• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ROBUST STABILIZATION OF UNCERTAIN STOCHASTIC SYSTEMS WITH TIME-VARYING DELAY AND NONLINEARITY

    2016-10-13 08:12:07LIBoren
    數(shù)學(xué)雜志 2016年5期
    關(guān)鍵詞:自由權(quán)魯棒時(shí)變

    LI Bo-ren

    (School of Computer,Dongguan University of Technology,Dongguan 523808,China)

    ROBUST STABILIZATION OF UNCERTAIN STOCHASTIC SYSTEMS WITH TIME-VARYING DELAY AND NONLINEARITY

    LI Bo-ren

    (School of Computer,Dongguan University of Technology,Dongguan 523808,China)

    In this paper,we study with robust stabilization problem of uncertain stochastic time-varying delay systems with nonlinear perturbation.Constructing a suitable Lyapunov-Krasovskii functional and employ the free weighting matrix method,in terms of the linear matrix inequality(LMI)technique,we design a memoryless state feedback controller,and obtain delay dependent robust stabilization criterion for the uncertain stochastic time-varying delay systems.A numerical example and its simulation curve are given to show that the proposed theoretical result is effective.

    free-weighting matrices;nonlinear perturbation;time-varying delay;feedback control

    2010 MR Subject Classification:93C10;93D09

    Document code:AArticle ID:0255-7797(2016)05-0898-11

    1 Introduction

    The problem of the stabilization of time-delayed systems was often explored in recent years.Time delays are common in engineering processes.They frequently arose in chemical processes,in long transmission lines and in pneumatic,hydraulic and rolling mill systems. The problem of stability analysis in time-delayed systems was one of the main concerns of research into the attributes of such systems.Many works on this subject were published[1-7].Depending on the information about the size of time-delays of the systems,criteria for time-delay systems can be classified into two categories,namely,delay-independent criteria [1,2]and delay-dependent criteria[3-7].Generally speaking,for the cases of small delays ,the latter ones are less conservative than the former ones.To obtain delay-dependent conditions,many efforts were made in the literature,among which the model transformation and bounding technique for cross terms[8]were often used.However,it is well known that these two kinds of methods are the main sources of conservatism.Recently,in order to reduce the conservatism,a free-weighting matrix method was proposed in[9,10]to investigatedelay-dependent stability,in which neither model transformation nor bounding technique is involved.

    In recent years,the non-fragile control problem was an attractive topic in theory analysis and practical implement,because of perturbations often appearing in the controller gain,which may result from either the actuator degradations or the requirements for readjustment of controller gains.The non-fragile control concept is how to design a feedback control that will be insensitive to some error in gains of feedback control[11].Xu et al.[12]concerned the problem s of robust non-fragile stochastic stabilization and H∞control for uncertain timedelay stochastic systems with time-varying norm-bounded parameter uncertainties in both the state and input matrices,when the delay was assumed to be constant.Zhang et al.[13]dealt with the same problem for uncertain nonlinear stochastic systems at the time-varying delay case.However,there was the restriction that time-derivative of time-varying delay must be less than one,which limits the application scope of the existing results.Wang et al.[14]dealt with the problems of non-fragile robust stochastic stabilization and robust H∞control for uncertain stochastic nonlinear single time-varying delay systems.By introducing the homogeneous domination approach to stochastic systems,Liu et al.[15]investigated a class of stochastic feedforward nonlinear systems with time-varying delay.By constructing delaypartitioning dependent Lyapunov–Krasovskii functional with reciprocally convex approach,Xia et al.[16]dealt with the problem of state robust H∞tracking control for uncertain stochastic systems with interval time-varying delay.

    In this paper,our objective is to solve the problem of robust stabilization of uncertain stochastic systems with time-varying delay and nonlinearity.Parameter uncertainty in the state and input matrices,It is assumed to be norm bounded.Time delay is unknown,but in the known range changes with time.The goal of this paper is to design a memoryless state feedback controller,for all admissible parametric uncertainties,and make the closedloop system is robustly stochastically stable.The present results are derived by choosing an appropriate Lyapunov functional and by making use of free-weighting matrices method. Numerical example and its simulation curve are given to show the proposed theoretical result is effective.

    NotationThrough this paper,the superscript T stands for matrix transposition;Rndenotes the n-dimensional Euclidean space,Rn×mis the set of n×m real matrices,I is the identity matrix of appropriate dimensions;the notation X>0(respectively,X≥0),for X∈Rn×nmeans that the matrix X is real positive definite(respectively,positive semidefinite);the symbol?is used to denote the transposed elements in the symmetric positions of a matrix.Matrices,if the dimensions are not explicitly stated,are assumed to have compatible dimensions for algebraic operation.

