• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Line-Profile Analysis of Excitation Spectroscopy in the Even 3p5(2P1/2)nl′[K′]J(l′=1,3)Autoionizing Resonances of Ar

    2016-09-23 06:06:16Chun-yanLi,MeiZhou,Zhi-weiHe
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Line-Profile Analysis of Excitation Spectroscopy in the Even 3p5(2P1/2)nl′[K′]J(l′=1,3)Autoionizing Resonances of Ar

    I.INTRODUCTION

    The high Rydberg states of rare gases have been a subject of interest to spectroscopists for many years. These ARS are attractive for experimental and theoretical studies because they are rather isolated and their characteristics can be determined with high accuracy. The energy of the Rydberg electron is very sensitive to the potential associated with the ion core and provides information on the polarizability of the many-electron core.The width of the ARS is determined by the interaction of the excited states with the continuum and with the nearby ARS of the same parity and total angular momentum J,these interactions are strongly affected by many-electron correlations.Therefore,studies of ARS allow us to obtain deeper insight into intra-atomic electron dynamics,and a critical comparison between the measured and calculated characteristics of the ARS can provide a crucial test of the theoretical approach[1].

    The rare gases(except helium)possess two relatively closely spaced ionization limits corresponding to the2P3/2and2P1/2states of the ion core,with the Rydberg series converging to each of these two limits.Since the ionization limits and the autoionizing Rydberg states of the rare gas atoms are of high energies,the spectroscopic investigations starting from their ground states usually requires radiation source in vacuum ultraviolet(VUV)region,where high resolution spectrum is relatively challenging compared to longer wavelength region.Promoting one of the np-subshell(n=2-5)electrons of the rare gases to the next available(n+1)s orbital yields four levels that are built on the np5(n+1)s configuration,namely np5(n+1)s[1/2]0,1and np5(n+1)s[3/2]1,2.The np5(n+1)s[1/2]1and np5(n+1)s[3/2]1levels decay radiatively to the ground state,whereas np5(n+1)s[1/2]0and np5(n+1)s[3/2]2are metastable[2].The two metastable levels 3p54s[3/2]2and 3p54s′[1/2]0lie at 93143.767 and 94553.665 cm-1,respectively,relative to the argon ground state[3].This provides an opportunity for excitation to the high lying Rydberg levels via single photon or two photon transitions,which are otherwise not readily accessible from the ground state due to the transition selection rules.Furthermore,these excitation spectra can be obtained with narrow-linewidth laser excitation,thus providing high-resolution studies on the high Rydberg states.

    The spectroscopy of high Rydberg states of argon,especially the autoionizing states,has been extensively investigated[3-17].However,the understanding of even-parity autoionizing Rydberg states of Kr is less comprehensive,and the resolution of the obtained spectra is roughly low.Ⅰn 1973,Stebbing and Dunning first observed the single photon excitation from the second metastable level 3p54s′[1/2]0to 3p5(2P1/2)np′[1/2]1(n=11-20),the even-parity autoionizing states of argon[3].Later they reported the spectra of single photon excitation to the even parity autoionizing state series 3p5(2P1/2)np′[3/2]1(n=11-26) and 3p5(2P1/2)nf′[5/2]3(n=9-15),which are excited from the first metastable level 3p54f′[3/2]2[4].Pel-larin et al.employed the collinear laser spectroscopy with a field ionization detection technique to investigate the even-parity autoionizing resonances below the first ionization limit,3p5(2P3/2)np(n=12-70)[1/2]1,[3/2]2,3p5(2P3/2)np(n=12-40)[3/2]1,[5/2]2,3,3p5(2P3/2)nf (n=11-19)[3/2]1,[5/2]2,[3/2]2,[5/2]3(n=11-38) and3p5(2P1/2)np′[1/2]1(n=9,10),[3/2]1,2,nf′(n=7,8)[5/2]2,3spectra excited from the 3p54s[3/2]2metastable level[5].Muhlpfordt and Even observed a ZEKE spectrum of the 3p5(2P3/2)np,3p5(2P3/2)nf and 3p5(2P1/2)np′(n≥15),3p5(2P1/2)nf′(n≥14)Rydberg series converging to the two ionization potential excited from the 3p54s[3/2]2metastable level,respectively,and reported the ionization limits and quantum defects derived from the line position measurements but did not provide the spectroscopic data[6].Koeckhoven et al.[7]observed four-photon excitation from the ground state and the even parity 3p5(2P1/2)np′(n=11-19)[1/2]0,[3/2]1and nf′(n=10-15)[5/2]2,[7/2]4autoionizing Rydberg series,and studied the np′(n=11-13)[3/2]1and nf′(n=10,11)[5/2]2spectra using the line-shape formula derived by Ueda[18].Peter et al.reported the experimental and theoretical investigation of even mp5(2P1/2)np′(m=2-5)autoionizing resonances of rare gas atoms and provided Fano lineshape analysis of argon np′(n=13,14)[1/2]1,[3/2]2[8].Lee et al.reported some np′and nf′autoionizing series by stepwise excitations from instant intermediate states with lasers and synchrotron radiation[9].

