• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Line-Profile Analysis of Excitation Spectroscopy in the Even 3p5(2P1/2)nl′[K′]J(l′=1,3)Autoionizing Resonances of Ar

    2016-09-23 06:06:16Chun-yanLi,MeiZhou,Zhi-weiHe
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Line-Profile Analysis of Excitation Spectroscopy in the Even 3p5(2P1/2)nl′[K′]J(l′=1,3)Autoionizing Resonances of Ar

    I.INTRODUCTION

    The high Rydberg states of rare gases have been a subject of interest to spectroscopists for many years. These ARS are attractive for experimental and theoretical studies because they are rather isolated and their characteristics can be determined with high accuracy. The energy of the Rydberg electron is very sensitive to the potential associated with the ion core and provides information on the polarizability of the many-electron core.The width of the ARS is determined by the interaction of the excited states with the continuum and with the nearby ARS of the same parity and total angular momentum J,these interactions are strongly affected by many-electron correlations.Therefore,studies of ARS allow us to obtain deeper insight into intra-atomic electron dynamics,and a critical comparison between the measured and calculated characteristics of the ARS can provide a crucial test of the theoretical approach[1].

    The rare gases(except helium)possess two relatively closely spaced ionization limits corresponding to the2P3/2and2P1/2states of the ion core,with the Rydberg series converging to each of these two limits.Since the ionization limits and the autoionizing Rydberg states of the rare gas atoms are of high energies,the spectroscopic investigations starting from their ground states usually requires radiation source in vacuum ultraviolet(VUV)region,where high resolution spectrum is relatively challenging compared to longer wavelength region.Promoting one of the np-subshell(n=2-5)electrons of the rare gases to the next available(n+1)s orbital yields four levels that are built on the np5(n+1)s configuration,namely np5(n+1)s[1/2]0,1and np5(n+1)s[3/2]1,2.The np5(n+1)s[1/2]1and np5(n+1)s[3/2]1levels decay radiatively to the ground state,whereas np5(n+1)s[1/2]0and np5(n+1)s[3/2]2are metastable[2].The two metastable levels 3p54s[3/2]2and 3p54s′[1/2]0lie at 93143.767 and 94553.665 cm-1,respectively,relative to the argon ground state[3].This provides an opportunity for excitation to the high lying Rydberg levels via single photon or two photon transitions,which are otherwise not readily accessible from the ground state due to the transition selection rules.Furthermore,these excitation spectra can be obtained with narrow-linewidth laser excitation,thus providing high-resolution studies on the high Rydberg states.

    The spectroscopy of high Rydberg states of argon,especially the autoionizing states,has been extensively investigated[3-17].However,the understanding of even-parity autoionizing Rydberg states of Kr is less comprehensive,and the resolution of the obtained spectra is roughly low.Ⅰn 1973,Stebbing and Dunning first observed the single photon excitation from the second metastable level 3p54s′[1/2]0to 3p5(2P1/2)np′[1/2]1(n=11-20),the even-parity autoionizing states of argon[3].Later they reported the spectra of single photon excitation to the even parity autoionizing state series 3p5(2P1/2)np′[3/2]1(n=11-26) and 3p5(2P1/2)nf′[5/2]3(n=9-15),which are excited from the first metastable level 3p54f′[3/2]2[4].Pel-larin et al.employed the collinear laser spectroscopy with a field ionization detection technique to investigate the even-parity autoionizing resonances below the first ionization limit,3p5(2P3/2)np(n=12-70)[1/2]1,[3/2]2,3p5(2P3/2)np(n=12-40)[3/2]1,[5/2]2,3,3p5(2P3/2)nf (n=11-19)[3/2]1,[5/2]2,[3/2]2,[5/2]3(n=11-38) and3p5(2P1/2)np′[1/2]1(n=9,10),[3/2]1,2,nf′(n=7,8)[5/2]2,3spectra excited from the 3p54s[3/2]2metastable level[5].Muhlpfordt and Even observed a ZEKE spectrum of the 3p5(2P3/2)np,3p5(2P3/2)nf and 3p5(2P1/2)np′(n≥15),3p5(2P1/2)nf′(n≥14)Rydberg series converging to the two ionization potential excited from the 3p54s[3/2]2metastable level,respectively,and reported the ionization limits and quantum defects derived from the line position measurements but did not provide the spectroscopic data[6].Koeckhoven et al.[7]observed four-photon excitation from the ground state and the even parity 3p5(2P1/2)np′(n=11-19)[1/2]0,[3/2]1and nf′(n=10-15)[5/2]2,[7/2]4autoionizing Rydberg series,and studied the np′(n=11-13)[3/2]1and nf′(n=10,11)[5/2]2spectra using the line-shape formula derived by Ueda[18].Peter et al.reported the experimental and theoretical investigation of even mp5(2P1/2)np′(m=2-5)autoionizing resonances of rare gas atoms and provided Fano lineshape analysis of argon np′(n=13,14)[1/2]1,[3/2]2[8].Lee et al.reported some np′and nf′autoionizing series by stepwise excitations from instant intermediate states with lasers and synchrotron radiation[9].

