• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interactions of Anionic and Neutral Serine with Pure and Metal-doped Graphene Studied by Density Functional Theory

    2016-09-23 06:06:18QunWang,Meng-haoWang,Ke-fengWang
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期
    關(guān)鍵詞:試一下用品店棉質(zhì)

    ?

    Interactions of Anionic and Neutral Serine with Pure and Metal-doped Graphene Studied by Density Functional Theory

    I.INTRODUCTION

    Graphene is a two-dimensional atomic layer of carbon atoms in hexagonal arrangement.Recently,graphene has attracted significant attention in the development of sensors owing to its unique structural,chemical,and electrical properties[1,2].Graphene is commonly modified by doping with covalent or non-covalent functionalization to improve the characteristics of graphene-based sensors and electronic devices[3,4].Researches showed that doping graphene with metals such as Au,Ni,Al,Mn,or Cu,can effectively modify the performance of graphene-based sensors.Cazorla[5]investigated interactions of glycine(Gly),proline(Pro),and hydroxyproline(Hyp)with pure and Ca-doped graphene,and found that interactions of these amino acids on the Ca-doped graphene surface are stronger than that on the pure graphene surface.Zhang et al.[6]indicated that the interaction of cysteine(Cys)with a Audoped graphene surface is stronger than that on the unmodified graphene surface,due to the formation of strong Au-O,Au-S,and Au-N interactions.Ma et al.[7]discovered that adsorption of Cys on a Pt-doped graphene surface is greater than that on the pristine graphene surface.Chi et al.[8]studied the adsorption of HCHO on pure and Al-doped graphene surfaces,and suggested that the Al-doped graphene can be more suitable for the detection of HCHO gas.Ⅰn addition,many researchers have investigated interactions between small gas molecules such as CO,H2O,NH3,NO2,and HCHO,and pure or doped graphene.They discovered that the doped graphene can be more sensitive to these gas molecules[8-11].

    The structure and stability of Ser have been studied intensively in the last decade using theoretical and experimental methods,because of the biological significance[12,13].Ser plays an important role in the metabolism of lipids,fatty acids,and muscle growth by producing immunoglobulin and antibodies,thus maintaining a healthy immune system.

    To the best of our knowledge,previous theoretical studies about the interaction between Ser and graphenebased materials have not been reported.Ⅰn this work,in order to explore potential applications of metal-doped graphene sensors,and to provide a useful reference for designing and developing graphene-based sensors for t-he different forms of Ser,we study systematically interactions of the anionic and neutral Ser with pure and metal-doped graphene(G)by the density functional theory(DFT)method.The stable adsorption configurations,adsorption energies,the density of states (DOSs),the Mulliken atomic charges,and differences of electron density are all discussed in detail.

    FⅠG.1 Three-dimensional structures of(a)anionic Ser,(b)neutral Ser,and(c)G.Carbon:gray,oxygen:red,nitrogen: blue,hydrogen:white.Bond lengths are in?A.

    II.COMPUTATIONAL DETAILS

    A.Building models

    SerandGmodels:Thechemicalformulaof anionic and neutral Ser are-OOCCH(NH2)CH2OH and HOOCCH(NH2)CH2OH,respectively.The Ser molecules contain one α-amino group(α-NH2),one α-carboxyl group(α-COO-or α-COOH)and one βhydroxyl group(β-OH).Three-dimensional structure models are shown in Fig.1(a)and(b).The G model contains 16 six-member carbon rings,for 32 carbon atoms in total.The C-C bond length is 1.420?A,which is consistent with the previous results[14,15].A larger supercell with 96 atoms has also been used to test the calculated results.We found that our results are not affected by the supercell size,which accord with Zhang et al.’s results,they found that interactions of NO2,NO and Ti,N-doped graphene are not affected by the size of graphene[16].Ⅰn fact,the 32 atoms supercell is usually used to simulate graphene[8,15,17,18].Periodic boundary conditions are used to model the slab,and the area of the surface is 8.522?A×7.380?A.A vacuum slab 25?A in thickness is added to separate each slab from its periodic images,as shown in Fig.1(c).

    Metal-doped G models:Based on the model of pure G,metal-doped G models are built by replacing a carbon atom with a metal atom.The optimized structural models of metal-doped G are shown in Fig.2.

    Pure and metal-doped G-Ser models:the anionic and neutral Ser interact with pure and metal-doped G. When the α-NH2of Ser directed the Fe-doped surfaces,the adsorption energies are quite small(-0.346 eV for the anionic Ser and-0.268 eV for the neutral Ser), therefore,the α-COO-,α-COOH and-OH of Ser adjacent to these G surfaces models are built.

    FⅠG.2 Structures of(a)Fe-,(b)Cr-,(c)Al-,(d)Mn-,(e) Ti-doped G after geometric structure optimization.Bond lengths are in?A.

    B.Simulation parameters

    The simulation was performed with the DFT program Dmol3in Materials Studio(Accelrys,San Diego,CA),in which the physical wave functions were expanded in terms of numerical basis sets.Dmol3produces highlyaccurate results,while keeping the computational cost fairly low[19,20].The bond lengths and bond angles of neutral Ser from Dmol3(TableⅠ),are in agreement with previous results[21].The reproducibility of previously reported data validates the applicability of Dmol3to the present systems.

    During simulation,the DNP double numerical basis set was used,which is comparable to the 6-31G??basis set.Core electrons were treated with DFT semi-core pseudo potentials[22].The exchange-correlation energy was calculated using the Perdew-Burke-Ernzerh of generalized gradient approximation,the GGA of PBE can be defined as:a detailed description of the GGA of PBE can be found in Ref.[23].Special point sampling integration over the Brillouin zone was employed using the Monkhorst-Pack scheme with a 2×2×1 k-point mesh.A Fermi smearing of 0.005 Ha(1 Ha=27.211 eV),and a global orbital cutoff of 4.8?A were employed.We left thespin unrestricted for the entire systems,and the TS method for DFT-D corrections was used to deal with van der Waals forces in the simulation systems[24]. The convergence criteria for the geometry optimization and energy calculation were set as follows.The selfconsistent field tolerance was 10-6Ha/atom,energy tolerance was 10-5Ha/atom,a maximum force tolerance was 0.002 Ha/?A,and a maximum displacement tolerance was 0.005?A.

