• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Line-Profile Analysis of Excitation Spectroscopy in the Even 3p5(2P1/2)nl′[K′]J(l′=1,3)Autoionizing Resonances of Ar

    2016-09-23 06:06:16Chun-yanLi,MeiZhou,Zhi-weiHe
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Line-Profile Analysis of Excitation Spectroscopy in the Even 3p5(2P1/2)nl′[K′]J(l′=1,3)Autoionizing Resonances of Ar

    I.INTRODUCTION

    The high Rydberg states of rare gases have been a subject of interest to spectroscopists for many years. These ARS are attractive for experimental and theoretical studies because they are rather isolated and their characteristics can be determined with high accuracy. The energy of the Rydberg electron is very sensitive to the potential associated with the ion core and provides information on the polarizability of the many-electron core.The width of the ARS is determined by the interaction of the excited states with the continuum and with the nearby ARS of the same parity and total angular momentum J,these interactions are strongly affected by many-electron correlations.Therefore,studies of ARS allow us to obtain deeper insight into intra-atomic electron dynamics,and a critical comparison between the measured and calculated characteristics of the ARS can provide a crucial test of the theoretical approach[1].

    The rare gases(except helium)possess two relatively closely spaced ionization limits corresponding to the2P3/2and2P1/2states of the ion core,with the Rydberg series converging to each of these two limits.Since the ionization limits and the autoionizing Rydberg states of the rare gas atoms are of high energies,the spectroscopic investigations starting from their ground states usually requires radiation source in vacuum ultraviolet(VUV)region,where high resolution spectrum is relatively challenging compared to longer wavelength region.Promoting one of the np-subshell(n=2-5)electrons of the rare gases to the next available(n+1)s orbital yields four levels that are built on the np5(n+1)s configuration,namely np5(n+1)s[1/2]0,1and np5(n+1)s[3/2]1,2.The np5(n+1)s[1/2]1and np5(n+1)s[3/2]1levels decay radiatively to the ground state,whereas np5(n+1)s[1/2]0and np5(n+1)s[3/2]2are metastable[2].The two metastable levels 3p54s[3/2]2and 3p54s′[1/2]0lie at 93143.767 and 94553.665 cm-1,respectively,relative to the argon ground state[3].This provides an opportunity for excitation to the high lying Rydberg levels via single photon or two photon transitions,which are otherwise not readily accessible from the ground state due to the transition selection rules.Furthermore,these excitation spectra can be obtained with narrow-linewidth laser excitation,thus providing high-resolution studies on the high Rydberg states.

    The spectroscopy of high Rydberg states of argon,especially the autoionizing states,has been extensively investigated[3-17].However,the understanding of even-parity autoionizing Rydberg states of Kr is less comprehensive,and the resolution of the obtained spectra is roughly low.Ⅰn 1973,Stebbing and Dunning first observed the single photon excitation from the second metastable level 3p54s′[1/2]0to 3p5(2P1/2)np′[1/2]1(n=11-20),the even-parity autoionizing states of argon[3].Later they reported the spectra of single photon excitation to the even parity autoionizing state series 3p5(2P1/2)np′[3/2]1(n=11-26) and 3p5(2P1/2)nf′[5/2]3(n=9-15),which are excited from the first metastable level 3p54f′[3/2]2[4].Pel-larin et al.employed the collinear laser spectroscopy with a field ionization detection technique to investigate the even-parity autoionizing resonances below the first ionization limit,3p5(2P3/2)np(n=12-70)[1/2]1,[3/2]2,3p5(2P3/2)np(n=12-40)[3/2]1,[5/2]2,3,3p5(2P3/2)nf (n=11-19)[3/2]1,[5/2]2,[3/2]2,[5/2]3(n=11-38) and3p5(2P1/2)np′[1/2]1(n=9,10),[3/2]1,2,nf′(n=7,8)[5/2]2,3spectra excited from the 3p54s[3/2]2metastable level[5].Muhlpfordt and Even observed a ZEKE spectrum of the 3p5(2P3/2)np,3p5(2P3/2)nf and 3p5(2P1/2)np′(n≥15),3p5(2P1/2)nf′(n≥14)Rydberg series converging to the two ionization potential excited from the 3p54s[3/2]2metastable level,respectively,and reported the ionization limits and quantum defects derived from the line position measurements but did not provide the spectroscopic data[6].Koeckhoven et al.[7]observed four-photon excitation from the ground state and the even parity 3p5(2P1/2)np′(n=11-19)[1/2]0,[3/2]1and nf′(n=10-15)[5/2]2,[7/2]4autoionizing Rydberg series,and studied the np′(n=11-13)[3/2]1and nf′(n=10,11)[5/2]2spectra using the line-shape formula derived by Ueda[18].Peter et al.reported the experimental and theoretical investigation of even mp5(2P1/2)np′(m=2-5)autoionizing resonances of rare gas atoms and provided Fano lineshape analysis of argon np′(n=13,14)[1/2]1,[3/2]2[8].Lee et al.reported some np′and nf′autoionizing series by stepwise excitations from instant intermediate states with lasers and synchrotron radiation[9].