    The studies on odd-parity Rydberg states have been more extensive.Wu et al.[10]reported high resolution photoelectron spectrum of argon odd-parity 3p5(2P1/2)12s′,10d′autoionizing states excited from the ground state,and analyzed it using the line-shape formula derived by Ueda[18].Klar et al.observed the high resolution two-photon excitation spectra of the metastable Ar?and reported odd-parity 3p5(2P1/2)ns′(n=18-25)J=0,1 levels[11].Koeckhoven et al.reported three-photon excitation spectra from the ground state and the odd-parity 3p5(2P1/2)ns′(n=11-34) [1/2]1,nd′(n=9-21)[3/2]1,ng′(n=9-21)[7/2]3autoionizing Rydberg states[12].Landais et al.[13]observed the 3p5(2P1/2)ns′(n=11-34)[1/2]0,1autoionizing levels using two step optical excitation from the 3p54s[3/2]2metastable level,and analyzed the spectra for n=11-25.Piracha et al.[14]reported the odd parity 3p3ns,nd,3p3nd′(n=6-8)series excited from the 3p54s[3/2]2metastable level and 3p3ns′(n=10-30) [1/2]0,nd′(n=15-29)[3/2]2series excited from the 3p54s′[1/2]0metastable level using single-color twophoton excitation.Weber et al.[15,16]reported the high resolution odd-parity 3p3(2P3/2)ns,nd(n=13-90) J=2,3,and ng(n=13-70)J=4 Rydberg spectra together with the low lying 3p3(2P1/2)nd′(n=10-14),and 3p3(2P1/2)ng′(n=7-9)autoionizing states,and carried out multichannel quantum defect analysis of the J=2,3,4 levels.Recently,Zheng et al.[17]reported the odd parity 3p3(2P3/2)ns(J=1,2),nd(J=0-4) Rydberg series and 3p3(2P1/2)ns′(J=0,1,n=7-10),nd′(J=1-3,n=5-9)autoionizing states spectra excited from the two metastable levels 3p54s[3/2]2and 3p54s′[1/2]0populated in a pulsed DC discharge.

    Although many experiments have been carried out for the Ar autoionizing Rydberg states including 3p5np′and 3p5nf′,few high-resolution spectroscopic studies and very few line profile parameters are available.We recently reported the systematic experiment study of the autoionizing 3p5np′and 3p5nf′resonance series of argon by using pulsed DC discharge along with single UV photon excitation and the TOF-MS technique [19].Ⅰn that work,the metastable Ar?(3p54s[3/2]2and 3p54s′[1/2]0)atoms were produced by a pulsed highvoltage DC discharge and are then excited to the evenparity autoionizing resonances series 3p5np′[3/2]1,2,3p5np′[1/2]1,and 3p5nf′[5/2]3by a pulsed UV laser radiation with a narrow bandwidth of~0.1 cm-1.These autoionizing resonance states subsequently decay to Ar+ions,which are detected using the time-of-flight (TOF)mass spectrometry.The excitation spectra of the autoionizing resonance series are recorded in the form of the Ar+ion intensities as a function of excitation UV laser radiation.The high-resolution excitation spectra show typical asymmetric line shapes.Ⅰn the present work,the high-resolution excitation spectra are fitted using Fano line-shape formula,and new results for the resonance energies,quantum defects,line profile indexes,resonance widths,resonance lifetimes and reduced widths are derived from the observed resonance spectra.

    II.EXPERIMENTS

    The experiment was conducted in a laser ionization mass spectrometer described elsewhere[19].Briefly,the photoionization experimental apparatus includes the metastable Ar?atoms source and the ion detection system.The metastable Ar?atoms were produced by a DC discharge of a mixture of 5%SF6in Ar at a stagnation pressure of 5 atms.A pulsed high voltage of about 2 kV was supplied to the electrodes producing a discharge in the area of the orifices of the copper electrodes.The supersonic beam after the DC discharge was collimated by a skimmer(?=3 mm)and entered into the photoexcitation and photoionization chamber. The photoionization chamber was maintained at typical pressures of~10-4and<10-5Pa,respectively,with and without the operation of the beam.A Nd:YAG laser(Spectra Physics,GCR-190)pumping a dye laser (Lumonics,HT-500)was used as the light source(pulse duration of UV radiation is about 8 ns,energy per UV pulse is typically 1.0 mJ).The dye laser output was frequency doubled with a second harmonic generator (Lumonics,HT-1000)and then focused perpendicularly on the metastable Ar?beam by a 250 mm focal lengthlens.Ⅰons generated via autoionizing process at the ionization zone were introduced and accelerated to the flight tube of the TOF mass spectrometer and then detected by micro-channel plates(MCP).The mass resolved ion signal from the MCP was amplified by an amplifier(Stanford Research System,SR445)and averaged by a digital oscilloscope(Tektronix,TDS3032B) or a computer data acquisition system.A multi-channel delay pulsed generator was used to control the relative time delays among the nozzle,the laser,and the DC discharge.

    The mass resolved photoexcitation spectra were obtained by setting the corresponding time gate to monitor the arrival of m/z=40(40Ar+)ions and recording the ion signals as a function of laser wavelength.No attempt was made to normalize the spectral intensity with respect to the laser power.The typical scan speed of the dye laser was 0.001 nm/s at a 10 Hz laser repetition.Calibration of the laser wavelength was achieved by a wavelength meter(Coherent).

    III.RESULTS AND DISCUSSION

    The excited levels of the rare gas are designated in the jcl[K]Jcoupling scheme[20-23],in which the orbital angular momentum l of the excited electron is weakly coupled to the total angular momentum jc(3/2 or 1/2) of the np5jcionic core to yield the resultant quantum angular momentum K.K is then weakly coupled with the spin s of the excited electron giving total angular momentum J.The propensity rules for electric dipole transitions in the jK-coupling scheme are:?J=0,±1;?K=0,±1;and?j=0.These rules are well observed,and wherever?J=?K=+?l,the transition lines possess higher intensity.However,the?j=0 rule is not followed strictly,since transitions with a change of the ionic core are also often observed.

