• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Line-Profile Analysis of Excitation Spectroscopy in the Even 3p5(2P1/2)nl′[K′]J(l′=1,3)Autoionizing Resonances of Ar

    2016-09-23 06:06:16Chun-yanLi,MeiZhou,Zhi-weiHe
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Line-Profile Analysis of Excitation Spectroscopy in the Even 3p5(2P1/2)nl′[K′]J(l′=1,3)Autoionizing Resonances of Ar

    I.INTRODUCTION

    The high Rydberg states of rare gases have been a subject of interest to spectroscopists for many years. These ARS are attractive for experimental and theoretical studies because they are rather isolated and their characteristics can be determined with high accuracy. The energy of the Rydberg electron is very sensitive to the potential associated with the ion core and provides information on the polarizability of the many-electron core.The width of the ARS is determined by the interaction of the excited states with the continuum and with the nearby ARS of the same parity and total angular momentum J,these interactions are strongly affected by many-electron correlations.Therefore,studies of ARS allow us to obtain deeper insight into intra-atomic electron dynamics,and a critical comparison between the measured and calculated characteristics of the ARS can provide a crucial test of the theoretical approach[1].

    The rare gases(except helium)possess two relatively closely spaced ionization limits corresponding to the2P3/2and2P1/2states of the ion core,with the Rydberg series converging to each of these two limits.Since the ionization limits and the autoionizing Rydberg states of the rare gas atoms are of high energies,the spectroscopic investigations starting from their ground states usually requires radiation source in vacuum ultraviolet(VUV)region,where high resolution spectrum is relatively challenging compared to longer wavelength region.Promoting one of the np-subshell(n=2-5)electrons of the rare gases to the next available(n+1)s orbital yields four levels that are built on the np5(n+1)s configuration,namely np5(n+1)s[1/2]0,1and np5(n+1)s[3/2]1,2.The np5(n+1)s[1/2]1and np5(n+1)s[3/2]1levels decay radiatively to the ground state,whereas np5(n+1)s[1/2]0and np5(n+1)s[3/2]2are metastable[2].The two metastable levels 3p54s[3/2]2and 3p54s′[1/2]0lie at 93143.767 and 94553.665 cm-1,respectively,relative to the argon ground state[3].This provides an opportunity for excitation to the high lying Rydberg levels via single photon or two photon transitions,which are otherwise not readily accessible from the ground state due to the transition selection rules.Furthermore,these excitation spectra can be obtained with narrow-linewidth laser excitation,thus providing high-resolution studies on the high Rydberg states.

    The spectroscopy of high Rydberg states of argon,especially the autoionizing states,has been extensively investigated[3-17].However,the understanding of even-parity autoionizing Rydberg states of Kr is less comprehensive,and the resolution of the obtained spectra is roughly low.Ⅰn 1973,Stebbing and Dunning first observed the single photon excitation from the second metastable level 3p54s′[1/2]0to 3p5(2P1/2)np′[1/2]1(n=11-20),the even-parity autoionizing states of argon[3].Later they reported the spectra of single photon excitation to the even parity autoionizing state series 3p5(2P1/2)np′[3/2]1(n=11-26) and 3p5(2P1/2)nf′[5/2]3(n=9-15),which are excited from the first metastable level 3p54f′[3/2]2[4].Pel-larin et al.employed the collinear laser spectroscopy with a field ionization detection technique to investigate the even-parity autoionizing resonances below the first ionization limit,3p5(2P3/2)np(n=12-70)[1/2]1,[3/2]2,3p5(2P3/2)np(n=12-40)[3/2]1,[5/2]2,3,3p5(2P3/2)nf (n=11-19)[3/2]1,[5/2]2,[3/2]2,[5/2]3(n=11-38) and3p5(2P1/2)np′[1/2]1(n=9,10),[3/2]1,2,nf′(n=7,8)[5/2]2,3spectra excited from the 3p54s[3/2]2metastable level[5].Muhlpfordt and Even observed a ZEKE spectrum of the 3p5(2P3/2)np,3p5(2P3/2)nf and 3p5(2P1/2)np′(n≥15),3p5(2P1/2)nf′(n≥14)Rydberg series converging to the two ionization potential excited from the 3p54s[3/2]2metastable level,respectively,and reported the ionization limits and quantum defects derived from the line position measurements but did not provide the spectroscopic data[6].Koeckhoven et al.[7]observed four-photon excitation from the ground state and the even parity 3p5(2P1/2)np′(n=11-19)[1/2]0,[3/2]1and nf′(n=10-15)[5/2]2,[7/2]4autoionizing Rydberg series,and studied the np′(n=11-13)[3/2]1and nf′(n=10,11)[5/2]2spectra using the line-shape formula derived by Ueda[18].Peter et al.reported the experimental and theoretical investigation of even mp5(2P1/2)np′(m=2-5)autoionizing resonances of rare gas atoms and provided Fano lineshape analysis of argon np′(n=13,14)[1/2]1,[3/2]2[8].Lee et al.reported some np′and nf′autoionizing series by stepwise excitations from instant intermediate states with lasers and synchrotron radiation[9].

