• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Line-Profile Analysis of Excitation Spectroscopy in the Even 3p5(2P1/2)nl′[K′]J(l′=1,3)Autoionizing Resonances of Ar

    2016-09-23 06:06:16Chun-yanLi,MeiZhou,Zhi-weiHe
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Line-Profile Analysis of Excitation Spectroscopy in the Even 3p5(2P1/2)nl′[K′]J(l′=1,3)Autoionizing Resonances of Ar

    I.INTRODUCTION

    The high Rydberg states of rare gases have been a subject of interest to spectroscopists for many years. These ARS are attractive for experimental and theoretical studies because they are rather isolated and their characteristics can be determined with high accuracy. The energy of the Rydberg electron is very sensitive to the potential associated with the ion core and provides information on the polarizability of the many-electron core.The width of the ARS is determined by the interaction of the excited states with the continuum and with the nearby ARS of the same parity and total angular momentum J,these interactions are strongly affected by many-electron correlations.Therefore,studies of ARS allow us to obtain deeper insight into intra-atomic electron dynamics,and a critical comparison between the measured and calculated characteristics of the ARS can provide a crucial test of the theoretical approach[1].

    The rare gases(except helium)possess two relatively closely spaced ionization limits corresponding to the2P3/2and2P1/2states of the ion core,with the Rydberg series converging to each of these two limits.Since the ionization limits and the autoionizing Rydberg states of the rare gas atoms are of high energies,the spectroscopic investigations starting from their ground states usually requires radiation source in vacuum ultraviolet(VUV)region,where high resolution spectrum is relatively challenging compared to longer wavelength region.Promoting one of the np-subshell(n=2-5)electrons of the rare gases to the next available(n+1)s orbital yields four levels that are built on the np5(n+1)s configuration,namely np5(n+1)s[1/2]0,1and np5(n+1)s[3/2]1,2.The np5(n+1)s[1/2]1and np5(n+1)s[3/2]1levels decay radiatively to the ground state,whereas np5(n+1)s[1/2]0and np5(n+1)s[3/2]2are metastable[2].The two metastable levels 3p54s[3/2]2and 3p54s′[1/2]0lie at 93143.767 and 94553.665 cm-1,respectively,relative to the argon ground state[3].This provides an opportunity for excitation to the high lying Rydberg levels via single photon or two photon transitions,which are otherwise not readily accessible from the ground state due to the transition selection rules.Furthermore,these excitation spectra can be obtained with narrow-linewidth laser excitation,thus providing high-resolution studies on the high Rydberg states.

    The spectroscopy of high Rydberg states of argon,especially the autoionizing states,has been extensively investigated[3-17].However,the understanding of even-parity autoionizing Rydberg states of Kr is less comprehensive,and the resolution of the obtained spectra is roughly low.Ⅰn 1973,Stebbing and Dunning first observed the single photon excitation from the second metastable level 3p54s′[1/2]0to 3p5(2P1/2)np′[1/2]1(n=11-20),the even-parity autoionizing states of argon[3].Later they reported the spectra of single photon excitation to the even parity autoionizing state series 3p5(2P1/2)np′[3/2]1(n=11-26) and 3p5(2P1/2)nf′[5/2]3(n=9-15),which are excited from the first metastable level 3p54f′[3/2]2[4].Pel-larin et al.employed the collinear laser spectroscopy with a field ionization detection technique to investigate the even-parity autoionizing resonances below the first ionization limit,3p5(2P3/2)np(n=12-70)[1/2]1,[3/2]2,3p5(2P3/2)np(n=12-40)[3/2]1,[5/2]2,3,3p5(2P3/2)nf (n=11-19)[3/2]1,[5/2]2,[3/2]2,[5/2]3(n=11-38) and3p5(2P1/2)np′[1/2]1(n=9,10),[3/2]1,2,nf′(n=7,8)[5/2]2,3spectra excited from the 3p54s[3/2]2metastable level[5].Muhlpfordt and Even observed a ZEKE spectrum of the 3p5(2P3/2)np,3p5(2P3/2)nf and 3p5(2P1/2)np′(n≥15),3p5(2P1/2)nf′(n≥14)Rydberg series converging to the two ionization potential excited from the 3p54s[3/2]2metastable level,respectively,and reported the ionization limits and quantum defects derived from the line position measurements but did not provide the spectroscopic data[6].Koeckhoven et al.[7]observed four-photon excitation from the ground state and the even parity 3p5(2P1/2)np′(n=11-19)[1/2]0,[3/2]1and nf′(n=10-15)[5/2]2,[7/2]4autoionizing Rydberg series,and studied the np′(n=11-13)[3/2]1and nf′(n=10,11)[5/2]2spectra using the line-shape formula derived by Ueda[18].Peter et al.reported the experimental and theoretical investigation of even mp5(2P1/2)np′(m=2-5)autoionizing resonances of rare gas atoms and provided Fano lineshape analysis of argon np′(n=13,14)[1/2]1,[3/2]2[8].Lee et al.reported some np′and nf′autoionizing series by stepwise excitations from instant intermediate states with lasers and synchrotron radiation[9].

