶头黄色视频| 男女啪啪激烈高潮av片| 国产麻豆69| 国产亚洲欧美精品永久| 最近中文字幕高清免费大全6| 成人漫画全彩无遮挡| 国产亚洲精品久久久com| 飞空精品影院首页| 国产av一区二区精品久久| 人人妻人人澡人人爽人人夜夜| 亚洲av国产av综合av卡| 亚洲欧洲国产日韩| 成人影院久久| 99久久精品国产国产毛片| 久久久久久人人人人人| h视频一区二区三区| 久久久国产精品麻豆| 亚洲精品自拍成人| 99久久中文字幕三级久久日本| 亚洲情色 制服丝袜| 天堂8中文在线网| 十八禁网站网址无遮挡| 免费大片黄手机在线观看| av网站免费在线观看视频| 99热国产这里只有精品6| 国产高清国产精品国产三级| 校园人妻丝袜中文字幕| 欧美日韩国产mv在线观看视频| 亚洲精品第二区| 亚洲国产精品国产精品| 亚洲性久久影院| 寂寞人妻少妇视频99o| 国产极品粉嫩免费观看在线| 色哟哟·www| 国产成人a∨麻豆精品| 少妇熟女欧美另类| 国产日韩欧美亚洲二区| 久久久久久久久久成人| 精品福利永久在线观看| 亚洲国产av新网站| 久久97久久精品| 黄网站色视频无遮挡免费观看| 精品亚洲成国产av| 久久久久精品人妻al黑| 日本午夜av视频| 男男h啪啪无遮挡| 美女中出高潮动态图| 2022亚洲国产成人精品| 人妻人人澡人人爽人人| 午夜福利,免费看| 视频区图区小说| 日本欧美国产在线视频| 国产成人一区二区在线| 一本色道久久久久久精品综合| 曰老女人黄片| 女性生殖器流出的白浆| 激情五月婷婷亚洲| 极品少妇高潮喷水抽搐| 国产极品天堂在线| 最近手机中文字幕大全| 伦精品一区二区三区| 国产麻豆69| 欧美精品亚洲一区二区| 成人亚洲精品一区在线观看| 国产片内射在线| 女人被躁到高潮嗷嗷叫费观| 纵有疾风起免费观看全集完整版| 午夜福利视频精品| 另类亚洲欧美激情| 国产成人91sexporn| 在线 av 中文字幕| 看十八女毛片水多多多| 国产男女内射视频| 韩国精品一区二区三区 | 一本大道久久a久久精品| 久久久欧美国产精品| 99热国产这里只有精品6| 国产精品嫩草影院av在线观看| kizo精华| 黑人高潮一二区| 国产亚洲一区二区精品| 色网站视频免费| 国产亚洲午夜精品一区二区久久| 丝瓜视频免费看黄片| 国产成人精品无人区| 久久精品久久精品一区二区三区| 两个人免费观看高清视频| 男人操女人黄网站| 国产精品久久久久久精品电影小说| 在线精品无人区一区二区三| 九色成人免费人妻av| 国产精品久久久久久精品古装| 国产av码专区亚洲av| 欧美少妇被猛烈插入视频| 中文字幕亚洲精品专区| 久久久亚洲精品成人影院| 美女福利国产在线| 另类亚洲欧美激情| 黑人高潮一二区| 啦啦啦啦在线视频资源| 人成视频在线观看免费观看| 美国免费a级毛片| 午夜免费男女啪啪视频观看| 色吧在线观看| 在线亚洲精品国产二区图片欧美| 伊人亚洲综合成人网| 久久97久久精品| 亚洲国产看品久久| 日本午夜av视频| 中文乱码字字幕精品一区二区三区| 高清视频免费观看一区二区| 精品久久国产蜜桃| 十八禁高潮呻吟视频| 亚洲精品日韩在线中文字幕| 在现免费观看毛片| 国产高清不卡午夜福利| 91在线精品国自产拍蜜月| 欧美97在线视频| 成人黄色视频免费在线看| 国内精品宾馆在线| 99视频精品全部免费 在线| 欧美精品av麻豆av| 巨乳人妻的诱惑在线观看| 观看av在线不卡| 国产成人aa在线观看| 国产免费现黄频在线看| 观看美女的网站| 国产精品麻豆人妻色哟哟久久| 