    The autoionization states are excited from the two metastable Ar?states by one photon resonance transition.Based on the transition rules and the threshold for direct photoionization from the Ar?metastable to the autoionizing resonance series,the observed series of the autoionizing structures as reported[19]are identified as 3p5(2P1/2)4s′[1/2]0h→ν3p5(2P1/2)np′[3/2]1,3p5(2P3/2)4s[3/2]2h→ν3p5(2P1/2)np′[3/2]1,2,[1/2]1,and 3p5(2P3/2)4s[3/2]2h→ν3p5(2P1/2)nf′[5/2]3,respectively. Since the autoionizing resonances lie between the two ionization potentials in the2P3/2continuum,the perturbation arising from interactions among the resonance series having the same parity and J,and the perturbation arising from interactions with the2P3/2continuum,are complex.The perturbation influences the Rydberg electron of Ar and manifests on the variation of the principal quantum defects.The width of the spectrum peak reflects the lifetime of the resonance.The experimental results show that,as the principal quantum number n increases,the quantum defects of the given series increase whereas the widths of the autoionizing peaks corresponding to the given series decrease. This is expected because the interaction with the2P3/2continuum is greater near threshold.The lifetime of the autoionizing resonances will be discussed below.

    FⅠG.1 The partially expanded spectra of the autoionizing resonances.(a)The experimental data(dots)and Fano line profile fitting curve of the autoionizing line 3p511p′[3/2]1excited from 3p54s′[1/2]0.(b)The experimental data (dots)and Fano line profile fitting curve of autoionizing lines 3p511p′[3/2]1,2,[1/2]1and 3p59f′[5/2]3excited from 3p54s[3/2]2.

    A.Line-profile analysis of the 3p5np′and 3p5nf′autoionizing resonances

    Thelineprofilesforalltheobservedtransitionsbetween32500and35600cm-1,i.e.,3p5(2P1/2)4s′[1/2]0h→ν3p5(2P1/2)np′[3/2]1,3p5(2P3/2) 4s[3/2]2h→ν3p5(2P1/2)np′[3/2]1,2,[1/2]1,and 3p5(2P3/2) 4s[3/2]2→hν3p5(2P1/2)nf′[5/2]3,show typical asymmetric line shapes,as seen in Fig.1.A theoretical treatment of these line shapes due to autoionizing transitions has been carried out by Fano et al.[24,25].For an isolated autoionizing state,the photoion production cross section can be described by the Fano formula:

    Here σbrepresents the portion of the cross section describing transitions to the continuum that do not interact with the quasi-bound(autoionizing)states,and σais the resonant portion of the cross section.E is the observed term energy,Eris the resonance energy,q is the line profile index,and Γ is the resonance width.

    Fano profile has been fitted to the present data,providing values of Er,q,Γ for each of the observed transitions(listed in TableⅠ-ⅠⅠⅠ).The partially expanded spectra of the autoionizing resonances are shown in Fig.1 as an example to illustrate the comparison of the Fano profile curve fitting to the experimental spectra. The smooth curves represent fits to the experimental spectra(dots).Figure 1(a)shows the experimental data and Fano line profile fitting curve of the autoionizing line 3p511p′[3/2]1excited from the metastable level 3p54s′[1/2]0.Figure 1(b)shows the experimental data and Fano line profile fitting curve of the autoionizing lines 3p511p′[3/2]1,2,[1/2]1and 3p59f′[5/2]3excited from the first metastable level 3p54s[3/2]2.For n≥24,the three states of the np′series,3p5(2P1/2)np′[3/2]2,[3/2]1,[1/2]1,are not distinguishable;their q and Γ parameters are the sum of the three states and their values are listed respectively in TableⅠⅠ.Note that most of the line profile analysis of the 3p5np′[3/2]1,2,[1/2]1and 3p5nf′[5/2]3autoionizing resonances are reported for the first time.For members of a Rydberg series,the reduced width Γris defined as Γr=Γnn?3,where n?=n-δ is the effective quantum number,and the corresponding quantum defect δ and effective quantum number n?arecalculated using the Rydberg formula.The obtained values of the reduced width Γrare listed in TablesⅠ-ⅠⅠⅠ. The lifetime of the upper state against autoionization τ is readily determined from τ=?/Γ,and the values of τ are also included in TablesⅠ-ⅠⅠⅠ.

    TABLEⅠParameters obtained by line profile analysis for the 4s′[1/2]0(94553.665 cm-1)→3p5np′[3/2]1,4s[3/2]2(93143.767 cm-1)→3p5np′[3/2]1,[3/2]2,[1/2]1(Er,Γ,and Γrin cm-1,and τ in 10-12s).

    As shown from the data listed in the TablesⅠ-ⅠⅠⅠ,the absolute value of line profile index q decreases when n increases.This indicates that the profile symmetry for high autoionizing resonances is more asymmetric,i.e.,the portion of the cross section describing transition to the continuum possesses more percentage in the transition from the lower electronic level to higher upper autoionizing resonances.The present results show that the resonance width Γ value decreases as the principal quantum number n increases,which directly reflects the decrease in natural linewidths of the np′and nf′resonances and increase of their lifetimes.This is expected because the interaction of the resonance states with the2P3/2continuum is greater(thus faster autoionization)when the resonances are near the threshold,where the density of the continuum is higher.The lifetimes of the 3p5np′[3/2]1autoionizing resonance series change significantly with a ratio 5-7 between the observed highest and lowest levels,whereas the lifetimes of the 3p5np′[3/2]2,[1/2]1and nf′[5/2]3change with a ratio 2-4.

    Ⅰt is noted that the q and Γ value vary with the effective quantum number n(shown in Fig.2).Ⅰn order to see the relations for the q and Γ value vs.the effective quantum number n?,the q and Γ as function of n?are plotted and shown in Fig.2.From these figures,the empirical results are obtained:the q is proportional to the effective quantum number n?for the autoionizing resonance series,and lnΓ is approximately proportional to lnn?.

