• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study on Mechanism and Kinetics of Reaction of O(3P)with Propane

    2016-09-23 06:06:17Fu-qiangJing,Jian-weiCao,Xiao-junLiu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Theoretical Study on Mechanism and Kinetics of Reaction of O(3P)with Propane

    I.INTRODUCTION

    Recently,with the sharp increase of the number of traditional fuel vehicle,the vehicle tail gas exhaust has led to some severe issues to human health and global environment.Liquefied petroleum gas(LPG)fuel,mainly consisting of propane and n-butane,is widely used as green fuel in engine due to its little exhaust producing [1].Ⅰn addition,LPG can be further separated and purified to produce pure propane,which can be used as general engine fuel and potential fuel of turbine engine [2].Therefore,the study on the combustion reaction of propane is of considerable current interest.

    The combustion process of propane involves many kinds of chemical reaction,in which the hydrogenabstraction reaction of propane with O(3P)is the most important.Experimentally,the previous studies on the hydrogen-abstraction reaction of propane were mainly focused on the product branching ratio and rate constant[3-8].Ⅰn the early 1970s,McLain et al.studied the rate constants of hydrogenabstraction reaction of propane with the shock wave [3].Ⅰn 1981,Jewell et al.measured the rate constants of the hydrogen-abstraction reaction of propane both by the measurement of O-atom decay in the presence of excess propane and by measuring the change in propane concentration after an appropriate time in the presence of an excess of oxygen atoms[4].Ⅰn 1991,Cohen and Westberg measured the rate constant of C3H8+O(3P)→C3H7+OH reaction at 298 K and reported a value of 6.6×10-15cm3/(molecule·s) [5].Ⅰn 1994 and 1996,Miyoshi et al.[6,7]studied the C3H8+O(3P)reaction using the laser photolysisphotoionization mass spectrometer and laser photolysisshock tube,and measured the site-specific branching fractions at 593,944,and 1130 K,respectively.

    On the other hand,very limited theoretical studies on the C3H8+O(3P)reaction has been reported,and a detailed research on the mechanism of this hydrogenabstraction reaction is still lacking.Ⅰn 2004,Troya et al.obtained the reaction barrier height using density functional theory method[9].Ⅰn 2007,Troya et al.obtained the thermal rate constants at 298 K using the transition-state theory(TST)method for the title reaction based upon the second-order M?ller-Plesset perturbation theory(MP2)with the aug-cc-pVDZ basissets[10].Up to now,few studies on the isotope effects of the title reaction has been reported.

    Ⅰn this work,the ab initio and dynamical methods are used to study the hydrogen-abstraction reaction of C3H8+O(3P).The main reaction channel is determined and the reaction rate constants are calculated,and the obtained results are in good agreement with the available experimental data and superior to the previous theoretical results.The kinetic isotope effects are also studied and discussed.

    II.COMPUTATIONAL DETAILS AND METHODS

    The unrestricted second-order M?ller-Plesset perturbation(UMP2)method is used to fully optimize the equilibrium geometries of various stationary points of the title reaction with the correlation-consistent triple? basis set of Dunning augmented with diffuse functions (aug-cc-pVTZ)basis set.The intrinsic reaction coordinate(ⅠRC)[11,12]calculations are carried out to confirm the transition states(TSs)connecting the right minima[13-15].To obtain more accurate energies,the dual-level strategy is employed.The details of the duallevel strategy can be found elsewhere and only a brief outline will be given here[16].The idea of the dual-level strategy is to use two levels of ab initio calculations so as to reduce the number of high-level points needed. The final single-point energies for all the points on the ⅠRC are evaluated at coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations(CCSD(T))with aug-cc-pVQZ level.All ab initio calculations reported in the present work are performed using the Gaussian 09 suite of ab initio programs[17].

    The variational transition state theory calculations are carried out using the POLYRATE2015 program [18].All coordinates are scaled to a reduced mass.The reaction path is calculated with sufficiently small step size by the Euler steepest-descent method from the TS geometry and goes downhill to both the asymptotic reactant and product channels.Cartesian coordinates are used to parameterize the reaction path.The rate constants reported here are those obtained from the microcanonical variational theory(μVT)calculations[19]. TheμVT is based on the idea of minimizing the microcanonical rate constants along the minimum energy path(MEP),which can minimize the error caused by the“recrossing”trajectories[19].Within the framework ofμVT,the rate constant at a fixed temperature T can be expressed as:

    where ΦRis the total reactant partition function,which is the product of electronic,rotational,and vibrational partition functions.The relative translational partition function is calculated classically and is included in ΦR. However,the rotational and vibrational partition functions of the reactant are calculated quantum mechanically within the rigid rotor and harmonic oscillator approximations,respectively.NGTS(E,s)is the sum of states of electronic,rotational,and vibrational motions at energy E of the generalized transition state located at the reaction coordinate s.

    Ⅰn addition,the quantum-tunneling effects are accounted for by the multidimensional small-curvaturetunneling(SCT)transmission coefficient[20].The rate constants reported here are those obtained from the μVT with the SCT transmission coefficient calculations.