    The studies on odd-parity Rydberg states have been more extensive.Wu et al.[10]reported high resolution photoelectron spectrum of argon odd-parity 3p5(2P1/2)12s′,10d′autoionizing states excited from the ground state,and analyzed it using the line-shape formula derived by Ueda[18].Klar et al.observed the high resolution two-photon excitation spectra of the metastable Ar?and reported odd-parity 3p5(2P1/2)ns′(n=18-25)J=0,1 levels[11].Koeckhoven et al.reported three-photon excitation spectra from the ground state and the odd-parity 3p5(2P1/2)ns′(n=11-34) [1/2]1,nd′(n=9-21)[3/2]1,ng′(n=9-21)[7/2]3autoionizing Rydberg states[12].Landais et al.[13]observed the 3p5(2P1/2)ns′(n=11-34)[1/2]0,1autoionizing levels using two step optical excitation from the 3p54s[3/2]2metastable level,and analyzed the spectra for n=11-25.Piracha et al.[14]reported the odd parity 3p3ns,nd,3p3nd′(n=6-8)series excited from the 3p54s[3/2]2metastable level and 3p3ns′(n=10-30) [1/2]0,nd′(n=15-29)[3/2]2series excited from the 3p54s′[1/2]0metastable level using single-color twophoton excitation.Weber et al.[15,16]reported the high resolution odd-parity 3p3(2P3/2)ns,nd(n=13-90) J=2,3,and ng(n=13-70)J=4 Rydberg spectra together with the low lying 3p3(2P1/2)nd′(n=10-14),and 3p3(2P1/2)ng′(n=7-9)autoionizing states,and carried out multichannel quantum defect analysis of the J=2,3,4 levels.Recently,Zheng et al.[17]reported the odd parity 3p3(2P3/2)ns(J=1,2),nd(J=0-4) Rydberg series and 3p3(2P1/2)ns′(J=0,1,n=7-10),nd′(J=1-3,n=5-9)autoionizing states spectra excited from the two metastable levels 3p54s[3/2]2and 3p54s′[1/2]0populated in a pulsed DC discharge.

    Although many experiments have been carried out for the Ar autoionizing Rydberg states including 3p5np′and 3p5nf′,few high-resolution spectroscopic studies and very few line profile parameters are available.We recently reported the systematic experiment study of the autoionizing 3p5np′and 3p5nf′resonance series of argon by using pulsed DC discharge along with single UV photon excitation and the TOF-MS technique [19].Ⅰn that work,the metastable Ar?(3p54s[3/2]2and 3p54s′[1/2]0)atoms were produced by a pulsed highvoltage DC discharge and are then excited to the evenparity autoionizing resonances series 3p5np′[3/2]1,2,3p5np′[1/2]1,and 3p5nf′[5/2]3by a pulsed UV laser radiation with a narrow bandwidth of~0.1 cm-1.These autoionizing resonance states subsequently decay to Ar+ions,which are detected using the time-of-flight (TOF)mass spectrometry.The excitation spectra of the autoionizing resonance series are recorded in the form of the Ar+ion intensities as a function of excitation UV laser radiation.The high-resolution excitation spectra show typical asymmetric line shapes.Ⅰn the present work,the high-resolution excitation spectra are fitted using Fano line-shape formula,and new results for the resonance energies,quantum defects,line profile indexes,resonance widths,resonance lifetimes and reduced widths are derived from the observed resonance spectra.

    II.EXPERIMENTS

    The experiment was conducted in a laser ionization mass spectrometer described elsewhere[19].Briefly,the photoionization experimental apparatus includes the metastable Ar?atoms source and the ion detection system.The metastable Ar?atoms were produced by a DC discharge of a mixture of 5%SF6in Ar at a stagnation pressure of 5 atms.A pulsed high voltage of about 2 kV was supplied to the electrodes producing a discharge in the area of the orifices of the copper electrodes.The supersonic beam after the DC discharge was collimated by a skimmer(?=3 mm)and entered into the photoexcitation and photoionization chamber. The photoionization chamber was maintained at typical pressures of~10-4and<10-5Pa,respectively,with and without the operation of the beam.A Nd:YAG laser(Spectra Physics,GCR-190)pumping a dye laser (Lumonics,HT-500)was used as the light source(pulse duration of UV radiation is about 8 ns,energy per UV pulse is typically 1.0 mJ).The dye laser output was frequency doubled with a second harmonic generator (Lumonics,HT-1000)and then focused perpendicularly on the metastable Ar?beam by a 250 mm focal lengthlens.Ⅰons generated via autoionizing process at the ionization zone were introduced and accelerated to the flight tube of the TOF mass spectrometer and then detected by micro-channel plates(MCP).The mass resolved ion signal from the MCP was amplified by an amplifier(Stanford Research System,SR445)and averaged by a digital oscilloscope(Tektronix,TDS3032B) or a computer data acquisition system.A multi-channel delay pulsed generator was used to control the relative time delays among the nozzle,the laser,and the DC discharge.

    The mass resolved photoexcitation spectra were obtained by setting the corresponding time gate to monitor the arrival of m/z=40(40Ar+)ions and recording the ion signals as a function of laser wavelength.No attempt was made to normalize the spectral intensity with respect to the laser power.The typical scan speed of the dye laser was 0.001 nm/s at a 10 Hz laser repetition.Calibration of the laser wavelength was achieved by a wavelength meter(Coherent).

    III.RESULTS AND DISCUSSION

    The excited levels of the rare gas are designated in the jcl[K]Jcoupling scheme[20-23],in which the orbital angular momentum l of the excited electron is weakly coupled to the total angular momentum jc(3/2 or 1/2) of the np5jcionic core to yield the resultant quantum angular momentum K.K is then weakly coupled with the spin s of the excited electron giving total angular momentum J.The propensity rules for electric dipole transitions in the jK-coupling scheme are:?J=0,±1;?K=0,±1;and?j=0.These rules are well observed,and wherever?J=?K=+?l,the transition lines possess higher intensity.However,the?j=0 rule is not followed strictly,since transitions with a change of the ionic core are also often observed.