    The studies on odd-parity Rydberg states have been more extensive.Wu et al.[10]reported high resolution photoelectron spectrum of argon odd-parity 3p5(2P1/2)12s′,10d′autoionizing states excited from the ground state,and analyzed it using the line-shape formula derived by Ueda[18].Klar et al.observed the high resolution two-photon excitation spectra of the metastable Ar?and reported odd-parity 3p5(2P1/2)ns′(n=18-25)J=0,1 levels[11].Koeckhoven et al.reported three-photon excitation spectra from the ground state and the odd-parity 3p5(2P1/2)ns′(n=11-34) [1/2]1,nd′(n=9-21)[3/2]1,ng′(n=9-21)[7/2]3autoionizing Rydberg states[12].Landais et al.[13]observed the 3p5(2P1/2)ns′(n=11-34)[1/2]0,1autoionizing levels using two step optical excitation from the 3p54s[3/2]2metastable level,and analyzed the spectra for n=11-25.Piracha et al.[14]reported the odd parity 3p3ns,nd,3p3nd′(n=6-8)series excited from the 3p54s[3/2]2metastable level and 3p3ns′(n=10-30) [1/2]0,nd′(n=15-29)[3/2]2series excited from the 3p54s′[1/2]0metastable level using single-color twophoton excitation.Weber et al.[15,16]reported the high resolution odd-parity 3p3(2P3/2)ns,nd(n=13-90) J=2,3,and ng(n=13-70)J=4 Rydberg spectra together with the low lying 3p3(2P1/2)nd′(n=10-14),and 3p3(2P1/2)ng′(n=7-9)autoionizing states,and carried out multichannel quantum defect analysis of the J=2,3,4 levels.Recently,Zheng et al.[17]reported the odd parity 3p3(2P3/2)ns(J=1,2),nd(J=0-4) Rydberg series and 3p3(2P1/2)ns′(J=0,1,n=7-10),nd′(J=1-3,n=5-9)autoionizing states spectra excited from the two metastable levels 3p54s[3/2]2and 3p54s′[1/2]0populated in a pulsed DC discharge.

    Although many experiments have been carried out for the Ar autoionizing Rydberg states including 3p5np′and 3p5nf′,few high-resolution spectroscopic studies and very few line profile parameters are available.We recently reported the systematic experiment study of the autoionizing 3p5np′and 3p5nf′resonance series of argon by using pulsed DC discharge along with single UV photon excitation and the TOF-MS technique [19].Ⅰn that work,the metastable Ar?(3p54s[3/2]2and 3p54s′[1/2]0)atoms were produced by a pulsed highvoltage DC discharge and are then excited to the evenparity autoionizing resonances series 3p5np′[3/2]1,2,3p5np′[1/2]1,and 3p5nf′[5/2]3by a pulsed UV laser radiation with a narrow bandwidth of~0.1 cm-1.These autoionizing resonance states subsequently decay to Ar+ions,which are detected using the time-of-flight (TOF)mass spectrometry.The excitation spectra of the autoionizing resonance series are recorded in the form of the Ar+ion intensities as a function of excitation UV laser radiation.The high-resolution excitation spectra show typical asymmetric line shapes.Ⅰn the present work,the high-resolution excitation spectra are fitted using Fano line-shape formula,and new results for the resonance energies,quantum defects,line profile indexes,resonance widths,resonance lifetimes and reduced widths are derived from the observed resonance spectra.

    II.EXPERIMENTS

    The experiment was conducted in a laser ionization mass spectrometer described elsewhere[19].Briefly,the photoionization experimental apparatus includes the metastable Ar?atoms source and the ion detection system.The metastable Ar?atoms were produced by a DC discharge of a mixture of 5%SF6in Ar at a stagnation pressure of 5 atms.A pulsed high voltage of about 2 kV was supplied to the electrodes producing a discharge in the area of the orifices of the copper electrodes.The supersonic beam after the DC discharge was collimated by a skimmer(?=3 mm)and entered into the photoexcitation and photoionization chamber. The photoionization chamber was maintained at typical pressures of~10-4and<10-5Pa,respectively,with and without the operation of the beam.A Nd:YAG laser(Spectra Physics,GCR-190)pumping a dye laser (Lumonics,HT-500)was used as the light source(pulse duration of UV radiation is about 8 ns,energy per UV pulse is typically 1.0 mJ).The dye laser output was frequency doubled with a second harmonic generator (Lumonics,HT-1000)and then focused perpendicularly on the metastable Ar?beam by a 250 mm focal lengthlens.Ⅰons generated via autoionizing process at the ionization zone were introduced and accelerated to the flight tube of the TOF mass spectrometer and then detected by micro-channel plates(MCP).The mass resolved ion signal from the MCP was amplified by an amplifier(Stanford Research System,SR445)and averaged by a digital oscilloscope(Tektronix,TDS3032B) or a computer data acquisition system.A multi-channel delay pulsed generator was used to control the relative time delays among the nozzle,the laser,and the DC discharge.

    The mass resolved photoexcitation spectra were obtained by setting the corresponding time gate to monitor the arrival of m/z=40(40Ar+)ions and recording the ion signals as a function of laser wavelength.No attempt was made to normalize the spectral intensity with respect to the laser power.The typical scan speed of the dye laser was 0.001 nm/s at a 10 Hz laser repetition.Calibration of the laser wavelength was achieved by a wavelength meter(Coherent).

    III.RESULTS AND DISCUSSION

    The excited levels of the rare gas are designated in the jcl[K]Jcoupling scheme[20-23],in which the orbital angular momentum l of the excited electron is weakly coupled to the total angular momentum jc(3/2 or 1/2) of the np5jcionic core to yield the resultant quantum angular momentum K.K is then weakly coupled with the spin s of the excited electron giving total angular momentum J.The propensity rules for electric dipole transitions in the jK-coupling scheme are:?J=0,±1;?K=0,±1;and?j=0.These rules are well observed,and wherever?J=?K=+?l,the transition lines possess higher intensity.However,the?j=0 rule is not followed strictly,since transitions with a change of the ionic core are also often observed.