    FⅠG.1Schematicoftheoxygenattackingspots (S1,S2,and S3)in hydrogen-abstraction reaction of C3H8+O(3P)→C3H7+OH.Theredatomsareoxygen atoms,the green atoms are hydrogen atoms,and others are carbon atoms.

    III.RESULTS AND DISCUSSION

    A.Investigation for main reaction channel in the hydrogen-abstraction of O(3P)+C3H8

    Figure 1 shows the effective sites(denoted with S1,S2,and S3,respectively)of the O(3P)atom attacking in the title reaction.As shown in the Fig.1,S1 corresponds to the H atoms located in the plane of the carbon atoms.Both the TS and n-propyl radical produced by hydrogen abstraction at this site possess Cssymmetry.The second site S2 corresponds to the H atom out-of-plane atoms,and the TS and npropyl radical are not symmetric.The TS and isopropyl radical corresponding to the site S3 are Cs-symmetric. Eventually,there are two final products formed at these three sites in the hydrogen-abstraction reaction of propane with O(3P),namely n-propyl and i-propyl: CH3CH2CH3+O(3P)→n-C3H7+OH or i-C3H7+OH.

    Having depicted these three attacked sites,we are endeavoring to explore the main reaction channel.The first step is to locate the stationary points[21,22].As shown in Fig.2,for each channel,five stationary points (the reactants,TSs,products,and two van der Waals (vdW)wells)[23]are optimized at the UMP2/augcc-pVTZ level[24,25]to characterize the core reactivity parameters of the title reaction.The path 1,path 2,and path 3 correspond to the different channels of hydrogen-abstraction locations S1,S2,and S3 respectively.Ⅰt should be noted that the product energies of the n1-C3H7and n2-C3H7channel have small difference due to variation of the dihedral angle.Ⅰn the hydrogen-abstraction reaction process,the barrier for the channel of C3H8+O(3P)→i-C3H7+OH is much lower than that for the channels of C3H8+O(3P)→n1-C3H7+OH and C3H8+O(3P)→n2-C3H7+OH,indicating that C3H8+O(3P)→i-C3H7+OH is the main reaction channel.Additionally,since the difference between the total spin value before annihilation and the theoretical value is within 2%,the spin contamination can be ignored.

    Moreover,for each channel of the title reaction,there is a vdW well in the entrance valley,which is caused by the dispersion force between non-polar O(3P)atom and polar propane molecule;there is also a relative deep vdW well in the exit valley,which is caused by the strong force between permanent dipoles,C3H7and OH radical.These vdW complexes may play an important role in the detailed reaction dynamics[26].For each channel,the energy difference value of vdW wells in the entrance and exit valleys is very obvious.Especially for the main channel,the energy of vdW well in the entrance and exit valleys are 0.6 kcal/mol(relative to the energy of reactant)and 4.6 kcal/mol(relative to the energy of product)respectively.Ⅰn addition,bases set superposition errors(BSSEs)are taken into account for vdW wells,the corrected vdW well depths in the entrance valleys are 0.4 kcal/mol(path 1),0.6 kcal/mol (path 2),and 0.5 kcal/mol(path 3),respectively.As for the vdW wells in the exit valleys,the corrected well depths are 3.5 kcal/mol(path 1),3.6 kcal/mol(path 2),and 4.3 kcal/mol(path 3),respectively.The magnitudes of BSSEs for the vdW wells in the entrance and exit valleys are very small.

    The optimized geometries of various reactants,products,TSs and vdW wells in three reaction channels are obtained at UMP2/aug-cc-pVTZ level,as shown in TableⅠ.The reaction energies and imaginary frequencies for three TSs(denoted TS1,TS2,and TS3,respectively)are also compared.The imaginary frequencies(TS1:2071i,TS2:2053i,TS3:1897i cm-1) are consistent with the result obtained by Troya(2048i,2025i,1891i cm-1).And the imaginary frequency for TS3(1897i cm-1)is more than 100 cm-1smaller than both of other two,which indicates that i-propyl+OH path is much less sharply peaked in the TS region than n-propyl+OH path.Regarding the barrier energy,the barrier energy for hydrogen abstraction at S3 site(11.6 kcal/mol)is more than 2.0 kcal/mol lower than S1(14.1 kcal/mol)and S2(13.6 kcal/mol)sites,which is in agreement with the trend observed in experiment through determining the activation energy values[27].This result also highlights the Troya’s result: the reaction barriers in the hydrogen-abstraction reactions of C3H8+O(3P)are in the primary>secondary order.Ⅰn addition,the zero-point corrected values of reaction barriers for the abstraction at S1,S2,and S3 sites calculated by CCSD(T)/aug-cc-pVQZ level are 10.3,10.0,and 7.9 kcal/mol respectively,and the basis set level is higher than Troya’s(aug-cc-pVTZ).Moreover,for the products of C3H8+O(3P)→C3H7+OH reaction,the forming bond(O-H)length is 0.960?A in path 3,0.975?A in path 1 and path 2,and these three different breaking bonds(C-H)length becomes longer from reactants(1.104?A in path 3,1.101?A in path 1,1.103?A in path 2)in the reaction.While the other C-H bonds length and C-C bonds length are almost unchanged in the entire reaction paths.For the TS geometries,the forming bond(O-H)and the breaking bond(C-H)are respectively 2.5%longer and 1.3% shorter in path 3 than that in path 1 and path 2.Therefore,electronic structure calculations indicate that the TS for hydrogen-abstraction at S3 site is more reactantlike than that at S1 and S2 sites.