    The autoionization states are excited from the two metastable Ar?states by one photon resonance transition.Based on the transition rules and the threshold for direct photoionization from the Ar?metastable to the autoionizing resonance series,the observed series of the autoionizing structures as reported[19]are identified as 3p5(2P1/2)4s′[1/2]0h→ν3p5(2P1/2)np′[3/2]1,3p5(2P3/2)4s[3/2]2h→ν3p5(2P1/2)np′[3/2]1,2,[1/2]1,and 3p5(2P3/2)4s[3/2]2h→ν3p5(2P1/2)nf′[5/2]3,respectively. Since the autoionizing resonances lie between the two ionization potentials in the2P3/2continuum,the perturbation arising from interactions among the resonance series having the same parity and J,and the perturbation arising from interactions with the2P3/2continuum,are complex.The perturbation influences the Rydberg electron of Ar and manifests on the variation of the principal quantum defects.The width of the spectrum peak reflects the lifetime of the resonance.The experimental results show that,as the principal quantum number n increases,the quantum defects of the given series increase whereas the widths of the autoionizing peaks corresponding to the given series decrease. This is expected because the interaction with the2P3/2continuum is greater near threshold.The lifetime of the autoionizing resonances will be discussed below.

    FⅠG.1 The partially expanded spectra of the autoionizing resonances.(a)The experimental data(dots)and Fano line profile fitting curve of the autoionizing line 3p511p′[3/2]1excited from 3p54s′[1/2]0.(b)The experimental data (dots)and Fano line profile fitting curve of autoionizing lines 3p511p′[3/2]1,2,[1/2]1and 3p59f′[5/2]3excited from 3p54s[3/2]2.

    A.Line-profile analysis of the 3p5np′and 3p5nf′autoionizing resonances

    Thelineprofilesforalltheobservedtransitionsbetween32500and35600cm-1,i.e.,3p5(2P1/2)4s′[1/2]0h→ν3p5(2P1/2)np′[3/2]1,3p5(2P3/2) 4s[3/2]2h→ν3p5(2P1/2)np′[3/2]1,2,[1/2]1,and 3p5(2P3/2) 4s[3/2]2→hν3p5(2P1/2)nf′[5/2]3,show typical asymmetric line shapes,as seen in Fig.1.A theoretical treatment of these line shapes due to autoionizing transitions has been carried out by Fano et al.[24,25].For an isolated autoionizing state,the photoion production cross section can be described by the Fano formula:

    Here σbrepresents the portion of the cross section describing transitions to the continuum that do not interact with the quasi-bound(autoionizing)states,and σais the resonant portion of the cross section.E is the observed term energy,Eris the resonance energy,q is the line profile index,and Γ is the resonance width.

    Fano profile has been fitted to the present data,providing values of Er,q,Γ for each of the observed transitions(listed in TableⅠ-ⅠⅠⅠ).The partially expanded spectra of the autoionizing resonances are shown in Fig.1 as an example to illustrate the comparison of the Fano profile curve fitting to the experimental spectra. The smooth curves represent fits to the experimental spectra(dots).Figure 1(a)shows the experimental data and Fano line profile fitting curve of the autoionizing line 3p511p′[3/2]1excited from the metastable level 3p54s′[1/2]0.Figure 1(b)shows the experimental data and Fano line profile fitting curve of the autoionizing lines 3p511p′[3/2]1,2,[1/2]1and 3p59f′[5/2]3excited from the first metastable level 3p54s[3/2]2.For n≥24,the three states of the np′series,3p5(2P1/2)np′[3/2]2,[3/2]1,[1/2]1,are not distinguishable;their q and Γ parameters are the sum of the three states and their values are listed respectively in TableⅠⅠ.Note that most of the line profile analysis of the 3p5np′[3/2]1,2,[1/2]1and 3p5nf′[5/2]3autoionizing resonances are reported for the first time.For members of a Rydberg series,the reduced width Γris defined as Γr=Γnn?3,where n?=n-δ is the effective quantum number,and the corresponding quantum defect δ and effective quantum number n?arecalculated using the Rydberg formula.The obtained values of the reduced width Γrare listed in TablesⅠ-ⅠⅠⅠ. The lifetime of the upper state against autoionization τ is readily determined from τ=?/Γ,and the values of τ are also included in TablesⅠ-ⅠⅠⅠ.

    TABLEⅠParameters obtained by line profile analysis for the 4s′[1/2]0(94553.665 cm-1)→3p5np′[3/2]1,4s[3/2]2(93143.767 cm-1)→3p5np′[3/2]1,[3/2]2,[1/2]1(Er,Γ,and Γrin cm-1,and τ in 10-12s).

    As shown from the data listed in the TablesⅠ-ⅠⅠⅠ,the absolute value of line profile index q decreases when n increases.This indicates that the profile symmetry for high autoionizing resonances is more asymmetric,i.e.,the portion of the cross section describing transition to the continuum possesses more percentage in the transition from the lower electronic level to higher upper autoionizing resonances.The present results show that the resonance width Γ value decreases as the principal quantum number n increases,which directly reflects the decrease in natural linewidths of the np′and nf′resonances and increase of their lifetimes.This is expected because the interaction of the resonance states with the2P3/2continuum is greater(thus faster autoionization)when the resonances are near the threshold,where the density of the continuum is higher.The lifetimes of the 3p5np′[3/2]1autoionizing resonance series change significantly with a ratio 5-7 between the observed highest and lowest levels,whereas the lifetimes of the 3p5np′[3/2]2,[1/2]1and nf′[5/2]3change with a ratio 2-4.

    Ⅰt is noted that the q and Γ value vary with the effective quantum number n(shown in Fig.2).Ⅰn order to see the relations for the q and Γ value vs.the effective quantum number n?,the q and Γ as function of n?are plotted and shown in Fig.2.From these figures,the empirical results are obtained:the q is proportional to the effective quantum number n?for the autoionizing resonance series,and lnΓ is approximately proportional to lnn?.

