• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GLOBAL SMOOTH SOLUTIONS TO THE 1-D COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM WITH LARGE INITIAL DATA

    2017-01-19 06:08:56CHENTingtingCHENZhichunCHENZhengzheng
    數(shù)學(xué)雜志 2017年1期
    關(guān)鍵詞:安徽大學(xué)初值毛細(xì)

    CHEN Ting-ting,CHEN Zhi-chun,CHEN Zheng-zheng

    (School of Mathematical Sciences,Anhui University,Hefei 230601,China )

    GLOBAL SMOOTH SOLUTIONS TO THE 1-D COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM WITH LARGE INITIAL DATA

    CHEN Ting-ting,CHEN Zhi-chun,CHEN Zheng-zheng

    (School of Mathematical Sciences,Anhui University,Hefei 230601,China )

    This paper is concerned with the Cauchy problem of the one-dimensional isothermal compressible Navier-Stokes-Korteweg system when the viscosity coefficient and capillarity coefficient are general smooth functions of the density.By using the elementary energy method and Kanel’s technique[25],we obtain the global existence and time-asymptotic behavior of smooth non-vacuum solutions with large initial data,which improves the previous ones in the literature.

    compressible Navier-Stokes-Korteweg system;global existence;time-asymptotic behavior;large initial data

    1 Introduction

    This paper is concerned with the Cauchy problem of the one-dimensional isothermal compressible Navier-Stokes-Korteweg system with density-dependent viscosity coefficient and capillarity coefficient in the Eulerian coordinates

    with the initial data

    here t and x represent the time variable and the spatial variable,respectively,K is the Korteweg tensor given by

    The unknown functions ρ>0,u,P=P(ρ)denote the density,the velocity,and the pressure of the fluids respectively.μ=μ(ρ)>0 and κ=κ(ρ)>0 are the viscosity coefficient and the capillarity coefficient,respectively,and>0 is a given constant.Throughout this paper, we assume that

    System(1.1)can be used to model the motions of compressible isothermal viscous fluids with internal capillarity,see[1–3]for its derivations.Notice that when κ=0,system(1.1) is reduced to the compressible Navier-Stokes system.

    There were extensive studies on the mathematical aspects on the compressible Navier-Stokes-Korteweg system.For small initial data,we refer to[8,9,13–15,19–23]for the global existence and large time behavior of smooth solutions in Sobolev space,[5,7,11]for the global existence and uniqueness of strong solutions in Besov space,and[5,6]for the global existence of weak solutions near constant states in the whole space R2.

    For large initial data,Kotschote[12],Hattori and Li[10]proved the local existence of strong solutions.Bresch et al.[4]investigated the global existence of weak solutions for an isothermal fluid with the viscosity coefficientsμ(ρ)=ρ,λ(ρ)=0 and the capillarity coefficient κ(ρ)≡in a periodic domain Td(d=2,3),where>0 are positive constants. Later,such a result was improved by Haspot[6]to some more general density-dependent viscosity coefficients.Tsyganov[16]studied the global existence and time-asymptotic convergence of weak solutions for an isothermal compressible Navier-Stokes-Korteweg system with the viscosity coefficientμ(ρ)≡1 and the capillarity coefficient κ(ρ)=ρ-5on the interval[0,1].Charve and Haspot[17]showed the global existence of strong solutions to system (1.1)withμ(ρ)=ερ and κ(ρ)=ε2ρ-1.Recently,Germain and LeFloch[18]studied the global existence of weak solutions to the Cauchy problem(1.1)–(1.2)with general densitydependent viscosity and capillarity coefficients.Both the vacuum and non-vacuum weak solutions were obtained in[18].Moreover,Chen et al.[23,24]discussed the global existence and large time behavior of smooth and non-vacuum solutions to the Cauchy problem of system(1.1)with the viscosity and capillarity coefficients being some power functions of the density.

    However,few results were obtained for the global smooth,large solutions of the isothermal compressible Navier-Stokes-Korteweg system with general density-dependent viscosity coefficient and capillarity coefficient up to now.This paper is devoted to this problem,and we are concerned with the global existence and large time behavior of smooth,non-vacuum solutions to the Cauchy problems(1.1)–(1.2)when the the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are general smooth functions of the density ρ.

    The main result of this paper is stated as follows.

    Theorem 1.1Suppose the following conditions hold:

    (i)The initial data(ρ0(x)-,u0(x))∈H4(R)×H3(R),and there exist two positive constants m0,m1such that m0≤ρ0(x)≤m1for all x∈R.

    (ii)The smooth functionsμ(ρ)and κ(ρ)satisfyμ(ρ),κ(ρ)>0 for ρ>0,and one of the following two conditions hold:

    and the time-asymptotic behavior

    here C1is a positive constant depending only on m0,m1,and C2is a positive constant depending only on m0,m1,

    When the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are given by

    where α,β∈R are some constants,condition(ii)of Theorem 1.1 corresponds to

    while condition(iii)of Theorem 1.1 is equivalent to

    or

    Thus from Theorem 1.1,we have the following corollary.

    Corollary 1.1Let condition(i)of Theorem 1.1 holds.Suppose that the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are given by(1.7)and the constants α,β satisfy one of the following conditions:

    then the same conclusions of Theorem 1.1 hold.

    Remark 1.1Some remarks on Theorem 1.1 and Corollary 1.1 are given as follows:

    (1)Conditions(ii)and(iii)of Theorem 1.1 are used to deduce the positive lower and upper bounds of the density ρ(t,x),see Lemmas 2.3–2.5 for details.