    2 System Descriptions and Preliminaries

    Consider the following uncertain linear stochastic differential delay system with nonlin-ear perturbation and parameter uncertainties

    where x(t)∈Rnis the state vector,u(t)∈Rnis the control input,φ(t)is a continuoustime real valued function representing the initial condition of the system,and ω(t)is onedimensional Brownian motion defined on a complete probability space(?,F(xiàn),P)satisfying E{dω(t)}=0,E{dω(t)2}=dt.In the system descriptive equation(2.1),the time-varying matrices are given by A(t)=A+△A(t),A1(t)=A1+△A1(t),B1(t)=B1+△B1(t),C(t)=C+△C(t),C1(t)=C1+△C1(t),and B2(t)=B2+△B2(t),where A,A1,B1,C,C1and B2are known constant matrices and△A(t),△A1(t),△B1(t),△C(t),△C1(t)and△B2(t)are unknown matrices representing time-varying parametric uncertainties in the system.They are assumed to be norm-bounded of the form

    where D1,D2,E1,E2and E3are known real constant matrices with appropriate dimensions and F(t)is unknown time-varying matrix which is Lebesgue measurable satisfying FT(t)F(t)≤I,?t.The time-varying delay h(t)is a differentiable function satisfying the following condition

    where h andμare constant scalars.The term σ(t,x(t),x(t-h(t)))∈Rnrepresents the unknown nonlinear perturbation with respect to the state x(t)and the delayed state x(th(t)),which is assumed to be bounded with the following form

    where α,β are the known non-negative constants.

    Before formulating the problems to be coped with,we first introduce the following concept of robust stability for system(2.1).

    Definition 1The uncertain stochastic system in(2.1)with u(t)=0 is said to be robustly stochastically stable if there exists a positive scalar?>0 such that

    for all admissible uncertainties△A(t),△A1(t),△B1(t),△C(t),△C1(t)and△B2(t).

    The objective of this paper is to develop delay-dependent stochastic stabilization criterion for the existence of a memoryless state feedback controller for system(2.1)satisfying the time-varying delay(2.3).The state feedback controller is given by

    where K being the controller gain to be designed.Following lemma is indispensable for deriving the criterion.

    Lemma 1For any symmetric positive-definite matrices G and Z,of appropriate dimensions,the following inequality holds

    ProofSince Z>0,we have(Z-G)Z-1(Z-G)≥0.The proof follows immediately. Lemma 2[17]Given appropriately dimensioned matrices ψ,D,E with ψ=ψT.Then

    holds for all F(t)satisfying FT(t)F(t)≤I if and only if for some η>0,

    3 Main Results

    Now we provide a novel delay-dependent stabilization criterion for system(2.1)as follows

    Theorem 1For given positive scalars h,μand λ,if there exist symmetric positivedefinite matrices X,S1,S2,Z,appropriately dimensioned matrices Y,Uj,Vj(j=1,2,3),and positive scalars ε1,ε2,such that the following LMI hold

    where

    Then the uncertain linear stochastic differential delay system(2.1)with time-varying parametric uncertainties(2.2)and nonlinear perturbation(2.4)is robust stabilization,in this case,an appropriate memoryless state feedback controller can be chosen by

    Proof Substituting the state feedback controller(2.5)into system(2.1),we obtain the resulting closed-loop system as

    where

    Now,choose a Lyapunov functional candidate as

    where P,Q1,Q2and R are symmetric positive-definite matrices to be chosen. By It?o's differential formula,we obtain stochastic differential as follows

    where

    From the Leibniz-Newton formula,the following equations are true for any matrices M and N with appropriate dimensions O

    where

    On the other hand, the following equation is also true

    For any positive scalar δ,it follows from(2.4)that

    where ζ(t)=σ(t,x(t),x(t-h(t))).

    Combining(3.3)-(3.7),we can obtain the following inequality

    where

    Since R>0,then the last two parts in inequality(3.8)are all less than 0.So,taking the mathematical expectation on both sides of equation(3.2)and using inequality(3.8),since E{F(dω(t))}=0,we can obtain that

    It remains to show that Ξ(t)+hMR-1MT+hNR-1NT<0.Using Schur complement formula,we see that Ξ(t)+hMR-1MT+hNR-1NT<0 if and only if the following matrix inequality holds

    where

    Then premultiplying and postmultiplying inequality(3.10)by

    where

    and Θ13,Θ23and Θ33are defined in inequality(3.1).

    Noting equation(2.2),and let Y=KX,inequality(3.11)can be written as

    where

    For given scalar λ>0,the nonlinear term-hXZ-1X in the matrix inequality(3.12)can be rewritten as-h(λX)(λ2Z)-1(λX).Therefore,by Lemma 1,we have the inequality -hXZ-1X≤hλ2Z-2hλX.Applying Lemma 2 and Schur complement to inequality (3.12),we can obtain the LMI(3.1)stated in Theorem 1,which means that system(2.1)under control law u(t)=Y X-1x(t)is robust stabilization.This completes the proof.