    The studies on odd-parity Rydberg states have been more extensive.Wu et al.[10]reported high resolution photoelectron spectrum of argon odd-parity 3p5(2P1/2)12s′,10d′autoionizing states excited from the ground state,and analyzed it using the line-shape formula derived by Ueda[18].Klar et al.observed the high resolution two-photon excitation spectra of the metastable Ar?and reported odd-parity 3p5(2P1/2)ns′(n=18-25)J=0,1 levels[11].Koeckhoven et al.reported three-photon excitation spectra from the ground state and the odd-parity 3p5(2P1/2)ns′(n=11-34) [1/2]1,nd′(n=9-21)[3/2]1,ng′(n=9-21)[7/2]3autoionizing Rydberg states[12].Landais et al.[13]observed the 3p5(2P1/2)ns′(n=11-34)[1/2]0,1autoionizing levels using two step optical excitation from the 3p54s[3/2]2metastable level,and analyzed the spectra for n=11-25.Piracha et al.[14]reported the odd parity 3p3ns,nd,3p3nd′(n=6-8)series excited from the 3p54s[3/2]2metastable level and 3p3ns′(n=10-30) [1/2]0,nd′(n=15-29)[3/2]2series excited from the 3p54s′[1/2]0metastable level using single-color twophoton excitation.Weber et al.[15,16]reported the high resolution odd-parity 3p3(2P3/2)ns,nd(n=13-90) J=2,3,and ng(n=13-70)J=4 Rydberg spectra together with the low lying 3p3(2P1/2)nd′(n=10-14),and 3p3(2P1/2)ng′(n=7-9)autoionizing states,and carried out multichannel quantum defect analysis of the J=2,3,4 levels.Recently,Zheng et al.[17]reported the odd parity 3p3(2P3/2)ns(J=1,2),nd(J=0-4) Rydberg series and 3p3(2P1/2)ns′(J=0,1,n=7-10),nd′(J=1-3,n=5-9)autoionizing states spectra excited from the two metastable levels 3p54s[3/2]2and 3p54s′[1/2]0populated in a pulsed DC discharge.

    Although many experiments have been carried out for the Ar autoionizing Rydberg states including 3p5np′and 3p5nf′,few high-resolution spectroscopic studies and very few line profile parameters are available.We recently reported the systematic experiment study of the autoionizing 3p5np′and 3p5nf′resonance series of argon by using pulsed DC discharge along with single UV photon excitation and the TOF-MS technique [19].Ⅰn that work,the metastable Ar?(3p54s[3/2]2and 3p54s′[1/2]0)atoms were produced by a pulsed highvoltage DC discharge and are then excited to the evenparity autoionizing resonances series 3p5np′[3/2]1,2,3p5np′[1/2]1,and 3p5nf′[5/2]3by a pulsed UV laser radiation with a narrow bandwidth of~0.1 cm-1.These autoionizing resonance states subsequently decay to Ar+ions,which are detected using the time-of-flight (TOF)mass spectrometry.The excitation spectra of the autoionizing resonance series are recorded in the form of the Ar+ion intensities as a function of excitation UV laser radiation.The high-resolution excitation spectra show typical asymmetric line shapes.Ⅰn the present work,the high-resolution excitation spectra are fitted using Fano line-shape formula,and new results for the resonance energies,quantum defects,line profile indexes,resonance widths,resonance lifetimes and reduced widths are derived from the observed resonance spectra.

    II.EXPERIMENTS

    The experiment was conducted in a laser ionization mass spectrometer described elsewhere[19].Briefly,the photoionization experimental apparatus includes the metastable Ar?atoms source and the ion detection system.The metastable Ar?atoms were produced by a DC discharge of a mixture of 5%SF6in Ar at a stagnation pressure of 5 atms.A pulsed high voltage of about 2 kV was supplied to the electrodes producing a discharge in the area of the orifices of the copper electrodes.The supersonic beam after the DC discharge was collimated by a skimmer(?=3 mm)and entered into the photoexcitation and photoionization chamber. The photoionization chamber was maintained at typical pressures of~10-4and<10-5Pa,respectively,with and without the operation of the beam.A Nd:YAG laser(Spectra Physics,GCR-190)pumping a dye laser (Lumonics,HT-500)was used as the light source(pulse duration of UV radiation is about 8 ns,energy per UV pulse is typically 1.0 mJ).The dye laser output was frequency doubled with a second harmonic generator (Lumonics,HT-1000)and then focused perpendicularly on the metastable Ar?beam by a 250 mm focal lengthlens.Ⅰons generated via autoionizing process at the ionization zone were introduced and accelerated to the flight tube of the TOF mass spectrometer and then detected by micro-channel plates(MCP).The mass resolved ion signal from the MCP was amplified by an amplifier(Stanford Research System,SR445)and averaged by a digital oscilloscope(Tektronix,TDS3032B) or a computer data acquisition system.A multi-channel delay pulsed generator was used to control the relative time delays among the nozzle,the laser,and the DC discharge.

    The mass resolved photoexcitation spectra were obtained by setting the corresponding time gate to monitor the arrival of m/z=40(40Ar+)ions and recording the ion signals as a function of laser wavelength.No attempt was made to normalize the spectral intensity with respect to the laser power.The typical scan speed of the dye laser was 0.001 nm/s at a 10 Hz laser repetition.Calibration of the laser wavelength was achieved by a wavelength meter(Coherent).

    III.RESULTS AND DISCUSSION

    The excited levels of the rare gas are designated in the jcl[K]Jcoupling scheme[20-23],in which the orbital angular momentum l of the excited electron is weakly coupled to the total angular momentum jc(3/2 or 1/2) of the np5jcionic core to yield the resultant quantum angular momentum K.K is then weakly coupled with the spin s of the excited electron giving total angular momentum J.The propensity rules for electric dipole transitions in the jK-coupling scheme are:?J=0,±1;?K=0,±1;and?j=0.These rules are well observed,and wherever?J=?K=+?l,the transition lines possess higher intensity.However,the?j=0 rule is not followed strictly,since transitions with a change of the ionic core are also often observed.