    The autoionization states are excited from the two metastable Ar?states by one photon resonance transition.Based on the transition rules and the threshold for direct photoionization from the Ar?metastable to the autoionizing resonance series,the observed series of the autoionizing structures as reported[19]are identified as 3p5(2P1/2)4s′[1/2]0h→ν3p5(2P1/2)np′[3/2]1,3p5(2P3/2)4s[3/2]2h→ν3p5(2P1/2)np′[3/2]1,2,[1/2]1,and 3p5(2P3/2)4s[3/2]2h→ν3p5(2P1/2)nf′[5/2]3,respectively. Since the autoionizing resonances lie between the two ionization potentials in the2P3/2continuum,the perturbation arising from interactions among the resonance series having the same parity and J,and the perturbation arising from interactions with the2P3/2continuum,are complex.The perturbation influences the Rydberg electron of Ar and manifests on the variation of the principal quantum defects.The width of the spectrum peak reflects the lifetime of the resonance.The experimental results show that,as the principal quantum number n increases,the quantum defects of the given series increase whereas the widths of the autoionizing peaks corresponding to the given series decrease. This is expected because the interaction with the2P3/2continuum is greater near threshold.The lifetime of the autoionizing resonances will be discussed below.

    FⅠG.1 The partially expanded spectra of the autoionizing resonances.(a)The experimental data(dots)and Fano line profile fitting curve of the autoionizing line 3p511p′[3/2]1excited from 3p54s′[1/2]0.(b)The experimental data (dots)and Fano line profile fitting curve of autoionizing lines 3p511p′[3/2]1,2,[1/2]1and 3p59f′[5/2]3excited from 3p54s[3/2]2.

    A.Line-profile analysis of the 3p5np′and 3p5nf′autoionizing resonances

    Thelineprofilesforalltheobservedtransitionsbetween32500and35600cm-1,i.e.,3p5(2P1/2)4s′[1/2]0h→ν3p5(2P1/2)np′[3/2]1,3p5(2P3/2) 4s[3/2]2h→ν3p5(2P1/2)np′[3/2]1,2,[1/2]1,and 3p5(2P3/2) 4s[3/2]2→hν3p5(2P1/2)nf′[5/2]3,show typical asymmetric line shapes,as seen in Fig.1.A theoretical treatment of these line shapes due to autoionizing transitions has been carried out by Fano et al.[24,25].For an isolated autoionizing state,the photoion production cross section can be described by the Fano formula:

    Here σbrepresents the portion of the cross section describing transitions to the continuum that do not interact with the quasi-bound(autoionizing)states,and σais the resonant portion of the cross section.E is the observed term energy,Eris the resonance energy,q is the line profile index,and Γ is the resonance width.

    Fano profile has been fitted to the present data,providing values of Er,q,Γ for each of the observed transitions(listed in TableⅠ-ⅠⅠⅠ).The partially expanded spectra of the autoionizing resonances are shown in Fig.1 as an example to illustrate the comparison of the Fano profile curve fitting to the experimental spectra. The smooth curves represent fits to the experimental spectra(dots).Figure 1(a)shows the experimental data and Fano line profile fitting curve of the autoionizing line 3p511p′[3/2]1excited from the metastable level 3p54s′[1/2]0.Figure 1(b)shows the experimental data and Fano line profile fitting curve of the autoionizing lines 3p511p′[3/2]1,2,[1/2]1and 3p59f′[5/2]3excited from the first metastable level 3p54s[3/2]2.For n≥24,the three states of the np′series,3p5(2P1/2)np′[3/2]2,[3/2]1,[1/2]1,are not distinguishable;their q and Γ parameters are the sum of the three states and their values are listed respectively in TableⅠⅠ.Note that most of the line profile analysis of the 3p5np′[3/2]1,2,[1/2]1and 3p5nf′[5/2]3autoionizing resonances are reported for the first time.For members of a Rydberg series,the reduced width Γris defined as Γr=Γnn?3,where n?=n-δ is the effective quantum number,and the corresponding quantum defect δ and effective quantum number n?arecalculated using the Rydberg formula.The obtained values of the reduced width Γrare listed in TablesⅠ-ⅠⅠⅠ. The lifetime of the upper state against autoionization τ is readily determined from τ=?/Γ,and the values of τ are also included in TablesⅠ-ⅠⅠⅠ.

    TABLEⅠParameters obtained by line profile analysis for the 4s′[1/2]0(94553.665 cm-1)→3p5np′[3/2]1,4s[3/2]2(93143.767 cm-1)→3p5np′[3/2]1,[3/2]2,[1/2]1(Er,Γ,and Γrin cm-1,and τ in 10-12s).

    As shown from the data listed in the TablesⅠ-ⅠⅠⅠ,the absolute value of line profile index q decreases when n increases.This indicates that the profile symmetry for high autoionizing resonances is more asymmetric,i.e.,the portion of the cross section describing transition to the continuum possesses more percentage in the transition from the lower electronic level to higher upper autoionizing resonances.The present results show that the resonance width Γ value decreases as the principal quantum number n increases,which directly reflects the decrease in natural linewidths of the np′and nf′resonances and increase of their lifetimes.This is expected because the interaction of the resonance states with the2P3/2continuum is greater(thus faster autoionization)when the resonances are near the threshold,where the density of the continuum is higher.The lifetimes of the 3p5np′[3/2]1autoionizing resonance series change significantly with a ratio 5-7 between the observed highest and lowest levels,whereas the lifetimes of the 3p5np′[3/2]2,[1/2]1and nf′[5/2]3change with a ratio 2-4.

    Ⅰt is noted that the q and Γ value vary with the effective quantum number n(shown in Fig.2).Ⅰn order to see the relations for the q and Γ value vs.the effective quantum number n?,the q and Γ as function of n?are plotted and shown in Fig.2.From these figures,the empirical results are obtained:the q is proportional to the effective quantum number n?for the autoionizing resonance series,and lnΓ is approximately proportional to lnn?.