    The studies on odd-parity Rydberg states have been more extensive.Wu et al.[10]reported high resolution photoelectron spectrum of argon odd-parity 3p5(2P1/2)12s′,10d′autoionizing states excited from the ground state,and analyzed it using the line-shape formula derived by Ueda[18].Klar et al.observed the high resolution two-photon excitation spectra of the metastable Ar?and reported odd-parity 3p5(2P1/2)ns′(n=18-25)J=0,1 levels[11].Koeckhoven et al.reported three-photon excitation spectra from the ground state and the odd-parity 3p5(2P1/2)ns′(n=11-34) [1/2]1,nd′(n=9-21)[3/2]1,ng′(n=9-21)[7/2]3autoionizing Rydberg states[12].Landais et al.[13]observed the 3p5(2P1/2)ns′(n=11-34)[1/2]0,1autoionizing levels using two step optical excitation from the 3p54s[3/2]2metastable level,and analyzed the spectra for n=11-25.Piracha et al.[14]reported the odd parity 3p3ns,nd,3p3nd′(n=6-8)series excited from the 3p54s[3/2]2metastable level and 3p3ns′(n=10-30) [1/2]0,nd′(n=15-29)[3/2]2series excited from the 3p54s′[1/2]0metastable level using single-color twophoton excitation.Weber et al.[15,16]reported the high resolution odd-parity 3p3(2P3/2)ns,nd(n=13-90) J=2,3,and ng(n=13-70)J=4 Rydberg spectra together with the low lying 3p3(2P1/2)nd′(n=10-14),and 3p3(2P1/2)ng′(n=7-9)autoionizing states,and carried out multichannel quantum defect analysis of the J=2,3,4 levels.Recently,Zheng et al.[17]reported the odd parity 3p3(2P3/2)ns(J=1,2),nd(J=0-4) Rydberg series and 3p3(2P1/2)ns′(J=0,1,n=7-10),nd′(J=1-3,n=5-9)autoionizing states spectra excited from the two metastable levels 3p54s[3/2]2and 3p54s′[1/2]0populated in a pulsed DC discharge.

    Although many experiments have been carried out for the Ar autoionizing Rydberg states including 3p5np′and 3p5nf′,few high-resolution spectroscopic studies and very few line profile parameters are available.We recently reported the systematic experiment study of the autoionizing 3p5np′and 3p5nf′resonance series of argon by using pulsed DC discharge along with single UV photon excitation and the TOF-MS technique [19].Ⅰn that work,the metastable Ar?(3p54s[3/2]2and 3p54s′[1/2]0)atoms were produced by a pulsed highvoltage DC discharge and are then excited to the evenparity autoionizing resonances series 3p5np′[3/2]1,2,3p5np′[1/2]1,and 3p5nf′[5/2]3by a pulsed UV laser radiation with a narrow bandwidth of~0.1 cm-1.These autoionizing resonance states subsequently decay to Ar+ions,which are detected using the time-of-flight (TOF)mass spectrometry.The excitation spectra of the autoionizing resonance series are recorded in the form of the Ar+ion intensities as a function of excitation UV laser radiation.The high-resolution excitation spectra show typical asymmetric line shapes.Ⅰn the present work,the high-resolution excitation spectra are fitted using Fano line-shape formula,and new results for the resonance energies,quantum defects,line profile indexes,resonance widths,resonance lifetimes and reduced widths are derived from the observed resonance spectra.

    II.EXPERIMENTS

    The experiment was conducted in a laser ionization mass spectrometer described elsewhere[19].Briefly,the photoionization experimental apparatus includes the metastable Ar?atoms source and the ion detection system.The metastable Ar?atoms were produced by a DC discharge of a mixture of 5%SF6in Ar at a stagnation pressure of 5 atms.A pulsed high voltage of about 2 kV was supplied to the electrodes producing a discharge in the area of the orifices of the copper electrodes.The supersonic beam after the DC discharge was collimated by a skimmer(?=3 mm)and entered into the photoexcitation and photoionization chamber. The photoionization chamber was maintained at typical pressures of~10-4and<10-5Pa,respectively,with and without the operation of the beam.A Nd:YAG laser(Spectra Physics,GCR-190)pumping a dye laser (Lumonics,HT-500)was used as the light source(pulse duration of UV radiation is about 8 ns,energy per UV pulse is typically 1.0 mJ).The dye laser output was frequency doubled with a second harmonic generator (Lumonics,HT-1000)and then focused perpendicularly on the metastable Ar?beam by a 250 mm focal lengthlens.Ⅰons generated via autoionizing process at the ionization zone were introduced and accelerated to the flight tube of the TOF mass spectrometer and then detected by micro-channel plates(MCP).The mass resolved ion signal from the MCP was amplified by an amplifier(Stanford Research System,SR445)and averaged by a digital oscilloscope(Tektronix,TDS3032B) or a computer data acquisition system.A multi-channel delay pulsed generator was used to control the relative time delays among the nozzle,the laser,and the DC discharge.

    The mass resolved photoexcitation spectra were obtained by setting the corresponding time gate to monitor the arrival of m/z=40(40Ar+)ions and recording the ion signals as a function of laser wavelength.No attempt was made to normalize the spectral intensity with respect to the laser power.The typical scan speed of the dye laser was 0.001 nm/s at a 10 Hz laser repetition.Calibration of the laser wavelength was achieved by a wavelength meter(Coherent).

    III.RESULTS AND DISCUSSION

    The excited levels of the rare gas are designated in the jcl[K]Jcoupling scheme[20-23],in which the orbital angular momentum l of the excited electron is weakly coupled to the total angular momentum jc(3/2 or 1/2) of the np5jcionic core to yield the resultant quantum angular momentum K.K is then weakly coupled with the spin s of the excited electron giving total angular momentum J.The propensity rules for electric dipole transitions in the jK-coupling scheme are:?J=0,±1;?K=0,±1;and?j=0.These rules are well observed,and wherever?J=?K=+?l,the transition lines possess higher intensity.However,the?j=0 rule is not followed strictly,since transitions with a change of the ionic core are also often observed.