    (2)In Theorem 1.1,the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ)are general smooth functions of ρ satisfying conditions(ii)and(iii)of Theorem 1.1,which are more general than those in[23,24],where only some power like density-dependent viscosity and capillarity coefficients are studied.

    On the other hand,Germain and LeFloch[18]also discussed the global existence of weak solutions away from vacuum for problems(1.1)–(1.2)withμ(ρ)=ραand κ(ρ)=ρβunder the condition that

    or

    which means that 0≤α<1.From condition(A)of Corollary 1.1,we see that α∈thus Corollary 1.1 also improves the results of[18]to the case α∈Moreover,case (B)of Corollary 1.1 is completely new compared to the results in[18,23,24].Thus in these sense,our main result Theorem 1.1 can be viewed as an extension of the works[18,23,24].

    Now we make some comments on the analysis of this paper.The proof of Theorem 1.1 is motivated by the previous works[18,23,24].When the viscosity coefficientμ(ρ) and the capillarity coefficient κ(ρ)are some power functions of the density,the authors in [23,24]studied the global existence and large time behavior of smooth solutions away from vacuum to the Cauchy problem of system(1.1)with large initial data in the Lagrangian coordinates.However,for the viscosity coefficientμ(ρ)and the capillarity coefficient κ(ρ) being some general smooth functions of the density,it is much more easier for us to study such a problem in the Eulerian coordinates rather than the Lagrangian coordinates.To prove Theorem 1.1,we mainly use the method of Kanel[25]and the energy estimates.The key step is to derive the positive lower and upper bounds for the density ρ(t,x).First,due to effect of the Korteweg tensor,an estimate ofappears in the basic energy estimate(see Lemma 2.1).Based on this and a new inequality for the renormalized internal energy(see Lemma 2.2),the lower and upper bounds of ρ(t,x)for cases(ii)(a)of Theorem 1.1 can be derived easily by applying Kanel’s method[25](see Lemma 2.3).Second,we perform an uniform-in-time estimate onunder condition(iii)of Theorem 1.1(see Lemma 2.4).We remark that Lemma 2.4 is proved by using the approach of Kanel[25],rather than introducing the effective velocity as[4,17,18].Then by employing Kanel’s method[25]againand Lemmas 2.1,2.2 and 2.4,the lower and upper bounds of ρ(t,x)for the cases(ii)(b)of Theorem 1.1 follows immediately(see Lemma 2.5).Having obtained the lower and upper bounds on ρ(t,x),the higher order energy estimates of solutions to the Cauchy problem (1.1)–(1.2)can be deduced by using the lower order estimates and Gronwall’s inequality, and then Theorem 1.1 follows by the standard continuation argument.In the next section, we will give the proof of Theorem 1.1.

    NotationsThroughout this paper,C denotes some generic constant which may vary in different estimates.If the dependence needs to be explicitly pointed out,the notation C(·,···,·)or Ci(·,···,·)(i∈N)is used.f′(ρ)denotes the derivative of the function f(ρ) with respect to ρ.For function spaces,Lp(R)(1≤p≤+∞)is the standard Lebesgue space with the norm‖·‖Lp,and Hl(R)stands for the usual l-th order Sobolev space with its norm

    2 Proof of Theorem 1.1

    This section is devoted to proving Theorem 1.1.To do this,we seek the solutions of the Cauchy problems(1.1)–(1.2)in the following set of functions

    where M≥m>0 and T>0 are some positive constants.

    Under the assumptions of Theorem 1.1,we have the following local existence result.

    Proposition 2.1(Local existence)Under the assumptions of Theorem 1.1,there exists a sufficiently small positive constant t1depending only on m0,m1,such that the Cauchy problems(1.1)–(1.2)admits a unique smooth solution(ρ,u)(t,x)∈

    where b>1 is a positive constant depending only on m0,m1.

    The proof of Proposition 2.1 can be done by using the dual argument and iteration technique,which is similar to that of Theorem 1.1 in[10]and thus omitted here for brevity. Suppose that the local solution(ρ,u)(t,x)obtained in Proposition 2.1 has been extended to the time step t=T≥t1for some positive constant T>0.To prove Theorem 1.1,one needs only to show the following a priori estimates.

    Proposition 2.2(A priori estimates)Under the assumptions of Theorem 1.1,suppose that(ρ,u)(t,x)∈X(0,T;M0,M1)is a solution of the Cauchy problem(1.1)–(1.2)for somepositive constants T and M0,M1>0.Then there exist two positive constants C1and C2which are independent of T,M0,M1such that the following estimates hold:

    Proposition 2.2 can be obtained by a series of lemmas below.We first give the following key lemma.

    Lemma 2.1(Basic energy estimates)Under the assumptions of Proposition 2.2,it holds that

    for all t∈[0,T],where the functionis defined by

    ProofIn view of the continuity equation(1.1)1,we have

    On the other hand,by using(1.1)1again,the movement equation(1.1)2can be rewritten as

    Substituting(2.6)into(2.5),we get

    Here and hereafter,{···}xdenotes the terms which will disappear after integrating with respect to x.

    Moreover,it follows from(1.1)1that

    Combining(2.7)and(2.8),and integrating the resultant equation with respect to t and x over[0,t]×R,we can get(2.3).This completes the proof of Lemma 2.1.