    The autoionization states are excited from the two metastable Ar?states by one photon resonance transition.Based on the transition rules and the threshold for direct photoionization from the Ar?metastable to the autoionizing resonance series,the observed series of the autoionizing structures as reported[19]are identified as 3p5(2P1/2)4s′[1/2]0h→ν3p5(2P1/2)np′[3/2]1,3p5(2P3/2)4s[3/2]2h→ν3p5(2P1/2)np′[3/2]1,2,[1/2]1,and 3p5(2P3/2)4s[3/2]2h→ν3p5(2P1/2)nf′[5/2]3,respectively. Since the autoionizing resonances lie between the two ionization potentials in the2P3/2continuum,the perturbation arising from interactions among the resonance series having the same parity and J,and the perturbation arising from interactions with the2P3/2continuum,are complex.The perturbation influences the Rydberg electron of Ar and manifests on the variation of the principal quantum defects.The width of the spectrum peak reflects the lifetime of the resonance.The experimental results show that,as the principal quantum number n increases,the quantum defects of the given series increase whereas the widths of the autoionizing peaks corresponding to the given series decrease. This is expected because the interaction with the2P3/2continuum is greater near threshold.The lifetime of the autoionizing resonances will be discussed below.

    FⅠG.1 The partially expanded spectra of the autoionizing resonances.(a)The experimental data(dots)and Fano line profile fitting curve of the autoionizing line 3p511p′[3/2]1excited from 3p54s′[1/2]0.(b)The experimental data (dots)and Fano line profile fitting curve of autoionizing lines 3p511p′[3/2]1,2,[1/2]1and 3p59f′[5/2]3excited from 3p54s[3/2]2.

    A.Line-profile analysis of the 3p5np′and 3p5nf′autoionizing resonances

    Thelineprofilesforalltheobservedtransitionsbetween32500and35600cm-1,i.e.,3p5(2P1/2)4s′[1/2]0h→ν3p5(2P1/2)np′[3/2]1,3p5(2P3/2) 4s[3/2]2h→ν3p5(2P1/2)np′[3/2]1,2,[1/2]1,and 3p5(2P3/2) 4s[3/2]2→hν3p5(2P1/2)nf′[5/2]3,show typical asymmetric line shapes,as seen in Fig.1.A theoretical treatment of these line shapes due to autoionizing transitions has been carried out by Fano et al.[24,25].For an isolated autoionizing state,the photoion production cross section can be described by the Fano formula:

    Here σbrepresents the portion of the cross section describing transitions to the continuum that do not interact with the quasi-bound(autoionizing)states,and σais the resonant portion of the cross section.E is the observed term energy,Eris the resonance energy,q is the line profile index,and Γ is the resonance width.

    Fano profile has been fitted to the present data,providing values of Er,q,Γ for each of the observed transitions(listed in TableⅠ-ⅠⅠⅠ).The partially expanded spectra of the autoionizing resonances are shown in Fig.1 as an example to illustrate the comparison of the Fano profile curve fitting to the experimental spectra. The smooth curves represent fits to the experimental spectra(dots).Figure 1(a)shows the experimental data and Fano line profile fitting curve of the autoionizing line 3p511p′[3/2]1excited from the metastable level 3p54s′[1/2]0.Figure 1(b)shows the experimental data and Fano line profile fitting curve of the autoionizing lines 3p511p′[3/2]1,2,[1/2]1and 3p59f′[5/2]3excited from the first metastable level 3p54s[3/2]2.For n≥24,the three states of the np′series,3p5(2P1/2)np′[3/2]2,[3/2]1,[1/2]1,are not distinguishable;their q and Γ parameters are the sum of the three states and their values are listed respectively in TableⅠⅠ.Note that most of the line profile analysis of the 3p5np′[3/2]1,2,[1/2]1and 3p5nf′[5/2]3autoionizing resonances are reported for the first time.For members of a Rydberg series,the reduced width Γris defined as Γr=Γnn?3,where n?=n-δ is the effective quantum number,and the corresponding quantum defect δ and effective quantum number n?arecalculated using the Rydberg formula.The obtained values of the reduced width Γrare listed in TablesⅠ-ⅠⅠⅠ. The lifetime of the upper state against autoionization τ is readily determined from τ=?/Γ,and the values of τ are also included in TablesⅠ-ⅠⅠⅠ.

    TABLEⅠParameters obtained by line profile analysis for the 4s′[1/2]0(94553.665 cm-1)→3p5np′[3/2]1,4s[3/2]2(93143.767 cm-1)→3p5np′[3/2]1,[3/2]2,[1/2]1(Er,Γ,and Γrin cm-1,and τ in 10-12s).

    As shown from the data listed in the TablesⅠ-ⅠⅠⅠ,the absolute value of line profile index q decreases when n increases.This indicates that the profile symmetry for high autoionizing resonances is more asymmetric,i.e.,the portion of the cross section describing transition to the continuum possesses more percentage in the transition from the lower electronic level to higher upper autoionizing resonances.The present results show that the resonance width Γ value decreases as the principal quantum number n increases,which directly reflects the decrease in natural linewidths of the np′and nf′resonances and increase of their lifetimes.This is expected because the interaction of the resonance states with the2P3/2continuum is greater(thus faster autoionization)when the resonances are near the threshold,where the density of the continuum is higher.The lifetimes of the 3p5np′[3/2]1autoionizing resonance series change significantly with a ratio 5-7 between the observed highest and lowest levels,whereas the lifetimes of the 3p5np′[3/2]2,[1/2]1and nf′[5/2]3change with a ratio 2-4.

    Ⅰt is noted that the q and Γ value vary with the effective quantum number n(shown in Fig.2).Ⅰn order to see the relations for the q and Γ value vs.the effective quantum number n?,the q and Γ as function of n?are plotted and shown in Fig.2.From these figures,the empirical results are obtained:the q is proportional to the effective quantum number n?for the autoionizing resonance series,and lnΓ is approximately proportional to lnn?.