    The autoionization states are excited from the two metastable Ar?states by one photon resonance transition.Based on the transition rules and the threshold for direct photoionization from the Ar?metastable to the autoionizing resonance series,the observed series of the autoionizing structures as reported[19]are identified as 3p5(2P1/2)4s′[1/2]0h→ν3p5(2P1/2)np′[3/2]1,3p5(2P3/2)4s[3/2]2h→ν3p5(2P1/2)np′[3/2]1,2,[1/2]1,and 3p5(2P3/2)4s[3/2]2h→ν3p5(2P1/2)nf′[5/2]3,respectively. Since the autoionizing resonances lie between the two ionization potentials in the2P3/2continuum,the perturbation arising from interactions among the resonance series having the same parity and J,and the perturbation arising from interactions with the2P3/2continuum,are complex.The perturbation influences the Rydberg electron of Ar and manifests on the variation of the principal quantum defects.The width of the spectrum peak reflects the lifetime of the resonance.The experimental results show that,as the principal quantum number n increases,the quantum defects of the given series increase whereas the widths of the autoionizing peaks corresponding to the given series decrease. This is expected because the interaction with the2P3/2continuum is greater near threshold.The lifetime of the autoionizing resonances will be discussed below.

    FⅠG.1 The partially expanded spectra of the autoionizing resonances.(a)The experimental data(dots)and Fano line profile fitting curve of the autoionizing line 3p511p′[3/2]1excited from 3p54s′[1/2]0.(b)The experimental data (dots)and Fano line profile fitting curve of autoionizing lines 3p511p′[3/2]1,2,[1/2]1and 3p59f′[5/2]3excited from 3p54s[3/2]2.

    A.Line-profile analysis of the 3p5np′and 3p5nf′autoionizing resonances

    Thelineprofilesforalltheobservedtransitionsbetween32500and35600cm-1,i.e.,3p5(2P1/2)4s′[1/2]0h→ν3p5(2P1/2)np′[3/2]1,3p5(2P3/2) 4s[3/2]2h→ν3p5(2P1/2)np′[3/2]1,2,[1/2]1,and 3p5(2P3/2) 4s[3/2]2→hν3p5(2P1/2)nf′[5/2]3,show typical asymmetric line shapes,as seen in Fig.1.A theoretical treatment of these line shapes due to autoionizing transitions has been carried out by Fano et al.[24,25].For an isolated autoionizing state,the photoion production cross section can be described by the Fano formula:

    Here σbrepresents the portion of the cross section describing transitions to the continuum that do not interact with the quasi-bound(autoionizing)states,and σais the resonant portion of the cross section.E is the observed term energy,Eris the resonance energy,q is the line profile index,and Γ is the resonance width.

    Fano profile has been fitted to the present data,providing values of Er,q,Γ for each of the observed transitions(listed in TableⅠ-ⅠⅠⅠ).The partially expanded spectra of the autoionizing resonances are shown in Fig.1 as an example to illustrate the comparison of the Fano profile curve fitting to the experimental spectra. The smooth curves represent fits to the experimental spectra(dots).Figure 1(a)shows the experimental data and Fano line profile fitting curve of the autoionizing line 3p511p′[3/2]1excited from the metastable level 3p54s′[1/2]0.Figure 1(b)shows the experimental data and Fano line profile fitting curve of the autoionizing lines 3p511p′[3/2]1,2,[1/2]1and 3p59f′[5/2]3excited from the first metastable level 3p54s[3/2]2.For n≥24,the three states of the np′series,3p5(2P1/2)np′[3/2]2,[3/2]1,[1/2]1,are not distinguishable;their q and Γ parameters are the sum of the three states and their values are listed respectively in TableⅠⅠ.Note that most of the line profile analysis of the 3p5np′[3/2]1,2,[1/2]1and 3p5nf′[5/2]3autoionizing resonances are reported for the first time.For members of a Rydberg series,the reduced width Γris defined as Γr=Γnn?3,where n?=n-δ is the effective quantum number,and the corresponding quantum defect δ and effective quantum number n?arecalculated using the Rydberg formula.The obtained values of the reduced width Γrare listed in TablesⅠ-ⅠⅠⅠ. The lifetime of the upper state against autoionization τ is readily determined from τ=?/Γ,and the values of τ are also included in TablesⅠ-ⅠⅠⅠ.

    TABLEⅠParameters obtained by line profile analysis for the 4s′[1/2]0(94553.665 cm-1)→3p5np′[3/2]1,4s[3/2]2(93143.767 cm-1)→3p5np′[3/2]1,[3/2]2,[1/2]1(Er,Γ,and Γrin cm-1,and τ in 10-12s).

    As shown from the data listed in the TablesⅠ-ⅠⅠⅠ,the absolute value of line profile index q decreases when n increases.This indicates that the profile symmetry for high autoionizing resonances is more asymmetric,i.e.,the portion of the cross section describing transition to the continuum possesses more percentage in the transition from the lower electronic level to higher upper autoionizing resonances.The present results show that the resonance width Γ value decreases as the principal quantum number n increases,which directly reflects the decrease in natural linewidths of the np′and nf′resonances and increase of their lifetimes.This is expected because the interaction of the resonance states with the2P3/2continuum is greater(thus faster autoionization)when the resonances are near the threshold,where the density of the continuum is higher.The lifetimes of the 3p5np′[3/2]1autoionizing resonance series change significantly with a ratio 5-7 between the observed highest and lowest levels,whereas the lifetimes of the 3p5np′[3/2]2,[1/2]1and nf′[5/2]3change with a ratio 2-4.

    Ⅰt is noted that the q and Γ value vary with the effective quantum number n(shown in Fig.2).Ⅰn order to see the relations for the q and Γ value vs.the effective quantum number n?,the q and Γ as function of n?are plotted and shown in Fig.2.From these figures,the empirical results are obtained:the q is proportional to the effective quantum number n?for the autoionizing resonance series,and lnΓ is approximately proportional to lnn?.

    TABLEⅠⅠParameters obtained by line profile analysis for the 3p5np′←4s[3/2]2a(93143.767 cm-1)(n≥24).