国产一区二区三区av在线| 在现免费观看毛片| 免费大片黄手机在线观看| 午夜久久久在线观看| 黄色 视频免费看| 国产福利在线免费观看视频| 男男h啪啪无遮挡| 国产精品人妻久久久久久| 亚洲av男天堂| 女的被弄到高潮叫床怎么办| 亚洲av中文av极速乱| 人妻人人澡人人爽人人| 在线天堂中文资源库| 亚洲欧洲日产国产| 午夜影院在线不卡| 亚洲伊人久久精品综合| 亚洲精品国产av蜜桃| a级毛片在线看网站| 亚洲精品国产av成人精品| 亚洲精品美女久久久久99蜜臀 | 高清毛片免费看| 亚洲欧美精品自产自拍| 在线观看三级黄色| 国产精品嫩草影院av在线观看| 成年女人在线观看亚洲视频| 亚洲精品乱码久久久久久按摩| 国产精品免费大片| 亚洲av在线观看美女高潮| 国产女主播在线喷水免费视频网站| 国产男人的电影天堂91| 亚洲欧美清纯卡通| 亚洲欧美成人精品一区二区| 国产男女内射视频| 国产日韩欧美在线精品| 精品国产一区二区久久| 欧美亚洲日本最大视频资源| 亚洲精品aⅴ在线观看| 91精品伊人久久大香线蕉| 国产精品不卡视频一区二区| 久久ye,这里只有精品| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻熟女乱码| 亚洲成人一二三区av| 日韩av在线免费看完整版不卡| 国产在视频线精品| 免费av不卡在线播放| 视频中文字幕在线观看| 另类亚洲欧美激情| 国产片内射在线| 久久久久久久亚洲中文字幕| 99热网站在线观看| 十八禁高潮呻吟视频| 男人操女人黄网站| 欧美丝袜亚洲另类| 久久99精品国语久久久| 黄网站色视频无遮挡免费观看| 满18在线观看网站| 亚洲四区av| 国产精品.久久久| 国产综合精华液| 一区二区日韩欧美中文字幕 | 飞空精品影院首页| 如日韩欧美国产精品一区二区三区| 黄色视频在线播放观看不卡| 男女免费视频国产| av不卡在线播放| 日韩熟女老妇一区二区性免费视频| 人人妻人人添人人爽欧美一区卜| 亚洲,欧美精品.| 亚洲欧洲日产国产| 午夜福利乱码中文字幕| 夫妻午夜视频| 久热这里只有精品99| 爱豆传媒免费全集在线观看| 国产在线一区二区三区精| 欧美bdsm另类| 国产欧美日韩一区二区三区在线| 亚洲精品久久久久久婷婷小说| 精品一区二区三区视频在线| 中国国产av一级| 又黄又爽又刺激的免费视频.| 日本wwww免费看| 亚洲成人一二三区av| 成年美女黄网站色视频大全免费| 国产在视频线精品| 国产精品久久久久久久电影| 国内精品宾馆在线| 久久久久久久久久人人人人人人| 99久久综合免费| av有码第一页| 久久 成人 亚洲| 精品少妇黑人巨大在线播放| 精品少妇久久久久久888优播| 高清视频免费观看一区二区| 在线观看美女被高潮喷水网站| 日韩欧美一区视频在线观看| 一边亲一边摸免费视频| 成人午夜精彩视频在线观看| 少妇的逼好多水| av在线老鸭窝| av又黄又爽大尺度在线免费看| 一个人免费看片子| 桃花免费在线播放| 久久久a久久爽久久v久久| 桃花免费在线播放| 一个人免费看片子| 大码成人一级视频| 国产xxxxx性猛交| 成人国语在线视频| 少妇精品久久久久久久| 中国三级夫妇交换| 精品一区二区三卡| 2018国产大陆天天弄谢| 久久精品国产亚洲av天美| 美女主播在线视频| av线在线观看网站| 色婷婷av一区二区三区视频| av黄色大香蕉| 大码成人一级视频| 久久精品熟女亚洲av麻豆精品| 爱豆传媒免费全集在线观看| 国产色婷婷99| 国产精品欧美亚洲77777| 国产色婷婷99| 亚洲欧洲日产国产| 中国美白少妇内射xxxbb| www.