    TABLEⅠⅠParameters obtained by line profile analysis for the 3p5np′←4s[3/2]2a(93143.767 cm-1)(n≥24).

    TABLEⅠⅠⅠParameters obtained by line profile analysis for the 3p5nf′[5/2]3←4s[3/2]2(93143.767 cm-1).

    B.Line separation of the 3p5np′autoionizing resonances

    Ⅰn the jKcoupling scheme,the energy difference depends only on the Slater exchange integral G1resulting from the electrostatic interaction,the fine structure interval is expected to be proportional to 1/n?3[1,13,23].The experimental finestructure interval data of the 3p5np′autoionizing resonances are plotted as a function of averaged effective quantum number n?as lnn?and shown in Fig.3.For n<15 and n>18,the line has a slope of -2.829±0.219(difference between 3p5np′[3/2]2and 3p5np′[3/2]1),-2.619±0.482(between 3p5np′[1/2]1and3p5np′[3/2]1),and-2.774±0.258(between 3p5np′[3/2]2and 3p5np′[1/2]1),respectively,compa-rable to the expected slope of-3.The results are in good agreement with the theoretical estimate of the fine structure interval.Ⅰt is noted that the fine structure interval does not follow the expected 1/n?3 behavior for n=16,17.This might suggest that the resonance positions of the observed series for n=16,17 are irregular.Since the signal-to-noise is quite good for the n=16,17 lines,the derived positions are reliable. One possibility for the irregular line positions of n=16,17 is that other transitions nearby perturb these states.

    FⅠG.2 Autoionizing line profile index q and resonance width Γ of(a)3p5np′[3/2]1series excited from 4s′[1/2]0,(b) 3p5np′[3/2]1series excited from 4s[3/2]2,(c)3p5np′[3/2]2series excited from 4s[3/2]2,(d)3p5np′[1/2]1series excited from 4s[3/2]2,(e)3p5nf′[5/2]3series excited from 4s[3/2]2plotted against effective quantum number n?.

    FⅠG.3 Energy difference of the 3p5np′autoionizing resonances energy levels plotted against lnn?.

    IV.CONCLUSION

    We have carried out the experiment study of the autoionizing 3p5np′and 3p5nf′resonance series of argon by using pulsed DC discharge along with single UV photon excitation and the TOF-MS technique.The Fano line profile analysis of the excitation spectra is carried out and the Fano parameters of the systematic autoionizing series are reported.The line profile index q and resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n?.The line separation of the 3p5np′autoionizing resonances is also discussed.

    V.ACKNOWLEDGMENTS

    This work is supported by the Beijing Higher Education Young Elite Teacher Project(No.YETP0324) and the National Natural Science Foundation of China (No.21403297,No.61474142,and No.11474355).

    [1]Ⅰ.D.Petrov,V.L.Sukhorukov,and H.Hotop,J.Phys. B 36,119(2003).

    [2]N.E.Small-Warren and Lue-Yung Chow Chiu,Phys. Rev.A 11,1777(1975).

    [3]R.F.Stebbing and F.B.Dunning,Phys.Rev.A 8,665 (1973).

    [4]F.B.Dunning and R.F.Stebbing,Phys.Rev.A 9,2378(1974).

    [5]M.Pellarin,J.L.Vialle,M.Carre,J.Lerme,and M. Aymer,J.Phys.B 21,3833(1988).

    [6]A.Muhlpfordt and U.Even,J.Chem.Phys.103,4427 (1995).

    [7]S.M.Koeckhoven,W.J.Burma,and C.A.de Lange,Phys.Rev.A 51,1097(1995).

    [8]T.Peter,T.Halfmann,U.Even,A.Wunnenberg,Ⅰ.D. Petrov,V.L.Sukhorukov,and H.Hoptop,J.Phys.B 38,S51(2005).

    [9]Y.Y.Lee,T.Y.Dung,R.M.Hsieh,J.Y.Yuh,Y.F. Song,G.H.Ho,T.P.Huang,W.C.Pan,Ⅰ.C.Chen,S.Y.Tu,A.H.Kung,and L.C.Lee,Phys.Rev.A 78,022509(2008).

    [10]J.Z.Wu,S.B.Whitfield,C.D.Caldwell,M.O.Krause,P.van der Meulen,and A.Fahlman,Phys.Rev.A 42,1350(1990).

    [11]D.Klar,K.Harth,J.Ganz,T.Kraft,M.W.Ruf,H. Hotop,V.Tsemekhman,and M.Y.Amusia,Z.Phys. D 23,101(1992).

    [12]S.M.Koeckhoven,W.J.Burma,and C.A.de Lange,Phys.Rev.A 49,3322(1994).

    [13]J.Landais,M.Huet,H.Kucal,and T.Dohnalik,J. Phys.B 28,2395(1995).

    [14]N.K.Piracha,M.A.Baig,S.A.Khan,and B.Suleman,J.Phys.B 30,1151(1997).

    [15]J.M.Weber,K.Ueda,D.Klar,J.Kreil,M.W.Ruf,and H.Hotop,J.Phys.B 32,2381(1999).

    [16]J.Bommels,J.M.Weber,A.Gopalan,N.Herschbach,E.Leber,A.Schramm,K.Ueda,M.W.Ruf,and H. Hotop,J.Phys.B 32,2399(1999).

    [17]X.F.Zheng,T.T.Wang,and Y.Chen,Chin.J.Atom. Mol.Phys.21,605(2004).

    [18]K.Ueda,Phys.Rev.A 35,2484(1987).

    [19]C.Y.Li,Z.W.He,T.T.Wang,J.F.Zhen,Y.Chen,and J.S.Zhang,Chin.J.Chem.Phys.26,259(2013).