    In order to apply Kanel’s method[25]to show the lower and upper bound of the density ρ(t,x),we need to establish the following lemma.

    Lemma 2.2There exists a uniform positive constant c0such that

    ProofUsing the L’Hospital rule,we obtain

    Consequently,there exist a sufficiently small constant δ and a large constantsuch that

    and c0=minwe have(2.9)holds.This completes the proof of Lemma 2.2.

    Based on Lemmas 2.1–2.2,we now show the lower and upper bounds of ρ(t,x)by using Kanel’s method[25].

    Lemma 2.3(Lower and upper bounds of ρ(t,x)for the cases(ii)(a)of Theorem 1.1)Under the assumptions of Proposition 2.2,if the capillarity coefficient κ(ρ)satisfies the condition(ii)(a)of Theorem 1.1,then there exists a positive constant C3depending only

    for all(t,x)∈[0,T]×R.

    ProofLet

    then under the condition(ii)(a)of Theorem 1.1,we have

    On the other hand,we deduce from Lemmas 2.1–2.2 that

    (2.13)thus follows from(2.14)and(2.15)immediately.This completes the proof of Lemma 2.3.

    Next,we give the estimate on

    Lemma 2.4Let condition(i)of Theorem 1.1 holds and

    Then if f(ρ)≤0,there exists a positive constant C4depending only on m0,m1and‖(ρ0-

    ProofFirst,by the continuity equation(1.1)1,we have

    where we have used the fact that

    Putting(2.17)into(2.6),and multiplying the resultant equation by

    A direct calculation yields that

    Combining(2.19)and(2.20),and integrating the resultant equation in t and x over[0,t]×R, we have

    where we have used the fact that

    By employing integrations by parts,we obtain

    Inserting(2.22)–(2.23)into(2.21),and using(2.3),we arrive at

    (2.24)together with the assumption that f(ρ)≤0 implies(2.16)immediately.This completes the proof of Lemma 2.4.

    Lemma 2.5Let conditions(i)and(ii)(b)of Theorem 1.1 hold and f(ρ)≤0,then there exists a positive constant C5depending only on m0,m1andthat

    for all(t,x)∈[0,T]×R.

    ProofSet

    then it follows from assumption(ii)(b)of Theorem 1.1 that

    On the other hand,Lemmas 2.1 and 2.4 imply that

    From(2.26)and(2.27),we have(2.25)at once.This completes the proof Lemma 2.5.

    As a consequence of Lemmas 2.3–2.5,we have

    Corollary 2.1Under the assumptions of Lemmas 2.3–2.5,it holds that for 0≤t≤T,

    where C6>0 is a constant depending only on m0,m1and

    The next lemma gives an estimate on

    Lemma 2.6There exists a positive constant C7depending only on m0,m1and‖(ρ0-such that for 0≤t≤T,

    ProofWe derive from Lemmas 2.3–2.5 that

    On the other hand,Lemmas 2.3–2.5 also imply that

    From the Cauchy equality and(2.30),we infer that

    Then(2.29)follows from(2.31)and(2.32)immediately.This completes the proof of Lemma 2.6.

    For the estimate on‖ux(t)‖2,we have

    Lemma 2.7There exists a positive constant C8depending only on m0,m1and‖(ρ0-such that for 0≤t≤T,

    ProofMultiplying(2.6)by-uxx,and using the continuity equation(1.1)1,we have

    Integrating(2.34)in t and x over[0,t]×R gives

    where

    It follows from the Cauchy inequality,the Sobolev inequality,the Young inequality,

    Lemmas 2.3 and 2.5,and Corollary 2.1 that

    Putting(2.36)–(2.37)into(2.35),and using Growwall’s equality,we obtain(2.33).This completes the proof of Lemma 2.7.

    Finally,we estimate the term

    Lemma 2.8There exists a positive constant C9depending only on m0,m1,and‖u0‖1such that for t∈[0,T],

    ProofDifferentiating(1.1)2once with respect to x,then multiplying the resultant equation by ρxx,and using equation(1.1)1,we have

    Integrating(2.39)with respect to t and x over[0,t]×R,using the Cauchy inequality,the Sobolev inequality,Lemmas 2.3–2.7 and Corollary 2.1,we can get Lemma 2.8,the proof is similar to Lemma 2.7 and thus omitted here.This completes the proof of Lemma 2.8.

    It follows from Corollary 2.1,and Lemmas 2.6–2.8 that there exists a positive constant C10depending only on m0,m1,and‖u0‖1such that for 0≤t≤T,

    Similarly,we can also obtain

    where C11is a positive constant depending only on m0,m1,

    Proof of Proposition 2.2Proposition 2.2 follows from(2.40)and(2.41)immediately.

    Proof of Theorem 1.1By Propositions 2.1–2.2 and the standard continuity argument,we can extend the local-in-time smooth solution to be a global one(i.e.,T=+∞). Thus(1.4)and(1.5)follows from(2.1)and(2.2),respectively.Moreover,estimate(2.2)and system(1.1)imply that

    which implies that

    Furthermore,we deduce from(2.2),(2.43)and the Sobolev inequality that

    From(2.43)and(2.44),we have(1.6)at once.This completes the proof of Theorem 1.1.

    [1]Van der Waals J D.Thermodynamische theorie der Kapillaritt unter Voraussetzung stetiger Dichtenderung[J].Z.Phys.Chem.,1894,13:657–725.