    TABLEⅠⅠⅠParameters obtained by line profile analysis for the 3p5nf′[5/2]3←4s[3/2]2(93143.767 cm-1).

    B.Line separation of the 3p5np′autoionizing resonances

    Ⅰn the jKcoupling scheme,the energy difference depends only on the Slater exchange integral G1resulting from the electrostatic interaction,the fine structure interval is expected to be proportional to 1/n?3[1,13,23].The experimental finestructure interval data of the 3p5np′autoionizing resonances are plotted as a function of averaged effective quantum number n?as lnn?and shown in Fig.3.For n<15 and n>18,the line has a slope of -2.829±0.219(difference between 3p5np′[3/2]2and 3p5np′[3/2]1),-2.619±0.482(between 3p5np′[1/2]1and3p5np′[3/2]1),and-2.774±0.258(between 3p5np′[3/2]2and 3p5np′[1/2]1),respectively,compa-rable to the expected slope of-3.The results are in good agreement with the theoretical estimate of the fine structure interval.Ⅰt is noted that the fine structure interval does not follow the expected 1/n?3 behavior for n=16,17.This might suggest that the resonance positions of the observed series for n=16,17 are irregular.Since the signal-to-noise is quite good for the n=16,17 lines,the derived positions are reliable. One possibility for the irregular line positions of n=16,17 is that other transitions nearby perturb these states.

    FⅠG.2 Autoionizing line profile index q and resonance width Γ of(a)3p5np′[3/2]1series excited from 4s′[1/2]0,(b) 3p5np′[3/2]1series excited from 4s[3/2]2,(c)3p5np′[3/2]2series excited from 4s[3/2]2,(d)3p5np′[1/2]1series excited from 4s[3/2]2,(e)3p5nf′[5/2]3series excited from 4s[3/2]2plotted against effective quantum number n?.

    FⅠG.3 Energy difference of the 3p5np′autoionizing resonances energy levels plotted against lnn?.

    IV.CONCLUSION

    We have carried out the experiment study of the autoionizing 3p5np′and 3p5nf′resonance series of argon by using pulsed DC discharge along with single UV photon excitation and the TOF-MS technique.The Fano line profile analysis of the excitation spectra is carried out and the Fano parameters of the systematic autoionizing series are reported.The line profile index q and resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n?.The line separation of the 3p5np′autoionizing resonances is also discussed.

    V.ACKNOWLEDGMENTS

    This work is supported by the Beijing Higher Education Young Elite Teacher Project(No.YETP0324) and the National Natural Science Foundation of China (No.21403297,No.61474142,and No.11474355).

    [1]Ⅰ.D.Petrov,V.L.Sukhorukov,and H.Hotop,J.Phys. B 36,119(2003).

    [2]N.E.Small-Warren and Lue-Yung Chow Chiu,Phys. Rev.A 11,1777(1975).

    [3]R.F.Stebbing and F.B.Dunning,Phys.Rev.A 8,665 (1973).

    [4]F.B.Dunning and R.F.Stebbing,Phys.Rev.A 9,2378(1974).

    [5]M.Pellarin,J.L.Vialle,M.Carre,J.Lerme,and M. Aymer,J.Phys.B 21,3833(1988).

    [6]A.Muhlpfordt and U.Even,J.Chem.Phys.103,4427 (1995).

    [7]S.M.Koeckhoven,W.J.Burma,and C.A.de Lange,Phys.Rev.A 51,1097(1995).

    [8]T.Peter,T.Halfmann,U.Even,A.Wunnenberg,Ⅰ.D. Petrov,V.L.Sukhorukov,and H.Hoptop,J.Phys.B 38,S51(2005).

    [9]Y.Y.Lee,T.Y.Dung,R.M.Hsieh,J.Y.Yuh,Y.F. Song,G.H.Ho,T.P.Huang,W.C.Pan,Ⅰ.C.Chen,S.Y.Tu,A.H.Kung,and L.C.Lee,Phys.Rev.A 78,022509(2008).

    [10]J.Z.Wu,S.B.Whitfield,C.D.Caldwell,M.O.Krause,P.van der Meulen,and A.Fahlman,Phys.Rev.A 42,1350(1990).

    [11]D.Klar,K.Harth,J.Ganz,T.Kraft,M.W.Ruf,H. Hotop,V.Tsemekhman,and M.Y.Amusia,Z.Phys. D 23,101(1992).

    [12]S.M.Koeckhoven,W.J.Burma,and C.A.de Lange,Phys.Rev.A 49,3322(1994).

    [13]J.Landais,M.Huet,H.Kucal,and T.Dohnalik,J. Phys.B 28,2395(1995).

    [14]N.K.Piracha,M.A.Baig,S.A.Khan,and B.Suleman,J.Phys.B 30,1151(1997).

    [15]J.M.Weber,K.Ueda,D.Klar,J.Kreil,M.W.Ruf,and H.Hotop,J.Phys.B 32,2381(1999).

    [16]J.Bommels,J.M.Weber,A.Gopalan,N.Herschbach,E.Leber,A.Schramm,K.Ueda,M.W.Ruf,and H. Hotop,J.Phys.B 32,2399(1999).

    [17]X.F.Zheng,T.T.Wang,and Y.Chen,Chin.J.Atom. Mol.Phys.21,605(2004).

    [18]K.Ueda,Phys.Rev.A 35,2484(1987).

    [19]C.Y.Li,Z.W.He,T.T.Wang,J.F.Zhen,Y.Chen,and J.S.Zhang,Chin.J.Chem.Phys.26,259(2013).

    [20]G.Racah,Phys.Rev.62,438(1942).

    [21]Ⅰ.Ⅰ.Sobelman,Atomic Spectra and Radiative Transitions,Berlin Heidelberg:Springer-Verlag(1979).