    FⅠG.2 Detailed schematic of the three reaction channels of the hydrogen-abstraction reaction of propane with O(3P). The relative energies are computed by taking the energy of reactants as zero.The stationary points of reactant(R),van der Waals wells of the reactant side well(WellR)and the product side well(WellP),transition state(TS)and product (P)are described in detail.

    B.The reaction mechanism of C3H8+O(3P)

    For further investigating the reaction mechanism,it is desirable to find a connecting pathway among these stationary points(reactants,TSs,products,and vdW wells)on the potential energy surface.This pathway is defined as the steepest descent path from the TS to the minima and is found in mass-weighted cartesian coordinates[11,28,29].The MEPs are affirmed byⅠRC calculation in Fig.3.For the following kinetic calculations,the energies,gradients,and hessian matrix of the points onⅠRC(101,110,87 points for path 1,path 2,path 3,respectively)are necessary.TheⅠRC is smooth and reasonable,which confirms the reliability of the calculations.As shown in Fig.3,the energy of products ishigher than the energy of reactants,hence the reaction turns out to be endothermic as a whole.These channels can be divided into three regions:the association region is from reactants to vdW potential well,the abstraction region is from vdW potential well to the potential well of product side through TS,the dissociation region is from the potential well of product side to products.The mechanism of the hydrogen-abstraction reaction on the ⅠRC can be explained as follows.For each channel,initially the O(3P)atom attacks one of the H atoms in C3H8molecule,leading to a collision complex,which is a very fast step with the energy releasing.And then the bond between attacked H and O(3P)atom forms.At last,the bond between attacked H and C atom breaks,leading to the formation of products(C3H7+OH)via the TS.

    TABLEⅠCalculated characteristic geometrical parameters and energies of various stationary point in C3H8+O(3P)→C3H7+OH reaction

    FⅠG.3C3H8+O(3P)reaction paths obtained at the UMP2/aug-cc-pVTZ level for S1,S2 and S3.The energies are relative to the energy of reactants.(a)Path 1,(b)path 2,(c)path 3.

    C.The thermal reaction rate constants of C3H8+O(3P) →C3H7+OH

    The reaction channel C3H8+O(3P)→i-C3H7+OH has a single saddle point(typical for the TST),and consequently,the TST andμVT methods were applied in this case.These calculations are based upon dual-level strategy extensive electronic structure determinations. According to the geometries,harmonic frequencies,and energy of reactants,products and TSs,the thermal rate constants of the main reaction channel have been calculated at different temperature ranging from 298 K to 1000 K,which are plotted in Fig.4 as a typical Arrhenius behaviour.The calculated rate constants for C3H8+O(3P)→C3H7+OH reaction are 3.43×10-15,1.46×10-11,1.54×10-11,1.63×10-11cm3/(molecule·s) at 298,939,946,and 957 K by usingμVT/SCT method.The value of the rate constant at 298 K is in better agreement with the experimental result (6.6×10-15cm3/(molecule·s)[5]than that from Troya’s calculation(9.60×10-16cm3/(molecule·s)[10].Besides,these calculated rate constant values at 939,946,and 957 K are also in good agreement with the experimental results(8.44×10-12,5.80×10-12,7.63×10-12cm3/(molecule·s)obtained by Miyoshi et al.[6],respectively.Ⅰn addition,the branching ratios (kn/ki)are calculated at 593,944,and 1130 K,respectively.And the obtained values(0.35,0.72,0.88)are in good agreement with the experimental values(0.41,0.80,0.92)[7].The remaining discrepancy between the experimental and present theoretical values may be because there is some uncertain factors in the experiments [20,29,30].We also find that at low temperatures,the effect of tunneling on rate constants is obvious,and the correction of tunneling effect is necessary[16].For instance,tunnelling accounts for about 91%of reaction rate constant at 298 K,and proportion decreases to 18% at 1000 K.The comparison with previous theoretical calculation as well as the experimental measurements is also shown in Fig.4.Ⅰt is encouraging to see that our results are in good agreement with the experimental values within limits of error.And theμVT/SCT calculation results are closer to the experimental results than μVT calculation results,which indicates that the tunneling effect plays an important role in rate constants. The result estimated by SCT method is improved significantly.

    FⅠG.4Arrheniusplotforthereactionof C3H8+O(3P)→C3H7+OH.TST:presentstudyTST calculation,μVT:present study usingμVT calculation,μVT/SCT:present study usingμVT with SCT calculation,TST(other)from Ref.[10],Expt.1:experimental data from Ref.[5],Expt.2:experimental data from Ref.[6].