    [2]Korteweg D J.Sur la forme que prennent lesquations des mouvement des fluids si l’on tient comple des forces capillaries par des variations de densit[J].Arch.Neerl.Sci.Exactes Nat.Ser.II,1901,6: 1–24.

    [3]Dunn J E,Serrin J.On the thermodynamics of interstital working[J].Arch.Rat.Mech.Anal.,1985, 88:95–133.

    [4]Bresch D,Desjardins B,Lin C K.On some compressible fluid models:Korteweg,lubrication and shallow water systems[J].Comm.Part.Diff.Equa.,2003,28:843–868.

    [5]Danchin R,Desjardins B.Existence of solutions for compressible fluid models of Korteweg type[J]. Ann.Inst.Henri PoincarAnal.Non.Linaire,2001,18:97–133.

    [6]Haspot B.Existence of global weak solution for compressible fluid models of Korteweg type[J].J. Math.Fluid Mech.,2011,13:223–249.

    [7]Haspot B.Existence of strong solutions for nonisothermal Korteweg system[J].Annales Math.Blaise Pascal,2009,16:431–481.

    [8]Hattori H,Li D.Golobal solutions of a high dimensional system for Korteweg materials[J].J.Math. Anal.Appl.,1996,198:84–97.

    [9]Hattori H,Li D.The existence of global solutions to a fluid dynamic model for materials for Korteweg type[J].J.Part.Diff.Equ.,1996,9:323–342.

    [10]Hattori H,Li D.Solutions for two dimensional system for materials of Korteweg type[J].SIAM J. Math.Anal.,1994,25:85–98.

    [11]Kotschote M.Existence and time-asymptotics of global strong solutions to dynamic Korteweg models[J].Indiana Univ.Math.J.,2014,63(1):21–51.

    [12]Kotschote M.Strong solutions for a compressible fluid model of Korteweg type[J].Ann.Inst.Henri PoincarAnal.Non.Linaire,2008,25:679–696.

    [13]Wang Y J,Tan Z.Optimal decay rates for the compressible fluid models of Korteweg type[J].J. Math.Anal.Appl.,2011,379:256–271.

    [14]Li Y P.Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force[J].J.Math.Anal.Appl.,2012,388:1218–1232.

    [15]Wang W J,Wang W K.Decay rate of the compressible Navier-Stokes-Korteweg equations with potential force[J].Discrete Contin.Dyn.Syst.,2015,35(1):513–536.

    [16]Tsyganov E.Global existence and asymptotic convergence of weak solutions for the one-dimensional Navier-Stokes equations with capillarity and nonmonotonic pressure[J].J.Diff.Equ.,2008,245: 3936–3955.

    [17]Charve F,Haspot B.Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system[J].SIMA J.Math.Anal.,2014,45(2):469–494.

    [18]Germain P,LeFloch P G.Finite energy method for compressible fluids:the Navier-Stokes-Korteweg model[J].Comm.Pure Appl.Math.,2016,69(1):3–61.

    [19]Chen Z Z.Asymptotic stability of strong rarefaction waves for the compressible fluid models of Korteweg type[J].J.Math.Anal.Appl.,2012,394:438–448.

    [20]Chen Z Z,Xiao Q H.Nonlinear stability of viscous contact wave for the one-dimensional compressible fluid models of Korteweg type[J].Math.Meth.Appl.Sci.,2013,36(17):2265–2279.

    [21]Chen Z Z,He L,Zhao H J.Nonlinear stability of traveling wave solutions for the compressible fluid models of Korteweg type[J].J.Math.Anal.Appl.,2015,422:1213–1234.

    [22]Chen Z Z,Zhao H J.Existence and nonlinear stability of stationary solutions to the full compressible Navier-Stokes-Korteweg system[J].J.Math.Pur.Appl.,2014,101:330–371.

    [23]Chen Z Z,Chai X J,Dong B Q,Zhao H J.Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[J].J.Diff.Equ.,2015,259:4376–4411.

    [24]Chen Z Z.Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[J].Nonl.Anal.,2016,144:139–156.

    [25]Kanel’Y.On a model system of equations of one-dimensional gas motion(in Russian)[J].Diff. Uravn.,1968,4:374–380.

    一維可壓縮Navier-Stokes-Korteweg方程組的大初值整體光滑解

    陳婷婷,陳志春,陳正爭

    (安徽大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥230601)

    本文研究了當(dāng)粘性系數(shù)和毛細(xì)系數(shù)是密度函數(shù)的一般光滑函數(shù)時,一維等溫的可壓縮Navier-Stokes-Korteweg方程的Cauchy問題.利用基本能量方法和Kanel的技巧,得到了大初值、非真空光滑解的整體存在性與時間漸近行為.本文結(jié)果推廣了已有文獻(xiàn)中的結(jié)論.

    可壓縮Navier-Stokes-Korteweg方程;整體存在性;時間漸近行為;大初值

    O175.29

    tion:35Q35;35L65;35B40

    A

    0255-7797(2017)01-0091-16

    ?Received date:2016-04-09Accepted date:2016-04-20

    Foundation item:Supported by National Natural Science Foundation of China(11426031)and Undergraduate Scientific Research Training Program of Anhui University(ZLTS2015141).

    Biography:Chen Tingting(1995–),female,born at Tongling,Anhui,undergraduate,major in partial differential equation.

    Chen Zhengzheng.