    TABLEⅠⅠParameters obtained by line profile analysis for the 3p5np′←4s[3/2]2a(93143.767 cm-1)(n≥24).

    TABLEⅠⅠⅠParameters obtained by line profile analysis for the 3p5nf′[5/2]3←4s[3/2]2(93143.767 cm-1).

    B.Line separation of the 3p5np′autoionizing resonances

    Ⅰn the jKcoupling scheme,the energy difference depends only on the Slater exchange integral G1resulting from the electrostatic interaction,the fine structure interval is expected to be proportional to 1/n?3[1,13,23].The experimental finestructure interval data of the 3p5np′autoionizing resonances are plotted as a function of averaged effective quantum number n?as lnn?and shown in Fig.3.For n<15 and n>18,the line has a slope of -2.829±0.219(difference between 3p5np′[3/2]2and 3p5np′[3/2]1),-2.619±0.482(between 3p5np′[1/2]1and3p5np′[3/2]1),and-2.774±0.258(between 3p5np′[3/2]2and 3p5np′[1/2]1),respectively,compa-rable to the expected slope of-3.The results are in good agreement with the theoretical estimate of the fine structure interval.Ⅰt is noted that the fine structure interval does not follow the expected 1/n?3 behavior for n=16,17.This might suggest that the resonance positions of the observed series for n=16,17 are irregular.Since the signal-to-noise is quite good for the n=16,17 lines,the derived positions are reliable. One possibility for the irregular line positions of n=16,17 is that other transitions nearby perturb these states.

    FⅠG.2 Autoionizing line profile index q and resonance width Γ of(a)3p5np′[3/2]1series excited from 4s′[1/2]0,(b) 3p5np′[3/2]1series excited from 4s[3/2]2,(c)3p5np′[3/2]2series excited from 4s[3/2]2,(d)3p5np′[1/2]1series excited from 4s[3/2]2,(e)3p5nf′[5/2]3series excited from 4s[3/2]2plotted against effective quantum number n?.

    FⅠG.3 Energy difference of the 3p5np′autoionizing resonances energy levels plotted against lnn?.

    IV.CONCLUSION

    We have carried out the experiment study of the autoionizing 3p5np′and 3p5nf′resonance series of argon by using pulsed DC discharge along with single UV photon excitation and the TOF-MS technique.The Fano line profile analysis of the excitation spectra is carried out and the Fano parameters of the systematic autoionizing series are reported.The line profile index q and resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n?.The line separation of the 3p5np′autoionizing resonances is also discussed.

    V.ACKNOWLEDGMENTS

    This work is supported by the Beijing Higher Education Young Elite Teacher Project(No.YETP0324) and the National Natural Science Foundation of China (No.21403297,No.61474142,and No.11474355).

    [1]Ⅰ.D.Petrov,V.L.Sukhorukov,and H.Hotop,J.Phys. B 36,119(2003).

    [2]N.E.Small-Warren and Lue-Yung Chow Chiu,Phys. Rev.A 11,1777(1975).

    [3]R.F.Stebbing and F.B.Dunning,Phys.Rev.A 8,665 (1973).

    [4]F.B.Dunning and R.F.Stebbing,Phys.Rev.A 9,2378(1974).

    [5]M.Pellarin,J.L.Vialle,M.Carre,J.Lerme,and M. Aymer,J.Phys.B 21,3833(1988).

    [6]A.Muhlpfordt and U.Even,J.Chem.Phys.103,4427 (1995).

    [7]S.M.Koeckhoven,W.J.Burma,and C.A.de Lange,Phys.Rev.A 51,1097(1995).

    [8]T.Peter,T.Halfmann,U.Even,A.Wunnenberg,Ⅰ.D. Petrov,V.L.Sukhorukov,and H.Hoptop,J.Phys.B 38,S51(2005).

    [9]Y.Y.Lee,T.Y.Dung,R.M.Hsieh,J.Y.Yuh,Y.F. Song,G.H.Ho,T.P.Huang,W.C.Pan,Ⅰ.C.Chen,S.Y.Tu,A.H.Kung,and L.C.Lee,Phys.Rev.A 78,022509(2008).

    [10]J.Z.Wu,S.B.Whitfield,C.D.Caldwell,M.O.Krause,P.van der Meulen,and A.Fahlman,Phys.Rev.A 42,1350(1990).

    [11]D.Klar,K.Harth,J.Ganz,T.Kraft,M.W.Ruf,H. Hotop,V.Tsemekhman,and M.Y.Amusia,Z.Phys. D 23,101(1992).

    [12]S.M.Koeckhoven,W.J.Burma,and C.A.de Lange,Phys.Rev.A 49,3322(1994).

    [13]J.Landais,M.Huet,H.Kucal,and T.Dohnalik,J. Phys.B 28,2395(1995).

    [14]N.K.Piracha,M.A.Baig,S.A.Khan,and B.Suleman,J.Phys.B 30,1151(1997).

    [15]J.M.Weber,K.Ueda,D.Klar,J.Kreil,M.W.Ruf,and H.Hotop,J.Phys.B 32,2381(1999).

    [16]J.Bommels,J.M.Weber,A.Gopalan,N.Herschbach,E.Leber,A.Schramm,K.Ueda,M.W.Ruf,and H. Hotop,J.Phys.B 32,2399(1999).

    [17]X.F.Zheng,T.T.Wang,and Y.Chen,Chin.J.Atom. Mol.Phys.21,605(2004).

    [18]K.Ueda,Phys.Rev.A 35,2484(1987).