    [22]R.D.Cowan,The Theory of Atomic Structure and Spectra,Berkeley:University of California Press,(1981).

    [23]R.D.Knight and L.G.Wang,J.Opt.Soc.Am.B 3,1673(1986).

    [24]U.Fano,Phys.Rev.124,1866(1961).

    [25]U.Fano and J.W.Cooper,Phys.Rev.A 137,1364 (1965).

    Chun-yan Lia?,Mei Zhoua,Zhi-wei Hea,Jin-hong Zhanga,Yang Chenb?
    a.College of Science,China Agricultural University,Beijing 100083,China b.Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China
    (Dated:Received on January 23,2016;Accepted on February 23,2016)
    The even-parity autoionizing resonance series 3p5np′[3/2]1,2,3p5np′[1/2]1,and 3p5nf′[5/2]3of Ar have been investigated exciting from the two metastable states 3p54s[3/2]2and 3p54s′[1/2]0in the photon energy range of 32500-35600 cm-1with an experimental bandwidth of~0.1 cm-1.The excitation spectra of the even-parity autoionizing resonance series show typical asymmetric line shapes.New level energies,quantum defects,line profile index and resonance widths,resonance lifetime and reduced widths of the autoionizing resonances are derived by a Fano-type line-shape analysis.The line profile index q and the resonance widths Γ are shown to be approximately proportional to the effective principal quantum number n?.The line separation of the 3p5np′autoionizing resonances is discussed.
    Key words:Ar,Autoionizing resonances,F(xiàn)ano-type lineshape

    ?Authors to whom correspondence should be addressed.E-mail: chunyanl@cau.edu.cn,yangchen@ustc.edu.cn,Tel.:+86-551-636-06619