    猜你喜歡
    安徽大學(xué)初值毛細(xì)
    “毛細(xì)”政務(wù)號關(guān)停背后
    廉政瞭望(2024年5期)2024-05-26 13:21:07
    具非定常數(shù)初值的全變差方程解的漸近性
    多孔建筑材料毛細(xì)吸水系數(shù)連續(xù)測量的方法
    能源工程(2020年6期)2021-01-26 00:55:16
    一種適用于平動點(diǎn)周期軌道初值計算的簡化路徑搜索修正法
    讀《安徽大學(xué)藏戰(zhàn)國竹簡》(一)札記
    三維擬線性波方程的小初值光滑解
    秦曉玥作品
    出現(xiàn)憋喘 可能是毛細(xì)支氣管炎!
    媽媽寶寶(2017年3期)2017-02-21 01:22:16
    L'examen dans l'antiquitéet de nos jours
    高滲鹽水霧化吸入治療毛細(xì)支氣管炎的療效觀察
    av在线app专区| 欧美日韩中文字幕国产精品一区二区三区 | 国产在线观看jvid| 免费少妇av软件| 在线观看免费视频网站a站| 免费高清在线观看日韩| 中国美女看黄片| 少妇裸体淫交视频免费看高清 | www.av在线官网国产| 午夜免费观看性视频| 91麻豆精品激情在线观看国产 | 高清黄色对白视频在线免费看| 母亲3免费完整高清在线观看| 久久99一区二区三区| 最近最新免费中文字幕在线| 桃红色精品国产亚洲av| 亚洲成国产人片在线观看| 久久ye,这里只有精品| 久久久久网色| 欧美午夜高清在线| 两性夫妻黄色片| 成人三级做爰电影| 不卡av一区二区三区| 亚洲国产成人一精品久久久| 人人妻人人澡人人爽人人夜夜| 大香蕉久久成人网| 久久99热这里只频精品6学生| 亚洲欧美激情在线| 一本一本久久a久久精品综合妖精| 一级,二级,三级黄色视频| 老司机福利观看| 亚洲专区字幕在线| 97在线人人人人妻| 成年美女黄网站色视频大全免费| 国产成人欧美在线观看 | 高潮久久久久久久久久久不卡| 亚洲精品第二区| 午夜福利乱码中文字幕| 最新的欧美精品一区二区| 免费av中文字幕在线| 老司机影院成人| 午夜福利视频在线观看免费| 国产成人精品无人区| 少妇的丰满在线观看| 91九色精品人成在线观看| 亚洲av成人不卡在线观看播放网 | 在线十欧美十亚洲十日本专区| 精品亚洲成a人片在线观看| 午夜福利在线免费观看网站| 亚洲第一欧美日韩一区二区三区 | 国产精品国产三级国产专区5o| 欧美变态另类bdsm刘玥| 亚洲美女黄色视频免费看| 久久综合国产亚洲精品| 亚洲精品在线美女| 亚洲中文av在线| 午夜精品久久久久久毛片777| 久久久久久久久免费视频了| 亚洲全国av大片| 国产一区二区激情短视频 | 免费少妇av软件| 亚洲欧美一区二区三区黑人| 精品欧美一区二区三区在线| 少妇 在线观看| 一区二区日韩欧美中文字幕| 亚洲激情五月婷婷啪啪| 久久综合国产亚洲精品| 老熟女久久久| 亚洲欧美一区二区三区黑人| 国产精品一区二区在线不卡| 中文字幕制服av| 国产精品.久久久| 女警被强在线播放| 美国免费a级毛片| 丁香六月天网| a级毛片在线看网站| 国产高清videossex| 岛国在线观看网站| 在线 av 中文字幕| 香蕉国产在线看| 国产欧美日韩一区二区精品| 精品国产乱码久久久久久小说| 日本vs欧美在线观看视频| 亚洲欧洲日产国产| 日日夜夜操网爽| av不卡在线播放| 动漫黄色视频在线观看| 三上悠亚av全集在线观看| 久久国产精品男人的天堂亚洲| 免费在线观看完整版高清| 亚洲av日韩精品久久久久久密| 国产成人精品久久二区二区91| 99精品久久久久人妻精品| 亚洲色图综合在线观看| 久久久国产欧美日韩av| 日韩大码丰满熟妇| 久久人人爽av亚洲精品天堂| 女人高潮潮喷娇喘18禁视频| 肉色欧美久久久久久久蜜桃| 伦理电影免费视频| 国产深夜福利视频在线观看| 亚洲人成77777在线视频| 成人国语在线视频| 久久久久国产精品人妻一区二区| 国产在线免费精品| 777米奇影视久久| 老司机在亚洲福利影院| 国产欧美日韩精品亚洲av| bbb黄色大片| 中文字幕av电影在线播放| 老熟女久久久| 中亚洲国语对白在线视频| 欧美精品av麻豆av| 黑人巨大精品欧美一区二区蜜桃| 精品免费久久久久久久清纯 | 国产免费福利视频在线观看| 亚洲国产精品一区三区| 精品人妻1区二区| 中文字幕另类日韩欧美亚洲嫩草| 日本猛色少妇xxxxx猛交久久| 精品少妇一区二区三区视频日本电影| 美女高潮到喷水免费观看| 日韩制服骚丝袜av| 狂野欧美激情性bbbbbb| 十八禁网站免费在线| 中文欧美无线码| 一区二区三区四区激情视频| 极品少妇高潮喷水抽搐| 日韩欧美免费精品| 欧美日韩福利视频一区二区| 国产99久久九九免费精品| 成在线人永久免费视频| 久久天躁狠狠躁夜夜2o2o| 