    Remark 1When the differential of h(t)is unknown,and the delay h(t)satisfies 0≤h(t)≤h,by setting S1=0,a delay-dependent and rate-independent criterion for robust stabilization of systems(2.1)from Theorem 1 can be obtained.

    Table 1:(MAUB)h of the time-varying delay h(t)for differentμ.

    Remark 2When α=0,β=0,a uncertain linear stochastic differential delay system criterion without nonlinear perturbation for robust stabilization of systems(2.1)from Theorem 1 can be obtained.

    4 Numerical Example

    In this section,in order to demonstrate the effectiveness of the proposed method,we provide the following numerical example.

    Example 1 Consider the uncertain nonlinear single time-delay system(2.1)with the following parameters

    By using matlab solver feasp,for givenμ=0.5,λ=0.2,the feasibility upper bound of h(t)is 0.3108.Choosing h=0.3,according to Theorem 1,solve LMI in inequality(3.1),and get a set of solutions as follows

    Therefore the robust problem is solvable,and the memoryless feedback gains in control are computed as

    Figure 1:Trajectory of the solution to such system in Example 1

    References

    [1]Pan Q F,Zhang Z F.Exponential stability of a class of stochastic delay recurrent neural network[J]. J.Math.,2014,34(3):487-496.

    [2]Wang Q,Wne J C.Stability of stochastic differential equations with piecewise constant arguments of retarded type[J].J.Math.,2015,35(2):307-317.

    [3]Yue D,Han Q L.Delay-dependent exponential stability of stochastic systems with time-varying delay[J].IEEE Trans.Autom.Contr.,2005,50(2):217-222.

    [4]Basin M,Rodkina A.On delay-dependent stability for a class of nonlinear stochastic systems with multiple state delays[J].Nonl.Anal.The.Meth.Appl.,2008,68(8):2147-2157.

    [5]Li H,Chen B,Zhou Q,Lin C.Delay-dependent robust stability for stochastic time-delay systems with polytopic uncertainties[J].Int.J.Rob.Nonl.Contr.,2008,18(15):1482-1492.

    [6]Chen J D.Delay-dependent robust H∞control of uncertain neutral systems with state and input delays:LMI optimization approach[J].Chaos,Soli.Fractals,2007,33(2):595-606.

    [7]Xu S,Lam J,Zou Y.Delay-dependent guaranteed cost control of uncertain system with state and input delays[J].IEE Proc.Contr.The.Appl.,2006,153(6):307-313.

    [8]Chen W,Guan Z,Lu X.Delay-dependent robust stabilization and H∞control of uncertain stochastic systems with time-varying delay[J].IMA J.Math.Contr.Inf.,2004,21(3):345-358.

    [9]Wu M,He Y,She J H,Liu G P.Delay-dependent criteria for robust stability of time-varying delay systems[J].Auto.,2004,40(8):1435-1439.

    [10]He Y,Wang Q G,Xie L H,Lin C.Further improvement of free-weighting matrices technique for systems with time-varying delay[J].IEEE Trans.Autom.Contr.,2007,52(2):293-299.

    [11]Tian X,Xie L,Chen Y W.Robust non-fragile H∞control for uncertain time delayed stochastic systems with sector constraints[C].Proceedings of IEEE International Confer.Contr.Auto.,2007:1852-1856.

    [12]Xu S,Lam J,Yang G,Wang J.Stabilization and H∞control for uncertain stochastic time-delay systems via non-fragile controllers[J].Asian J.Contr.,2006,8(2):197-200.

    [13]Zhang J H,Shi P,Yang H J.Non-fragile robust stabilization and H∞control for uncertain stochastic nonlinear time-delay systems[J].Chaos Soli.Fract.,2009,42(5):3187-3196.

    [14]Wang C,Shen Y.Delay-dependent non-fragile robust stabilization and H∞control of uncertain stochastic systems with time-varying delay and nonlinearity[J].J.Franklin Insti.,2011,348:2174-2190.

    [15]Liu L,Xie X J.State feedback stabilization for stochastic feedforward nonlinear systems with timevarying delay[J].Auto.,2013,49:936-942.

    [16]Xia J W,Park J H,Lee T H,Zhang B Y.H∞tracking of uncertain stochastic time-delay systems:Memory state-feedback controller design[J].Appl.Math.Comput.,2014,249:356-370.

    [17]Yan H C,Zhang Z,Meng M.Delay-range-dependent robust H∞control for uncertain systems with interval time-varying delays[J].Neurocomput.,2010,73:1235-1243.