    [19]C.Y.Li,Z.W.He,T.T.Wang,J.F.Zhen,Y.Chen,and J.S.Zhang,Chin.J.Chem.Phys.26,259(2013).

    [20]G.Racah,Phys.Rev.62,438(1942).

    [21]Ⅰ.Ⅰ.Sobelman,Atomic Spectra and Radiative Transitions,Berlin Heidelberg:Springer-Verlag(1979).

    [22]R.D.Cowan,The Theory of Atomic Structure and Spectra,Berkeley:University of California Press,(1981).

    [23]R.D.Knight and L.G.Wang,J.Opt.Soc.Am.B 3,1673(1986).

    [24]U.Fano,Phys.Rev.124,1866(1961).

    [25]U.Fano and J.W.Cooper,Phys.Rev.A 137,1364 (1965).

    Chun-yan Lia?,Mei Zhoua,Zhi-wei Hea,Jin-hong Zhanga,Yang Chenb?
    a.College of Science,China Agricultural University,Beijing 100083,China b.Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China
    (Dated:Received on January 23,2016;Accepted on February 23,2016)
    The even-parity autoionizing resonance series 3p5np′[3/2]1,2,3p5np′[1/2]1,and 3p5nf′[5/2]3of Ar have been investigated exciting from the two metastable states 3p54s[3/2]2and 3p54s′[1/2]0in the photon energy range of 32500-35600 cm-1with an experimental bandwidth of~0.1 cm-1.The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes.New level energies,quantum defects,line profile index and resonance widths,resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis.The line profile index q and the resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n?.The line separation of the 3p5np′autoionizing resonances is discussed.
    Key words:Ar,Autoionizing resonances,F(xiàn)ano-type lineshape

    ?Authors to whom correspondence should be addressed.E-mail: chunyanl@cau.edu.cn,yangchen@ustc.edu.cn,Tel.:+86-551-636-06619