    D.The kinetic isotope effects for C3H8+O(3P) →i-C3H7+OH

    Following the calculation for the reaction rate constants of C3H8+O(3P)→i-C3H7+OH,we perform a study for isotopic substitution effect.Ⅰt is well known that the change of isotope will affect rate constants,which can also provide vital clues for reaction pathways. Generally,isotopic substitution occurs in an atom that participates in the reaction,which will produce the primary isotope effect;if the isotopic substitution is made with an atom that does not take part in the reaction directly,a secondary isotope effect will be produced[31].

    Ⅰn our study,these two isotope effects are both considered in the hydrogen-abstraction reaction of C3H8+O(3P)→i-C3H7+OH.As shown in Fig.5,all the rate constants are calculated using TST andμVT methods.And the quantum-tunneling effects are also estimated by SCT method.For the first case(Fig.5(a)),the H atom that participates in the reaction directly is replaced by D atom,C3H7D+O(3P)→i-C3H7+OD (R1),and there is only the primary isotope effect.Compared with the rate constants of C3H8+O(3P)reaction,the obtained rate constants with primary isotope effect are lower.For the second case(Fig.5(b)),where all H atoms in propane molecule are substituted by D atoms,C3D8+O(3P)→i-C3D7+OD(R2),the primary and secondary isotope effects coexist in the hydrogenabstraction reaction.From the Fig.5(b),we notice that the reaction rate constants with the secondary isotope effect are lower than that with only the primary isotope effect.

    Comparing the above reaction rate constants,we notice that rate constants with isotope effects are all lower than C3H8+O(3P)→i-C3H7+OH reaction.This may result from that the C-D bond has a lower zero-point energy than the C-H bond and a higher activation energy for bond breaking is therefore required.We also find that the primary isotope effect is the main impact of the rate constants.This is because that the atom substituted by isotopic atom does not directly participate in the reaction,and extra activation energy for bond breaking is not needed.

    IV.CONCLUSION

    We have used the ab initio and dynamical methods to compute the rate constants,and investigated the path energy and reaction barriers of the hydrogenabstraction reactions between O(3P)atom and propane molecule.Among,the reaction barriers for title abstraction reaction are calculated by using a dual-level strategy.We find out three channels and determine the lowest barrier channel(C3H8+O(3P)→i-C3H7+OH)in this reaction.This theoretical research on the typical reaction reveals the characteristics of the propane combustion reaction,which provides a theoretical support for the accurate measurements of the combustion intermediates and final products.The vdW wells found in this work are expected to play an important role in more detailed dynamical studies.Besides,the reaction rate constants of C3H8+O(3P)→C3H7+OH reaction are calculated usingμVT method with high accuracy,and the quantum-tunneling effects are accounted for by the multidimensional small-curvature-tunneling transmission coefficient.The temperature range for the computed rate constants is from 298 K to 1000 K,and the obtained rate constants at 298,939,946,and 957 K are in very good agreement with the experimental results.Additionally,the calculated branching ratios of the title reaction at 593,944,and 1130 K are also in good agreement with the experimental results.What’s more,the isotope effects of C3H8+O(3P)are calculated and discussed.Ⅰmportantly,these calculations have revealed the hydrogen-abstraction mechanisms of propane,which would be helpful for a deeper under-standing of the combustion of hydrocarbon.

    FⅠG.5Arrhenius plot for the isotope effects on the rateconstants.R1:Hatom,whichisdirectly participateinthereaction,substitutedbyDatom,C3H7D+O(3P)→i-C3H7+OD.R2:all H atoms in propane molecule substituted by D atoms,and secondary isotope effect exists,C3D8+O(3P)→i-C3D7+OD.(a)Comparing the results of TST,μVT,μVT/SCT,and TST(R1),μVT(R1),μVT/SCT(R1).(b)Comparing the results of TST(R1),μVT(R1),μVT/SCT(R1),and TST(R2),μVT(R2),μVT/SCT(R2).TST:present study TST calculation.μVT:present studyμVT calculation.μVT/SCT: present studyμVT with SCT calculation.

    V.ACKNOWLEDGMENTS

    ThisworkissupportedbytheChineseMinistry of Science and Technology(No.2013CB834601),andtheNationalNaturalScienceFoundationof China(No.21303217 and No.21473218),andⅠnstitute of Chemistry,Chinese Academy of Sciences (No.20140160).

    [1]K.J.Morganti,T.M.Foong,M.J.Brear,G.da Silva,Y.Yang,and F.L.Dryer,F(xiàn)uel 108,797(2013).

    [2]N.C.Surawski,B.Miljevic,T.A.Bodisco,R.Situ,R. J.Brown,and Z.D.Ristovski,F(xiàn)uel 133,17(2014).

    [3]A.G.McLain and C.J.Jachimowski,NASA Technical Note.D-8501(1977).

    [4]S.P.Jewell,K.A.Holbrook,and G.A.Oldershaw,Ⅰnt. J.Chem.Kinet.13,69(1981).

    [5]N.Cohen and K.R.Westberg,J.Phys.Chem.20,1211 (1991).

    [6]A.Miyoshi,K.Tsuchiya,N.Yamauchi,and H.Matsui,J.Phys.Chem.98,11452(1994).