    FⅠG.3 Anionic Ser interacting with the(a)pure G and(b)Fe-,(c)Cr-,(d)Al-,(e)Mn-,(f)Ti-doped G.Bond lengths are in?A.

    FⅠG.4 Neutral Ser interacting with the(a)pure G and(b)Fe-,(c)Cr-,(d)Al-,(e)Mn-,(f)Ti-doped G.Bond lengths are in?A.

    TABLEⅠComparison of results in bond lengths and angles of the neutral serine molecule and bond lengths of metal-C from literature values calculated with Dmol calculations.

    C.Adsorption energy

    The adsorption energy of Ser is calculated according to the following equation:

    Where Etotal,ESer,and Esurfacerepresent the total energy of the adsorption system,the energy of the Ser molecule,and the energy of the graphene surface,respectively.A negative Eadsvalue corresponds to a stable adsorption.The more negative Eadsis,the more stable the adsorbed structure is.

    D.Differences in electron density

    Electron density maps can directly display the interaction between biomolecules and biomaterials.The electron density difference reveals the change of electron density in the process of adsorption,which is calculated by the total electron density(ρtotal),subtracting the electron density of isolated Ser(ρSer),and the G surface(ρsurface),

    III.RESULTS AND DISCUSSION

    A.Stability analysis of the metal-doped graphene models

    Metal-doped graphene models are built by replacing a carbon atom with a metal atom,after the structure of graphene is optimized.Then,the metal-doped graphene models are optimized to estimate their stabilities,as shown in Fig.2.The doped atoms did not protrude out of the graphene plane,and the distances between C and the metals increase comparable with the C-C distance.The distances are Fe-C:1.654-1.658?A,Cr-C:1.677-1.684?A,Al-C:1.706-1.707?A,Mn-C: 1.673-1.674?A,and Ti-C:1.749-1.753?A,which are in accord with previous studies(TableⅠ)[25-28].Furthermore,these also suggested that the bonds of metal to carbon are not destroyed,and the metal-doped graphene models in this study are all stable.

    B.Analysis of adsorption energies

    Both anionic and neutral Ser lay parallelly to the pure and metal-doped graphene surfaces and the α-COOH,α-COO-and-OH of Ser are adjacent to the metal-doped G surfaces.Ⅰnteractions of both types of Ser on pure graphene surfaces are weak because of the low adsorption energies of-0.75 and-0.53 eV for anionic and neutral Ser,respectively.Moreover,we found weak non-covalent interactions due to the formation of -COOH···π,-COO-···π,and-OH···π interaction between Ser and pure graphene,as shown in Fig.3(a)and Fig.4(a).Ⅰn the pure G-anionic Ser model,the shortest distance between the O atom of-OH and the graphene is 3.189?A.The O atoms of-COO-are oriented toward the graphene surface,and the shortest distances between the O atoms and the graphene are 3.184 and 3.081?A,respectively,as shown in Fig.3(a).Ⅰn the pure G-neutral Ser model,the shortest distance between the O atom of -OH and graphene is 3.190?A,and the shortest distances between the O atoms of-COOH and graphene are 3.342 and 3.909?A,respectively,as shown in Fig.4(a).These results are comparable with those previous investigations on the interaction between amino acids or peptides and graphene.Guo et al.found that distances are between the 2.649 and 3.660?A when the RGD peptide interacts with pure graphene[14].Ma et al.found that the distances between graphene and Cys vary from 3.280?A to 3.960?A[7].The distances in this work follow the non-covalent-COO-···π,-COOH···π and-OH···π interaction standard,which shows weak noncovalent interactions between both types of Ser and pure graphene[29,30].

    TableⅠⅠshows adsorption energies of all models.The interactions are much stronger between both types of Ser and metal-doped graphene surfaces than that between both types of Ser and pure graphene surfaces. Moreover,they are typical of covalent interactions between the Ser and metal-doped graphene due to the formation of strong metal-O and O-metal-O interactions.When the anionic Ser adsorbs on metal-doped graphene surfaces,adsorption energies are between -4.21 and-5.24 eV.When the neutral Ser adsorbs on metal-doped graphene surfaces,adsorption energies are between-1.89 and-2.47 eV.These adsorption energies results demonstrate that the two forms of Ser have strong interactions with metal-doped graphene.These results are in line with several previous studies.Cazorla[5]reported interactions were stronger when Gly,Pro,or Hyp adsorb on a Ca-doped graphene surface (from-1.166 eV to-2.076 eV)than on pure graphene (from-0.020 eV to-0.090 eV)due to the formation of O-Ca-O interaction.Zhang et al.[11]found the adsorption of HCHO on Ti-doped graphene was much stronger than on pure graphene(-2.26 eV compared to-0.027 eV)when the O atom interacts with the doped Ti atom.Liu et al.also investigated interactions of HCHO and pure or metal-doped graphene[31],and they found interactions of HCHO on Al,Cr,Mn,or Au doped graphene due to the strong metal-O interactions.Moreover,they found the strongest interactions were between the HCHO and Al and Mn doped graphene[31].Note that the distances of metal-O can further confirm the strength of interaction.Ⅰn the anionic Ser model(Fig.3),the shortest distance from the anionic Ser to the pure graphene plane is 3.081?A. When the anionic Ser is adsorbed on the metal-doped graphene,all the doped metal atoms protrude out of the graphene plane and cause obvious and local curvature of graphene,with the increase of 1.359,1.508,1.709,1.482 and 1.752?A.And the shortest distances between O and Fe,Cr,Al,Mn,and Ti are 1.787,1.810,1.862,1.941,and 1.950?A,respectively,which are much shorter than 3.081?A.Ⅰn the neutral Ser models(Fig.4),

    TABLEⅠⅠAdsorption energies of the anionic and neutral Ser on pure,F(xiàn)e-,Cr-,Al-,Mn-,and Ti-doped graphene surfaces.

    the shortest distance is 3.190?A from the neutral Ser to the pure graphene plane.All the doped metal atoms are also above the surfaces of graphene when the neutral Ser adsorbs on the doped graphene,with the elevation of 1.279,1.409,1.559,1.406,and 1.648?A.And the shortest distances between O and Fe,Cr,Al,Mn,and Ti are 1.966,2.041,1.910,1.980,and 2.141?A,respectively.The adsorption strength is inversely proportional to metal-O distances,therefore,these distances indicated that interactions are stronger on metal-doped graphene surfaces than on the pure graphene surface.