熟女人妻精品国产 | 免费观看无遮挡的男女| 国产成人精品福利久久| 日日摸夜夜添夜夜爱| 国产探花极品一区二区| 国产精品女同一区二区软件| 亚洲精品美女久久久久99蜜臀 | 精品国产一区二区三区久久久樱花| 国产成人a∨麻豆精品| 国产一区二区激情短视频 | 久久精品国产a三级三级三级| 久久精品久久久久久噜噜老黄| 香蕉精品网在线| 亚洲色图 男人天堂 中文字幕 | 最新的欧美精品一区二区| 亚洲欧美日韩另类电影网站| 久久99蜜桃精品久久| 另类精品久久| 69精品国产乱码久久久| 天天躁夜夜躁狠狠躁躁| 中国三级夫妇交换| 美女中出高潮动态图| 高清av免费在线| av视频免费观看在线观看| 丰满乱子伦码专区| 午夜福利,免费看| 黄片播放在线免费| 看十八女毛片水多多多| 成人无遮挡网站| 人体艺术视频欧美日本| 老司机亚洲免费影院| 天堂中文最新版在线下载| 亚洲四区av| 国产免费一级a男人的天堂| 国产精品99久久99久久久不卡 | 你懂的网址亚洲精品在线观看| 婷婷色综合www| 亚洲国产精品一区二区三区在线| 亚洲欧美中文字幕日韩二区| 18在线观看网站| 亚洲av综合色区一区| 亚洲熟女精品中文字幕| 内地一区二区视频在线| 亚洲国产av影院在线观看| 十八禁高潮呻吟视频| 我的女老师完整版在线观看| 极品少妇高潮喷水抽搐| 亚洲综合色网址| 欧美变态另类bdsm刘玥| 人人澡人人妻人| 91精品三级在线观看| 久久韩国三级中文字幕| 你懂的网址亚洲精品在线观看| 中文字幕av电影在线播放| 久久亚洲国产成人精品v| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品国产av蜜桃| 亚洲av成人精品一二三区| 新久久久久国产一级毛片| 亚洲成国产人片在线观看| 久久精品熟女亚洲av麻豆精品| 国产亚洲午夜精品一区二区久久| 日韩在线高清观看一区二区三区| 亚洲,一卡二卡三卡| 日韩熟女老妇一区二区性免费视频| 午夜老司机福利剧场| 日本-黄色视频高清免费观看| 亚洲国产精品成人久久小说| 男女边摸边吃奶| 丰满饥渴人妻一区二区三| 高清黄色对白视频在线免费看| 91精品伊人久久大香线蕉| 18+在线观看网站| 国产精品免费大片| 免费在线观看完整版高清| 久久青草综合色| 性高湖久久久久久久久免费观看| 欧美人与性动交α欧美软件 | 国产日韩欧美视频二区| 五月伊人婷婷丁香| 亚洲国产色片| 精品国产露脸久久av麻豆| 日本爱情动作片www.在线观看| 美女脱内裤让男人舔精品视频| 亚洲色图综合在线观看| 亚洲成人av在线免费| 精品一区二区三区视频在线| 欧美日韩成人在线一区二区| 女人被躁到高潮嗷嗷叫费观| 女人精品久久久久毛片| 少妇被粗大的猛进出69影院 | 天天影视国产精品| 激情五月婷婷亚洲| 五月开心婷婷网| 国产精品久久久久成人av| 久久久久久久久久久久大奶| 久热久热在线精品观看| 爱豆传媒免费全集在线观看| 欧美老熟妇乱子伦牲交| 毛片一级片免费看久久久久| 欧美xxⅹ黑人| 一二三四在线观看免费中文在 | 国产精品99久久99久久久不卡 | 日韩人妻精品一区2区三区| 韩国高清视频一区二区三区| 欧美bdsm另类| 一级爰片在线观看| 中文字幕最新亚洲高清| 成人亚洲精品一区在线观看| 老司机影院成人| 亚洲av中文av极速乱| 精品99又大又爽又粗少妇毛片| 成人国语在线视频| 午夜免费男女啪啪视频观看| 