    TABLEⅠⅠParameters obtained by line profile analysis for the 3p5np′←4s[3/2]2a(93143.767 cm-1)(n≥24).

    TABLEⅠⅠⅠParameters obtained by line profile analysis for the 3p5nf′[5/2]3←4s[3/2]2(93143.767 cm-1).

    B.Line separation of the 3p5np′autoionizing resonances

    Ⅰn the jKcoupling scheme,the energy difference depends only on the Slater exchange integral G1resulting from the electrostatic interaction,the fine structure interval is expected to be proportional to 1/n?3[1,13,23].The experimental finestructure interval data of the 3p5np′autoionizing resonances are plotted as a function of averaged effective quantum number n?as lnn?and shown in Fig.3.For n<15 and n>18,the line has a slope of -2.829±0.219(difference between 3p5np′[3/2]2and 3p5np′[3/2]1),-2.619±0.482(between 3p5np′[1/2]1and3p5np′[3/2]1),and-2.774±0.258(between 3p5np′[3/2]2and 3p5np′[1/2]1),respectively,compa-rable to the expected slope of-3.The results are in good agreement with the theoretical estimate of the fine structure interval.Ⅰt is noted that the fine structure interval does not follow the expected 1/n?3 behavior for n=16,17.This might suggest that the resonance positions of the observed series for n=16,17 are irregular.Since the signal-to-noise is quite good for the n=16,17 lines,the derived positions are reliable. One possibility for the irregular line positions of n=16,17 is that other transitions nearby perturb these states.

    FⅠG.2 Autoionizing line profile index q and resonance width Γ of(a)3p5np′[3/2]1series excited from 4s′[1/2]0,(b) 3p5np′[3/2]1series excited from 4s[3/2]2,(c)3p5np′[3/2]2series excited from 4s[3/2]2,(d)3p5np′[1/2]1series excited from 4s[3/2]2,(e)3p5nf′[5/2]3series excited from 4s[3/2]2plotted against effective quantum number n?.

    FⅠG.3 Energy difference of the 3p5np′autoionizing resonances energy levels plotted against lnn?.

    IV.CONCLUSION

    We have carried out the experiment study of the autoionizing 3p5np′and 3p5nf′resonance series of argon by using pulsed DC discharge along with single UV photon excitation and the TOF-MS technique.The Fano line profile analysis of the excitation spectra is carried out and the Fano parameters of the systematic autoionizing series are reported.The line profile index q and resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n?.The line separation of the 3p5np′autoionizing resonances is also discussed.

    V.ACKNOWLEDGMENTS

    This work is supported by the Beijing Higher Education Young Elite Teacher Project(No.YETP0324) and the National Natural Science Foundation of China (No.21403297,No.61474142,and No.11474355).

    [1]Ⅰ.D.Petrov,V.L.Sukhorukov,and H.Hotop,J.Phys. B 36,119(2003).

    [2]N.E.Small-Warren and Lue-Yung Chow Chiu,Phys. Rev.A 11,1777(1975).

    [3]R.F.Stebbing and F.B.Dunning,Phys.Rev.A 8,665 (1973).

    [4]F.B.Dunning and R.F.Stebbing,Phys.Rev.A 9,2378(1974).

    [5]M.Pellarin,J.L.Vialle,M.Carre,J.Lerme,and M. Aymer,J.Phys.B 21,3833(1988).

    [6]A.Muhlpfordt and U.Even,J.Chem.Phys.103,4427 (1995).

    [7]S.M.Koeckhoven,W.J.Burma,and C.A.de Lange,Phys.Rev.A 51,1097(1995).

    [8]T.Peter,T.Halfmann,U.Even,A.Wunnenberg,Ⅰ.D. Petrov,V.L.Sukhorukov,and H.Hoptop,J.Phys.B 38,S51(2005).

    [9]Y.Y.Lee,T.Y.Dung,R.M.Hsieh,J.Y.Yuh,Y.F. Song,G.H.Ho,T.P.Huang,W.C.Pan,Ⅰ.C.Chen,S.Y.Tu,A.H.Kung,and L.C.Lee,Phys.Rev.A 78,022509(2008).

    [10]J.Z.Wu,S.B.Whitfield,C.D.Caldwell,M.O.Krause,P.van der Meulen,and A.Fahlman,Phys.Rev.A 42,1350(1990).

    [11]D.Klar,K.Harth,J.Ganz,T.Kraft,M.W.Ruf,H. Hotop,V.Tsemekhman,and M.Y.Amusia,Z.Phys. D 23,101(1992).

    [12]S.M.Koeckhoven,W.J.Burma,and C.A.de Lange,Phys.Rev.A 49,3322(1994).

    [13]J.Landais,M.Huet,H.Kucal,and T.Dohnalik,J. Phys.B 28,2395(1995).

    [14]N.K.Piracha,M.A.Baig,S.A.Khan,and B.Suleman,J.Phys.B 30,1151(1997).

    [15]J.M.Weber,K.Ueda,D.Klar,J.Kreil,M.W.Ruf,and H.Hotop,J.Phys.B 32,2381(1999).

    [16]J.Bommels,J.M.Weber,A.Gopalan,N.Herschbach,E.Leber,A.Schramm,K.Ueda,M.W.Ruf,and H. Hotop,J.Phys.B 32,2399(1999).

    [17]X.F.Zheng,T.T.Wang,and Y.Chen,Chin.J.Atom. Mol.Phys.21,605(2004).