中国美女看黄片| 黄色片一级片一级黄色片| 十分钟在线观看高清视频www| 中文字幕色久视频| 国产高清videossex| 老司机深夜福利视频在线观看 | 午夜福利影视在线免费观看| 久久久精品区二区三区| 男女午夜视频在线观看| 国产欧美日韩精品亚洲av| 这个男人来自地球电影免费观看| 日韩一卡2卡3卡4卡2021年| 免费av中文字幕在线| 亚洲成人免费电影在线观看| 国产精品av久久久久免费| 日韩中文字幕视频在线看片| 亚洲av成人一区二区三| 午夜免费观看性视频| 亚洲五月婷婷丁香| 91精品伊人久久大香线蕉| 在线观看一区二区三区激情| 99香蕉大伊视频| 热re99久久国产66热| 日韩欧美国产一区二区入口| 男女免费视频国产| 日本撒尿小便嘘嘘汇集6| av欧美777| 性高湖久久久久久久久免费观看| 母亲3免费完整高清在线观看| 高清在线国产一区| www.自偷自拍.com| 亚洲精品日韩在线中文字幕| 丰满少妇做爰视频| 精品乱码久久久久久99久播| 国产极品粉嫩免费观看在线| 国产精品一区二区精品视频观看| 国产成人精品在线电影| 搡老乐熟女国产| 嫩草影视91久久| 国产成人精品久久二区二区91| 多毛熟女@视频| 中文字幕制服av| 免费观看人在逋| 男女高潮啪啪啪动态图| 日本五十路高清| 人成视频在线观看免费观看| 国产1区2区3区精品| 在线观看一区二区三区激情| 欧美日韩一级在线毛片| 老司机在亚洲福利影院| 亚洲中文av在线| av网站在线播放免费| 国产精品久久久久久精品古装| 国产精品自产拍在线观看55亚洲 | 在线观看免费日韩欧美大片| 欧美人与性动交α欧美软件| 亚洲国产日韩一区二区| 亚洲精品国产一区二区精华液| 国产一级毛片在线| 久久久久久久久久久久大奶| 在线观看舔阴道视频| 久久精品aⅴ一区二区三区四区| 免费观看a级毛片全部| 午夜福利影视在线免费观看| 日韩三级视频一区二区三区| svipshipincom国产片| 午夜精品国产一区二区电影| 日韩大码丰满熟妇| 丰满少妇做爰视频| 国产在线视频一区二区| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久大尺度免费视频| 男女之事视频高清在线观看| 久久久久视频综合| 免费av中文字幕在线| 69av精品久久久久久 | 黄片大片在线免费观看| 国产男女内射视频| 一本久久精品| 免费黄频网站在线观看国产| 午夜精品久久久久久毛片777| 老司机影院成人| 日韩,欧美,国产一区二区三区| 亚洲成国产人片在线观看| 另类精品久久| 老鸭窝网址在线观看| 一区二区三区四区激情视频| a级片在线免费高清观看视频| 色婷婷av一区二区三区视频| 一级黄色大片毛片| 国产有黄有色有爽视频| 久久影院123| av在线app专区| 久久九九热精品免费| 亚洲精品国产av成人精品| a级片在线免费高清观看视频| 国产区一区二久久| 成人国产一区最新在线观看| 免费人妻精品一区二区三区视频| 欧美精品亚洲一区二区| 肉色欧美久久久久久久蜜桃| 一级毛片女人18水好多| 久久久欧美国产精品| av片东京热男人的天堂| 12—13女人毛片做爰片一| 69av精品久久久久久 | 乱人伦中国视频| 中亚洲国语对白在线视频| 精品国产国语对白av| 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频| 丰满饥渴人妻一区二区三| 国内毛片毛片毛片毛片毛片| 亚洲中文日韩欧美视频| www.999成人在线观看| 精品欧美一区二区三区在线| 男女午夜视频在线观看| 亚洲天堂av无毛| 91精品三级在线观看| 后天国语完整版免费观看| 国产免费一区二区三区四区乱码| 19禁男女啪啪无遮挡网站| 男女国产视频网站| 精品一区二区三卡| 最新在线观看一区二区三区| 国产一级毛片在线| 91国产中文字幕| 亚洲国产精品成人久久小说| 欧美激情高清一区二区三区| 黑人操中国人逼视频| 亚洲,欧美精品.| 18禁黄网站禁片午夜丰满| 日韩 亚洲 欧美在线| 精品国产一区二区三区久久久樱花| 精品第一国产精品| 久久天堂一区二区三区四区| 国产亚洲午夜精品一区二区久久| 精品一区二区三卡| 老司机午夜福利在线观看视频 | 久久久国产欧美日韩av| 国产成人一区二区三区免费视频网站| 亚洲国产成人一精品久久久| 国产欧美日韩一区二区精品| 亚洲熟女毛片儿| 亚洲一码二码三码区别大吗| 夜夜骑夜夜射夜夜干| 日韩,欧美,国产一区二区三区| 国产精品免费大片| 999久久久国产精品视频| 亚洲精品日韩在线中文字幕| www日本在线高清视频| av一本久久久久| 久久人人97超碰香蕉20202| 在线观看免费日韩欧美大片| 国产日韩欧美视频二区| a级毛片在线看网站| 又黄又粗又硬又大视频| 香蕉丝袜av| 免费在线观看日本一区| 久久亚洲精品不卡| 午夜激情久久久久久久| 亚洲欧美色中文字幕在线| 国产国语露脸激情在线看| 亚洲熟女毛片儿| av网站免费在线观看视频| 一本综合久久免费| 国产精品自产拍在线观看55亚洲 | 久久久久久久久免费视频了| 黄片小视频在线播放| 高清av免费在线| tube8黄色片| 三级毛片av免费| 亚洲精品国产区一区二| 香蕉国产在线看| 精品少妇一区二区三区视频日本电影| 午夜福利在线观看吧| 在线十欧美十亚洲十日本专区| 大陆偷拍与自拍| 国产99久久九九免费精品| 亚洲,欧美精品.