    [7]A.Miyoshi,N.Yamauchi,and H.Matsui,J.Phys. Chem.100,4893(1996).

    [8]J.Zhang,L.Yang,and D.Troya,Chin.J.Chem.Phys. 26,765(2013).

    [9]D.Troya and G.C.Schatz,Theor.Chem.Rea.Dynam. 145,329(2004).

    [10]D.Troya,J.Phys.Chem A 111,10745(2007).

    [11]C.Gonzalez and H.B.Schlegel,J.Phys.Chem.94,5523(1990).

    [12]K.Fukuil,J.Phys.Chem.74,4161(1970).

    [13]H.Zhao,W.Bian,and K.Liu,J.Phys.Chem.A 110,7858(2006).

    [14]H.Zhao,L.Pan,and W.Bian,Ⅰnt.J.Quantum.Chem. 112,858(2012).

    [15]H.Ma,C.Shi,W.Bian,H.Su,and F.Kong,Chin.J. Chem.Phys.20,383(2007).

    [16]J.Cao,Z.Zhang,C.Zhang,W.Bian,and Y.Guo,J. Chem.Phys.134.024315(2011).

    [17]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheese-man,G.Scalmani,V. Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Ⅰzmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M. Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ⅰshida, T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F(xiàn).Ogliaro,M. Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V. N.Staroverov,T.Keith,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Ⅰyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Wallingford CT:Gaussian,Ⅰnc.,(2010).

    [18]J.Zheng,S.Zhang,B.J.Lynch,J.C.Corchado,Y.Y. Chuang,P.L.Fast,W.P.Hu,Y.P.Liu,G.C.Lynch,K.A.Nguyen,C.F.Jackels,A.Fernandez Ramos,B. A.Ellingson,V.S.Melissas,J.Vill`a,Ⅰ.Rossi,E.L. Coiti?no,J.Pu,T.V.Albu,A.Ratkiewicz,R.Steckler,B.C.Garrett,A.D.Ⅰsaacson,and D.G.Truhlar,Polyrate,version 2015,Minneapolis:University of Minnesota,(2015).

    [19]Q.S.Li,J.Yang,and S.Zhang,J.Phys.Chem.A.110,11113(2006).

    [20]H.Ma,X.Liu,W.Bian,L.Meng,and S.Zheng,ChemPhysChem.7,1786(2006).

    [21]W.J.van Zeist,A.H.Koers,L.P.Wolters,and F.M. Bickelhaupt,J.Chem.Theory Comput.4,920(2008).

    [

    22]X.Liu,W.Bian,X.Zhao,and X.Tao,J.Chem.Phys. 125,074306(2006).

    [23]D.Skouteris,D.E.Manolopoulos,W.Bian,H.J. Werner,L.H.Lai,and K.Liu,Science 286,1713 (1999).

    [24]C.Zhang,M.Fu,Z.Shen,H.Ma,and W.Bian,J. Chem.Phys.140,234301(2014).

    [25]J.Yu,S.Chen,and C.Yu,J.Chem.Phys.118,582 (2003).

    [26]A.Neugebauer and G.H¨afelinger,Ⅰnt.J.Mol.Sci.6,157(2005).

    [27]K.G.M.Florian Ausfeldera,Prog.React.Kinet.Mech. 25,299(2000).

    [28]K.Ukui,Acc.Chem.Res.14,363(1981).

    [29]K.Ⅰshida,K.Morokuma,and A.Komornicki,J.Chem. Phys.66,2153(1977).

    [30]X.Liu,M.A.MacDonald,and R.D.Coombe,J.Phys. Chem.96,4907(1992).

    [31]T.H.R.Lowry,K.S Richardson,Mechanism and Theory in Organic Chemistry,New York:Harper and Row,232(1987).

    Fu-qiang Jinga,b,Jian-wei Caob,Xiao-jun Liua,Yu-feng Hua,Hai-tao Mab?,Wen-sheng Bianb,c?
    a.Key Laboratory of Luminescence and Optical Information,Ministry of Education,Beijing Jiaotong University,Beijing 100044,China
    b.Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China
    c.University of Chinese Academy of Sciences,Beijing 100049,China
    (Dated:Received on March 7 2016;Accepted on April 29,2016)
    The reaction of C3H8+O(3P)→C3H7+OH is investigated using ab initio calculation and dynamical methods.Electronic structure calculations for all stationary points are obtained using a dual-level strategy.The geometry optimization is performed using the unrestricted second-order M?ller-Plesset perturbation method and the single-point energy is computed using the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method.Results indicate that the main reaction channel is C3H8+O(3P)→i-C3H7+OH.Based upon the ab initio data,thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K.These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies,and the branching ratios of the reaction are also calculated in the present work.Furthermore,the isotope effects of the title reaction are calculated and discussed.The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.
    Key words:Reaction mechanism,Thermal rate constant,Variational transition state theory,Ⅰsotope effect

    ?