    [18]K.Ueda,Phys.Rev.A 35,2484(1987).

    [19]C.Y.Li,Z.W.He,T.T.Wang,J.F.Zhen,Y.Chen,and J.S.Zhang,Chin.J.Chem.Phys.26,259(2013).

    [20]G.Racah,Phys.Rev.62,438(1942).

    [21]Ⅰ.Ⅰ.Sobelman,Atomic Spectra and Radiative Transitions,Berlin Heidelberg:Springer-Verlag(1979).

    [22]R.D.Cowan,The Theory of Atomic Structure and Spectra,Berkeley:University of California Press,(1981).

    [23]R.D.Knight and L.G.Wang,J.Opt.Soc.Am.B 3,1673(1986).

    [24]U.Fano,Phys.Rev.124,1866(1961).

    [25]U.Fano and J.W.Cooper,Phys.Rev.A 137,1364 (1965).

    Chun-yan Lia?,Mei Zhoua,Zhi-wei Hea,Jin-hong Zhanga,Yang Chenb?
    a.College of Science,China Agricultural University,Beijing 100083,China b.Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China
    (Dated:Received on January 23,2016;Accepted on February 23,2016)
    The even-parity autoionizing resonance series 3p5np′[3/2]1,2,3p5np′[1/2]1,and 3p5nf′[5/2]3of Ar have been investigated exciting from the two metastable states 3p54s[3/2]2and 3p54s′[1/2]0in the photon energy range of 32500-35600 cm-1with an experimental bandwidth of~0.1 cm-1.The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes.New level energies,quantum defects,line profile index and resonance widths,resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis.The line profile index q and the resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n?.The line separation of the 3p5np′autoionizing resonances is discussed.
    Key words:Ar,Autoionizing resonances,F(xiàn)ano-type lineshape

    ?Authors to whom correspondence should be addressed.E-mail: chunyanl@cau.edu.cn,yangchen@ustc.edu.cn,Tel.:+86-551-636-06619