    At the same time,the shortest distances of the neutral Ser models are obviously longer than those of the anionic Ser models,which also suggests the interaction strength of the anionic Ser is greater than that of neutral Ser.Ⅰn addition,the anionic Ser also forms a stable“bidentate mode”on the Al,Mn,and Ti doped graphene surfaces.As shown in Fig.3 (d)-(f),the O atoms of α-COO-and-OH interact with the doped metal atom simultaneously and form O-metal-O bonds.Ding et al.[32]also found adsorption of nitrated tyrosine on Au,Ni,and Cr doped graphene can be greatly enhanced,especially when the two O atoms of-NO2were adjacent to the dopant atoms.Figure 3(b)and(c)show that H atoms transferred from the-OH and-NH2to α-COO-,and just the“monodentate mode”existed between the Fe or Cr atom and O atom.However,the distances of Fe-O and Cr-O in the anionic Ser model are shorter than these in the neutral Ser model.These results also demonstrated reasons for the interaction strength in the anionic Ser model is larger than that in the neutral Ser model.

    C.Analysis of DOS

    The overlap of partial density of states(PDOS)shows atom hybridization between the adsorbent and the substrate[33],thus the DOS based on energy band theory can help us to reveal the nature of the interaction between Ser and graphene.

    Ⅰn the following sections,the DOSs of Ti-doped G-anionic Ser model and the Fe-doped G-neutral Ser model are discussed in detail,as these are the most stable models interacting with metal-doped graphene.The total DOS(TDOS)and the partial DOS(PDOS) of Ser adsorption on doped graphene surfaces are shown in Fig.5.Ⅰn Fig.5(a),it can be seen that the TDOS of the anionic Ser and Ti-doped graphene overlaps at -0.75,-2.09,-4.08,-6.26,-8.02,-10.61,-17.44,and-18.41 eV relative to Ef.Ⅰn Fig.5(b),the TDOS of the neutral Ser and Fe-doped graphene overlaps at -0.94,-6.02,-11.40,-13.82,and-17.50 eV relative to Ef.These findings reveal that there is hybridization between both types of Ser and metal-doped graphene.

    At the same time,the PDOS results suggest that there are overlapping peaks between doped metal atoms and O atoms of Ser.For the Ti-doped G-anionic Ser model(Fig.5(c)),there are overlapping peaks between Ti(s,p,d)and O36(s,p),O38(s,p),and O39(s,p)ranging from the 4 eV to-10 eV.For example,there are overlapping peaks between Ti(d)and O39(p)at 1.57 eV,Ti(s,p)and O36/39(p)at 3.25 eV,Ti(d)and O36/39(p)at-0.85 eV,Ti(s,p,d),and O36/39(p)at -5.33 and-7.54 eV,Ti(d)and O38(s,p)at 3.68 eV,Ti(d)and O38(p)at-3.90 eV,which demonstrate there are strong interactions between Ti and all O atoms of

    the anionic Ser.For the Fe-doped G-neutral Ser model (Fig.5(d)),there are overlapping peaks only between Fe(p,d)and O38(s,p)at the 3.15 eV,F(xiàn)e(d)and O38(p) at-4.43,-6.22,-8.10 eV,while there are almost no overlapping peaks between Fe and O36 or O39,which indicates the main bonding only occurs between Fe and O38.These results can further demonstrate that there are stronger interactions of the anionic Ser on metaldoped graphene surfaces than the neutral Ser on the metal-doped graphene surfaces,which can also be confirmed by Mulliken atomic charges.

    FⅠG.5 Total density of states(TDOSs)of(a)anionic Ser adsorption on the Ti-doped G surface and(b)neutral Ser adsorption on the Fe-doped G surface.Partial density of states(PDOSs)of(c)anionic Ser adsorption on the Ti-doped G surface and(d)neutral Ser adsorption on the Fe-doped G surface.

    D.Analysis of Mulliken atomic charges

    From TableⅠⅠⅠ,we can see charge transfer between doped metal atoms and O atoms in Ser,thus,there are interactions of metal atoms and O atoms.TableⅠⅠⅠindicates that charge transfer mainly occurred from metal atoms to O atoms of-COO-(O36/O39)and-OH (O38)in the anionic Ser model,whereas charge transfer primarily took place from metal atoms to the O atom(O38)of-OH in the neutral Ser model.Furthermore,the quantity of charge transfer in the metal-doped G-neutral Ser model is less than that in the metal-doped G-anionic Ser model.Ⅰt can also be concluded that interactions are stronger between the anionic Ser and metal-doped graphene than that between the neutral Ser and metal-doped graphene.These conclusions are also in agreement with the analyses of adsorption energies and DOS.

    TABLEⅠⅠⅠMulliken atomic charges changes caused by the anionic Ser and neutral Ser absorbing on Fe-,Cr-,Al-,Mn-,and Ti-doped graphene surfaces.

    E.Analysis of differences in electron density

    Figure 6 shows the electron density difference of both types of Ser on pure and metal-doped graphene surfaces. Charge accumulation and depletion are represented by red and blue,respectively.On the pure graphene surface,charge accumulation appeared in the area that interacts with the-COOH(Fig.6(b)),and charge depletion occurred in the area that interacts with-COO-(Fig.6(a))and-OH(Fig.6(b)),which reveals that there are-COO-···π,-COOH···π and-OH···π interactions between both types of Ser and pure graphene surfaces.These interactions were also found between another biomolecules and biomaterials.Rajarajeswari et al.found that there were non-convalent interactions between valine,alanine and carbon nanotubes through the -OH···π and-COOH···π interactions[34,35].Guo et al.also indicated that a-COO-···π interaction exists between the RGD peptide and graphene[14].