    具有非線性擾動(dòng)的不確定隨機(jī)時(shí)變時(shí)滯系統(tǒng)的魯棒鎮(zhèn)定

    李伯忍
    (東莞理工學(xué)院計(jì)算機(jī)學(xué)院,廣東東莞523808)

    本文研究了具有非線性擾動(dòng)的不確定隨機(jī)時(shí)變時(shí)滯系統(tǒng)的魯棒鎮(zhèn)定的問題.構(gòu)造了適當(dāng)?shù)腖yapunov-Krasovskii泛函并利用自由權(quán)矩陣方法,借助于線性矩陣不等式(LMI)技術(shù),設(shè)計(jì)了一個(gè)無記憶狀態(tài)反饋控制器,并獲得了不確定隨機(jī)時(shí)變時(shí)滯系統(tǒng)的時(shí)滯依賴魯棒鎮(zhèn)定判據(jù).數(shù)值例子及其仿真曲線表明所提出的理論結(jié)果是有效的.

    自由權(quán)矩陣;非線性擾動(dòng);時(shí)變時(shí)滯;反饋控制

    MR(2010)主題分類號:93C10;93D09O23;O29

    date:2014-12-07Accepted date:2015-04-07

    Supported by the Guangdong Province Natural Science Foundation Project (2016A030313130)and the National Natural Science Foundation Project of China(11371154).

    Biography:Li Boren(1980-),male,born at Yugan,Jiangxi,doctor,major in analysis and synthesis of the time-delay and uncertain system.