    啦啦啦韩国在线观看视频| 久久久久久国产a免费观看| 性插视频无遮挡在线免费观看| 午夜激情欧美在线| 国产av麻豆久久久久久久| 黄色一级大片看看| 亚洲欧美日韩无卡精品| 午夜亚洲福利在线播放| 如何舔出高潮| 婷婷亚洲欧美| 国产精品av视频在线免费观看| 乱人视频在线观看| 国产视频内射| 亚洲国产日韩欧美精品在线观看| 嫩草影视91久久| 欧美精品国产亚洲| 午夜精品久久久久久毛片777| 国产高清三级在线| 亚洲第一区二区三区不卡| 国产蜜桃级精品一区二区三区| 中文字幕熟女人妻在线| 国产亚洲欧美98| 99久久精品一区二区三区| 动漫黄色视频在线观看| АⅤ资源中文在线天堂| 人妻少妇偷人精品九色| 免费观看精品视频网站| 中文字幕av成人在线电影| 国产精品人妻久久久影院| 日韩av在线大香蕉| 国产在视频线在精品| 伦理电影大哥的女人| 精品人妻视频免费看| 露出奶头的视频| 国产人妻一区二区三区在| 久久久精品大字幕| av.在线天堂| 久久婷婷人人爽人人干人人爱| 亚洲av第一区精品v没综合| 国产精品伦人一区二区| 欧美精品啪啪一区二区三区| 少妇丰满av| 免费大片18禁| 桃色一区二区三区在线观看| 老司机深夜福利视频在线观看| 午夜福利在线在线| 69人妻影院| 人人妻人人澡欧美一区二区| 亚洲精品粉嫩美女一区| 日本欧美国产在线视频| 人妻丰满熟妇av一区二区三区| av.在线天堂| 久久精品夜夜夜夜夜久久蜜豆| 欧美日韩乱码在线| 九九爱精品视频在线观看| 免费看光身美女| 2021天堂中文幕一二区在线观| 欧美日韩中文字幕国产精品一区二区三区| 在现免费观看毛片| 中文字幕人妻熟人妻熟丝袜美| 天天一区二区日本电影三级| 久久99热这里只有精品18| 少妇猛男粗大的猛烈进出视频 | 日韩欧美一区二区三区在线观看| 精品久久久久久久末码| 最近最新中文字幕大全电影3| 日本成人三级电影网站| 国产精品一区二区三区四区久久| 一进一出抽搐动态| 国产伦一二天堂av在线观看| 一a级毛片在线观看| 欧美成人性av电影在线观看| 蜜桃久久精品国产亚洲av| 老熟妇乱子伦视频在线观看| 97超视频在线观看视频| 精品一区二区三区视频在线| a级一级毛片免费在线观看| 国产精品综合久久久久久久免费| 狂野欧美激情性xxxx在线观看| 久久久久性生活片| 国内精品一区二区在线观看| 3wmmmm亚洲av在线观看| 在线观看午夜福利视频| 亚洲av成人精品一区久久| 全区人妻精品视频| 亚洲国产欧美人成| 女人被狂操c到高潮| 欧美人与善性xxx| 欧美日韩精品成人综合77777| 两个人视频免费观看高清| 男人狂女人下面高潮的视频| 波野结衣二区三区在线| 国产高清视频在线观看网站| 在线免费观看不下载黄p国产 | 国产伦人伦偷精品视频| 国产av一区在线观看免费| 又紧又爽又黄一区二区| 成人特级av手机在线观看| 一级黄片播放器| 免费av观看视频| 99国产极品粉嫩在线观看| 中文字幕熟女人妻在线| 欧美极品一区二区三区四区| 日本成人三级电影网站| 色综合亚洲欧美另类图片| 久久久久国内视频| 欧美最黄视频在线播放免费| 国产精品综合久久久久久久免费| 天美传媒精品一区二区| 国内久久婷婷六月综合欲色啪| 免费av不卡在线播放| 九九久久精品国产亚洲av麻豆| 亚洲欧美清纯卡通| 久久久久久久久中文| 日韩欧美精品v在线| 欧美日韩乱码在线| 午夜久久久久精精品| 人妻夜夜爽99麻豆av| 久久久久久国产a免费观看| 免费在线观看成人毛片| h日本视频在线播放| 国产私拍福利视频在线观看| 午夜精品在线福利| 欧美人与善性xxx| 国内揄拍国产精品人妻在线| 乱系列少妇在线播放| 18+在线观看网站| 最好的美女福利视频网| 午夜福利在线观看吧| 真实男女啪啪啪动态图| 99国产极品粉嫩在线观看| 日本爱情动作片www.在线观看 | 看免费成人av毛片| 亚洲一级一片aⅴ在线观看| 久9热在线精品视频| 真人做人爱边吃奶动态| 日韩中字成人| 别揉我奶头 嗯啊视频| .国产精品久久| 国产精品一区二区三区四区久久| 国产v大片淫在线免费观看| 久久精品国产亚洲av涩爱 | 神马国产精品三级电影在线观看| 69人妻影院| 一本精品99久久精品77| 亚洲av中文av极速乱 | 在线天堂最新版资源| 精品久久国产蜜桃| 日本三级黄在线观看| 国产极品精品免费视频能看的| 国产精品日韩av在线免费观看| 99热这里只有是精品在线观看| 亚洲最大成人中文| 亚洲综合色惰| 国内精品久久久久久久电影| 亚洲中文字幕日韩| 美女xxoo啪啪120秒动态图| 蜜桃久久精品国产亚洲av| 午夜福利在线观看免费完整高清在 | 日韩精品中文字幕看吧| 国产欧美日韩精品亚洲av| 桃色一区二区三区在线观看| 国产高清不卡午夜福利| 听说在线观看完整版免费高清| 如何舔出高潮| 国产乱人视频| 色精品久久人妻99蜜桃| 成人精品一区二区免费| 久久婷婷人人爽人人干人人爱| 99在线视频只有这里精品首页| 亚洲无线观看免费| 国产精品国产三级国产av玫瑰| 美女 人体艺术 gogo| 日韩国内少妇激情av| 丰满的人妻完整版| 桃色一区二区三区在线观看| 不卡一级毛片| av视频在线观看入口| 国产aⅴ精品一区二区三区波| 国产爱豆传媒在线观看| 亚洲精品影视一区二区三区av| 99精品在免费线老司机午夜| 99久久九九国产精品国产免费| 97超视频在线观看视频| 精品日产1卡2卡| 亚洲国产高清在线一区二区三| 我要看日韩黄色一级片| 午夜福利成人在线免费观看| 日韩一本色道免费dvd| 亚洲av第一区精品v没综合| 十八禁国产超污无遮挡网站| 久久精品国产自在天天线| 禁无遮挡网站| 在线观看舔阴道视频| 亚洲美女视频黄频| 别揉我奶头~嗯~啊~动态视频| 伊人久久精品亚洲午夜| 亚洲内射少妇av| 特大巨黑吊av在线直播| 亚洲av中文av极速乱 | 日韩欧美 国产精品| 91在线精品国自产拍蜜月| 亚洲在线观看片| 波多野结衣高清无吗| 