    啪啪无遮挡十八禁网站| 国产精品自产拍在线观看55亚洲| 熟女电影av网| www.熟女人妻精品国产| 一个人免费在线观看的高清视频| 1000部很黄的大片| 久久伊人香网站| 91久久精品国产一区二区成人 | 久久中文字幕一级| 久久久久亚洲av毛片大全| 韩国av一区二区三区四区| 在线观看日韩欧美| 男女之事视频高清在线观看| 亚洲专区中文字幕在线| 看片在线看免费视频| 午夜激情欧美在线| 亚洲国产欧洲综合997久久,| 欧美日韩黄片免| 成人精品一区二区免费| 成年免费大片在线观看| 国产精品女同一区二区软件 | 欧美乱码精品一区二区三区| 免费搜索国产男女视频| 欧美日本亚洲视频在线播放| 老熟妇乱子伦视频在线观看| 中文字幕av在线有码专区| 色综合欧美亚洲国产小说| 国产亚洲av嫩草精品影院| 一夜夜www| 国产欧美日韩精品亚洲av| 久久欧美精品欧美久久欧美| 国产午夜精品论理片| 成人亚洲精品av一区二区| 国产亚洲精品久久久久久毛片| 久久热在线av| 色视频www国产| 巨乳人妻的诱惑在线观看| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩东京热| 99精品在免费线老司机午夜| 久久午夜综合久久蜜桃| 日韩高清综合在线| 亚洲精品色激情综合| 国产高清视频在线播放一区| 国产免费男女视频| 亚洲第一欧美日韩一区二区三区| av视频在线观看入口| 99国产综合亚洲精品| 91av网站免费观看| 久久亚洲精品不卡| 五月伊人婷婷丁香| 午夜两性在线视频| 99精品在免费线老司机午夜| 黄色丝袜av网址大全| 很黄的视频免费| 在线观看免费午夜福利视频| 成人无遮挡网站| 性色av乱码一区二区三区2| 欧美精品啪啪一区二区三区| 国产人伦9x9x在线观看| 色av中文字幕| 香蕉国产在线看| 亚洲av第一区精品v没综合| 在线免费观看的www视频| 久久精品aⅴ一区二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| 搡老岳熟女国产| 日本五十路高清| 人人妻,人人澡人人爽秒播| 一级黄色大片毛片| 欧美乱色亚洲激情| 美女扒开内裤让男人捅视频| 最近在线观看免费完整版| 听说在线观看完整版免费高清| 成年女人永久免费观看视频| 亚洲精品色激情综合| 丰满的人妻完整版| 亚洲国产精品999在线| 精品国产三级普通话版| 激情在线观看视频在线高清| 老司机深夜福利视频在线观看| 亚洲av成人精品一区久久| 国产69精品久久久久777片 | 一本久久中文字幕| 亚洲熟妇熟女久久| 免费高清视频大片| 两个人的视频大全免费| 成人特级黄色片久久久久久久| 少妇熟女aⅴ在线视频| 欧美日韩国产亚洲二区| 国产激情偷乱视频一区二区| 亚洲天堂国产精品一区在线| 精品久久久久久久久久久久久| 欧美色欧美亚洲另类二区| 又大又爽又粗| 国产高清有码在线观看视频| 十八禁网站免费在线| 男女做爰动态图高潮gif福利片| 久久久久久人人人人人| 又紧又爽又黄一区二区| 特级一级黄色大片| 无限看片的www在线观看| 看片在线看免费视频| 看黄色毛片网站| 韩国av一区二区三区四区| 欧美日本视频| 搡老熟女国产l中国老女人| 免费在线观看日本一区| 男女那种视频在线观看| 欧美黄色淫秽网站| 亚洲人与动物交配视频| 亚洲国产色片| 欧美乱妇无乱码| 久久午夜亚洲精品久久| 真人一进一出gif抽搐免费| 亚洲色图 男人天堂 中文字幕| 男人和女人高潮做爰伦理| 男人的好看免费观看在线视频| 久久久水蜜桃国产精品网| 精品乱码久久久久久99久播| 日韩欧美一区二区三区在线观看| 国产一区二区在线观看日韩 | 老司机午夜十八禁免费视频| 后天国语完整版免费观看| 桃红色精品国产亚洲av| 给我免费播放毛片高清在线观看| 国模一区二区三区四区视频 | 亚洲人成网站高清观看| 欧美国产日韩亚洲一区| 亚洲国产中文字幕在线视频| 99久久成人亚洲精品观看| 亚洲国产中文字幕在线视频| 欧美成人一区二区免费高清观看 | 欧美中文综合在线视频| 国产美女午夜福利| 亚洲黑人精品在线| 99国产综合亚洲精品| 久久精品影院6| 在线免费观看的www视频| 一进一出好大好爽视频| 精华霜和精华液先用哪个| 国产三级在线视频| 亚洲成人久久性| netflix在线观看网站| 精品久久久久久久久久免费视频| 中文字幕最新亚洲高清| 欧美丝袜亚洲另类 | 欧美黑人欧美精品刺激| 美女午夜性视频免费| 久久人人精品亚洲av| 午夜福利在线观看免费完整高清在 | 精品一区二区三区视频在线观看免费| 在线观看66精品国产| 亚洲成av人片在线播放无| 欧美乱码精品一区二区三区| 韩国av一区二区三区四区| 中文字幕av在线有码专区| 在线国产一区二区在线| 99国产精品99久久久久| 国产激情欧美一区二区| 亚洲av成人精品一区久久| 亚洲第一电影网av| 99久国产av精品| 又粗又爽又猛毛片免费看| 人妻夜夜爽99麻豆av| 国产高清视频在线播放一区| 在线视频色国产色| 丰满的人妻完整版| 国产精品久久久久久精品电影| 精品电影一区二区在线| 搞女人的毛片| 在线十欧美十亚洲十日本专区| 亚洲色图av天堂| 变态另类成人亚洲欧美熟女| 手机成人av网站| 亚洲专区国产一区二区| 久久精品91蜜桃| 久久久久久人人人人人| 黑人巨大精品欧美一区二区mp4| 夜夜看夜夜爽夜夜摸| 国产一级毛片七仙女欲春2| 老汉色∧v一级毛片| 日本免费一区二区三区高清不卡| 我的老师免费观看完整版| 国内少妇人妻偷人精品xxx网站 | 国产亚洲欧美在线一区二区| 天堂√8在线中文| 亚洲精品美女久久av网站| av在线天堂中文字幕| 国产精品av久久久久免费| 免费大片18禁| 国产亚洲av嫩草精品影院| 婷婷丁香在线五月| 性欧美人与动物交配| 国产aⅴ精品一区二区三区波| 法律面前人人平等表现在哪些方面| 成熟少妇高潮喷水视频| 在线播放国产精品三级| 亚洲无线观看免费| 欧美三级亚洲精品| 99视频精品全部免费 在线 | 高清毛片免费观看视频网站| 久久久久国内视频| 午夜精品久久久久久毛片777| 成年免费大片在线观看| 