    猜你喜歡
    自由權(quán)魯棒時(shí)變
    基于學(xué)習(xí)的魯棒自適應(yīng)評判控制研究進(jìn)展
    淺析權(quán)利本位范式中的意思自治
    目標(biāo)魯棒識別的抗旋轉(zhuǎn)HDO 局部特征描述
    基于時(shí)變Copula的股票市場相關(guān)性分析
    我國高校學(xué)術(shù)自由權(quán)利研究文獻(xiàn)綜述
    論法律論證的自由權(quán)標(biāo)準(zhǔn)
    江漢論壇(2016年11期)2017-02-23 21:10:02
    煙氣輪機(jī)復(fù)合故障時(shí)變退化特征提取
    基于Cauchy魯棒函數(shù)的UKF改進(jìn)算法
    基于Cauchy魯棒函數(shù)的UKF改進(jìn)算法
    基于MEP法的在役橋梁時(shí)變可靠度研究
    亚洲片人在线观看| 黄色视频不卡| 亚洲电影在线观看av| 高清在线国产一区| 亚洲国产欧美一区二区综合| 久久中文看片网| 日本成人三级电影网站| 欧美乱妇无乱码| 巨乳人妻的诱惑在线观看| 欧美久久黑人一区二区| 欧美日韩福利视频一区二区| 久久精品国产亚洲av高清一级| 国产真人三级小视频在线观看| 国产亚洲av高清不卡| 亚洲av中文字字幕乱码综合| 国产亚洲欧美98| 欧美在线一区亚洲| 岛国视频午夜一区免费看| 男人舔女人的私密视频| 国产精品乱码一区二三区的特点| 午夜福利成人在线免费观看| 俺也久久电影网| 欧美性猛交黑人性爽| 国产精品久久久人人做人人爽| 99国产极品粉嫩在线观看| 全区人妻精品视频| 国产免费男女视频| 欧美最黄视频在线播放免费| 久久久国产成人精品二区| 国产精品久久视频播放| 久久香蕉国产精品| 国产精品久久久人人做人人爽| 一a级毛片在线观看| 日本五十路高清| 一区二区三区高清视频在线| 国产精品一区二区三区四区免费观看 | 欧美一区二区国产精品久久精品 | 亚洲乱码一区二区免费版| 欧美激情久久久久久爽电影| 国产aⅴ精品一区二区三区波| 精品一区二区三区四区五区乱码| 91av网站免费观看| 在线观看一区二区三区| 亚洲中文字幕日韩| 波多野结衣巨乳人妻| 精品久久蜜臀av无| 亚洲18禁久久av| www.自偷自拍.com| 久久婷婷成人综合色麻豆| 成人精品一区二区免费| 啦啦啦观看免费观看视频高清| 国产v大片淫在线免费观看| 欧美成狂野欧美在线观看| 一本久久中文字幕| tocl精华| 欧美性猛交╳xxx乱大交人| 黄片小视频在线播放| 一区福利在线观看| 久久国产乱子伦精品免费另类| 18禁观看日本| 国产一级毛片七仙女欲春2| av福利片在线观看| 国产精品乱码一区二三区的特点| 不卡av一区二区三区| 波多野结衣巨乳人妻| 午夜精品一区二区三区免费看| 久久热在线av| 国产激情久久老熟女| 女人被狂操c到高潮| 99精品久久久久人妻精品| 这个男人来自地球电影免费观看| 亚洲七黄色美女视频| av在线天堂中文字幕| 久久精品综合一区二区三区| 大型黄色视频在线免费观看| 成人特级黄色片久久久久久久| 老司机午夜福利在线观看视频| av欧美777| 免费观看精品视频网站| 嫁个100分男人电影在线观看| 三级男女做爰猛烈吃奶摸视频| 给我免费播放毛片高清在线观看| 国产高清视频在线观看网站| 国产亚洲精品久久久久久毛片| tocl精华| 变态另类丝袜制服| 91九色精品人成在线观看| bbb黄色大片| 日韩欧美三级三区| 精品一区二区三区视频在线观看免费| 欧美成人一区二区免费高清观看 | 一本大道久久a久久精品| 国产成人精品久久二区二区91| 精品一区二区三区视频在线观看免费| xxx96com| bbb黄色大片| 国产成人精品久久二区二区91| 成人三级黄色视频| 变态另类成人亚洲欧美熟女| 法律面前人人平等表现在哪些方面| 给我免费播放毛片高清在线观看| a级毛片a级免费在线| 国产三级中文精品| 国产激情欧美一区二区| 成人亚洲精品av一区二区| 欧美日韩一级在线毛片| 亚洲美女黄片视频| 国产午夜福利久久久久久| 99久久99久久久精品蜜桃| 国产精品亚洲av一区麻豆| 99国产精品一区二区蜜桃av| 波多野结衣高清作品| 一a级毛片在线观看| 一级黄色大片毛片| 搞女人的毛片| 久久热在线av| 久久久久久亚洲精品国产蜜桃av| 亚洲国产欧美一区二区综合| 国产黄a三级三级三级人| 一级a爱片免费观看的视频| 精品少妇一区二区三区视频日本电影| 最新美女视频免费是黄的| 黄色片一级片一级黄色片| 青草久久国产| 丝袜美腿诱惑在线| 国产一区二区在线av高清观看| 999精品在线视频| 日日夜夜操网爽| av福利片在线| 国产伦人伦偷精品视频| 