    [20]G.Racah,Phys.Rev.62,438(1942).

    [21]Ⅰ.Ⅰ.Sobelman,Atomic Spectra and Radiative Transitions,Berlin Heidelberg:Springer-Verlag(1979).

    [22]R.D.Cowan,The Theory of Atomic Structure and Spectra,Berkeley:University of California Press,(1981).

    [23]R.D.Knight and L.G.Wang,J.Opt.Soc.Am.B 3,1673(1986).

    [24]U.Fano,Phys.Rev.124,1866(1961).

    [25]U.Fano and J.W.Cooper,Phys.Rev.A 137,1364 (1965).

    Chun-yan Lia?,Mei Zhoua,Zhi-wei Hea,Jin-hong Zhanga,Yang Chenb?
    a.College of Science,China Agricultural University,Beijing 100083,China b.Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China
    (Dated:Received on January 23,2016;Accepted on February 23,2016)
    The even-parity autoionizing resonance series 3p5np′[3/2]1,2,3p5np′[1/2]1,and 3p5nf′[5/2]3of Ar have been investigated exciting from the two metastable states 3p54s[3/2]2and 3p54s′[1/2]0in the photon energy range of 32500-35600 cm-1with an experimental bandwidth of~0.1 cm-1.The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes.New level energies,quantum defects,line profile index and resonance widths,resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis.The line profile index q and the resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n?.The line separation of the 3p5np′autoionizing resonances is discussed.
    Key words:Ar,Autoionizing resonances,F(xiàn)ano-type lineshape

    ?Authors to whom correspondence should be addressed.E-mail: chunyanl@cau.edu.cn,yangchen@ustc.edu.cn,Tel.:+86-551-636-06619