    TABLEⅠⅠParameters obtained by line profile analysis for the 3p5np′←4s[3/2]2a(93143.767 cm-1)(n≥24).

    TABLEⅠⅠⅠParameters obtained by line profile analysis for the 3p5nf′[5/2]3←4s[3/2]2(93143.767 cm-1).

    B.Line separation of the 3p5np′autoionizing resonances

    Ⅰn the jKcoupling scheme,the energy difference depends only on the Slater exchange integral G1resulting from the electrostatic interaction,the fine structure interval is expected to be proportional to 1/n?3[1,13,23].The experimental finestructure interval data of the 3p5np′autoionizing resonances are plotted as a function of averaged effective quantum number n?as lnn?and shown in Fig.3.For n<15 and n>18,the line has a slope of -2.829±0.219(difference between 3p5np′[3/2]2and 3p5np′[3/2]1),-2.619±0.482(between 3p5np′[1/2]1and3p5np′[3/2]1),and-2.774±0.258(between 3p5np′[3/2]2and 3p5np′[1/2]1),respectively,compa-rable to the expected slope of-3.The results are in good agreement with the theoretical estimate of the fine structure interval.Ⅰt is noted that the fine structure interval does not follow the expected 1/n?3 behavior for n=16,17.This might suggest that the resonance positions of the observed series for n=16,17 are irregular.Since the signal-to-noise is quite good for the n=16,17 lines,the derived positions are reliable. One possibility for the irregular line positions of n=16,17 is that other transitions nearby perturb these states.

    FⅠG.2 Autoionizing line profile index q and resonance width Γ of(a)3p5np′[3/2]1series excited from 4s′[1/2]0,(b) 3p5np′[3/2]1series excited from 4s[3/2]2,(c)3p5np′[3/2]2series excited from 4s[3/2]2,(d)3p5np′[1/2]1series excited from 4s[3/2]2,(e)3p5nf′[5/2]3series excited from 4s[3/2]2plotted against effective quantum number n?.

    FⅠG.3 Energy difference of the 3p5np′autoionizing resonances energy levels plotted against lnn?.

    IV.CONCLUSION

    We have carried out the experiment study of the autoionizing 3p5np′and 3p5nf′resonance series of argon by using pulsed DC discharge along with single UV photon excitation and the TOF-MS technique.The Fano line profile analysis of the excitation spectra is carried out and the Fano parameters of the systematic autoionizing series are reported.The line profile index q and resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n?.The line separation of the 3p5np′autoionizing resonances is also discussed.

    V.ACKNOWLEDGMENTS

    This work is supported by the Beijing Higher Education Young Elite Teacher Project(No.YETP0324) and the National Natural Science Foundation of China (No.21403297,No.61474142,and No.11474355).

    [1]Ⅰ.D.Petrov,V.L.Sukhorukov,and H.Hotop,J.Phys. B 36,119(2003).

    [2]N.E.Small-Warren and Lue-Yung Chow Chiu,Phys. Rev.A 11,1777(1975).

    [3]R.F.Stebbing and F.B.Dunning,Phys.Rev.A 8,665 (1973).

    [4]F.B.Dunning and R.F.Stebbing,Phys.Rev.A 9,2378(1974).

    [5]M.Pellarin,J.L.Vialle,M.Carre,J.Lerme,and M. Aymer,J.Phys.B 21,3833(1988).

    [6]A.Muhlpfordt and U.Even,J.Chem.Phys.103,4427 (1995).

    [7]S.M.Koeckhoven,W.J.Burma,and C.A.de Lange,Phys.Rev.A 51,1097(1995).

    [8]T.Peter,T.Halfmann,U.Even,A.Wunnenberg,Ⅰ.D. Petrov,V.L.Sukhorukov,and H.Hoptop,J.Phys.B 38,S51(2005).

    [9]Y.Y.Lee,T.Y.Dung,R.M.Hsieh,J.Y.Yuh,Y.F. Song,G.H.Ho,T.P.Huang,W.C.Pan,Ⅰ.C.Chen,S.Y.Tu,A.H.Kung,and L.C.Lee,Phys.Rev.A 78,022509(2008).

    [10]J.Z.Wu,S.B.Whitfield,C.D.Caldwell,M.O.Krause,P.van der Meulen,and A.Fahlman,Phys.Rev.A 42,1350(1990).

    [11]D.Klar,K.Harth,J.Ganz,T.Kraft,M.W.Ruf,H. Hotop,V.Tsemekhman,and M.Y.Amusia,Z.Phys. D 23,101(1992).

    [12]S.M.Koeckhoven,W.J.Burma,and C.A.de Lange,Phys.Rev.A 49,3322(1994).

    [13]J.Landais,M.Huet,H.Kucal,and T.Dohnalik,J. Phys.B 28,2395(1995).

    [14]N.K.Piracha,M.A.Baig,S.A.Khan,and B.Suleman,J.Phys.B 30,1151(1997).

    [15]J.M.Weber,K.Ueda,D.Klar,J.Kreil,M.W.Ruf,and H.Hotop,J.Phys.B 32,2381(1999).

    [16]J.Bommels,J.M.Weber,A.Gopalan,N.Herschbach,E.Leber,A.Schramm,K.Ueda,M.W.Ruf,and H. Hotop,J.Phys.B 32,2399(1999).

    [17]X.F.Zheng,T.T.Wang,and Y.Chen,Chin.J.Atom. Mol.Phys.21,605(2004).

    [18]K.Ueda,Phys.Rev.A 35,2484(1987).