    Authors to whom correspondence should be addressed.E-mail: mht@iccas.ac.cn,bian@iccas.ac.cn

    亚洲午夜精品一区,二区,三区| 2021天堂中文幕一二区在线观| 国产三级在线视频| av中文乱码字幕在线| 国内少妇人妻偷人精品xxx网站 | 色综合亚洲欧美另类图片| 在线永久观看黄色视频| 国产私拍福利视频在线观看| 深夜精品福利| 九九久久精品国产亚洲av麻豆 | 国产黄色小视频在线观看| 男女之事视频高清在线观看| 欧美在线一区亚洲| 亚洲五月婷婷丁香| 国产精品美女特级片免费视频播放器 | 国产高清videossex| 免费在线观看视频国产中文字幕亚洲| 午夜福利高清视频| 成年女人永久免费观看视频| 国产成人aa在线观看| 最近最新中文字幕大全电影3| 成人高潮视频无遮挡免费网站| 国产精品影院久久| 波多野结衣高清作品| 久久中文字幕人妻熟女| 亚洲九九香蕉| 香蕉丝袜av| 视频区欧美日本亚洲| 免费高清视频大片| 19禁男女啪啪无遮挡网站| 我要搜黄色片| 天天躁日日操中文字幕| a在线观看视频网站| 操出白浆在线播放| 国产视频内射| 日本在线视频免费播放| 高潮久久久久久久久久久不卡| 少妇的逼水好多| 国产成+人综合+亚洲专区| 变态另类成人亚洲欧美熟女| 大型黄色视频在线免费观看| 国产不卡一卡二| 18禁国产床啪视频网站| 国产免费av片在线观看野外av| 男人舔奶头视频| www日本黄色视频网| 亚洲av免费在线观看| 极品教师在线免费播放| 男女视频在线观看网站免费| 在线观看日韩欧美| 亚洲人成网站高清观看| 午夜日韩欧美国产| 国产黄片美女视频| 每晚都被弄得嗷嗷叫到高潮| 一a级毛片在线观看| 亚洲精品国产精品久久久不卡| 日韩av在线大香蕉| 日本一二三区视频观看| 久久久久国产一级毛片高清牌| 一本综合久久免费| 国产一区在线观看成人免费| 日韩高清综合在线| 两个人看的免费小视频| 日韩免费av在线播放| 国产成人福利小说| 中文字幕精品亚洲无线码一区| 亚洲av中文字字幕乱码综合| 久久国产乱子伦精品免费另类| 久久中文字幕一级| 成年女人毛片免费观看观看9| 无限看片的www在线观看| 精品久久久久久,| 日韩欧美免费精品| 国产激情久久老熟女| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久久久99蜜臀| 1024手机看黄色片| 欧美日韩国产亚洲二区| 国产高清激情床上av| 男女视频在线观看网站免费| 夜夜躁狠狠躁天天躁| 法律面前人人平等表现在哪些方面| 亚洲成av人片在线播放无| 午夜影院日韩av| 制服丝袜大香蕉在线| 成年女人毛片免费观看观看9| 757午夜福利合集在线观看| 国产不卡一卡二| 久久精品91无色码中文字幕| 两个人看的免费小视频| www.自偷自拍.com| 成在线人永久免费视频| 美女扒开内裤让男人捅视频| 在线观看免费视频日本深夜| 久久香蕉国产精品| 性欧美人与动物交配| 欧美日韩瑟瑟在线播放| 丰满人妻一区二区三区视频av | 亚洲人与动物交配视频| 老司机深夜福利视频在线观看| 丁香欧美五月| 桃红色精品国产亚洲av| 99久久99久久久精品蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 91久久精品国产一区二区成人 | 国产精品野战在线观看| 啦啦啦免费观看视频1| 免费人成视频x8x8入口观看| 亚洲在线观看片| 91字幕亚洲| 偷拍熟女少妇极品色| 中出人妻视频一区二区| 一区二区三区激情视频| 国产午夜精品久久久久久| x7x7x7水蜜桃| 国产精品亚洲美女久久久| 男人舔女人下体高潮全视频| 日韩高清综合在线| 黑人操中国人逼视频| 丁香欧美五月| 免费观看的影片在线观看| 免费观看精品视频网站| 国产三级在线视频| 欧美黑人巨大hd| 国产在线精品亚洲第一网站| 日本五十路高清| 性色av乱码一区二区三区2| 亚洲avbb在线观看| 亚洲电影在线观看av| АⅤ资源中文在线天堂| 成人三级做爰电影| 老汉色∧v一级毛片| 色综合站精品国产| 日韩欧美在线二视频| 999久久久精品免费观看国产| 免费电影在线观看免费观看| 精品国产乱码久久久久久男人| 国内毛片毛片毛片毛片毛片| 91九色精品人成在线观看| 国产99白浆流出| 日日干狠狠操夜夜爽| 18禁国产床啪视频网站| 午夜福利欧美成人| 国产高清有码在线观看视频| 