    For the Ti-doped G-anionic Ser and Fe-doped G-neutral Ser models,there was charge accumulation surrounding the O36,O38,and O39 of anionic Ser (Fig.6(c)),whereas there was charge accumulation only in the vicinity of O38 of the neutral Ser(Fig.6(d)). These indicate that there are interactions between the Ti atom and all O atoms of the anionic Ser,while there is interaction only between Fe and O38 of the neutral Ser.These results further demonstrate that interactions are stronger between the anionic Ser and metal-doped graphene than that between the neutral Ser and metaldoped graphene.

    FⅠG.6Ⅰsosurface plot of the electron density mapped with the difference electron density with the different isovalues. (a)Anionic Ser adsorption on the pure G surface,(b)neutral Ser adsorption on the pure G surface,(c)anionic Ser adsorption on the Ti-doped G surface,(d)neutral adsorption on the Fe-doped G surface.

    IV.CONCLUSION

    Ⅰn this work,we use the DFT method investigated adsorptions of the anion and neutral Ser on pure,F(xiàn)e,Cr,Mn,Al,and Ti-doped graphene surfaces. The calculated results suggest that there are weak non-covalent interactions between anionic or neutral Ser and pure graphene due to-OH···π,-COOH···π,and-COO-···π interactions.Furthermore,interactions of the anion and neutral Ser on metals doped graphene surfaces are far stronger than that on the pure graphene surface due to the formation of metal-O andO-metal-O covalent interactions,which can also indicate that the doped graphene helps to enhance both types of Ser adsorption.Ti and Fe are considered to be the best doped atoms for the anionic Ser and neutral Ser,respectively according to the larger adsorption energies,the number of hybridization peak of DOS,and differences of electron density.At the same time,the interaction strength between anionic Ser and various graphene surfaces is bigger than that between neutral Ser and various graphene surfaces,which implies that anionic Ser is more prone to adsorption on various graphene surfaces.Therefore,this study can provide useful insights into the selection of appropriate metaldoped graphene-based sensors when detecting the two forms of Ser.

    V.ACKNOWLEDGMENTS

    This work is supported by the Education Department Program of Sichuan Province(No.16ZB0313),Teaching Reform Program of Mianyang Normal University(No.Mnu-JY1512),and the Students Scientific Research Program of Mianyang Normal University(No.XSKY15047 and No.XSKY15048),and the National High-Tech R&D Program(No.2015AA034202).

    [1]M.J.Allen,V.C.Tung,and R.B.Kaner,Chem.Rev. 110,132(2009).

    [2]Y.Shao,J.Wang,H.Wu,J.Liu,Ⅰ.A.Aksay,and Y. Lin,Electroanalysis 22,1027(2010).

    [3]J.Y.Liu,X.X.Yu,G.H.Zhang,Y.K.Wu,K.Zhang,N.Pan,and X.P.Wang,Chin.J.Chem.Phys.26,225 (2013).

    [4]X.J.Li,X.X.Yu,J.Y.Liu,X.D.Fan,K.Zhang,H. B.Cai,N.Pan,and X.P.Wang,Chin.J.Chem.Phys. 25,325(2012).

    [5]C.Cazorla,Thin Solid Films 518,6951(2010).

    [6]Z.Zhang,H.Jia,F(xiàn).Ma,P.Han,X.Liu,and B.Xu,J. Mol.Model.17,649(2011).

    [7]F.Ma,Z.X.Zhang,H.S.Jia,X.G.Liu,Y.Y.Hao,and B.S.Xu,J.Mol.Struc.:THEOCHEM 955,134 (2010).

    [8]M.Chi and Y.P.Zhao,Comput.Mater.Sci.46,1085 (2009).

    [9]Z.Ao,J.Yang,S.Li,and Q.Jiang,Chem.Phys.Lett. 461,276(2008).

    [10]O.Leenaerts,B.Partoens,and F.Peeters,Phys.Rev. B 77,125416(2008).

    [11]H.P.Zhang,X.G.Luo,X.Y.Lin,X.Y.Lu,Y.Leng,and H.T.Song,Appl.Surf.Sci.283,559(2013).

    [12]S.Gronert and R.A.Ohair,J.Am.Chem.Soc.117,2071(1995).

    [13]M.Pecul,Chem.Phys.Lett.418,1(2006).

    [14]Y.N.Guo,X.Lu.J.Weng,and Y.Leng,J.Phys. Chem.C 117,5708(2013).

    對(duì)于乳罩,從原則上講,孕期是不主張戴的。只是女性從青春期就開始戴,懷孕后突然不戴了會(huì)感覺很不習(xí)慣。如果戴的話,建議孕媽媽選擇寬松、舒適的乳罩,棉質(zhì)乳罩比人造纖維的舒服些,透氣性也好。另外,還要注意乳罩的尺寸。孕媽媽最好去母嬰用品店或大的商場買,自己親自試一下,還可以請(qǐng)有經(jīng)驗(yàn)的售貨員幫助選擇。

    [15]M.H.Wang,Y.N.Guo,Q.Wang,J.J.Huang,X.Lu,K.F.Wang,H.P.Zhang,and Y.Leng,Chem.Phys. Lett.599,86(2014).

    [16]H.P.Zhang,X.G.Luo,X.Y.Lin,Y.P.Zhang,P.P. Tang,X.Lu,and Y.H.Tang,J.Mol.Graph.Model. 61,224(2015).

    [17]C.Thierfelder,M.Witte,S.Blankenburg,E.Rauls,and M.G.Schmidt,Surf.Sci.605,746(2011).

    [18]F.Nicolas,F(xiàn).Yves,C.Yannick,M.Julien,and A. Alain,Phys.Chem.Chem.Phys.16,1957(2014).

    [19]B.Delley,J.Chem.Phys.92,508(1990).

    [20]B.Delley,J.Chem.Phys.113,7756(2000).

    [21]Ⅰ.S.Jeon,D.S.Ahn,S.W.Park,L.Sungyul,and K. Bongsoo,Ⅰnt.J.Quantum Chem.101,55(2005)

    [22]B.Delley,Phys.Rev.B 66,155(2002).