    [19]C.Y.Li,Z.W.He,T.T.Wang,J.F.Zhen,Y.Chen,and J.S.Zhang,Chin.J.Chem.Phys.26,259(2013).

    [20]G.Racah,Phys.Rev.62,438(1942).

    [21]Ⅰ.Ⅰ.Sobelman,Atomic Spectra and Radiative Transitions,Berlin Heidelberg:Springer-Verlag(1979).

    [22]R.D.Cowan,The Theory of Atomic Structure and Spectra,Berkeley:University of California Press,(1981).

    [23]R.D.Knight and L.G.Wang,J.Opt.Soc.Am.B 3,1673(1986).

    [24]U.Fano,Phys.Rev.124,1866(1961).

    [25]U.Fano and J.W.Cooper,Phys.Rev.A 137,1364 (1965).

    Chun-yan Lia?,Mei Zhoua,Zhi-wei Hea,Jin-hong Zhanga,Yang Chenb?
    a.College of Science,China Agricultural University,Beijing 100083,China b.Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China
    (Dated:Received on January 23,2016;Accepted on February 23,2016)
    The even-parity autoionizing resonance series 3p5np′[3/2]1,2,3p5np′[1/2]1,and 3p5nf′[5/2]3of Ar have been investigated exciting from the two metastable states 3p54s[3/2]2and 3p54s′[1/2]0in the photon energy range of 32500-35600 cm-1with an experimental bandwidth of~0.1 cm-1.The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes.New level energies,quantum defects,line profile index and resonance widths,resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis.The line profile index q and the resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n?.The line separation of the 3p5np′autoionizing resonances is discussed.
    Key words:Ar,Autoionizing resonances,F(xiàn)ano-type lineshape

    ?Authors to whom correspondence should be addressed.E-mail: chunyanl@cau.edu.cn,yangchen@ustc.edu.cn,Tel.:+86-551-636-06619