国产精品一及| 午夜福利18| 亚洲精品在线美女| 欧美绝顶高潮抽搐喷水| 成人一区二区视频在线观看| 天堂影院成人在线观看| 18美女黄网站色大片免费观看| 久久久精品欧美日韩精品| 亚洲国产精品999在线| 色哟哟哟哟哟哟| 国产激情欧美一区二区| 成熟少妇高潮喷水视频| 一本一本综合久久| 国产欧美日韩精品亚洲av| 亚洲成人免费电影在线观看| 搡老熟女国产l中国老女人| 女人被狂操c到高潮| 毛片女人毛片| 老鸭窝网址在线观看| 麻豆国产97在线/欧美 | 日韩国内少妇激情av| 亚洲欧洲精品一区二区精品久久久| 十八禁网站免费在线| 波多野结衣高清无吗| 黄色成人免费大全| 99久久综合精品五月天人人| 色精品久久人妻99蜜桃| 听说在线观看完整版免费高清| 黄片小视频在线播放| 成人三级黄色视频| 久久精品人妻少妇| 久久久久久人人人人人| 欧美激情久久久久久爽电影| 色综合婷婷激情| 啦啦啦韩国在线观看视频| www.精华液| 精品无人区乱码1区二区| 欧美成人一区二区免费高清观看 | 久久精品国产综合久久久| 成人三级做爰电影| 丝袜人妻中文字幕| 亚洲av熟女| 久久中文看片网| 十八禁网站免费在线| 国产精品久久久久久精品电影| 亚洲成人精品中文字幕电影| 男人舔女人的私密视频| 亚洲国产精品合色在线| www日本在线高清视频| 一本综合久久免费| 夜夜躁狠狠躁天天躁| 午夜福利视频1000在线观看| 午夜亚洲福利在线播放| 舔av片在线| 免费高清视频大片| 在线永久观看黄色视频| 国产亚洲精品第一综合不卡| 国产野战对白在线观看| 国产精品久久久久久亚洲av鲁大| 天天躁夜夜躁狠狠躁躁| av福利片在线观看| 国产精品国产高清国产av| 精品国内亚洲2022精品成人| 午夜成年电影在线免费观看| 国产v大片淫在线免费观看| 精品一区二区三区四区五区乱码| aaaaa片日本免费| 免费在线观看成人毛片| 九色成人免费人妻av| av国产免费在线观看| 精品久久久久久,| 无遮挡黄片免费观看| 又黄又爽又免费观看的视频| 国产伦在线观看视频一区| 韩国av一区二区三区四区| 窝窝影院91人妻| 欧美大码av| 久久人妻av系列| 免费看日本二区| 久久这里只有精品19| 国产av又大| 美女 人体艺术 gogo| 免费在线观看成人毛片| 中文字幕精品亚洲无线码一区| 国产成人av教育| 别揉我奶头~嗯~啊~动态视频| 最近视频中文字幕2019在线8| 国产黄色小视频在线观看| 亚洲色图 男人天堂 中文字幕| 久久久久久亚洲精品国产蜜桃av| 人妻久久中文字幕网| 亚洲av电影不卡..在线观看| 亚洲国产精品久久男人天堂| 亚洲男人的天堂狠狠| 欧美中文综合在线视频| 国产高清videossex| 最近最新中文字幕大全电影3| 国产又黄又爽又无遮挡在线| 日本在线视频免费播放| 女警被强在线播放| 啪啪无遮挡十八禁网站| 亚洲色图 男人天堂 中文字幕| 真人一进一出gif抽搐免费| 青草久久国产| 在线观看日韩欧美| 一本一本综合久久| 香蕉国产在线看| 成在线人永久免费视频| a级毛片a级免费在线| 国产一区二区三区在线臀色熟女| 日韩三级视频一区二区三区| 色综合站精品国产| 国产精品九九99| 欧美性猛交黑人性爽| 少妇裸体淫交视频免费看高清 | 韩国av一区二区三区四区| 成熟少妇高潮喷水视频| 亚洲精品国产一区二区精华液| 成熟少妇高潮喷水视频| 日本在线视频免费播放| 午夜精品一区二区三区免费看| 99精品在免费线老司机午夜| 香蕉久久夜色| 天堂av国产一区二区熟女人妻 | 国产成人系列免费观看| 99久久精品热视频| 国产精品一区二区三区四区久久| 亚洲av美国av| 亚洲av日韩精品久久久久久密| 淫秽高清视频在线观看| 免费看美女性在线毛片视频| 听说在线观看完整版免费高清| 露出奶头的视频| 午夜亚洲福利在线播放| 国产黄色小视频在线观看| 一本一本综合久久| 国产日本99.免费观看| 国产日本99.免费观看| 亚洲欧美激情综合另类| 成年女人毛片免费观看观看9| 久久久久精品国产欧美久久久| 欧美最黄视频在线播放免费| 香蕉久久夜色| 国内精品一区二区在线观看| 精品福利观看| 亚洲国产高清在线一区二区三| 天天躁夜夜躁狠狠躁躁| 巨乳人妻的诱惑在线观看| 午夜影院日韩av| 91字幕亚洲| 嫩草影视91久久| 99国产极品粉嫩在线观看| 人人妻,人人澡人人爽秒播| 精品人妻1区二区| 国产精品av视频在线免费观看| 亚洲成人中文字幕在线播放| 精品乱码久久久久久99久播| 国产精品,欧美在线| 88av欧美| 波多野结衣高清作品| 香蕉丝袜av| 久久久久久久精品吃奶| 99riav亚洲国产免费| 少妇裸体淫交视频免费看高清 | 这个男人来自地球电影免费观看| 日韩高清综合在线| 久久人妻福利社区极品人妻图片| 最近视频中文字幕2019在线8| 国产亚洲欧美在线一区二区| 黄色视频不卡| 在线观看美女被高潮喷水网站 | 青草久久国产| 国产真实乱freesex| 国产成人一区二区三区免费视频网站| 制服丝袜大香蕉在线| 制服诱惑二区| 亚洲av电影不卡..