    亚洲成人手机| 精品视频人人做人人爽| 国产欧美日韩一区二区三| 欧美黄色片欧美黄色片| 99国产综合亚洲精品| 热99久久久久精品小说推荐| 女人久久www免费人成看片| 久久久国产精品麻豆| 99国产精品一区二区蜜桃av | 日韩 欧美 亚洲 中文字幕| 亚洲成人国产一区在线观看| 久久国产精品大桥未久av| 纵有疾风起免费观看全集完整版| av福利片在线| www.熟女人妻精品国产| 少妇猛男粗大的猛烈进出视频| av不卡在线播放| 一边摸一边做爽爽视频免费| 国产野战对白在线观看| 欧美黑人精品巨大| 香蕉丝袜av| 最新的欧美精品一区二区| 三级毛片av免费| 午夜激情久久久久久久| 99精品在免费线老司机午夜| 亚洲三区欧美一区| 成年动漫av网址| 成年人免费黄色播放视频| 国产一区二区三区在线臀色熟女 | 成人特级黄色片久久久久久久 | 久久亚洲精品不卡| 露出奶头的视频| 欧美激情高清一区二区三区| 免费观看a级毛片全部| 亚洲精品乱久久久久久| 免费在线观看日本一区| 色老头精品视频在线观看| 国产一区二区三区视频了| 国产男靠女视频免费网站| 另类亚洲欧美激情| 91精品三级在线观看| 性色av乱码一区二区三区2| 国产精品成人在线| 精品久久蜜臀av无| 少妇猛男粗大的猛烈进出视频| 变态另类成人亚洲欧美熟女 | 久久热在线av| 免费日韩欧美在线观看| 国产无遮挡羞羞视频在线观看| 久久国产精品影院| 欧美精品高潮呻吟av久久| 天堂动漫精品| 久久久久久久精品吃奶| 国产成人免费观看mmmm| 国产高清国产精品国产三级| 免费在线观看视频国产中文字幕亚洲| 好男人电影高清在线观看| 成年动漫av网址| 国产亚洲欧美在线一区二区| 如日韩欧美国产精品一区二区三区| 色婷婷av一区二区三区视频| 国产成人精品久久二区二区免费| 国产成人欧美| 久久精品国产亚洲av香蕉五月 | 亚洲精品久久午夜乱码| 在线观看66精品国产| 大型黄色视频在线免费观看| 80岁老熟妇乱子伦牲交| 欧美日韩亚洲综合一区二区三区_| 国产黄频视频在线观看| 日韩中文字幕视频在线看片| 亚洲成人手机| 91字幕亚洲| 国产不卡av网站在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲人成伊人成综合网2020| 黄色丝袜av网址大全| 国产亚洲精品一区二区www | 成人国语在线视频| 99久久99久久久精品蜜桃| 亚洲伊人色综图| 久久久久精品人妻al黑| 精品熟女少妇八av免费久了| 亚洲专区字幕在线| 在线观看人妻少妇| 国产免费福利视频在线观看| 久久精品国产99精品国产亚洲性色 | 欧美av亚洲av综合av国产av| 国产一卡二卡三卡精品| 亚洲第一青青草原| 色精品久久人妻99蜜桃| 亚洲精品国产一区二区精华液| 国产成人精品久久二区二区免费| 国产有黄有色有爽视频| 一进一出抽搐动态| 王馨瑶露胸无遮挡在线观看| 99国产极品粉嫩在线观看| 国产不卡av网站在线观看| 亚洲av日韩在线播放| 国产精品美女特级片免费视频播放器 | 欧美日韩福利视频一区二区| 欧美国产精品一级二级三级| 岛国在线观看网站| 免费少妇av软件| 露出奶头的视频| 国产精品成人在线| www.精华液| 午夜91福利影院| 国产精品久久久久久精品古装| av在线播放免费不卡| 天天添夜夜摸| 视频区图区小说| 亚洲欧洲精品一区二区精品久久久| 欧美日韩国产mv在线观看视频| 美女视频免费永久观看网站| 亚洲精品一二三| 日本a在线网址| 一区二区av电影网| 啦啦啦视频在线资源免费观看| 9热在线视频观看99| 精品亚洲成国产av| 国产在线免费精品| 午夜福利在线观看吧| 国产成人欧美在线观看 | 国产精品98久久久久久宅男小说| 捣出白浆h1v1| 可以免费在线观看a视频的电影网站| 97人妻天天添夜夜摸| 久久久欧美国产精品| 香蕉国产在线看| 在线观看免费高清a一片| 免费看a级黄色片| 欧美激情高清一区二区三区| 亚洲精品国产一区二区精华液| 亚洲欧美激情在线| 国产亚洲欧美在线一区二区| 午夜成年电影在线免费观看| 999久久久精品免费观看国产| 在线天堂中文资源库| 色婷婷av一区二区三区视频| 日韩一区二区三区影片| 90打野战视频偷拍视频| 91麻豆av在线| 另类精品久久| 男女之事视频高清在线观看| 国产人伦9x9x在线观看| 亚洲精品中文字幕在线视频| 国产91精品成人一区二区三区 | 久久久久精品国产欧美久久久| 丰满少妇做爰视频| 亚洲国产毛片av蜜桃av| 国产精品av久久久久免费| 日韩一卡2卡3卡4卡2021年| 亚洲精品久久午夜乱码| 欧美日韩亚洲高清精品| 欧美激情 高清一区二区三区| 欧美精品一区二区大全| 国产成人啪精品午夜网站| 免费日韩欧美在线观看| 精品一品国产午夜福利视频| 1024视频免费在线观看| 国产男女内射视频| av不卡在线播放| 亚洲美女黄片视频| 91av网站免费观看| 老司机午夜十八禁免费视频| 午夜福利影视在线免费观看| 在线观看人妻少妇| 久久久久久久精品吃奶| 国产高清videossex| 久久精品亚洲熟妇少妇任你| 777久久人妻少妇嫩草av网站| 午夜免费成人在线视频| 日韩视频一区二区在线观看| 一级片'在线观看视频| xxxhd国产人妻xxx| 黄色成人免费大全| 精品亚洲乱码少妇综合久久| 91av网站免费观看| √禁漫天堂资源中文www| 老司机在亚洲福利影院| 精品国产一区二区三区四区第35| 久久天躁狠狠躁夜夜2o2o| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品一区二区三区在线| 亚洲欧洲日产国产| 超碰成人久久| 亚洲国产看品久久| 桃红色精品国产亚洲av| 国产精品欧美亚洲77777| 久久精品亚洲熟妇少妇任你| 考比视频在线观看| 国产精品 国内视频| 久久国产精品人妻蜜桃| 久久国产精品影院| videosex国产| 国产精品 国内视频| 91大片在线观看| 一边摸一边做爽爽视频免费| 久久久水蜜桃国产精品网| 欧美人与性动交α欧美精品济南到| 久久99热这里只频精品6学生| 在线观看www视频免费| 天堂动漫精品| 日本wwww免费看| 亚洲av片天天在线观看| 99久久人妻综合| 国产一区二区激情短视频| av福利片在线| 精品国内亚洲2022精品成人 | www.