    国产免费视频播放在线视频| 三级国产精品欧美在线观看| 女的被弄到高潮叫床怎么办| 欧美日韩在线观看h| 九九爱精品视频在线观看| 日日撸夜夜添| 久久精品熟女亚洲av麻豆精品| 久久久久久久精品精品| 国产极品天堂在线| 午夜影院在线不卡| 青春草视频在线免费观看| 两个人免费观看高清视频| 欧美激情 高清一区二区三区| 十八禁网站网址无遮挡| 久久这里有精品视频免费| 老熟女久久久| 飞空精品影院首页| 免费观看无遮挡的男女| 丰满乱子伦码专区| 亚洲国产日韩一区二区| 人妻少妇偷人精品九色| 国产成人免费观看mmmm| 美女大奶头黄色视频| 日产精品乱码卡一卡2卡三| 少妇被粗大猛烈的视频| 日韩中文字幕视频在线看片| √禁漫天堂资源中文www| 视频中文字幕在线观看| 成人国语在线视频| 国产有黄有色有爽视频| 99热这里只有精品一区| 少妇丰满av| 亚洲精品久久成人aⅴ小说 | 久久精品国产自在天天线| 久久久久久久久大av| 日本黄大片高清| 久久久午夜欧美精品| 七月丁香在线播放| 欧美国产精品一级二级三级| 久久国产亚洲av麻豆专区| 国产片特级美女逼逼视频| 51国产日韩欧美| 国产黄色视频一区二区在线观看| 在线免费观看不下载黄p国产| 最近手机中文字幕大全| 亚洲精品日本国产第一区| 国产成人a∨麻豆精品| 久久久久人妻精品一区果冻| 国产精品99久久久久久久久| 天堂俺去俺来也www色官网| 国产男人的电影天堂91| 成人毛片60女人毛片免费| 国产一区二区三区av在线| 成人国产av品久久久| a 毛片基地| 久久精品久久久久久噜噜老黄| 日韩成人伦理影院| 亚洲国产色片| 日韩制服骚丝袜av| 亚洲,欧美,日韩| 亚洲成人一二三区av| 国产成人免费无遮挡视频| 精品国产国语对白av| 美女国产高潮福利片在线看| 久久久久网色| 国产69精品久久久久777片| 秋霞在线观看毛片| 乱人伦中国视频| 中国美白少妇内射xxxbb| www.av在线官网国产| 插逼视频在线观看| 制服诱惑二区| 最新的欧美精品一区二区| 99re6热这里在线精品视频| 国产欧美亚洲国产| 人妻夜夜爽99麻豆av| 久久精品国产亚洲av天美| 久久97久久精品| 国产午夜精品久久久久久一区二区三区| av专区在线播放| 亚洲欧美色中文字幕在线| 亚洲精品美女久久av网站| 亚洲国产成人一精品久久久| 免费观看性生交大片5| 精品久久久久久久久亚洲| a级片在线免费高清观看视频| 性色av一级| 久久国产亚洲av麻豆专区| 热re99久久国产66热| 麻豆成人av视频| 日韩熟女老妇一区二区性免费视频| 十八禁网站网址无遮挡| .国产精品久久| 成年美女黄网站色视频大全免费 | 我的女老师完整版在线观看| 国产伦精品一区二区三区视频9| xxxhd国产人妻xxx| 热re99久久精品国产66热6| 尾随美女入室| 最新的欧美精品一区二区| 亚洲精品国产色婷婷电影| 亚洲欧美中文字幕日韩二区| 日韩三级伦理在线观看| 亚洲第一区二区三区不卡| 精品亚洲成国产av| 亚洲情色 制服丝袜| 久久午夜福利片| 久久精品久久久久久久性| 欧美97在线视频| 久久久久久久久久人人人人人人| 这个男人来自地球电影免费观看 | 99国产综合亚洲精品| 精品视频人人做人人爽| 最近的中文字幕免费完整| 美女xxoo啪啪120秒动态图| 哪个播放器可以免费观看大片| 久久国产精品大桥未久av| 曰老女人黄片| 高清不卡的av网站| 国产精品国产三级国产专区5o| 欧美变态另类bdsm刘玥| 久久久久久久久久人人人人人人| 久久99蜜桃精品久久| 一区二区av电影网| 国产男人的电影天堂91| 欧美少妇被猛烈插入视频| 久久午夜综合久久蜜桃| 又粗又硬又长又爽又黄的视频| 两个人的视频大全免费| 一级爰片在线观看| 丝袜脚勾引网站| 久久综合国产亚洲精品| 成人18禁高潮啪啪吃奶动态图 | 日本91视频免费播放| 久热这里只有精品99| 成年人免费黄色播放视频| 91国产中文字幕| 国产亚洲最大av| 日韩强制内射视频| 卡戴珊不雅视频在线播放| 精品国产乱码久久久久久小说| 少妇人妻精品综合一区二区| 激情五月婷婷亚洲| 欧美精品一区二区大全| 国产欧美亚洲国产| 国产淫语在线视频| 天堂俺去俺来也www色官网| 日韩亚洲欧美综合| 青春草国产在线视频| 午夜免费男女啪啪视频观看| 在线天堂最新版资源| 国产极品天堂在线| av在线观看视频网站免费| 哪个播放器可以免费观看大片| 免费av中文字幕在线| 高清不卡的av网站| 亚洲国产精品成人久久小说| 韩国av在线不卡| 99热6这里只有精品| 一本大道久久a久久精品| 久久久a久久爽久久v久久| 在线免费观看不下载黄p国产| 亚洲,一卡二卡三卡| 中文精品一卡2卡3卡4更新| 街头女战士在线观看网站| 成人亚洲欧美一区二区av| 尾随美女入室| 久久精品国产a三级三级三级| 亚洲美女搞黄在线观看| 丝袜喷水一区| 亚洲av二区三区四区| 亚洲精品亚洲一区二区| 99热国产这里只有精品6| 国产精品欧美亚洲77777| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品国产av蜜桃| 99国产精品免费福利视频| 一区在线观看完整版| 欧美日韩国产mv在线观看视频| 夜夜爽夜夜爽视频| 国产精品无大码| 午夜福利视频精品| 午夜视频国产福利| 又大又黄又爽视频免费| 日韩 亚洲 欧美在线| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 十八禁高潮呻吟视频| 三级国产精品欧美在线观看| 国产综合精华液| 国产精品国产三级国产专区5o| 美女中出高潮动态图| 大话2 男鬼变身卡| 看非洲黑人一级黄片| 国国产精品蜜臀av免费| 黄片播放在线免费| 国产av国产精品国产| 欧美xxxx性猛交bbbb| 久久久精品免费免费高清| 亚洲av二区三区四区| 一区在线观看完整版| 在线观看国产h片| av电影中文网址| 人妻少妇偷人精品九色| 国产精品久久久久成人av| 国产伦精品一区二区三区视频9| 