    [24]F.Ortmann,F(xiàn).Bechstedt,and W.G.Schmidt,Phys. Rev.B Condens.Mat.73,20(2006).

    [25]B.Wanno and C.Tabtimsai,Superlattice.Microst.67,110(2013).

    [26]H.P.Zhang,W.D.He,X.G.Luo,X.Y.Lin,and X. Lu,J.Mol.Model.20,1(2014).

    [27]H.P.Zhang,X.G.Luo,X.Y.Lin,X.Lu,and Y.Leng,Ⅰnt.J.Hydrogen Energ.38,14269(2013).

    [28]J.Y.Dai and J.M.Yuan,Phys.Rev.B 81,2149(2010).

    [29]N.Mohan,K.P.Vijayalakshmi,N.Koga,and C.H. Suresh,J.Comput.Chem.31,2874(2010).

    [30]M.Brandl,M.S.Weiss,A.Jabs,J.Suhnel,and R. Hilgenfeld,J.Mol.Biol.307,357(2001).

    [31]X.Y.Liu and J.M.Zhang,Appl.Surf.Sci.293,216 (2014).

    [32]N.Ding,X.Q.Lu,and C.M.L.Wu,Comput.Mater. Sci.51,141(2012).

    [33]B.Xiao,J.Xing,S.Ding,and W.Su,Physica B 403,1723(2008).

    [34]M.Rajarajeswari,K.Ⅰyakutti,and Y.Kawazoe,Chem. Phys.Lett.511,299(2011).

    [35]M.Rajarajeswari,K.Ⅰyakutti,and Y.Kawazoe,J.Mol. Model.18,771(2012).

    Qun Wanga,b,Meng-hao Wanga,Ke-feng Wangc?,Yong-chi Zhaod,Wei-li Wangb,Li-ping Zhangb
    a.Key Lab of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu 610031,China
    b.College of Life Science and Biotechnology,Mianyang Normal University,Mianyang 621006,China
    c.National Engineering Research Center for Biomaterials,Sichuan University,Chengdu 610065,China
    d.Collage of Mathematics and Compute Science,Mianyang Normal University,Mianyang 621006,China
    (Dated:Received on December 7,2015;Accepted on April 27,2016)
    We present a theoretical study of interactions of anionic and neutral serine(Ser)on pure or metal-doped graphene surfaces using density functional theory calculations.Ⅰnteractions of both types of Ser with the pure graphene surface show weak non-covalent interactions due to the formation of-COOH···π,-COO-···π,and-OH···π interactions.On metaldoped graphene,covalent interactions to the surface dominate,due to the formation of strong metal-O and O-metal-O interactions.Furthermore,the doped Fe,Cr,Mn,Al,or Ti enhances the ability of graphene to attract both types of Ser by a combination of the adsorption energy,the density of states,the Mulliken atomic charges,and differences of electron density.At the same time,the interaction strengths of anionic Ser on various graphene surfaces are stronger than those of neutral Ser.These results provide useful insights for the rational design and development of graphene-based sensors for the two forms of Ser by introducing appropriate doped atoms.Ti and Fe are suggested to be the best choices among all doped atoms for the anionic Ser and neutral Ser,respectively.
    Key words:Ⅰnteraction,Density functional theory,Anionic serine,Neutral serine,Graphene,Metal-doped graphene

    ?

    Author to whom correspondence should be addressed.E-mail: fencal@163.com,Tel./FAX:+86-28-85415030