    日韩制服骚丝袜av| 亚洲av日韩在线播放| 精品酒店卫生间| 久久久久久久久久久久大奶| 亚洲av.av天堂| 熟女少妇亚洲综合色aaa.| 大片免费播放器 马上看| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区三区在线| 国产欧美亚洲国产| 超色免费av| 亚洲人成电影观看| 婷婷色麻豆天堂久久| 亚洲av成人精品一二三区| 色哟哟·www| 美国免费a级毛片| 纯流量卡能插随身wifi吗| 久久av网站| 中文字幕另类日韩欧美亚洲嫩草| 99热国产这里只有精品6| 哪个播放器可以免费观看大片| 亚洲一级一片aⅴ在线观看| 一二三四中文在线观看免费高清| 黑人巨大精品欧美一区二区蜜桃| 国产成人精品在线电影| 亚洲美女视频黄频| 日韩免费高清中文字幕av| 国产成人欧美| 捣出白浆h1v1| 日本色播在线视频| 免费观看无遮挡的男女| 老熟女久久久| 美女脱内裤让男人舔精品视频| 精品国产一区二区久久| videossex国产| 久久久久久久国产电影| 亚洲精品美女久久久久99蜜臀 | 午夜福利视频在线观看免费| 成人亚洲欧美一区二区av| 久久精品国产自在天天线| 黄片播放在线免费| 婷婷色av中文字幕| 久久鲁丝午夜福利片| 亚洲精品,欧美精品| www.熟女人妻精品国产| 韩国高清视频一区二区三区| 亚洲精品美女久久久久99蜜臀 | 成人毛片a级毛片在线播放| 一本—道久久a久久精品蜜桃钙片| 99久久综合免费| 欧美成人精品欧美一级黄| 宅男免费午夜| 街头女战士在线观看网站| 亚洲欧洲日产国产| 亚洲欧美日韩另类电影网站| 日韩欧美一区视频在线观看| 天天躁夜夜躁狠狠久久av| 亚洲精品国产一区二区精华液| 99久久精品国产国产毛片| 精品亚洲乱码少妇综合久久| 黄频高清免费视频| av网站在线播放免费| 春色校园在线视频观看| 丁香六月天网| 色网站视频免费| 国产精品秋霞免费鲁丝片| av国产精品久久久久影院| 建设人人有责人人尽责人人享有的| 人妻 亚洲 视频| 男女免费视频国产| 精品国产乱码久久久久久小说| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看美女被高潮喷水网站| 日韩免费高清中文字幕av| 国产亚洲精品第一综合不卡| 交换朋友夫妻互换小说| 黑人猛操日本美女一级片| 97人妻天天添夜夜摸| 一区福利在线观看| 国产一区二区三区av在线| 国产成人av激情在线播放| 亚洲精品在线美女| 久久国产精品男人的天堂亚洲| 99国产精品免费福利视频| 亚洲欧美一区二区三区黑人 | 国产日韩欧美视频二区| 18禁动态无遮挡网站| 91成人精品电影| 国产精品国产av在线观看| 捣出白浆h1v1| 久久99一区二区三区| 制服诱惑二区| 国产成人91sexporn| 夫妻午夜视频| 日日摸夜夜添夜夜爱| 免费在线观看视频国产中文字幕亚洲 | 9热在线视频观看99| 男人舔女人的私密视频| 欧美黄色片欧美黄色片| 久久久久精品久久久久真实原创| 欧美人与性动交α欧美软件| 免费看不卡的av| 亚洲精品,欧美精品| 在线观看美女被高潮喷水网站| 久热久热在线精品观看| 日本免费在线观看一区| 夫妻午夜视频| 热re99久久精品国产66热6| 在线精品无人区一区二区三| 亚洲综合色惰| 最近的中文字幕免费完整| 两个人免费观看高清视频| 亚洲激情五月婷婷啪啪| 综合色丁香网| 极品少妇高潮喷水抽搐| 国产精品 国内视频| 丰满乱子伦码专区| 在线亚洲精品国产二区图片欧美| 美女脱内裤让男人舔精品视频| xxx大片免费视频| 欧美国产精品va在线观看不卡| 精品一区二区三卡| 视频在线观看一区二区三区| 色视频在线一区二区三区| 如何舔出高潮| 精品国产乱码久久久久久男人| xxx大片免费视频| 日韩 亚洲 欧美在线| 亚洲欧美成人精品一区二区| 国产极品粉嫩免费观看在线| 中文乱码字字幕精品一区二区三区| 成年女人在线观看亚洲视频| 亚洲美女黄色视频免费看| 久久97久久精品| 国产亚洲av片在线观看秒播厂| 制服丝袜香蕉在线| 美女xxoo啪啪120秒动态图| 欧美亚洲日本最大视频资源| 国产白丝娇喘喷水9色精品| 十分钟在线观看高清视频www| 亚洲四区av| 国产av一区二区精品久久| 国产黄频视频在线观看| 高清不卡的av网站| 成年动漫av网址| 国产极品天堂在线| 国产成人av激情在线播放| 国产欧美日韩一区二区三区在线| 成人毛片60女人毛片免费| 男女边吃奶边做爰视频| 久久久久久久国产电影| 亚洲av日韩在线播放| 大片电影免费在线观看免费| 免费看av在线观看网站| 国产精品国产av在线观看| 一区在线观看完整版| 国产av国产精品国产| 亚洲美女搞黄在线观看| 丝袜美腿诱惑在线| 国产日韩一区二区三区精品不卡| 极品少妇高潮喷水抽搐| 国产黄频视频在线观看| 欧美 亚洲 国产 日韩一| 国产不卡av网站在线观看| 美女主播在线视频| 国产精品99久久99久久久不卡 | 街头女战士在线观看网站| 国产精品久久久久久av不卡| 考比视频在线观看| 最新中文字幕久久久久| 少妇 在线观看| 免费大片黄手机在线观看| 亚洲av.av天堂| 国产成人aa在线观看| 亚洲国产日韩一区二区| 国产激情久久老熟女| 丝袜在线中文字幕| 肉色欧美久久久久久久蜜桃| 观看美女的网站| 精品亚洲乱码少妇综合久久| 免费人妻精品一区二区三区视频| 欧美人与性动交α欧美软件| 久久久久国产网址| 大码成人一级视频| 少妇熟女欧美另类| av.