色网站视频免费| 91aial.com中文字幕在线观看| av一本久久久久| 亚洲精品av麻豆狂野| 中文字幕制服av| 亚洲在久久综合| 亚洲av国产av综合av卡| 十分钟在线观看高清视频www| 一区二区三区四区激情视频| 国产69精品久久久久777片| 久久鲁丝午夜福利片| 免费观看a级毛片全部| 搡老乐熟女国产| 成年人午夜在线观看视频| av视频免费观看在线观看| 高清午夜精品一区二区三区| 搡女人真爽免费视频火全软件| 丰满少妇做爰视频| 欧美一级a爱片免费观看看| 亚洲精品乱码久久久久久按摩| 国产欧美另类精品又又久久亚洲欧美| 18禁在线无遮挡免费观看视频| 在线亚洲精品国产二区图片欧美 | 精品久久蜜臀av无| 亚洲精品国产av成人精品| 国产av一区二区精品久久| 亚洲av欧美aⅴ国产| 亚洲精品第二区| 亚洲图色成人| 国产一区二区三区综合在线观看 | 岛国毛片在线播放| 在线 av 中文字幕| 丝袜脚勾引网站| 另类精品久久| av专区在线播放| 日本黄大片高清| 亚洲欧洲国产日韩| 一级毛片我不卡| 久久久a久久爽久久v久久| 久久国产精品大桥未久av| 日韩中字成人| 日本av手机在线免费观看| 99久久人妻综合| 午夜福利在线观看免费完整高清在| 国产爽快片一区二区三区| 夜夜爽夜夜爽视频| 天堂中文最新版在线下载| 亚洲精品色激情综合| 久久国产亚洲av麻豆专区| 国产精品久久久久久精品古装| 尾随美女入室| 欧美精品一区二区免费开放| 一区二区三区乱码不卡18| 丰满饥渴人妻一区二区三| 亚洲第一av免费看| 高清黄色对白视频在线免费看| 精品久久国产蜜桃| 日韩亚洲欧美综合| 午夜影院在线不卡| 肉色欧美久久久久久久蜜桃| 五月玫瑰六月丁香| 中文乱码字字幕精品一区二区三区| 99久久精品一区二区三区| 最新中文字幕久久久久| 97精品久久久久久久久久精品| 黑丝袜美女国产一区| 久久综合国产亚洲精品| 久久这里有精品视频免费| 精品一区二区免费观看| 晚上一个人看的免费电影| 午夜日本视频在线| 国产精品久久久久久av不卡| 青春草国产在线视频| 欧美日韩视频高清一区二区三区二| 五月天丁香电影| 国产精品国产av在线观看| 亚洲美女视频黄频| 91精品伊人久久大香线蕉| 十八禁高潮呻吟视频| 色网站视频免费| 九九久久精品国产亚洲av麻豆| 校园人妻丝袜中文字幕| 韩国av在线不卡| 国产欧美亚洲国产| 欧美少妇被猛烈插入视频| 少妇精品久久久久久久| 九九久久精品国产亚洲av麻豆| 丰满饥渴人妻一区二区三| 久久热精品热| 午夜福利影视在线免费观看| 久久毛片免费看一区二区三区| 国产黄色免费在线视频| 18禁在线播放成人免费| av天堂久久9| 亚洲国产欧美在线一区| 一本一本综合久久| 人妻 亚洲 视频| 亚洲成人一二三区av| 一区二区日韩欧美中文字幕 | 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看| 亚洲av综合色区一区| 亚洲欧美一区二区三区黑人 | 亚洲av成人精品一区久久| 久久久久国产精品人妻一区二区| 亚洲人成网站在线播| 欧美激情国产日韩精品一区| 一区在线观看完整版| 中文字幕精品免费在线观看视频 | 99视频精品全部免费 在线| 欧美日韩视频高清一区二区三区二| 日韩一区二区视频免费看| 久久久久精品久久久久真实原创| 国产片特级美女逼逼视频| 精品酒店卫生间| 久久影院123| 黄色欧美视频在线观看| 大片电影免费在线观看免费| 国产69精品久久久久777片| 久久鲁丝午夜福利片| 中国国产av一级| 高清在线视频一区二区三区| 高清黄色对白视频在线免费看| 好男人视频免费观看在线| 十八禁网站网址无遮挡| 美女xxoo啪啪120秒动态图| 成年女人在线观看亚洲视频| 26uuu在线亚洲综合色| 在线观看www视频免费| 亚洲av国产av综合av卡| 99热6这里只有精品| 欧美精品一区二区大全| 九色亚洲精品在线播放| 母亲3免费完整高清在线观看 | 日韩三级伦理在线观看| 国产乱人偷精品视频| 欧美人与性动交α欧美精品济南到 | 亚洲精品第二区| av视频免费观看在线观看| 只有这里有精品99| 丝袜美足系列| 国产av一区二区精品久久| 777米奇影视久久| 超碰97精品在线观看| 99re6热这里在线精品视频| 日本wwww免费看| 婷婷色av中文字幕| 欧美精品人与动牲交sv欧美| 亚洲人与动物交配视频| 纵有疾风起免费观看全集完整版| a级毛片黄视频| 亚洲av日韩在线播放| 久久综合国产亚洲精品| 国产不卡av网站在线观看| 精品久久国产蜜桃| 如何舔出高潮| 婷婷色综合大香蕉| 熟妇人妻不卡中文字幕| 一二三四中文在线观看免费高清| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频| 亚洲第一av免费看| 色婷婷久久久亚洲欧美| 国产精品一二三区在线看| 老女人水多毛片| 亚洲欧美精品自产自拍| 黑人猛操日本美女一级片| 简卡轻食公司| 日本欧美视频一区| 免费高清在线观看视频在线观看| 中文字幕av电影在线播放| 美女视频免费永久观看网站| 最近中文字幕2019免费版| 五月玫瑰六月丁香| 人妻少妇偷人精品九色| videosex国产| 26uuu在线亚洲综合色| 美女cb高潮喷水在线观看| 日本91视频免费播放| 男的添女的下面高潮视频| 国产av国产精品国产| 久久这里有精品视频免费| 国产精品人妻久久久影院| 久热久热在线精品观看| 久久热精品热| 亚洲国产欧美在线一区| 91精品国产九色| 亚洲av综合色区一区| 欧美精品人与动牲交sv欧美| 一本大道久久a久久精品| 女人久久www免费人成看片| 国产精品三级大全| 亚洲精品一区蜜桃| 亚洲精品,欧美精品| 亚洲综合精品二区| 精品少妇黑人巨大在线播放| 亚洲欧洲日产国产| 欧美日韩亚洲高清精品| 丝袜喷水一区| 国产永久视频网站| av天堂久久9| 欧美成人午夜免费资源| 两个人的视频大全免费| 亚洲精品久久午夜乱码| 国产一区有黄有色的免费视频| 国产精品 国内视频| 