在线观看| 老司机午夜福利在线观看视频| 国产av一区在线观看免费| 女人被狂操c到高潮| 美女 人体艺术 gogo| 国产日本99.免费观看| 在线看三级毛片| 又大又爽又粗| 精品熟女少妇八av免费久了| 国产69精品久久久久777片 | 999精品在线视频| 欧美又色又爽又黄视频| 亚洲精品在线美女| av免费在线观看网站| 老司机靠b影院| 亚洲全国av大片| av天堂在线播放| 99re在线观看精品视频| 日韩欧美三级三区| 亚洲无线在线观看| 亚洲av成人av| 欧美zozozo另类| 久久精品成人免费网站| 一级作爱视频免费观看| 69av精品久久久久久| 国产成人av教育| 色尼玛亚洲综合影院| 欧美大码av| 香蕉久久夜色| 亚洲欧美日韩东京热| 亚洲av五月六月丁香网| 亚洲午夜理论影院| 欧美日韩精品网址| 亚洲精品在线观看二区| 12—13女人毛片做爰片一| 男女午夜视频在线观看| 久久中文看片网| 国产精品日韩av在线免费观看| 久久精品aⅴ一区二区三区四区| 午夜福利免费观看在线| 亚洲aⅴ乱码一区二区在线播放 | 18禁黄网站禁片午夜丰满| 精品无人区乱码1区二区| 亚洲欧美精品综合久久99| 免费在线观看日本一区| 国产亚洲精品一区二区www| 成人高潮视频无遮挡免费网站| 三级国产精品欧美在线观看 | 久久精品成人免费网站| 精品熟女少妇八av免费久了| 法律面前人人平等表现在哪些方面| 亚洲成av人片在线播放无| 成人特级黄色片久久久久久久| 亚洲欧美日韩无卡精品| 波多野结衣高清作品| 狠狠狠狠99中文字幕| e午夜精品久久久久久久| 级片在线观看| 欧美精品啪啪一区二区三区| 婷婷精品国产亚洲av在线| 岛国视频午夜一区免费看| 嫩草影院精品99| 好男人在线观看高清免费视频| xxxwww97欧美| 国产高清videossex| 少妇熟女aⅴ在线视频| 好看av亚洲va欧美ⅴa在| 免费在线观看影片大全网站| av国产免费在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精华国产精华精| 女人被狂操c到高潮| 窝窝影院91人妻| 欧美 亚洲 国产 日韩一| 好男人电影高清在线观看| 亚洲av成人av| 欧美一区二区国产精品久久精品 | 亚洲九九香蕉| 久久精品91无色码中文字幕| xxxwww97欧美| www国产在线视频色| 国产99久久九九免费精品| 国产午夜精品论理片| 老司机靠b影院| 午夜福利欧美成人| 国内毛片毛片毛片毛片毛片| 午夜免费激情av| xxxwww97欧美| 级片在线观看| 国产精品乱码一区二三区的特点| 在线观看www视频免费| 免费在线观看影片大全网站| 99国产精品一区二区三区| 级片在线观看| 色综合站精品国产| 97碰自拍视频| 欧美中文综合在线视频| 成熟少妇高潮喷水视频| 精品久久久久久久久久久久久| 国产av一区在线观看免费| 国产精品99久久99久久久不卡| 日韩欧美精品v在线| 19禁男女啪啪无遮挡网站| 日韩av在线大香蕉| 精品日产1卡2卡| 亚洲精品中文字幕在线视频| 久久久精品欧美日韩精品| 亚洲第一电影网av| 精华霜和精华液先用哪个| 两个人视频免费观看高清| 国产探花在线观看一区二区| 国产精品久久久av美女十八| 国产av又大| 国产免费男女视频| 色综合亚洲欧美另类图片| 女警被强在线播放| 久久久久国产精品人妻aⅴ院| 日韩欧美三级三区| 亚洲一区高清亚洲精品| 精品国产超薄肉色丝袜足j| 亚洲av第一区精品v没综合| 欧美大码av| 亚洲欧美日韩无卡精品| 男女视频在线观看网站免费 | e午夜精品久久久久久久| 精品国内亚洲2022精品成人| 亚洲中文字幕一区二区三区有码在线看 | 熟女电影av网| 美女大奶头视频| 国产又色又爽无遮挡免费看| 亚洲无线在线观看| 亚洲无线在线观看| av欧美777| 欧美zozozo另类| av片东京热男人的天堂| www.