欧美成人一区二区免费高清观看 | 90打野战视频偷拍视频| 一卡2卡三卡四卡精品乱码亚洲| 国产熟女xx| 精品久久久久久,| 国内毛片毛片毛片毛片毛片| 国产av一区在线观看免费| 亚洲色图av天堂| 国产精品久久久人人做人人爽| 18美女黄网站色大片免费观看| 中文字幕最新亚洲高清| 国产高潮美女av| 深夜精品福利| 日本黄色片子视频| h日本视频在线播放| 免费av毛片视频| 俺也久久电影网| 国产成人av激情在线播放| 999精品在线视频| 综合色av麻豆| 在线播放国产精品三级| 男人舔女人的私密视频| 欧美zozozo另类| 日韩欧美国产在线观看| 久久欧美精品欧美久久欧美| 老鸭窝网址在线观看| 国产又黄又爽又无遮挡在线| 91字幕亚洲| 欧美日韩乱码在线| av黄色大香蕉| 女人高潮潮喷娇喘18禁视频| 一本久久中文字幕| 国产午夜精品论理片| av欧美777| 嫁个100分男人电影在线观看| 中文字幕久久专区| 啦啦啦免费观看视频1| 18美女黄网站色大片免费观看| 看免费av毛片| www日本黄色视频网| 18美女黄网站色大片免费观看| 亚洲 欧美一区二区三区| 村上凉子中文字幕在线| 男人的好看免费观看在线视频| 淫妇啪啪啪对白视频| 小说图片视频综合网站| 黄色日韩在线| 白带黄色成豆腐渣| 免费看日本二区| 久9热在线精品视频| 麻豆av在线久日| 欧美成人性av电影在线观看| 最近最新免费中文字幕在线| 一本一本综合久久| 国产成人一区二区三区免费视频网站| 国产成人aa在线观看| 特大巨黑吊av在线直播| 亚洲av成人精品一区久久| 国产午夜精品论理片| 夜夜看夜夜爽夜夜摸| 女人高潮潮喷娇喘18禁视频| 99热只有精品国产| 俄罗斯特黄特色一大片| 精品一区二区三区视频在线 | 国产v大片淫在线免费观看| 久久国产精品影院| 观看美女的网站| 久久天躁狠狠躁夜夜2o2o| 国产成人系列免费观看| 亚洲欧美日韩高清在线视频| 精品久久蜜臀av无| av片东京热男人的天堂| 精品久久久久久成人av| 观看免费一级毛片| 亚洲国产欧美网| 一级黄色大片毛片| 免费在线观看影片大全网站| 美女大奶头视频| www.999成人在线观看| 亚洲欧美精品综合一区二区三区| 中文资源天堂在线| 日本五十路高清| 亚洲国产精品成人综合色| 高潮久久久久久久久久久不卡| 欧美+亚洲+日韩+国产| 亚洲国产精品成人综合色| 国产单亲对白刺激| 日韩中文字幕欧美一区二区| 听说在线观看完整版免费高清| 麻豆成人午夜福利视频| 国产精品一区二区三区四区免费观看 | 精品福利观看| 老司机深夜福利视频在线观看| 999精品在线视频| 国产精品久久久人人做人人爽| 五月玫瑰六月丁香| 极品教师在线免费播放| 亚洲欧美一区二区三区黑人| 一夜夜www| 给我免费播放毛片高清在线观看| 免费看日本二区| 人妻丰满熟妇av一区二区三区| 在线十欧美十亚洲十日本专区| 国内少妇人妻偷人精品xxx网站 | 成年人黄色毛片网站| 色av中文字幕| 色综合婷婷激情| 一区二区三区高清视频在线| 色综合亚洲欧美另类图片| а√天堂www在线а√下载| 久久这里只有精品19| 在线播放国产精品三级| 国产精品久久久av美女十八| 久久久色成人| 一二三四在线观看免费中文在| 国产一区二区在线av高清观看| 亚洲av电影不卡..在线观看| 免费看a级黄色片| www.www免费av| 国产熟女xx| 亚洲av成人av| 一本精品99久久精品77| 99re在线观看精品视频| 色视频www国产| 国产极品精品免费视频能看的| 岛国在线免费视频观看| 搡老熟女国产l中国老女人| 男女床上黄色一级片免费看| 高清在线国产一区| 精华霜和精华液先用哪个| 欧美日韩一级在线毛片| 成年女人看的毛片在线观看| a级毛片在线看网站| 亚洲国产欧美网| 五月玫瑰六月丁香| 中文字幕最新亚洲高清| 美女午夜性视频免费| 三级毛片av免费| 全区人妻精品视频| 欧美在线一区亚洲| 一个人看视频在线观看www免费 | 亚洲av第一区精品v没综合| 男插女下体视频免费在线播放| 女人被狂操c到高潮| 精品一区二区三区av网在线观看| 激情在线观看视频在线高清| 村上凉子中文字幕在线| 两个人视频免费观看高清| 首页视频小说图片口味搜索| 亚洲欧美日韩东京热| 一二三四在线观看免费中文在| av欧美777| 亚洲黑人精品在线| 午夜精品在线福利| 免费看日本二区| 熟女少妇亚洲综合色aaa.