欧美日韩国产mv在线观看视频| 国产成人一区二区在线| 在线观看美女被高潮喷水网站| 中国美白少妇内射xxxbb| 成人漫画全彩无遮挡| 久久亚洲国产成人精品v| 亚洲情色 制服丝袜| 亚洲无线观看免费| 亚洲情色 制服丝袜| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 尾随美女入室| 精品国产一区二区三区久久久樱花| 亚洲高清免费不卡视频| 亚洲成色77777| 亚洲国产最新在线播放| 狠狠婷婷综合久久久久久88av| 夜夜骑夜夜射夜夜干| 中文字幕人妻丝袜制服| 国产精品久久久久久精品电影小说| 伊人亚洲综合成人网| 黄色视频在线播放观看不卡| 亚洲av国产av综合av卡| 在线观看www视频免费| 成人手机av| 晚上一个人看的免费电影| 视频区图区小说| 国产深夜福利视频在线观看| 一级毛片 在线播放| 精品亚洲乱码少妇综合久久| 国产国拍精品亚洲av在线观看| 免费看不卡的av| 青青草视频在线视频观看| 日韩,欧美,国产一区二区三区| 亚洲色图综合在线观看| 欧美日韩一区二区视频在线观看视频在线| 一本一本综合久久| 国产成人freesex在线| 最近中文字幕2019免费版| 精品久久久精品久久久| 纵有疾风起免费观看全集完整版| 人妻少妇偷人精品九色| 精品人妻偷拍中文字幕| 一级黄片播放器| 国产精品国产三级专区第一集| av不卡在线播放| 免费看光身美女| 天堂8中文在线网| 看十八女毛片水多多多| 2021少妇久久久久久久久久久| 成人毛片60女人毛片免费| 久久精品夜色国产| 日本午夜av视频| 高清在线视频一区二区三区| 国产国拍精品亚洲av在线观看| 久久久精品免费免费高清| 狂野欧美激情性xxxx在线观看| 中国美白少妇内射xxxbb| 一二三四中文在线观看免费高清| 夜夜看夜夜爽夜夜摸| 2021少妇久久久久久久久久久| 日韩人妻高清精品专区| 在现免费观看毛片| 在线天堂最新版资源| 在线观看美女被高潮喷水网站| 国产精品女同一区二区软件| 亚洲少妇的诱惑av| 欧美bdsm另类| av电影中文网址| 国产成人一区二区在线| 久久久久视频综合| 三上悠亚av全集在线观看| 边亲边吃奶的免费视频| 好男人视频免费观看在线| 99国产精品免费福利视频| av一本久久久久| 丝袜喷水一区| 亚洲av成人精品一二三区| 在线观看www视频免费| 亚洲精品视频女| 黄色视频在线播放观看不卡| 欧美日韩一区二区视频在线观看视频在线| 美女xxoo啪啪120秒动态图| 毛片一级片免费看久久久久| 麻豆成人av视频| 激情五月婷婷亚洲| 久久婷婷青草| 日韩中字成人| 亚洲精品成人av观看孕妇| 亚洲精品视频女| 日日啪夜夜爽| 免费人妻精品一区二区三区视频| 国产亚洲精品久久久com| 肉色欧美久久久久久久蜜桃| 亚洲综合精品二区| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久av不卡| 国产日韩欧美亚洲二区| 亚洲欧美成人综合另类久久久| 欧美日韩亚洲高清精品| 欧美三级亚洲精品| 亚洲精品av麻豆狂野| 黄色欧美视频在线观看| 久久久久久伊人网av| 亚洲不卡免费看| 亚洲av欧美aⅴ国产| 午夜福利影视在线免费观看| 全区人妻精品视频| 少妇猛男粗大的猛烈进出视频| 久久狼人影院| 免费看不卡的av| 色吧在线观看| 18禁观看日本| 国产精品一国产av| 国产精品99久久99久久久不卡 | h视频一区二区三区| 一本色道久久久久久精品综合| 在线亚洲精品国产二区图片欧美 | 国产成人aa在线观看| 人妻夜夜爽99麻豆av| 欧美 亚洲 国产 日韩一| 久久精品人人爽人人爽视色| 丝袜美足系列| 人成视频在线观看免费观看| 欧美 日韩 精品 国产| 亚洲精品色激情综合| 国产精品不卡视频一区二区| 日本av手机在线免费观看| 国产av精品麻豆| 国产精品一区www在线观看| 成人黄色视频免费在线看| 国产精品麻豆人妻色哟哟久久| 亚洲av电影在线观看一区二区三区| 成年人免费黄色播放视频| 高清欧美精品videossex| 亚洲精品日韩在线中文字幕| 国产爽快片一区二区三区| 中文精品一卡2卡3卡4更新| 久久毛片免费看一区二区三区| 热re99久久国产66热| 久久久亚洲精品成人影院| 亚洲国产成人一精品久久久| 2018国产大陆天天弄谢| 国产在线视频一区二区| 日本欧美国产在线视频| 免费观看a级毛片全部| 久久狼人影院| 免费观看性生交大片5| 久久人妻熟女aⅴ| 99热这里只有是精品在线观看| 精品国产一区二区久久| 一级毛片aaaaaa免费看小| 啦啦啦视频在线资源免费观看| 天天操日日干夜夜撸| 亚洲国产欧美日韩在线播放| 日韩中文字幕视频在线看片| 伦精品一区二区三区| av电影中文网址| 国产精品成人在线| 天天影视国产精品| 校园人妻丝袜中文字幕| 女性生殖器流出的白浆| 91久久精品国产一区二区成人| 欧美激情国产日韩精品一区| 一级毛片黄色毛片免费观看视频| 男男h啪啪无遮挡| www.av在线官网国产| 久久97久久精品| 黄色配什么色好看| 国产高清有码在线观看视频| 不卡视频在线观看欧美| 久久精品久久精品一区二区三区| 成年人免费黄色播放视频| 少妇猛男粗大的猛烈进出视频| 免费av不卡在线播放| 国产黄片视频在线免费观看| 久久精品国产亚洲av涩爱| 日韩欧美精品免费久久| 大香蕉久久成人网| 97在线人人人人妻| 成人漫画全彩无遮挡| 我的老师免费观看完整版| 熟妇人妻不卡中文字幕| 国产精品欧美亚洲77777| 成人免费观看视频高清| 国产 精品1| 最新中文字幕久久久久| 国产成人午夜福利电影在线观看| 一级毛片我不卡| 亚洲色图 男人天堂 中文字幕 | 亚洲国产精品国产精品| 中文字幕最新亚洲高清| 99精国产麻豆久久婷婷| 国产亚洲一区二区精品| 精品久久蜜臀av无| 久久精品人人爽人人爽视色| 日韩一区二区三区影片| 七月丁香在线播放| 不卡视频在线观看欧美| 少妇 在线观看| 国产精品国产三级国产av玫瑰| 麻豆成人av视频| 九色亚洲精品在线播放|