熟女人妻精品国产| 久久精品国产综合久久久| 两个人的视频大全免费| 亚洲熟妇中文字幕五十中出| 亚洲精华国产精华精| 国产区一区二久久| 亚洲国产日韩欧美精品在线观看 | 中文字幕高清在线视频| 午夜视频精品福利| 国产亚洲精品第一综合不卡| 99re在线观看精品视频| 免费人成视频x8x8入口观看| 久久久久精品国产欧美久久久| 国产精品久久久久久久电影 | 亚洲精品国产一区二区精华液| 欧美性猛交╳xxx乱大交人| 精品欧美国产一区二区三| 日日爽夜夜爽网站| 999精品在线视频| 床上黄色一级片| 欧美色视频一区免费| 欧美一级a爱片免费观看看 | 窝窝影院91人妻| av免费在线观看网站| 免费电影在线观看免费观看| 嫁个100分男人电影在线观看| 法律面前人人平等表现在哪些方面| 国产精品免费视频内射| 日韩精品免费视频一区二区三区| 欧美黄色片欧美黄色片| 制服诱惑二区| 久久久精品大字幕| 国产午夜福利久久久久久| 国产免费av片在线观看野外av| 国产精华一区二区三区| 成熟少妇高潮喷水视频| 亚洲色图av天堂| 美女午夜性视频免费| 两个人视频免费观看高清| 欧美中文综合在线视频| 国产探花在线观看一区二区| 免费在线观看视频国产中文字幕亚洲| 欧美av亚洲av综合av国产av| 视频区欧美日本亚洲| 1024手机看黄色片| 欧美中文综合在线视频| 激情在线观看视频在线高清| 一二三四在线观看免费中文在| 无遮挡黄片免费观看| 五月玫瑰六月丁香| 麻豆成人午夜福利视频| 免费观看精品视频网站| 国语自产精品视频在线第100页| 国产欧美日韩一区二区三| 国模一区二区三区四区视频 | 国产蜜桃级精品一区二区三区| 在线观看免费午夜福利视频| 全区人妻精品视频| 久久天堂一区二区三区四区| 欧美成人免费av一区二区三区| 人妻丰满熟妇av一区二区三区| 999久久久国产精品视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产成年人精品一区二区| 99在线视频只有这里精品首页| 日韩欧美在线乱码| 一级黄色大片毛片| 亚洲欧洲精品一区二区精品久久久| 少妇熟女aⅴ在线视频| 国产精品一及| 久久久国产成人免费| 男男h啪啪无遮挡| 亚洲成人精品中文字幕电影| 18禁国产床啪视频网站| av福利片在线| 国产伦在线观看视频一区| 国产高清激情床上av| 俺也久久电影网| 亚洲国产精品合色在线| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美精品综合一区二区三区| 中文字幕精品亚洲无线码一区| 在线观看www视频免费| 色精品久久人妻99蜜桃| 欧美激情久久久久久爽电影| 一夜夜www| 精品高清国产在线一区| АⅤ资源中文在线天堂| 日韩大尺度精品在线看网址| 国产精品免费一区二区三区在线| 日本三级黄在线观看| 国产精品av视频在线免费观看| 中出人妻视频一区二区| 丁香欧美五月| 亚洲第一欧美日韩一区二区三区| 女人高潮潮喷娇喘18禁视频| 亚洲欧美激情综合另类| 国产精品影院久久| 99在线视频只有这里精品首页| 成人特级黄色片久久久久久久| 丝袜人妻中文字幕| 老熟妇乱子伦视频在线观看| 国产精品久久久久久人妻精品电影| 日本熟妇午夜| 日本a在线网址| 又黄又粗又硬又大视频| or卡值多少钱| 成人精品一区二区免费| 90打野战视频偷拍视频| 国产1区2区3区精品| 久久香蕉国产精品| 啦啦啦观看免费观看视频高清| 亚洲熟妇中文字幕五十中出| 怎么达到女性高潮| 十八禁网站免费在线| 国产aⅴ精品一区二区三区波| 国产91精品成人一区二区三区| 级片在线观看| 18禁国产床啪视频网站| 精品久久久久久久久久免费视频| 国产精品免费一区二区三区在线| 黑人欧美特级aaaaaa片| 88av欧美| 伦理电影免费视频| 男女做爰动态图高潮gif福利片| 人妻久久中文字幕网| 日韩 欧美 亚洲 中文字幕| 欧美另类亚洲清纯唯美| 久久这里只有精品中国| 正在播放国产对白刺激| 色综合亚洲欧美另类图片| 午夜久久久久精精品| 在线永久观看黄色视频| 亚洲天堂国产精品一区在线| 99久久精品热视频| 午夜成年电影在线免费观看| 国产精品香港三级国产av潘金莲| 熟女少妇亚洲综合色aaa.| avwww免费| 中文字幕最新亚洲高清| 男女床上黄色一级片免费看| 欧美最黄视频在线播放免费| 欧美一区二区国产精品久久精品 | 一本精品99久久精品77| 国产私拍福利视频在线观看| 久久热在线av| 亚洲精品美女久久久久99蜜臀| 脱女人内裤的视频| 床上黄色一级片| 国产欧美日韩一区二区精品| 99久久久亚洲精品蜜臀av| 国产熟女午夜一区二区三区| 97碰自拍视频| xxxwww97欧美| 国产精品久久久av美女十八| 日韩欧美在线二视频| 丰满人妻一区二区三区视频av | 12—13女人毛片做爰片一| 国产成人aa在线观看| 国产亚洲精品第一综合不卡| 狂野欧美激情性xxxx| 亚洲精品久久成人aⅴ小说| 一本精品99久久精品77| 亚洲国产欧洲综合997久久,| 天堂av国产一区二区熟女人妻 | 少妇的丰满在线观看| 男女做爰动态图高潮gif福利片| 日韩欧美国产在线观看| 久久久久久久久久黄片| 久久 成人 亚洲| 中文字幕熟女人妻在线| 亚洲欧美日韩东京热| 亚洲国产欧美一区二区综合| 在线观看www视频免费|