在线天堂| 久久综合国产亚洲精品| 国产又爽黄色视频| 在线观看免费日韩欧美大片| 色婷婷久久久亚洲欧美| 国产一区二区激情短视频 | 亚洲国产精品999| 精品久久久久久电影网| 九色亚洲精品在线播放| 精品国产露脸久久av麻豆| 欧美另类一区| 国产野战对白在线观看| 日本色播在线视频| 日韩 亚洲 欧美在线| www.av在线官网国产| 国产一区亚洲一区在线观看| 久久久久久人妻| 亚洲第一区二区三区不卡| 国产高清国产精品国产三级| 99久久人妻综合| 免费观看av网站的网址| 国产视频首页在线观看| 老司机影院成人| 尾随美女入室| 精品酒店卫生间| 搡女人真爽免费视频火全软件| 国产免费一区二区三区四区乱码| 国产深夜福利视频在线观看| 精品人妻偷拍中文字幕| 久久青草综合色| 男人舔女人的私密视频| 寂寞人妻少妇视频99o| www.精华液| 亚洲欧美日韩另类电影网站| www.av在线官网国产| 午夜激情久久久久久久| 麻豆精品久久久久久蜜桃| 欧美激情极品国产一区二区三区| 一本—道久久a久久精品蜜桃钙片| 国产亚洲一区二区精品| 性高湖久久久久久久久免费观看| 日韩三级伦理在线观看| 欧美日韩精品网址| 国产av码专区亚洲av| 大片电影免费在线观看免费| 久久久久久免费高清国产稀缺| 日韩,欧美,国产一区二区三区| 精品一区二区三区四区五区乱码 | 亚洲,欧美精品.| 成人手机av| 一二三四中文在线观看免费高清| 男人添女人高潮全过程视频| 极品人妻少妇av视频| av不卡在线播放| 久久精品aⅴ一区二区三区四区 | 欧美日韩国产mv在线观看视频| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 9色porny在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲一区二区三区欧美精品| 亚洲欧美清纯卡通| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 午夜精品国产一区二区电影| 亚洲第一区二区三区不卡| 伦理电影免费视频| 十八禁高潮呻吟视频| 亚洲av国产av综合av卡| av国产精品久久久久影院| 男女午夜视频在线观看| 日韩av在线免费看完整版不卡| 在线观看美女被高潮喷水网站| 熟妇人妻不卡中文字幕| 欧美日韩视频精品一区| 婷婷色综合www| 另类亚洲欧美激情| 日本vs欧美在线观看视频| 久久久久久免费高清国产稀缺| 欧美最新免费一区二区三区| av一本久久久久| 激情视频va一区二区三区| 国产在线免费精品| 久久99热这里只频精品6学生| 高清在线视频一区二区三区| 最黄视频免费看| 久久国内精品自在自线图片| 赤兔流量卡办理| 女人精品久久久久毛片| 韩国高清视频一区二区三区| 视频在线观看一区二区三区| 最近手机中文字幕大全| www.av在线官网国产| 国产男人的电影天堂91| 丝袜喷水一区| 欧美精品一区二区免费开放| 国产片特级美女逼逼视频| 国产成人精品福利久久| 观看美女的网站| 一个人免费看片子| 欧美bdsm另类| 国产 精品1| 黄频高清免费视频| 国产成人免费无遮挡视频| 国产乱人偷精品视频| 午夜av观看不卡| 国产在视频线精品| 成人亚洲欧美一区二区av| 激情五月婷婷亚洲| 久久久久久人妻| 男人操女人黄网站| www日本在线高清视频| 亚洲第一青青草原| 精品久久蜜臀av无| 精品亚洲乱码少妇综合久久| 婷婷色麻豆天堂久久| 美女xxoo啪啪120秒动态图| 亚洲图色成人| 交换朋友夫妻互换小说| 一区二区三区乱码不卡18| 久久久精品免费免费高清| 五月伊人婷婷丁香| 国产黄色视频一区二区在线观看| 免费观看av网站的网址| 亚洲,一卡二卡三卡| 日本欧美视频一区| av福利片在线| 丝袜在线中文字幕| 丝袜人妻中文字幕| 人妻人人澡人人爽人人| 夫妻性生交免费视频一级片| 一级毛片电影观看| 国产又爽黄色视频| 国产成人精品婷婷| 亚洲美女搞黄在线观看| 这个男人来自地球电影免费观看 | 国产精品免费视频内射| 人成视频在线观看免费观看| 啦啦啦中文免费视频观看日本| 亚洲欧美色中文字幕在线| 91国产中文字幕| 日本欧美国产在线视频| 亚洲国产精品999| 精品一区在线观看国产| 老女人水多毛片| 青草久久国产| av女优亚洲男人天堂| 永久网站在线| 91精品国产国语对白视频| 男人添女人高潮全过程视频| 久久这里只有精品19| 狠狠精品人妻久久久久久综合| 高清黄色对白视频在线免费看| 青春草亚洲视频在线观看| 十八禁高潮呻吟视频| 国产麻豆69| 久久久久国产精品人妻一区二区| 国产成人精品在线电影| 观看美女的网站| 久久av网站| 18禁裸乳无遮挡动漫免费视频| 不卡av一区二区三区| 久久精品人人爽人人爽视色| 亚洲av电影在线观看一区二区三区| av在线app专区| 一区二区av电影网| 麻豆精品久久久久久蜜桃| 香蕉丝袜av| 亚洲综合精品二区| 欧美+日韩+精品| 大码成人一级视频| 老熟女久久久| 国产麻豆69| 久久久精品区二区三区| 久久久亚洲精品成人影院| 丰满少妇做爰视频| 精品国产露脸久久av麻豆| 久久热在线av| 久久婷婷青草| 各种免费的搞黄视频| 波多野结衣av一区二区av| 美女主播在线视频| 亚洲欧美一区二区三区国产| 大话2 男鬼变身卡| 免费日韩欧美在线观看| 国产白丝娇喘喷水9色精品| 中国国产av一级| tube8黄色片| av福利片在线| 韩国高清视频一区二区三区| 交换朋友夫妻互换小说| a 毛片基地| 国产成人精品在线电影| 黄色怎么调成土黄色| 美女中出高潮动态图| 国产男女内射视频| tube8黄色片| 精品久久久久久电影网| av在线app专区| 欧美日韩视频精品一区| 韩国高清视频一区二区三区| 如日韩欧美国产精品一区二区三区| 五月天丁香电影| 叶爱在线成人免费视频播放| 午夜老司机福利剧场| 国产欧美亚洲国产| 成人漫画全彩无遮挡| 午夜福利,免费看| 午夜久久久在线观看| 十八禁高潮呻吟视频| 一区在线观看完整版| 亚洲国产成人一精品久久久| 成人手机av| 97精品久久久久久久久久精品| 亚洲激情五月婷婷啪啪| 国产精品嫩草影院av在线观看| 久久精品人人爽人人爽视色| videossex国产| 日韩,欧美,国产一区二区三区| 国产日韩一区二区三区精品不卡| 欧美+日韩+精品| 免费av中文字幕在线| 