欧美3d第一页| 久久伊人香网站| av黄色大香蕉| 99热这里只有是精品50| 麻豆一二三区av精品| 中文字幕高清在线视频| 日本免费a在线| 精品福利观看| 国产久久久一区二区三区| 成人无遮挡网站| 香蕉丝袜av| 88av欧美| 一a级毛片在线观看| 97碰自拍视频| 亚洲熟女毛片儿| 日韩国内少妇激情av| 99精品在免费线老司机午夜| 欧美中文综合在线视频| 国产精品美女特级片免费视频播放器 | 午夜日韩欧美国产| 成年免费大片在线观看| 久久中文字幕一级| 搡老岳熟女国产| 成人国产综合亚洲| 成人18禁在线播放| 国产探花在线观看一区二区| 亚洲成人免费电影在线观看| 99re在线观看精品视频| 九色成人免费人妻av| 男女之事视频高清在线观看| 一本久久中文字幕| 精品一区二区三区视频在线 | а√天堂www在线а√下载| 午夜免费激情av| 精品日产1卡2卡| 久久人妻av系列| 亚洲欧美日韩东京热| 国内精品美女久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人福利小说| 亚洲五月天丁香| 久久精品国产99精品国产亚洲性色| 青草久久国产| 操出白浆在线播放| 黄片大片在线免费观看| 狂野欧美白嫩少妇大欣赏| 这个男人来自地球电影免费观看| 男人和女人高潮做爰伦理| 国产精品久久久久久人妻精品电影| 三级毛片av免费| 午夜免费成人在线视频| 国产精品久久久久久久电影 | 欧美成人免费av一区二区三区| 国产高清三级在线| 婷婷丁香在线五月| 人人妻人人看人人澡| 亚洲人成网站高清观看| 国产精品一区二区三区四区免费观看 | 精品福利观看| 亚洲在线观看片| 国语自产精品视频在线第100页| 日韩欧美在线乱码| 午夜福利在线观看免费完整高清在 | 91在线精品国自产拍蜜月 | 亚洲欧美日韩卡通动漫| aaaaa片日本免费| 欧美一级a爱片免费观看看| h日本视频在线播放| 人人妻人人澡欧美一区二区| 麻豆国产97在线/欧美| 国产精品久久视频播放| 午夜精品在线福利| 中出人妻视频一区二区| 天堂av国产一区二区熟女人妻| 国产精品亚洲一级av第二区| 一级a爱片免费观看的视频| 亚洲av成人av| 中亚洲国语对白在线视频| 欧美色欧美亚洲另类二区| 美女被艹到高潮喷水动态| 成年版毛片免费区| 国产精品av视频在线免费观看| 欧美黄色片欧美黄色片| 男女之事视频高清在线观看| 久久久国产成人免费| 美女扒开内裤让男人捅视频| 久久精品国产99精品国产亚洲性色| 在线播放国产精品三级| 天天一区二区日本电影三级| 精品久久久久久,| 天天添夜夜摸| 麻豆国产av国片精品| 99久久成人亚洲精品观看| 国产乱人伦免费视频| 亚洲国产精品999在线| 亚洲九九香蕉| 欧美3d第一页| 欧美绝顶高潮抽搐喷水| 色在线成人网| 舔av片在线| 日韩av在线大香蕉| 久久草成人影院| 啦啦啦韩国在线观看视频| 亚洲精品在线美女| 99热只有精品国产| 母亲3免费完整高清在线观看| 女人被狂操c到高潮| 国产亚洲精品综合一区在线观看| 神马国产精品三级电影在线观看| av中文乱码字幕在线| 中文字幕人妻丝袜一区二区| 欧美激情在线99| 真人一进一出gif抽搐免费| 精品99又大又爽又粗少妇毛片 | 91麻豆av在线| 欧美最黄视频在线播放免费| 又黄又爽又免费观看的视频| 此物有八面人人有两片| 成在线人永久免费视频| 一进一出抽搐动态| 亚洲在线观看片| 国产亚洲av高清不卡| 巨乳人妻的诱惑在线观看| 久久中文字幕一级| 久久久久九九精品影院| 久久精品国产99精品国产亚洲性色| 少妇的逼水好多| 搡老岳熟女国产| 又大又爽又粗| 色综合欧美亚洲国产小说| 一级毛片精品| 国产av在哪里看| 亚洲中文av在线| 精品无人区乱码1区二区| 可以在线观看毛片的网站| 人妻夜夜爽99麻豆av| 久久久久久久午夜电影| 美女 人体艺术 gogo| 日本在线视频免费播放| 国产精品亚洲一级av第二区| 人妻丰满熟妇av一区二区三区| 亚洲av中文字字幕乱码综合| 999久久久国产精品视频| 亚洲av美国av| 禁无遮挡网站| 色尼玛亚洲综合影院| 国内精品一区二区在线观看| 91av网一区二区| 一夜夜www| aaaaa片日本免费| 香蕉久久夜色| 大型黄色视频在线免费观看| 成在线人永久免费视频| 国产精品 欧美亚洲| 少妇熟女aⅴ在线视频| 一区福利在线观看| 午夜亚洲福利在线播放| 狂野欧美激情性xxxx| 国产精品99久久久久久久久| 美女午夜性视频免费| 69av精品久久久久久| 欧美3d第一页| 在线观看舔阴道视频| 亚洲 国产 在线| 亚洲无线在线观看| 免费在线观看亚洲国产| 国产免费男女视频| 神马国产精品三级电影在线观看| 久久精品综合一区二区三区| 午夜精品久久久久久毛片777| 精品国产乱子伦一区二区三区| 91字幕亚洲| 亚洲熟妇中文字幕五十中出| 欧美在线一区亚洲| 成年女人毛片免费观看观看9| 国产亚洲精品av在线| 搡老岳熟女国产| 欧美黑人巨大hd| 日本三级黄在线观看| 在线观看免费视频日本深夜| 久久亚洲精品不卡| 午夜福利在线观看吧| 国产av麻豆久久久久久久| 最新中文字幕久久久久 | 国产美女午夜福利| 日日摸夜夜添夜夜添小说| av天堂在线播放| 搡老妇女老女人老熟妇| av女优亚洲男人天堂 | 亚洲国产欧洲综合997久久,| 男人的好看免费观看在线视频| 国产日本99.