| √禁漫天堂资源中文www| 国产一区有黄有色的免费视频| 亚洲国产av影院在线观看| 飞空精品影院首页| 国产熟女午夜一区二区三区| 不卡一级毛片| 免费观看a级毛片全部| 一区二区三区激情视频| 电影成人av| 女性被躁到高潮视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美清纯卡通| 欧美日韩亚洲综合一区二区三区_| 国精品久久久久久国模美| 欧美黄色片欧美黄色片| 黄色a级毛片大全视频| 少妇被粗大的猛进出69影院| 国产精品欧美亚洲77777| 搡老岳熟女国产| 99久久精品国产亚洲精品| 伊人久久大香线蕉亚洲五| 99精品久久久久人妻精品| 性色av一级| 亚洲一区二区三区欧美精品| 狂野欧美激情性bbbbbb| 国产黄色免费在线视频| 黄网站色视频无遮挡免费观看| 午夜福利在线观看吧| 97人妻天天添夜夜摸| 人成视频在线观看免费观看| 国产精品1区2区在线观看. | 精品国产一区二区三区四区第35| av网站在线播放免费| 天天影视国产精品| 777米奇影视久久| 欧美av亚洲av综合av国产av| 久久久久视频综合| 亚洲国产看品久久| 黑人猛操日本美女一级片| 精品国产一区二区三区四区第35| 欧美一级毛片孕妇| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品乱久久久久久| 午夜免费成人在线视频| 国产成人免费观看mmmm| 在线观看人妻少妇| 狂野欧美激情性xxxx| videos熟女内射| 三级毛片av免费| 男人舔女人的私密视频| 三级毛片av免费| 在线亚洲精品国产二区图片欧美| 91国产中文字幕| 性色av一级| 成人手机av| 亚洲欧美激情在线| 成人黄色视频免费在线看| 不卡一级毛片| 后天国语完整版免费观看| 欧美亚洲日本最大视频资源| 国产欧美日韩综合在线一区二区| 成人国产一区最新在线观看| 桃花免费在线播放| 日韩视频在线欧美| 丰满人妻熟妇乱又伦精品不卡| 久热这里只有精品99| 国产精品免费大片| 国产不卡av网站在线观看| 久久午夜综合久久蜜桃| 国产一区二区三区综合在线观看| 日日摸夜夜添夜夜添小说| 亚洲精品国产精品久久久不卡| 精品国产乱子伦一区二区三区 | 女人爽到高潮嗷嗷叫在线视频| 国产av精品麻豆| 美国免费a级毛片| 免费观看av网站的网址| 热99国产精品久久久久久7| 亚洲七黄色美女视频| 老司机影院成人| 欧美精品人与动牲交sv欧美| 黄网站色视频无遮挡免费观看| 久久九九热精品免费| 丝袜在线中文字幕| 国产一区二区在线观看av| 精品亚洲成a人片在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲精品一区蜜桃| 日韩中文字幕视频在线看片| 久久精品aⅴ一区二区三区四区| 男女高潮啪啪啪动态图| 欧美激情 高清一区二区三区| 青青草视频在线视频观看| 国产在线视频一区二区| netflix在线观看网站| 黄色视频,在线免费观看| 天天躁日日躁夜夜躁夜夜| 天堂中文最新版在线下载| 欧美国产精品va在线观看不卡| 最近最新中文字幕大全免费视频| 侵犯人妻中文字幕一二三四区| 一级片免费观看大全| 国产日韩欧美视频二区| 如日韩欧美国产精品一区二区三区| 欧美 日韩 精品 国产| 黄色片一级片一级黄色片| 十八禁高潮呻吟视频| 各种免费的搞黄视频| 久久国产精品男人的天堂亚洲| 国产精品免费大片| 深夜精品福利| 亚洲av片天天在线观看| 亚洲一码二码三码区别大吗| 午夜两性在线视频| 女警被强在线播放| 午夜影院在线不卡| 97人妻天天添夜夜摸| 久久久久久久久久久久大奶| 亚洲精品在线美女| 国产精品秋霞免费鲁丝片| 免费黄频网站在线观看国产| 午夜成年电影在线免费观看| 欧美老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 肉色欧美久久久久久久蜜桃| 亚洲专区国产一区二区| 久久久国产成人免费| 99久久人妻综合| 可以免费在线观看a视频的电影网站| 国产真人三级小视频在线观看| 欧美另类一区| 日韩,欧美,国产一区二区三区| 王馨瑶露胸无遮挡在线观看| 日本a在线网址| 欧美日韩av久久| 丝袜人妻中文字幕| 12—13女人毛片做爰片一| 老司机午夜十八禁免费视频| 巨乳人妻的诱惑在线观看| 亚洲国产中文字幕在线视频| 亚洲国产精品999| 