欧美精品高潮呻吟av久久| 777米奇影视久久| 乱人伦中国视频| 五月伊人婷婷丁香| 最近的中文字幕免费完整| av在线观看视频网站免费| 亚洲精品日本国产第一区| 久久女婷五月综合色啪小说| 亚洲欧美清纯卡通| 99精国产麻豆久久婷婷| 99久久综合免费| 日本免费在线观看一区| 天天躁日日躁夜夜躁夜夜| 亚洲中文av在线| 亚洲国产最新在线播放| 国产在线免费精品| av一本久久久久| 国产成人一区二区在线| 成人影院久久| 久热这里只有精品99| 丰满迷人的少妇在线观看| 久久久精品免费免费高清| 色吧在线观看| 国产xxxxx性猛交| 色婷婷av一区二区三区视频| 午夜精品国产一区二区电影| 亚洲av国产av综合av卡| 纯流量卡能插随身wifi吗| 免费观看a级毛片全部| 午夜精品国产一区二区电影| 国产精品无大码| 最近2019中文字幕mv第一页| 香蕉国产在线看| 国产日韩欧美视频二区| 日韩av不卡免费在线播放| 亚洲国产精品成人久久小说| 高清黄色对白视频在线免费看| 亚洲精品第二区| 视频在线观看一区二区三区| 纯流量卡能插随身wifi吗| 亚洲av.av天堂| 日韩制服丝袜自拍偷拍| 日韩中文字幕视频在线看片| 巨乳人妻的诱惑在线观看| 桃花免费在线播放| 久久精品国产鲁丝片午夜精品| 精品国产一区二区久久| 国产日韩欧美亚洲二区| 国产成人免费观看mmmm| 老女人水多毛片| 国产精品 欧美亚洲| 亚洲精品一二三| 国产视频首页在线观看| 免费在线观看完整版高清| 免费观看性生交大片5| 看免费成人av毛片| 在线观看免费高清a一片| 在线天堂最新版资源| 咕卡用的链子| 伊人亚洲综合成人网| 欧美国产精品va在线观看不卡| a级毛片在线看网站| 亚洲精品成人av观看孕妇| 成人黄色视频免费在线看| 性色avwww在线观看| 午夜福利在线免费观看网站| 午夜福利视频精品| 日韩熟女老妇一区二区性免费视频| 免费在线观看视频国产中文字幕亚洲 | 久久这里只有精品19| 亚洲国产精品国产精品| 亚洲av成人精品一二三区| 亚洲伊人色综图| 2018国产大陆天天弄谢| 另类亚洲欧美激情| 一二三四中文在线观看免费高清| 色94色欧美一区二区| 亚洲一区中文字幕在线| 欧美精品人与动牲交sv欧美| 婷婷色av中文字幕| 人人妻人人澡人人看| 国产日韩欧美在线精品| 亚洲欧洲日产国产| 国产欧美亚洲国产| 亚洲国产欧美网| 久久99一区二区三区| 亚洲国产色片| 母亲3免费完整高清在线观看 | 男人添女人高潮全过程视频| 又粗又硬又长又爽又黄的视频| 久久毛片免费看一区二区三区| 成人影院久久| 老汉色av国产亚洲站长工具| 国产在视频线精品| 天天操日日干夜夜撸| 黄色 视频免费看| 欧美日韩一级在线毛片| 秋霞在线观看毛片| 日韩中字成人| 欧美成人午夜免费资源| 夫妻午夜视频| a级片在线免费高清观看视频| 久久久久视频综合| 亚洲,欧美精品.| 久久精品久久精品一区二区三区| 国产欧美亚洲国产| 性色avwww在线观看| 大话2 男鬼变身卡| www日本在线高清视频| 日韩人妻精品一区2区三区| 最近的中文字幕免费完整| 26uuu在线亚洲综合色| 亚洲图色成人| 亚洲国产欧美在线一区| 亚洲精品美女久久久久99蜜臀 | 久久精品国产亚洲av高清一级| 黄网站色视频无遮挡免费观看| 国产精品无大码| 久久久久久久亚洲中文字幕| 一边亲一边摸免费视频| 熟女av电影| av电影中文网址| 满18在线观看网站| 啦啦啦啦在线视频资源| 国产国语露脸激情在线看| 免费看av在线观看网站| 久久久久国产一级毛片高清牌| 久久婷婷青草| 男男h啪啪无遮挡| 狠狠婷婷综合久久久久久88av| 国产免费一区二区三区四区乱码| 亚洲av国产av综合av卡| 久热久热在线精品观看| 欧美日韩亚洲国产一区二区在线观看 | 大陆偷拍与自拍| av国产久精品久网站免费入址| 久久精品国产亚洲av高清一级| 国产黄色视频一区二区在线观看| 少妇人妻 视频| 亚洲欧美色中文字幕在线| 校园人妻丝袜中文字幕| 亚洲av电影在线进入| 婷婷色综合www| 亚洲美女黄色视频免费看| 日韩制服丝袜自拍偷拍| 中文字幕最新亚洲高清| 国产一区二区激情短视频 | 成年人免费黄色播放视频| 我要看黄色一级片免费的| 日韩一本色道免费dvd| 国产亚洲一区二区精品| xxx大片免费视频| 久久久精品免费免费高清| 好男人视频免费观看在线| 黄频高清免费视频| 丝袜在线中文字幕| 极品人妻少妇av视频| 久久国产精品男人的天堂亚洲| 亚洲,一卡二卡三卡| 精品国产乱码久久久久久男人| 成人二区视频| 亚洲美女视频黄频| 亚洲国产看品久久| 高清不卡的av网站| 亚洲欧美一区二区三区黑人 | 成人国产麻豆网| 国产野战对白在线观看| 色视频在线一区二区三区| 色94色欧美一区二区| 麻豆精品久久久久久蜜桃| 26uuu在线亚洲综合色| 极品少妇高潮喷水抽搐| 国产一区二区 视频在线| 人人妻人人澡人人爽人人夜夜| 侵犯人妻中文字幕一二三四区| 哪个播放器可以免费观看大片| 熟妇人妻不卡中文字幕| 在线观看国产h片| av有码第一页| 欧美成人午夜精品| 日本色播在线视频| 十八禁高潮呻吟视频| 综合色丁香网| 日韩熟女老妇一区二区性免费视频| 精品少妇一区二区三区视频日本电影 | 国产熟女欧美一区二区| 好男人视频免费观看在线| 成年美女黄网站色视频大全免费| 纯流量卡能插随身wifi吗| 免费不卡的大黄色大毛片视频在线观看| 久久精品熟女亚洲av麻豆精品| 国产免费一区二区三区四区乱码| 国产女主播在线喷水免费视频网站| 久久精品国产亚洲av天美| 可以免费在线观看a视频的电影网站 | 亚洲av免费高清在线观看| 1024视频免费在线观看| 黄色 视频免费看| 丰满乱子伦码专区| 九草在线视频观看| 国产 精品1| 观看av在线不卡| 午夜福利视频在线观看免费| 看免费av毛片| 美女脱内裤让男人舔精品视频| 如何舔出高潮| 中文字幕av电影在线播放| 亚洲精品视频女|