    猜你喜歡
    試一下用品店棉質(zhì)
    曠野之息
    智族GQ(2023年3期)2023-03-30 04:07:09
    閱讀理解專練(三)
    超級(jí)變變變
    一筆變長會(huì)怎樣?
    狂野崛起
    智族GQ(2020年3期)2020-06-01 07:26:50
    荒漠狂暴
    智族GQ(2020年1期)2020-03-11 13:14:38
    揚(yáng)帆放任
    智族GQ(2018年9期)2018-05-14 15:32:08
    母嬰用品店熱賣玩具有三招
    玩具將成母嬰用品店新發(fā)力點(diǎn)
    ◎ 桐廬縣分水鎮(zhèn)品高文化用品店
    亚洲自拍偷在线| 国产免费福利视频在线观看| 亚洲熟女精品中文字幕| 噜噜噜噜噜久久久久久91| 亚洲va在线va天堂va国产| 色视频www国产| 亚洲天堂国产精品一区在线| 一级毛片黄色毛片免费观看视频| 日韩三级伦理在线观看| 99久久精品国产国产毛片| 亚洲图色成人| 看十八女毛片水多多多| 精华霜和精华液先用哪个| 国产精品爽爽va在线观看网站| 18禁裸乳无遮挡免费网站照片| 中文字幕制服av| 亚洲,欧美,日韩| 亚洲精品自拍成人| 国产精品三级大全| 青春草国产在线视频| 国产在线男女| 日韩人妻高清精品专区| 舔av片在线| 亚洲欧美一区二区三区国产| 久久精品熟女亚洲av麻豆精品| 国产精品久久久久久久电影| 一边亲一边摸免费视频| 99久国产av精品国产电影| 中文在线观看免费www的网站| 大香蕉久久网| 亚洲av男天堂| 老司机影院成人| 国产成人a区在线观看| 精品国产露脸久久av麻豆| 亚洲国产av新网站| 99久久精品国产国产毛片| 丝袜喷水一区| 国产女主播在线喷水免费视频网站| 免费不卡的大黄色大毛片视频在线观看| 亚洲高清免费不卡视频| 国产精品麻豆人妻色哟哟久久| 国产老妇女一区| 国产精品秋霞免费鲁丝片| 黄色怎么调成土黄色| 国产亚洲一区二区精品| 中文资源天堂在线| 少妇被粗大猛烈的视频| 97热精品久久久久久| 直男gayav资源| 国产白丝娇喘喷水9色精品| 精品久久久久久久久亚洲| 青青草视频在线视频观看| 国产亚洲一区二区精品| 白带黄色成豆腐渣| 国产精品国产三级国产av玫瑰| 欧美日韩国产mv在线观看视频 | 久久久欧美国产精品| 中文字幕av成人在线电影| 国产亚洲午夜精品一区二区久久 | 中文欧美无线码| 嫩草影院精品99| 最近的中文字幕免费完整| 久热这里只有精品99| 天天躁夜夜躁狠狠久久av| 国产一区二区亚洲精品在线观看| 亚洲国产精品成人久久小说| 日韩在线高清观看一区二区三区| 黄片wwwwww| 综合色丁香网| 欧美成人午夜免费资源| 亚洲欧美精品自产自拍| 综合色av麻豆| 欧美 日韩 精品 国产| 亚洲欧美日韩东京热| 日韩中字成人| 最后的刺客免费高清国语| 久久精品国产鲁丝片午夜精品| 99久久九九国产精品国产免费| 日韩不卡一区二区三区视频在线| 好男人在线观看高清免费视频| 男人添女人高潮全过程视频| 91久久精品电影网| 青青草视频在线视频观看| 如何舔出高潮| 国产精品久久久久久久电影| 久久久精品94久久精品| 亚洲精品456在线播放app| 十八禁网站网址无遮挡 | 久久99精品国语久久久| 在线观看免费高清a一片| 久久久久久久久久久丰满| 久久久久久久久久人人人人人人| 国产成人福利小说| 免费看av在线观看网站| 99视频精品全部免费 在线| 亚洲精品乱久久久久久| 97精品久久久久久久久久精品| 国产伦精品一区二区三区四那| 男女边摸边吃奶| 搡老乐熟女国产| 国产69精品久久久久777片| 欧美激情国产日韩精品一区| 亚洲国产av新网站| 熟女人妻精品中文字幕| 在线播放无遮挡| 街头女战士在线观看网站| av国产精品久久久久影院| 久久久久久久大尺度免费视频| 国产精品.久久久| 亚洲伊人久久精品综合| 久久久色成人| 人人妻人人看人人澡| 亚洲成人精品中文字幕电影| 丰满少妇做爰视频| a级一级毛片免费在线观看| 只有这里有精品99| 性插视频无遮挡在线免费观看| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 有码 亚洲区| 建设人人有责人人尽责人人享有的 | 国产黄片美女视频| 中国三级夫妇交换| 午夜福利视频1000在线观看| 18+在线观看网站| 街头女战士在线观看网站| 一个人观看的视频www高清免费观看| av在线app专区| 寂寞人妻少妇视频99o| 丰满乱子伦码专区| 99热这里只有精品一区| av网站免费在线观看视频| 一级二级三级毛片免费看| 18禁动态无遮挡网站| 插逼视频在线观看| 综合色av麻豆| 精品人妻一区二区三区麻豆| 国产永久视频网站| 久久韩国三级中文字幕| a级一级毛片免费在线观看| 久久99蜜桃精品久久| 亚洲,一卡二卡三卡| 高清在线视频一区二区三区| 男女啪啪激烈高潮av片| 美女内射精品一级片tv| 国产午夜精品一二区理论片| 亚洲国产av新网站| 国产精品国产三级国产专区5o| 国产毛片a区久久久久| 七月丁香在线播放| 成年免费大片在线观看| av.在线天堂| 激情五月婷婷亚洲| 精品亚洲乱码少妇综合久久| 午夜福利在线在线| 男插女下体视频免费在线播放| 美女被艹到高潮喷水动态| 国产黄频视频在线观看| 春色校园在线视频观看| 高清视频免费观看一区二区| 亚洲av免费在线观看| 久久久久国产精品人妻一区二区| 久久女婷五月综合色啪小说 | 亚洲图色成人| 2021天堂中文幕一二区在线观| 国产免费视频播放在线视频| 波多野结衣巨乳人妻| 日韩中字成人| 欧美xxxx性猛交bbbb| 亚洲国产日韩一区二区| 97在线视频观看| 久热久热在线精品观看| 两个人的视频大全免费| 色播亚洲综合网| 日韩视频在线欧美| 日本wwww免费看| 午夜爱爱视频在线播放| 欧美最新免费一区二区三区| 久久ye,这里只有精品| 欧美极品一区二区三区四区| 男人舔奶头视频| 免费观看无遮挡的男女| 波多野结衣巨乳人妻| 又大又黄又爽视频免费| 狂野欧美激情性bbbbbb| 三级男女做爰猛烈吃奶摸视频| 2018国产大陆天天弄谢| 高清毛片免费看| 永久免费av网站大全| 一级毛片久久久久久久久女| 亚洲丝袜综合中文字幕| 国产伦精品一区二区三区视频9| 丝袜脚勾引网站| 日韩国内少妇激情av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲第一区二区三区不卡| 夫妻午夜视频| 国产综合懂色| 日韩伦理黄色片| 在线 av 中文字幕| av福利片在线观看| 久久精品久久精品一区二区三区| 国产成人午夜福利电影在线观看| www.