熟女人妻精品国产| 黑人巨大精品欧美一区二区mp4| 考比视频在线观看| 成人手机av| 国产av国产精品国产| av电影中文网址| 午夜免费成人在线视频| kizo精华| 久久久国产一区二区| 黄色 视频免费看| av有码第一页| 777米奇影视久久| a级毛片黄视频| 久久毛片免费看一区二区三区| 久久久久国内视频| 精品少妇久久久久久888优播| 少妇粗大呻吟视频| 大香蕉久久网| 两人在一起打扑克的视频| 超碰成人久久| 高清视频免费观看一区二区| e午夜精品久久久久久久| 中文字幕精品免费在线观看视频| 午夜福利乱码中文字幕| 国产av又大| 久久人妻av系列| 丝袜在线中文字幕| 亚洲九九香蕉| 男女高潮啪啪啪动态图| 欧美+亚洲+日韩+国产| 久久久久精品人妻al黑| 可以免费在线观看a视频的电影网站| 老熟妇乱子伦视频在线观看| kizo精华| 日本wwww免费看| 成人精品一区二区免费| 国产成人系列免费观看| 欧美精品一区二区免费开放| 中文字幕高清在线视频| 欧美av亚洲av综合av国产av| 亚洲精华国产精华精| 久久人人爽av亚洲精品天堂| 精品亚洲乱码少妇综合久久| 高清黄色对白视频在线免费看| av一本久久久久| 丰满饥渴人妻一区二区三| 国产欧美亚洲国产| 国产区一区二久久| 变态另类成人亚洲欧美熟女 | 亚洲精品粉嫩美女一区| 欧美一级毛片孕妇| 亚洲精品国产区一区二| 俄罗斯特黄特色一大片| www.熟女人妻精品国产| 老汉色∧v一级毛片| 国产一区二区三区在线臀色熟女 | 十八禁网站网址无遮挡| 在线观看免费午夜福利视频| 欧美久久黑人一区二区| 成人国产一区最新在线观看| 99国产精品一区二区蜜桃av | 国产成人精品久久二区二区免费| 久久中文看片网| 国产精品久久久人人做人人爽| 99re6热这里在线精品视频| 高清av免费在线| 丝瓜视频免费看黄片| 欧美亚洲 丝袜 人妻 在线| 免费日韩欧美在线观看| 亚洲九九香蕉| 欧美乱码精品一区二区三区| 视频区欧美日本亚洲| 91老司机精品| 久久中文看片网| 欧美另类亚洲清纯唯美| 无遮挡黄片免费观看| 国产欧美日韩综合在线一区二区| 国产一区二区三区视频了| 一级,二级,三级黄色视频| 高清欧美精品videossex| 女性生殖器流出的白浆| 人人妻人人添人人爽欧美一区卜| 91麻豆精品激情在线观看国产 | 如日韩欧美国产精品一区二区三区| 精品福利观看| 亚洲av欧美aⅴ国产| 午夜福利影视在线免费观看| 久久中文字幕人妻熟女| 精品卡一卡二卡四卡免费| 国产一区二区三区综合在线观看| 精品国产乱子伦一区二区三区| 午夜福利乱码中文字幕| 午夜久久久在线观看| 亚洲成人免费av在线播放| 精品国产乱码久久久久久小说| 亚洲五月色婷婷综合| 18禁美女被吸乳视频| 亚洲国产欧美网| 亚洲精品粉嫩美女一区| 国精品久久久久久国模美| 午夜福利,免费看| 丰满人妻熟妇乱又伦精品不卡| 天天影视国产精品| 亚洲免费av在线视频| 999久久久国产精品视频| 欧美精品一区二区免费开放| 在线观看www视频免费| 亚洲一区二区三区欧美精品| 侵犯人妻中文字幕一二三四区| 久久久久久久精品吃奶| 亚洲午夜精品一区,二区,三区| 国产精品av久久久久免费| 少妇猛男粗大的猛烈进出视频| 天堂动漫精品| 久久99热这里只频精品6学生| 亚洲,欧美精品.| 在线播放国产精品三级| 国产欧美日韩一区二区三| 国产男女内射视频| 久热这里只有精品99| 人妻久久中文字幕网| 波多野结衣av一区二区av| 性少妇av在线| 午夜福利视频在线观看免费| 成年女人毛片免费观看观看9 | 久久久精品免费免费高清| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费成人在线视频| 亚洲免费av在线视频| 99国产极品粉嫩在线观看| 视频区图区小说| 久久久久久久大尺度免费视频| 黄片大片在线免费观看| 亚洲熟女毛片儿| 久久精品91无色码中文字幕| 精品福利观看| av网站免费在线观看视频| 在线十欧美十亚洲十日本专区| 精品国产一区二区三区久久久樱花| 91精品国产国语对白视频| 国产欧美亚洲国产| 在线观看免费高清a一片| 国产精品九九99| 50天的宝宝边吃奶边哭怎么回事| 99re6热这里在线精品视频| 国产在线精品亚洲第一网站| 午夜福利,免费看| 欧美日韩亚洲国产一区二区在线观看 | 色综合欧美亚洲国产小说| 色老头精品视频在线观看| 久久久久精品人妻al黑| 色婷婷av一区二区三区视频| 变态另类成人亚洲欧美熟女 | 亚洲国产毛片av蜜桃av| 一个人免费在线观看的高清视频| 亚洲综合色网址| 欧美日韩精品网址| 另类亚洲欧美激情| 国产精品成人在线| 91九色精品人成在线观看| 国产精品久久久人人做人人爽| 欧美人与性动交α欧美精品济南到| 欧美日韩国产mv在线观看视频| tube8黄色片| 亚洲一区二区三区欧美精品| 国产精品电影一区二区三区 | 国产免费av片在线观看野外av| 亚洲色图 男人天堂 中文字幕| 一本大道久久a久久精品| av视频免费观看在线观看| 国产欧美日韩综合在线一区二区| 岛国在线观看网站| 一级片免费观看大全| 黄色成人免费大全| 国产精品成人在线| 纯流量卡能插随身wifi吗| 精品熟女少妇八av免费久了| 亚洲伊人色综图| e午夜精品久久久久久久| 精品亚洲成a人片在线观看| 99热网站在线观看| 啦啦啦免费观看视频1| 婷婷丁香在线五月| h视频一区二区三区| 法律面前人人平等表现在哪些方面| 久热这里只有精品99| 在线播放国产精品三级| 亚洲久久久国产精品| 亚洲色图综合在线观看| 国产成人精品在线电影| 老司机深夜福利视频在线观看| 满18在线观看网站| 水蜜桃什么品种好| 嫁个100分男人电影在线观看| 日韩中文字幕欧美一区二区| 欧美日韩一级在线毛片| 午夜免费成人在线视频| 色综合欧美亚洲国产小说| 