91精品伊人久久大香线蕉| 欧美xxⅹ黑人| 韩国高清视频一区二区三区| av片东京热男人的天堂| 成人午夜精彩视频在线观看| 国产av国产精品国产| 肉色欧美久久久久久久蜜桃| 一级黄片播放器| av福利片在线| 亚洲第一av免费看| 两个人看的免费小视频| 成人亚洲欧美一区二区av| 亚洲国产精品成人久久小说| 亚洲精品视频女| 国产黄色视频一区二区在线观看| 高清黄色对白视频在线免费看| 亚洲国产最新在线播放| 1024视频免费在线观看| 18禁观看日本| √禁漫天堂资源中文www| 不卡视频在线观看欧美| 国产综合精华液| 晚上一个人看的免费电影| 日产精品乱码卡一卡2卡三| 亚洲精品日本国产第一区| 国产av码专区亚洲av| 美女内射精品一级片tv| 男女免费视频国产| 妹子高潮喷水视频| 日韩中文字幕视频在线看片| 宅男免费午夜| 丝袜美足系列| 亚洲激情五月婷婷啪啪| 中文字幕亚洲精品专区| 777米奇影视久久| 99国产精品免费福利视频| 精品久久久精品久久久| 18在线观看网站| 高清在线视频一区二区三区| 国产国拍精品亚洲av在线观看| 免费在线观看完整版高清| 亚洲综合精品二区| 天天操日日干夜夜撸| 妹子高潮喷水视频| av又黄又爽大尺度在线免费看| 久久av网站| 人妻人人澡人人爽人人| 国产精品成人在线| 老女人水多毛片| 97在线视频观看| 90打野战视频偷拍视频| 国产成人aa在线观看| 26uuu在线亚洲综合色| h视频一区二区三区| 亚洲色图综合在线观看| 国产福利在线免费观看视频| 国产欧美日韩一区二区三区在线| 久久久国产一区二区| 日韩,欧美,国产一区二区三区| 中文乱码字字幕精品一区二区三区| 亚洲熟女精品中文字幕| 美女中出高潮动态图| 久久午夜综合久久蜜桃| 国产av精品麻豆| 99热全是精品| 一本色道久久久久久精品综合| 欧美激情 高清一区二区三区| 成人无遮挡网站| 大香蕉久久成人网| 午夜福利视频在线观看免费| 国产日韩一区二区三区精品不卡| 人体艺术视频欧美日本| 黄网站色视频无遮挡免费观看| 中国三级夫妇交换| 久久久久精品人妻al黑| 在线 av 中文字幕| 视频区图区小说| 成人午夜精彩视频在线观看| 亚洲高清免费不卡视频| 国产黄频视频在线观看| 国产高清三级在线| 日韩成人av中文字幕在线观看| 国产成人精品无人区| 久久久久久久大尺度免费视频| 国产国拍精品亚洲av在线观看| 九草在线视频观看| 曰老女人黄片| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃在线观看..| 久久午夜福利片| 超色免费av| av在线老鸭窝| 久久青草综合色| 久久久亚洲精品成人影院| 国产在线一区二区三区精| 大片免费播放器 马上看| 男女免费视频国产| 香蕉精品网在线| 丰满乱子伦码专区| 国产男女超爽视频在线观看| 免费看av在线观看网站| 欧美精品国产亚洲| av有码第一页| 99热全是精品| 各种免费的搞黄视频| 不卡视频在线观看欧美| 国产黄色视频一区二区在线观看| 极品人妻少妇av视频| 久久久久久久久久成人| 男人爽女人下面视频在线观看| 久久精品久久久久久噜噜老黄| 日韩在线高清观看一区二区三区| 婷婷色综合www| 日韩伦理黄色片| 国产精品国产av在线观看| 久久国内精品自在自线图片| 五月伊人婷婷丁香| 久久久精品免费免费高清| 最近手机中文字幕大全| av免费观看日本| 久久久精品免费免费高清| 夜夜骑夜夜射夜夜干| 欧美人与性动交α欧美精品济南到 | 亚洲欧美一区二区三区国产|