亚洲精品影视一区二区三区av| 国产伦精品一区二区三区四那| 97人妻精品一区二区三区麻豆| 一本久久中文字幕| 成人国产综合亚洲| 国国产精品蜜臀av免费| 女人被狂操c到高潮| 91在线观看av| 天堂动漫精品| 美女 人体艺术 gogo| 国产亚洲精品综合一区在线观看| 国产免费av片在线观看野外av| 非洲黑人性xxxx精品又粗又长| av福利片在线观看| 超碰av人人做人人爽久久| 亚洲人成网站高清观看| 男人舔女人下体高潮全视频| 久久99热6这里只有精品| 免费av不卡在线播放| 久久久精品欧美日韩精品| 午夜久久久久精精品| 人人妻人人澡欧美一区二区| 简卡轻食公司| 免费观看在线日韩| 日本 欧美在线| 精品久久久久久久人妻蜜臀av| 草草在线视频免费看| 99热6这里只有精品| av福利片在线观看| 两个人视频免费观看高清| 日日夜夜操网爽| 亚洲美女视频黄频| 极品教师在线视频| 日韩一本色道免费dvd| 欧美xxxx黑人xx丫x性爽| 免费av观看视频| 我的女老师完整版在线观看| 欧美中文日本在线观看视频| 22中文网久久字幕| 男插女下体视频免费在线播放| 熟妇人妻久久中文字幕3abv| 狂野欧美激情性xxxx在线观看| 国产大屁股一区二区在线视频| 免费看a级黄色片| 毛片女人毛片| 丰满人妻一区二区三区视频av| 国产真实乱freesex| 亚洲经典国产精华液单| 国产精品女同一区二区软件 | 国产精品爽爽va在线观看网站| 久久久久久久久久久丰满 | 人妻少妇偷人精品九色| 亚洲第一区二区三区不卡| 成人午夜高清在线视频| 中国美白少妇内射xxxbb| 深夜精品福利| 欧美国产日韩亚洲一区| 五月伊人婷婷丁香| 麻豆av噜噜一区二区三区| 我的老师免费观看完整版| 天天躁日日操中文字幕| 欧美激情国产日韩精品一区| 嫩草影院精品99| 又黄又爽又刺激的免费视频.| 国产精品无大码| 精品人妻熟女av久视频| 国内精品美女久久久久久| 久久6这里有精品| 91在线观看av| 露出奶头的视频| 亚洲在线观看片| 久久这里只有精品中国| 亚洲av不卡在线观看| 男人舔奶头视频| 久久久久九九精品影院| 婷婷精品国产亚洲av| 亚洲性夜色夜夜综合| 精品一区二区三区av网在线观看| 精品一区二区免费观看| 色av中文字幕| 国产真实伦视频高清在线观看 | 少妇被粗大猛烈的视频| 啦啦啦啦在线视频资源| 久久久午夜欧美精品| 男插女下体视频免费在线播放| 亚洲国产精品合色在线| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 麻豆国产97在线/欧美| 老师上课跳d突然被开到最大视频| 深夜a级毛片| x7x7x7水蜜桃| 亚洲专区中文字幕在线| 国内精品宾馆在线| 日本-黄色视频高清免费观看| 夜夜爽天天搞| 亚洲最大成人中文| 男女之事视频高清在线观看| 搞女人的毛片| 一级毛片久久久久久久久女| 18+在线观看网站| 变态另类丝袜制服| 久久久精品大字幕| 国产男人的电影天堂91| 国产高清三级在线| 久久久久久久久久黄片| 久久久久久久久久久丰满 | 亚洲人成伊人成综合网2020| ponron亚洲| 桃红色精品国产亚洲av| 麻豆成人av在线观看| 亚洲七黄色美女视频| 久久久久免费精品人妻一区二区| 极品教师在线免费播放| 国产精品人妻久久久久久| 波多野结衣高清作品| 99久久成人亚洲精品观看| 午夜福利欧美成人| 特大巨黑吊av在线直播| 一a级毛片在线观看| 欧美中文日本在线观看视频| 成人三级黄色视频| 亚洲欧美精品综合久久99| 午夜影院日韩av| bbb黄色大片| 日本黄大片高清| 97热精品久久久久久| 亚洲国产精品合色在线| 丝袜美腿在线中文| 成人国产综合亚洲| 啪啪无遮挡十八禁网站| 色综合色国产| 亚洲国产精品成人综合色| netflix在线观看网站| 波多野结衣高清作品| av在线老鸭窝| 国产精品一区二区三区四区久久| 国产高清三级在线| 亚洲国产欧洲综合997久久,| 精品久久久久久久久久免费视频| 亚洲av免费在线观看| 国产精品永久免费网站| 久久精品国产清高在天天线| 真实男女啪啪啪动态图| 国产成年人精品一区二区| 久久精品国产亚洲av天美| 男女下面进入的视频免费午夜| 韩国av在线不卡| 婷婷精品国产亚洲av| 五月玫瑰六月丁香| 91精品国产九色| 国产真实伦视频高清在线观看 | 久久99热这里只有精品18| 欧美日韩亚洲国产一区二区在线观看| www日本黄色视频网| 最新在线观看一区二区三区| 国产精品无大码| 啦啦啦啦在线视频资源| 五月伊人婷婷丁香| 蜜桃久久精品国产亚洲av| 日韩精品有码人妻一区| 高清在线国产一区| 国产精品免费一区二区三区在线| 亚洲人成网站高清观看| 国产国拍精品亚洲av在线观看| 啦啦啦观看免费观看视频高清| 亚洲18禁久久av| 天堂网av新在线| 波多野结衣高清作品| 久久久精品大字幕| 成年女人永久免费观看视频| 国产精品人妻久久久久久| 中文字幕熟女人妻在线| 熟妇人妻久久中文字幕3abv| 欧美zozozo另类| 色5月婷婷丁香| 国产精品自产拍在线观看55亚洲| 搞女人的毛片| 少妇猛男粗大的猛烈进出视频 | 联通29元200g的流量卡| 亚洲熟妇熟女久久| a级一级毛片免费在线观看| 欧美日韩中文字幕国产精品一区二区三区| 日日摸夜夜添夜夜添小说| 国产av不卡久久| 国产欧美日韩精品一区二区| 亚洲熟妇中文字幕五十中出| 真人做人爱边吃奶动态| 深爱激情五月婷婷| 国产探花极品一区二区| 亚洲国产精品成人综合色| 网址你懂的国产日韩在线| 久久久久久久精品吃奶| 国产精品亚洲一级av第二区| 欧美色视频一区免费| 国产精品一区二区性色av| 在现免费观看毛片| 三级国产精品欧美在线观看| 午夜爱爱视频在线播放| av中文乱码字幕在线| xxxwww97欧美| 亚洲精品日韩av片在线观看| 成熟少妇高潮喷水视频| 九九久久精品国产亚洲av麻豆| 精品久久久久久久久久久久久| 精品一区二区免费观看| 精品久久久噜噜| 亚洲熟妇熟女久久| 亚洲成av人片在线播放无| 亚洲av一区综合| 久久久久国产精品人妻aⅴ院| 一个人观看的视频www高清免费观看| 亚洲专区国产一区二区| 桃红色精品国产亚洲av| 三级国产精品欧美在线观看| 一级黄片播放器| 无遮挡黄片免费观看| 一级av片app| 日韩精品有码人妻一区| 精品人妻一区二区三区麻豆 | 久久久精品欧美日韩精品| 在线观看舔阴道视频| 69人妻影院| 国产精品1区2区在线观看.