久久亚洲精品不卡| 亚洲情色 制服丝袜| 国产在线视频一区二区| netflix在线观看网站| 香蕉丝袜av| 超碰成人久久| 亚洲一区二区三区欧美精品| 美女视频免费永久观看网站| 亚洲伊人久久精品综合| 美女午夜性视频免费| 国产精品久久电影中文字幕 | 成人亚洲精品一区在线观看| 欧美 亚洲 国产 日韩一| 交换朋友夫妻互换小说| 国产视频一区二区在线看| 大香蕉久久成人网| 在线亚洲精品国产二区图片欧美| 色婷婷av一区二区三区视频| 国产淫语在线视频| 最新美女视频免费是黄的| 老汉色av国产亚洲站长工具| 精品高清国产在线一区| 中文字幕人妻丝袜制服| 九色亚洲精品在线播放| 制服诱惑二区| 亚洲少妇的诱惑av| 国产成人啪精品午夜网站| 国产精品免费一区二区三区在线 | 夜夜骑夜夜射夜夜干| 免费女性裸体啪啪无遮挡网站| 欧美激情久久久久久爽电影 | 久久久久久人人人人人| 99热网站在线观看| 99re在线观看精品视频| 欧美精品av麻豆av| 国产在线视频一区二区| av不卡在线播放| 午夜福利在线免费观看网站| 成人精品一区二区免费| 狠狠狠狠99中文字幕| 亚洲五月色婷婷综合| 欧美人与性动交α欧美精品济南到| 狠狠精品人妻久久久久久综合| 国产97色在线日韩免费| 国产高清激情床上av| 淫妇啪啪啪对白视频| 女性生殖器流出的白浆| 色婷婷久久久亚洲欧美| 国产精品成人在线| 日本五十路高清| 国产单亲对白刺激| 欧美老熟妇乱子伦牲交| 午夜日韩欧美国产| 夜夜爽天天搞| 少妇粗大呻吟视频| 日韩中文字幕视频在线看片| 欧美激情 高清一区二区三区| 久久 成人 亚洲| 国产av精品麻豆| 老司机在亚洲福利影院| 久9热在线精品视频| videos熟女内射| 多毛熟女@视频| 欧美黑人欧美精品刺激| 丰满少妇做爰视频| 亚洲精品自拍成人| 欧美 日韩 精品 国产| 最新在线观看一区二区三区| av视频免费观看在线观看| 脱女人内裤的视频| 精品免费久久久久久久清纯 | 精品乱码久久久久久99久播| 亚洲av片天天在线观看| 电影成人av| 久久久久久免费高清国产稀缺| 日本wwww免费看| 国产精品香港三级国产av潘金莲| 久久国产精品人妻蜜桃| 黄色视频,在线免费观看| 亚洲色图av天堂| 久久午夜亚洲精品久久| 一个人免费看片子| 精品第一国产精品| 久久中文字幕人妻熟女| 国产精品亚洲一级av第二区| 三级毛片av免费| 亚洲国产看品久久| 久久99热这里只频精品6学生| 中文字幕另类日韩欧美亚洲嫩草| 女同久久另类99精品国产91| 精品国产乱码久久久久久小说| 搡老岳熟女国产| 9色porny在线观看| 精品国产乱码久久久久久男人| 亚洲精品成人av观看孕妇| 视频区图区小说| avwww免费| 啦啦啦中文免费视频观看日本| 黄频高清免费视频| 动漫黄色视频在线观看| 成人国语在线视频| 人妻一区二区av| 欧美乱码精品一区二区三区| 99riav亚洲国产免费| 99国产极品粉嫩在线观看| 国产精品 欧美亚洲| 啦啦啦 在线观看视频| www日本在线高清视频| 桃红色精品国产亚洲av| 精品亚洲乱码少妇综合久久| 久久ye,这里只有精品| 女性生殖器流出的白浆| 九色亚洲精品在线播放| 午夜老司机福利片| 在线永久观看黄色视频| 在线观看免费高清a一片| 国产精品久久久久久人妻精品电影 | 亚洲av日韩在线播放| 超碰97精品在线观看| 桃花免费在线播放| a级片在线免费高清观看视频| 午夜日韩欧美国产| 18在线观看网站| 伊人久久大香线蕉亚洲五| 夫妻午夜视频| 一个人免费在线观看的高清视频| 久久国产精品影院| 免费不卡黄色视频| 亚洲视频免费观看视频| netflix在线观看网站| 久久久久国内视频| 97在线人人人人妻| 9色porny在线观看| 中文字幕另类日韩欧美亚洲嫩草| 一边摸一边做爽爽视频免费| 久久久久久亚洲精品国产蜜桃av| 人人妻人人爽人人添夜夜欢视频| 两性午夜刺激爽爽歪歪视频在线观看 | av国产精品久久久久影院| 满18在线观看网站| 三上悠亚av全集在线观看| 国产精品久久电影中文字幕 | 欧美精品人与动牲交sv欧美| 中文字幕制服av| 国产成人啪精品午夜网站| 亚洲av日韩精品久久久久久密| 一二三四在线观看免费中文在| 黄色片一级片一级黄色片| 考比视频在线观看| 丰满少妇做爰视频| 日本av免费视频播放| 国产xxxxx性猛交| 国产成人av激情在线播放| 亚洲国产精品一区二区三区在线| 国产欧美日韩一区二区三区在线| 免费av中文字幕在线| 国产精品自产拍在线观看55亚洲 | 一区二区日韩欧美中文字幕| 亚洲av成人一区二区三| 国产黄频视频在线观看| 巨乳人妻的诱惑在线观看| 中文字幕av电影在线播放| 中亚洲国语对白在线视频| 亚洲少妇的诱惑av| 91老司机精品| 男女下面插进去视频免费观看| 久久人人97超碰香蕉20202| 国产人伦9x9x在线观看| 少妇裸体淫交视频免费看高清 | 国产成人精品久久二区二区免费| 99riav亚洲国产免费| 国产成人系列免费观看| 日日摸夜夜添夜夜添小说| 久久精品成人免费网站| 亚洲美女黄片视频| 亚洲 欧美一区二区三区| 中亚洲国语对白在线视频| 国产日韩欧美亚洲二区| 9色porny在线观看| 99国产精品一区二区蜜桃av | 俄罗斯特黄特色一大片| 婷婷成人精品国产| √禁漫天堂资源中文www| 大陆偷拍与自拍| 老汉色∧v一级毛片| 夫妻午夜视频| 欧美激情高清一区二区三区| 少妇粗大呻吟视频| 久久久久精品国产欧美久久久| 中文字幕人妻丝袜制服| 国产欧美日韩一区二区三区在线| 国产片内射在线| 中文字幕人妻丝袜制服| 国产欧美日韩一区二区三区在线| 伦理电影免费视频| 男女之事视频高清在线观看| 午夜精品国产一区二区电影| 久久午夜综合久久蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 老熟妇仑乱视频hdxx| 国产高清videossex| 亚洲av第一区精品v没综合| 亚洲 国产 在线| 人人澡人人妻人| 欧美精品人与动牲交sv欧美| 精品亚洲成国产av| 丁香六月欧美|