色视频.com| 久久精品国产亚洲网站| 寂寞人妻少妇视频99o| 黄色怎么调成土黄色| 国产色婷婷99| 亚洲av男天堂| 日本黄色片子视频| 国产高潮美女av| 69av精品久久久久久| 成人综合一区亚洲| 亚洲怡红院男人天堂| 51国产日韩欧美| h日本视频在线播放| av一本久久久久| 亚洲精品乱码久久久v下载方式| 中文天堂在线官网| 毛片一级片免费看久久久久| 高清视频免费观看一区二区| 欧美少妇被猛烈插入视频| 99久久人妻综合| 亚洲一区二区三区欧美精品 | 三级国产精品欧美在线观看| av卡一久久| 亚洲精品一二三| 亚洲av.av天堂| 日本黄色片子视频| 亚洲精品亚洲一区二区| 久久久久网色| 看十八女毛片水多多多| 亚洲精品久久午夜乱码| 亚洲人成网站在线观看播放| 大片电影免费在线观看免费| 中文字幕制服av| 在线观看av片永久免费下载| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品999| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久精品古装| 夜夜看夜夜爽夜夜摸| 国产黄片视频在线免费观看| 18+在线观看网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | freevideosex欧美| 丝袜脚勾引网站| 夫妻性生交免费视频一级片| 久久影院123| 亚洲人成网站高清观看| 久久久久久伊人网av| 干丝袜人妻中文字幕| 亚洲欧美一区二区三区黑人 | 综合色丁香网| 久久这里有精品视频免费| 国产精品av视频在线免费观看| 99热全是精品| 精品人妻偷拍中文字幕| 国产精品熟女久久久久浪| 亚洲最大成人中文| 免费大片18禁| kizo精华| 一级毛片电影观看| 秋霞伦理黄片| 九色成人免费人妻av| av线在线观看网站| 2021天堂中文幕一二区在线观| 亚洲精品日本国产第一区| 看十八女毛片水多多多| 女人十人毛片免费观看3o分钟| 亚洲av中文字字幕乱码综合| 国产成人福利小说| 大又大粗又爽又黄少妇毛片口| 久久久久精品久久久久真实原创| 欧美丝袜亚洲另类| 天天躁夜夜躁狠狠久久av| 亚洲综合精品二区| 身体一侧抽搐| 久久6这里有精品| 免费av观看视频| 国产成年人精品一区二区| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 春色校园在线视频观看| 国产av码专区亚洲av| 啦啦啦中文免费视频观看日本| 久热这里只有精品99| 黑人高潮一二区| 成年av动漫网址| 2021天堂中文幕一二区在线观| 国产人妻一区二区三区在| av天堂中文字幕网| 美女xxoo啪啪120秒动态图| 久久精品国产鲁丝片午夜精品| 国产 一区精品| 少妇人妻精品综合一区二区| 中文天堂在线官网| 国产精品久久久久久精品电影小说 | 欧美xxⅹ黑人| 一本久久精品| 最近中文字幕2019免费版| 亚洲aⅴ乱码一区二区在线播放| 国产又色又爽无遮挡免| 激情五月婷婷亚洲| 午夜免费男女啪啪视频观看| 丰满乱子伦码专区| 人人妻人人看人人澡| 久久人人爽人人爽人人片va| 亚洲三级黄色毛片| 亚洲自偷自拍三级| 精品久久久噜噜| 少妇人妻久久综合中文| 久久精品国产鲁丝片午夜精品| eeuss影院久久| 超碰97精品在线观看| 亚洲精品久久久久久婷婷小说| 好男人在线观看高清免费视频| 熟女电影av网| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| 欧美成人一区二区免费高清观看| 亚洲经典国产精华液单| 午夜福利视频精品| 夫妻性生交免费视频一级片| 能在线免费看毛片的网站| 三级经典国产精品| 91精品伊人久久大香线蕉| 免费看光身美女| 一级毛片久久久久久久久女| 欧美激情国产日韩精品一区| 69人妻影院| av在线亚洲专区| a级毛片免费高清观看在线播放| 免费人成在线观看视频色| 免费电影在线观看免费观看| av在线老鸭窝| 五月玫瑰六月丁香| 国产免费又黄又爽又色| 中文精品一卡2卡3卡4更新| 真实男女啪啪啪动态图| 精品久久久久久电影网| av线在线观看网站| 七月丁香在线播放| 亚洲人成网站高清观看| 大片电影免费在线观看免费| 99久久精品一区二区三区| 久久久国产一区二区| 亚洲在线观看片| 各种免费的搞黄视频| 真实男女啪啪啪动态图| 自拍欧美九色日韩亚洲蝌蚪91 | 日本三级黄在线观看| 婷婷色综合大香蕉| 免费黄网站久久成人精品| 男女下面进入的视频免费午夜| 国产精品久久久久久精品古装| 久久99蜜桃精品久久| 色视频www国产| 亚洲欧美精品专区久久| 蜜桃亚洲精品一区二区三区| 五月伊人婷婷丁香| 国产91av在线免费观看| 美女国产视频在线观看| 又黄又爽又刺激的免费视频.| 成人国产av品久久久| 大片电影免费在线观看免费| 久久这里有精品视频免费| 一级a做视频免费观看| 一级毛片aaaaaa免费看小| 国产成人福利小说| 日韩在线高清观看一区二区三区| 一级毛片久久久久久久久女| 看免费成人av毛片| 亚洲精品影视一区二区三区av| 久久久久久久久久久免费av| 精品久久久精品久久久| 大话2 男鬼变身卡| 欧美xxxx性猛交bbbb| 午夜日本视频在线| 国产乱来视频区| 欧美亚洲 丝袜 人妻 在线| 国产中年淑女户外野战色| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品电影小说 | 日本与韩国留学比较| 青春草国产在线视频| 中文欧美无线码| 天堂俺去俺来也www色官网| 一区二区三区精品91| 国产精品一二三区在线看| 街头女战士在线观看网站| 国产精品伦人一区二区| 26uuu在线亚洲综合色| 在线亚洲精品国产二区图片欧美 | 国产亚洲一区二区精品| 