| 一本久久中文字幕| 精品人妻偷拍中文字幕| 韩国av在线不卡| 深夜a级毛片| 免费黄网站久久成人精品| 国产伦精品一区二区三区视频9| 99久国产av精品| 午夜福利18| 91麻豆av在线| 黄色女人牲交| 精品久久久噜噜| 丰满乱子伦码专区| 欧美激情国产日韩精品一区| 午夜福利在线观看吧| 国产一级毛片七仙女欲春2| 久久午夜亚洲精品久久| 午夜福利在线在线| 欧美另类亚洲清纯唯美| 亚洲精品色激情综合| 亚洲av中文字字幕乱码综合| 免费播放大片免费观看视频在线观看| 97在线人人人人妻| 国产亚洲欧美精品永久| 国产成人一区二区在线| 久久韩国三级中文字幕| 三级国产精品欧美在线观看| a级毛色黄片| 少妇丰满av| tube8黄色片| 欧美国产精品一级二级三级 | 欧美日韩在线观看h| 男人狂女人下面高潮的视频| 99热网站在线观看| a级一级毛片免费在线观看| 欧美日韩视频高清一区二区三区二| 人妻制服诱惑在线中文字幕| 性色avwww在线观看| 亚洲av欧美aⅴ国产| 啦啦啦啦在线视频资源| 最新中文字幕久久久久| 国产一区有黄有色的免费视频| 精品久久久久久久久av| 欧美+日韩+精品| 美女福利国产在线 | 99久久综合免费| 日本-黄色视频高清免费观看| 97精品久久久久久久久久精品| 国产午夜精品久久久久久一区二区三区| 女的被弄到高潮叫床怎么办| 日本vs欧美在线观看视频 | 午夜福利网站1000一区二区三区| 久久久久性生活片| 亚洲怡红院男人天堂| 男人添女人高潮全过程视频| 午夜免费鲁丝| 大陆偷拍与自拍| 乱系列少妇在线播放| 国产 一区精品| 久久久久久久久久久丰满| 亚洲内射少妇av| 在线精品无人区一区二区三 | 亚洲精品亚洲一区二区| 成年av动漫网址| 亚州av有码| 在线播放无遮挡| 国产精品久久久久久av不卡| 男的添女的下面高潮视频| 男人狂女人下面高潮的视频| 丰满人妻一区二区三区视频av| 赤兔流量卡办理| 啦啦啦视频在线资源免费观看| 九九在线视频观看精品| 狂野欧美白嫩少妇大欣赏| 免费观看a级毛片全部| 免费黄频网站在线观看国产| 男女国产视频网站| 精品酒店卫生间| 免费观看的影片在线观看| 国产亚洲5aaaaa淫片| 直男gayav资源| 2018国产大陆天天弄谢| 在线精品无人区一区二区三 | 国产极品天堂在线| 18禁动态无遮挡网站| 免费不卡的大黄色大毛片视频在线观看| 国产成人午夜福利电影在线观看| 欧美成人a在线观看| 边亲边吃奶的免费视频| 一级av片app| 免费不卡的大黄色大毛片视频在线观看| 欧美高清成人免费视频www| 久久6这里有精品| 我的老师免费观看完整版| 国产精品伦人一区二区| 亚洲国产欧美在线一区| 久久精品国产亚洲av涩爱| 国产精品久久久久成人av| 午夜日本视频在线| 伊人久久国产一区二区| 精品一区在线观看国产| 久久久久久久久久久免费av| 国产黄色视频一区二区在线观看| 亚洲欧美成人综合另类久久久| 精品一区二区三卡| 久久97久久精品| 永久免费av网站大全| 亚洲av不卡在线观看| 少妇的逼好多水| 亚洲欧美日韩东京热| 男人和女人高潮做爰伦理| 成人黄色视频免费在线看| 久久久久久久亚洲中文字幕| 超碰av人人做人人爽久久| 肉色欧美久久久久久久蜜桃| 亚洲av综合色区一区| 国产精品人妻久久久影院| 一个人看视频在线观看www免费| 亚洲av免费高清在线观看| 国产 一区精品| 免费少妇av软件| av国产精品久久久久影院| 午夜福利网站1000一区二区三区| 亚洲精品国产av蜜桃| 国产国拍精品亚洲av在线观看| 黄色一级大片看看| 最近2019中文字幕mv第一页| 亚洲伊人久久精品综合| 日日摸夜夜添夜夜添av毛片| 18禁裸乳无遮挡免费网站照片| 在线观看免费日韩欧美大片 | 欧美极品一区二区三区四区| 国产精品三级大全| 亚洲av国产av综合av卡| 老师上课跳d突然被开到最大视频| 99九九线精品视频在线观看视频| 精品熟女少妇av免费看| 欧美成人精品欧美一级黄| 免费久久久久久久精品成人欧美视频 | 在线观看av片永久免费下载| 99久久人妻综合| 青春草亚洲视频在线观看| 一个人看的www免费观看视频| 国产中年淑女户外野战色| 99久久中文字幕三级久久日本| 亚洲久久久国产精品| 成年人午夜在线观看视频| 国内揄拍国产精品人妻在线| 国产又色又爽无遮挡免| 亚洲国产最新在线播放| 欧美日韩在线观看h| 青春草视频在线免费观看| 午夜福利视频精品| 男女边摸边吃奶| 久久精品国产鲁丝片午夜精品| 国产视频首页在线观看| 你懂的网址亚洲精品在线观看| 嘟嘟电影网在线观看| 色哟哟·www| 国产精品一区二区在线观看99| 99热这里只有是精品在线观看| 五月玫瑰六月丁香| 女人久久www免费人成看片| 亚洲欧美日韩另类电影网站 | 国产爽快片一区二区三区| 国产精品爽爽va在线观看网站| 日本免费在线观看一区| 一级av片app| 国国产精品蜜臀av免费| 九九在线视频观看精品| 香蕉精品网在线| 春色校园在线视频观看| 一区二区三区精品91| 国产色婷婷99| 大片免费播放器 马上看| 欧美精品一区二区免费开放| 久久精品熟女亚洲av麻豆精品| av国产久精品久网站免费入址| 日本av免费视频播放| 国产伦精品一区二区三区四那| 一本久久精品| 亚洲熟女精品中文字幕| 国产av一区二区精品久久 | 免费大片黄手机在线观看| 亚洲欧美日韩另类电影网站 | 久久精品国产鲁丝片午夜精品| 综合色丁香网| 日韩av不卡免费在线播放|