免费在线观看日本一区| 精品国产乱码久久久久久男人| 色老头精品视频在线观看| 超色免费av| 成人av一区二区三区在线看 | 国产精品久久久人人做人人爽| 色视频在线一区二区三区| 五月开心婷婷网| 国产亚洲精品一区二区www | 欧美xxⅹ黑人| 午夜两性在线视频| 国产麻豆69| 日韩 欧美 亚洲 中文字幕| 91大片在线观看| 国产亚洲欧美在线一区二区| 免费日韩欧美在线观看| a在线观看视频网站| 久久久久久久国产电影| 一本色道久久久久久精品综合| 精品一区二区三卡| 久久国产精品人妻蜜桃| 色94色欧美一区二区| 五月天丁香电影| 最新的欧美精品一区二区| 18禁观看日本| av又黄又爽大尺度在线免费看| 他把我摸到了高潮在线观看 | 亚洲专区中文字幕在线| 中文精品一卡2卡3卡4更新| 国产欧美日韩一区二区三 | 久久av网站| 日日摸夜夜添夜夜添小说| 成年美女黄网站色视频大全免费| 亚洲成人免费电影在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品国产一区二区三区四区第35| 亚洲欧美日韩高清在线视频 | 爱豆传媒免费全集在线观看| 亚洲成人国产一区在线观看| 男男h啪啪无遮挡| 大型av网站在线播放| 韩国高清视频一区二区三区| e午夜精品久久久久久久| 考比视频在线观看| 真人做人爱边吃奶动态| 交换朋友夫妻互换小说| 亚洲精品中文字幕在线视频| 狂野欧美激情性xxxx| 久久亚洲国产成人精品v| 国产成人免费无遮挡视频| 性色av乱码一区二区三区2| 亚洲精品成人av观看孕妇| 99精品久久久久人妻精品| 91字幕亚洲| 热99re8久久精品国产| 两个人看的免费小视频| 国产一级毛片在线| 久久九九热精品免费| 国产亚洲一区二区精品| 十八禁人妻一区二区| 亚洲精品成人av观看孕妇| 一级,二级,三级黄色视频| 97精品久久久久久久久久精品| 亚洲激情五月婷婷啪啪| 亚洲精品成人av观看孕妇| 日韩大码丰满熟妇| 建设人人有责人人尽责人人享有的| 免费人妻精品一区二区三区视频| 日韩中文字幕欧美一区二区| 中文欧美无线码| 免费在线观看影片大全网站| 欧美人与性动交α欧美精品济南到| 欧美日韩黄片免| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看 | 在线十欧美十亚洲十日本专区| 亚洲一码二码三码区别大吗| 下体分泌物呈黄色| 1024视频免费在线观看| 黄网站色视频无遮挡免费观看| 国产黄色免费在线视频| 亚洲熟女毛片儿| 亚洲熟女精品中文字幕| av线在线观看网站| 久久ye,这里只有精品| 黑丝袜美女国产一区| 一边摸一边做爽爽视频免费| 极品人妻少妇av视频| 国产不卡av网站在线观看| 亚洲欧美一区二区三区久久| 欧美日韩成人在线一区二区| tube8黄色片| 高潮久久久久久久久久久不卡| 亚洲欧美精品自产自拍| 婷婷成人精品国产| 婷婷丁香在线五月| www.av在线官网国产| 午夜激情av网站| 国产国语露脸激情在线看| av视频免费观看在线观看| 9191精品国产免费久久| 18在线观看网站| 日本五十路高清| 成人18禁高潮啪啪吃奶动态图| 久久人妻福利社区极品人妻图片| 另类精品久久| 亚洲avbb在线观看| 女人久久www免费人成看片| 97精品久久久久久久久久精品| 免费不卡黄色视频| a级片在线免费高清观看视频| 无限看片的www在线观看| 日本av免费视频播放| 男人添女人高潮全过程视频| 99国产精品99久久久久| 最新的欧美精品一区二区| 少妇精品久久久久久久| 久久久久久久精品精品| 欧美精品人与动牲交sv欧美| 99国产极品粉嫩在线观看| 青春草亚洲视频在线观看| 国产有黄有色有爽视频| 12—13女人毛片做爰片一| 国产精品欧美亚洲77777| 99精国产麻豆久久婷婷| 欧美亚洲日本最大视频资源| 午夜成年电影在线免费观看| 大陆偷拍与自拍| 婷婷成人精品国产| √禁漫天堂资源中文www| 最近中文字幕2019免费版| 999精品在线视频| √禁漫天堂资源中文www| 大陆偷拍与自拍| 999精品在线视频| √禁漫天堂资源中文www| 叶爱在线成人免费视频播放| 美女视频免费永久观看网站| svipshipincom国产片| 叶爱在线成人免费视频播放| 999精品在线视频| svipshipincom国产片| 欧美日韩亚洲综合一区二区三区_| 丝袜在线中文字幕| www.熟女人妻精品国产| 欧美日韩亚洲综合一区二区三区_| 免费在线观看影片大全网站| 久久久久精品国产欧美久久久 | 啦啦啦在线免费观看视频4| 视频在线观看一区二区三区| 91成人精品电影| 看免费av毛片| 这个男人来自地球电影免费观看| 国产日韩欧美在线精品| 午夜日韩欧美国产| 制服诱惑二区| 国产精品久久久人人做人人爽| 超碰成人久久| 午夜老司机福利片| 美女高潮喷水抽搐中文字幕| 黄色视频在线播放观看不卡|