精品久久久久久久久亚洲| 午夜精品国产一区二区电影 | 又爽又黄无遮挡网站| 日本午夜av视频| 国产欧美日韩一区二区三区在线 | 一级毛片aaaaaa免费看小| 夫妻午夜视频| 亚洲,欧美,日韩| 一区二区三区四区激情视频| 成人亚洲精品一区在线观看 | 成年人午夜在线观看视频| 91久久精品电影网| 国产亚洲一区二区精品| 男女下面进入的视频免费午夜| 精品亚洲乱码少妇综合久久| 国产男人的电影天堂91| 赤兔流量卡办理| 嫩草影院精品99| 久久精品国产亚洲av涩爱| 国产成人免费无遮挡视频| 成人亚洲欧美一区二区av| 最近手机中文字幕大全| 久久热精品热| 成人鲁丝片一二三区免费| 亚洲熟女精品中文字幕| 久久精品国产鲁丝片午夜精品| 最近最新中文字幕免费大全7| 丝袜喷水一区| 精品一区在线观看国产| 伦精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 欧美最新免费一区二区三区| 日韩亚洲欧美综合| 日产精品乱码卡一卡2卡三| 一级av片app| 在线观看一区二区三区| av在线app专区| 久久人人爽人人爽人人片va| 中文资源天堂在线| 国产精品久久久久久av不卡| 寂寞人妻少妇视频99o| 久久精品夜色国产| 日韩中字成人| 真实男女啪啪啪动态图| 综合色av麻豆| 国产成人精品福利久久| 毛片女人毛片| 日日啪夜夜撸| 在线亚洲精品国产二区图片欧美 | 91精品一卡2卡3卡4卡| 观看美女的网站| 亚洲色图av天堂| 午夜福利视频1000在线观看| 亚洲精品日韩在线中文字幕| 黄色一级大片看看| 一二三四中文在线观看免费高清| 精品国产露脸久久av麻豆| 亚洲国产精品成人久久小说| 黄片无遮挡物在线观看| 国产乱人偷精品视频| 午夜激情久久久久久久| 日日摸夜夜添夜夜添av毛片| 一区二区三区四区激情视频| 欧美三级亚洲精品| 国产乱来视频区| 久久精品久久久久久噜噜老黄| 久久久a久久爽久久v久久| 久久久久久久午夜电影| 国产毛片a区久久久久| 午夜福利视频1000在线观看| 久久久午夜欧美精品| 成人亚洲精品av一区二区| 高清日韩中文字幕在线| 午夜免费男女啪啪视频观看| 国产免费视频播放在线视频| av在线蜜桃| 少妇熟女欧美另类| 亚洲真实伦在线观看| 国产探花在线观看一区二区| 啦啦啦啦在线视频资源| 日本黄色片子视频| 极品少妇高潮喷水抽搐| 国产大屁股一区二区在线视频| 亚洲电影在线观看av| 大片电影免费在线观看免费| 超碰97精品在线观看| 免费观看在线日韩| 舔av片在线| 中文字幕制服av| 午夜日本视频在线| 国产亚洲精品久久久com| 久久久久国产网址| 国产成年人精品一区二区| 嘟嘟电影网在线观看| 国产免费一级a男人的天堂| 亚洲,一卡二卡三卡| 小蜜桃在线观看免费完整版高清| 视频区图区小说| 午夜激情福利司机影院| 韩国av在线不卡| 国产黄色视频一区二区在线观看| 久久久欧美国产精品| 中文精品一卡2卡3卡4更新| 中文字幕人妻熟人妻熟丝袜美| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 91久久精品电影网| 亚洲av免费高清在线观看| 18+在线观看网站| 少妇丰满av| 日韩亚洲欧美综合| 欧美+日韩+精品| 国产亚洲午夜精品一区二区久久 | av国产免费在线观看| 狂野欧美激情性bbbbbb| 99视频精品全部免费 在线| 91久久精品国产一区二区成人| 欧美日本视频| 欧美国产精品一级二级三级 | 激情五月婷婷亚洲| 国产色爽女视频免费观看| 少妇人妻久久综合中文| 免费黄网站久久成人精品| 日韩中字成人| 啦啦啦啦在线视频资源| 国产精品成人在线| 国产视频内射| 日产精品乱码卡一卡2卡三| 高清欧美精品videossex| 精品熟女少妇av免费看| 青春草国产在线视频| 亚洲伊人久久精品综合| 成人午夜精彩视频在线观看| 色播亚洲综合网| 两个人的视频大全免费| 日本黄色片子视频| 爱豆传媒免费全集在线观看| 国产成人午夜福利电影在线观看| 91精品伊人久久大香线蕉| 亚洲av欧美aⅴ国产| 如何舔出高潮| 免费av毛片视频| 亚洲丝袜综合中文字幕| 久久久国产一区二区| 亚洲欧美日韩东京热| 国产精品嫩草影院av在线观看| 亚洲自拍偷在线| 国产在线一区二区三区精| 色哟哟·www| 国产精品一区二区三区四区免费观看| 丝袜脚勾引网站| 日韩中字成人| 99久久精品一区二区三区| 69av精品久久久久久| 边亲边吃奶的免费视频| 成人二区视频| 日日撸夜夜添| 中国美白少妇内射xxxbb| 成人无遮挡网站| 久久久亚洲精品成人影院| 欧美高清性xxxxhd video| 国国产精品蜜臀av免费| 成人亚洲精品一区在线观看 | 久热久热在线精品观看| 国产男人的电影天堂91| 岛国毛片在线播放| 亚洲欧美一区二区三区国产| 亚洲欧洲国产日韩| 秋霞伦理黄片| 国产精品久久久久久av不卡| 亚洲av国产av综合av卡| 又爽又黄a免费视频| 免费大片18禁| 日本黄大片高清| 欧美 日韩 精品 国产| 国产成人精品婷婷| 五月开心婷婷网| 水蜜桃什么品种好| 久久久久久久久大av| 熟女av电影| 日本一二三区视频观看| 深夜a级毛片| 国产探花在线观看一区二区| av卡一久久| 日日啪夜夜撸| 丝袜喷水一区| 久久99热这里只频精品6学生| 国产精品一区二区性色av| 18禁动态无遮挡网站| 激情五月婷婷亚洲| 免费观看av网站的网址| 香蕉精品网在线| 国产成人福利小说| av福利片在线观看| 久久99热6这里只有精品| 亚洲av免费在线观看| 伊人久久精品亚洲午夜| 亚洲国产色片| 亚洲欧美成人综合另类久久久| 青春草视频在线免费观看| 色播亚洲综合网| av在线观看视频网站免费| 99热这里只有是精品50| 女人十人毛片免费观看3o分钟| 日韩人妻高清精品专区| 涩涩av久久男人的天堂| 欧美日韩视频高清一区二区三区二| 麻豆久久精品国产亚洲av| 别揉我奶头 嗯啊视频| 免费大片18禁| 日韩人妻高清精品专区| 真实男女啪啪啪动态图| av在线播放精品| 日韩av不卡免费在线播放| 中文在线观看免费www的网站| 99九九线精品视频在线观看视频| 午夜福利网站1000一区二区三区| 九九爱精品视频在线观看| 99九九线精品视频在线观看视频| 日韩欧美 国产精品|