免费观看| 中国美女看黄片| 亚洲国产色片| 亚洲无线观看免费| 亚洲 国产 在线| 免费人成视频x8x8入口观看| 国产精品久久久久久人妻精品电影| 久久精品国产99精品国产亚洲性色| 中文字幕av在线有码专区| 亚洲乱码一区二区免费版| 一个人免费在线观看的高清视频| 亚洲精品456在线播放app | 丰满人妻熟妇乱又伦精品不卡| 女同久久另类99精品国产91| 国产成人福利小说| 亚洲成人中文字幕在线播放| 亚洲熟女毛片儿| 中文字幕熟女人妻在线| svipshipincom国产片| av欧美777| 国产91精品成人一区二区三区| 亚洲欧美日韩高清专用| 无限看片的www在线观看| 久久精品人妻少妇| 亚洲九九香蕉| 天堂网av新在线| 国内精品美女久久久久久| 日韩欧美免费精品| 国产精品久久电影中文字幕| 动漫黄色视频在线观看| 一夜夜www| 午夜精品一区二区三区免费看| 老司机在亚洲福利影院| 在线观看一区二区三区| 国产欧美日韩一区二区精品| 99国产精品一区二区三区| 国产精品,欧美在线| 国产97色在线日韩免费| 成人国产综合亚洲| 日韩欧美三级三区| 精品一区二区三区四区五区乱码| 欧美乱色亚洲激情| 久久中文看片网| 亚洲人成伊人成综合网2020| 在线观看66精品国产| 美女黄网站色视频| 国产视频内射| 成人特级黄色片久久久久久久| 国产精品一及| bbb黄色大片| 国产午夜精品论理片| 亚洲av美国av| 99在线视频只有这里精品首页| 国产v大片淫在线免费观看| 日韩国内少妇激情av| 真人做人爱边吃奶动态| 最近最新中文字幕大全免费视频| 亚洲天堂国产精品一区在线| av在线蜜桃| 性色av乱码一区二区三区2| 久久久久久久久免费视频了| 欧美av亚洲av综合av国产av| 男人和女人高潮做爰伦理| www日本在线高清视频| 亚洲国产欧洲综合997久久,| 国产亚洲欧美98| 国产乱人伦免费视频| 成人特级av手机在线观看| 国内精品久久久久久久电影| 精品久久久久久久人妻蜜臀av| 午夜福利18| 一边摸一边抽搐一进一小说| 精品99又大又爽又粗少妇毛片 | 久久欧美精品欧美久久欧美| 麻豆国产97在线/欧美| 免费看十八禁软件| 亚洲男人的天堂狠狠| 亚洲av五月六月丁香网| 国内揄拍国产精品人妻在线| 老鸭窝网址在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产乱人伦免费视频| 精品国产三级普通话版| 欧美在线一区亚洲| 欧美3d第一页| 国产av麻豆久久久久久久| 全区人妻精品视频| 男女下面进入的视频免费午夜| 亚洲欧美一区二区三区黑人| 国产成人欧美在线观看| 亚洲自偷自拍图片 自拍| 亚洲自拍偷在线| 国内毛片毛片毛片毛片毛片| 成年免费大片在线观看| 亚洲午夜理论影院| 欧美又色又爽又黄视频| 女生性感内裤真人,穿戴方法视频| 久久午夜亚洲精品久久| 99热这里只有精品一区 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月婷婷丁香| 久久精品国产综合久久久| 婷婷六月久久综合丁香| 精品熟女少妇八av免费久了| 欧美激情久久久久久爽电影| 床上黄色一级片| 最近最新中文字幕大全电影3| 久久精品人妻少妇| 嫩草影院入口| 免费看光身美女| 亚洲熟妇中文字幕五十中出| 老司机午夜福利在线观看视频| 老汉色∧v一级毛片| 91在线精品国自产拍蜜月 | 校园春色视频在线观看| 日本黄大片高清| 69av精品久久久久久| 国产伦精品一区二区三区四那| 五月伊人婷婷丁香| 欧美成狂野欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产成人福利小说| 成人18禁在线播放| 久久久国产欧美日韩av| 国产欧美日韩一区二区精品| 网址你懂的国产日韩在线| 欧美日韩中文字幕国产精品一区二区三区| 精品午夜福利视频在线观看一区| 99久久久亚洲精品蜜臀av| a级毛片在线看网站| 国产成人精品久久二区二区免费| 1024香蕉在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国内少妇人妻偷人精品xxx网站 | 99国产精品99久久久久| 国产欧美日韩一区二区三| 亚洲人成伊人成综合网2020| 日韩中文字幕欧美一区二区| 亚洲国产欧美一区二区综合| 少妇熟女aⅴ在线视频| 天天添夜夜摸| 亚洲欧美日韩高清在线视频| 男人舔女人下体高潮全视频| 综合色av麻豆| 亚洲在线观看片| 亚洲国产欧洲综合997久久,| 国产精品一区二区免费欧美| 在线永久观看黄色视频| 亚洲国产中文字幕在线视频| 久久这里只有精品中国| 亚洲欧美精品综合久久99| 少妇人妻一区二区三区视频| 亚洲成a人片在线一区二区| 国产亚洲精品久久久久久毛片| 亚洲欧美一区二区三区黑人| 免费一级毛片在线播放高清视频| 99精品欧美一区二区三区四区| 成年女人毛片免费观看观看9| 91字幕亚洲| 1024手机看黄色片| 小说图片视频综合网站| 国产成人精品无人区| 国产午夜精品论理片| 一个人免费在线观看的高清视频| 欧美一级a爱片免费观看看| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 亚洲av成人不卡在线观看播放网| 午夜精品在线福利| 亚洲欧美精品综合一区二区三区| 91在线精品国自产拍蜜月 | 国产高清三级在线| 国产精品国产高清国产av| 亚洲七黄色美女视频| 丁香六月欧美| 五月玫瑰六月丁香| 精品久久久久久久久久久久久| 国产精品香港三级国产av潘金莲| 午夜福利成人在线免费观看| 国产精品久久久久久亚洲av鲁大| 好男人在线观看高清免费视频| 国产精品亚洲一级av第二区| 亚洲五月天丁香| 757午夜福利合集在线观看| 偷拍熟女少妇极品色| 天堂av国产一区二区熟女人妻| 九色成人免费人妻av| 淫妇啪啪啪对白视频| 国产91精品成人一区二区三区| 亚洲第一电影网av| 国产高清激情床上av| 人妻久久中文字幕网| 色在线成人网| 97超级碰碰碰精品色视频在线观看| www.自偷自拍.com| 精品一区二区三区四区五区乱码| 午夜视频精品福利| 可以在线观看的亚洲视频| 亚洲精品在线美女| 99riav亚洲国产免费| 亚洲欧美精品综合一区二区三区| 69av精品久久久久久| 欧美日韩瑟瑟在线播放| 欧美成人性av电影在线观看| 欧美绝顶高潮抽搐喷水| 免费看美女性在线毛片视频| 99国产精品99久久久久| 国产精品香港三级国产av潘金莲| 国产真实乱freesex| 老司机深夜福利视频在线观看| 久久精品国产亚洲av香蕉五月| 欧美日韩福利视频一区二区| 国产精品99久久99久久久不卡| 国产午夜精品久久久久久| 成人三级做爰电影| 午夜福利在线观看免费完整高清在 | 免费看日本二区| 1000部很黄的大片| 两个人视频免费观看高清|