| 91老司机精品| 99国产精品99久久久久| 精品一区二区三区视频在线观看免费| 草草在线视频免费看| 黄频高清免费视频| 成年免费大片在线观看| 亚洲无线观看免费| 国产男靠女视频免费网站| 中文字幕熟女人妻在线| 亚洲欧美激情综合另类| 日韩欧美在线乱码| 久久人人精品亚洲av| 91av网站免费观看| 久久久国产成人精品二区| 欧美日韩国产亚洲二区| 精华霜和精华液先用哪个| 欧美在线一区亚洲| 蜜桃久久精品国产亚洲av| 欧美日本亚洲视频在线播放| 亚洲成a人片在线一区二区| 午夜福利高清视频| 久久久国产成人免费| 黑人巨大精品欧美一区二区mp4| 亚洲精品中文字幕一二三四区| 亚洲中文日韩欧美视频| 国产一区二区在线av高清观看| 久久热在线av| 宅男免费午夜| 国产高清videossex| 男女下面进入的视频免费午夜| 国产精品亚洲av一区麻豆| 日本免费一区二区三区高清不卡| 精品一区二区三区视频在线 | 人人妻人人澡欧美一区二区| 日韩欧美三级三区| 成年版毛片免费区| 18禁观看日本| av中文乱码字幕在线| 舔av片在线| 老司机午夜十八禁免费视频| 真人做人爱边吃奶动态| 18禁观看日本| 亚洲性夜色夜夜综合| 最新在线观看一区二区三区| 欧美乱色亚洲激情| 国产又色又爽无遮挡免费看| 日本 欧美在线| 怎么达到女性高潮| 波多野结衣高清无吗| 极品教师在线免费播放| 精品午夜福利视频在线观看一区| 又黄又爽又免费观看的视频| 黄色女人牲交| 法律面前人人平等表现在哪些方面| 18禁黄网站禁片免费观看直播| 成年免费大片在线观看| 日本 av在线| 18禁黄网站禁片午夜丰满| 一进一出抽搐gif免费好疼| 真人一进一出gif抽搐免费| 国产99白浆流出| 最近最新中文字幕大全免费视频| 国产精品永久免费网站| 国产亚洲精品av在线| 最新美女视频免费是黄的| 日本成人三级电影网站| 变态另类丝袜制服| 欧美丝袜亚洲另类 | 不卡一级毛片| 90打野战视频偷拍视频| 亚洲第一欧美日韩一区二区三区| 一二三四在线观看免费中文在| 国产精品一区二区三区四区久久| 欧美日韩一级在线毛片| 国产免费男女视频| 国产精品久久久人人做人人爽| 麻豆国产av国片精品| 国产亚洲精品av在线| 99久久精品热视频| 一级作爱视频免费观看| 午夜日韩欧美国产| 黄片小视频在线播放| 婷婷丁香在线五月| 欧美三级亚洲精品| 变态另类丝袜制服| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 精品久久久久久久末码| 天堂av国产一区二区熟女人妻| 久久精品国产亚洲av香蕉五月| 熟女人妻精品中文字幕| 女同久久另类99精品国产91| 制服丝袜大香蕉在线| 丁香六月欧美| 久久久成人免费电影| 日本撒尿小便嘘嘘汇集6| 亚洲电影在线观看av| 搡老妇女老女人老熟妇| 啦啦啦韩国在线观看视频| 久久99热这里只有精品18| xxxwww97欧美| 欧美日韩黄片免| 男女视频在线观看网站免费| 国产熟女xx| 变态另类丝袜制服| 日韩欧美在线二视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美极品一区二区三区四区| 亚洲片人在线观看| 中文在线观看免费www的网站| 岛国视频午夜一区免费看| 精品国内亚洲2022精品成人| 九九热线精品视视频播放| 韩国av一区二区三区四区| 在线观看美女被高潮喷水网站 | 精品99又大又爽又粗少妇毛片 | 99久久99久久久精品蜜桃| 精品国产乱码久久久久久男人| 成人高潮视频无遮挡免费网站| 99国产精品一区二区蜜桃av| 九九在线视频观看精品| 精品欧美国产一区二区三| 国产乱人视频| www国产在线视频色| 日本 av在线| 久久人妻av系列| 天堂动漫精品| 成人精品一区二区免费| 我要搜黄色片| 在线观看66精品国产| 亚洲成av人片免费观看| 男人舔女人的私密视频| 精品久久蜜臀av无| 亚洲激情在线av| 亚洲在线观看片| 久久精品综合一区二区三区| 不卡av一区二区三区| 亚洲黑人精品在线| 国产99白浆流出| 无人区码免费观看不卡| 一级a爱片免费观看的视频| 蜜桃久久精品国产亚洲av| 国产精品免费一区二区三区在线| 丁香六月欧美| 香蕉丝袜av| 欧美不卡视频在线免费观看| 欧美成狂野欧美在线观看| 午夜视频精品福利| 亚洲人成电影免费在线| 最好的美女福利视频网| 久久伊人香网站| 五月玫瑰六月丁香| 国产熟女xx| 亚洲黑人精品在线| 999精品在线视频| 久久久久性生活片| 一a级毛片在线观看| 99久久成人亚洲精品观看| 波多野结衣高清作品| 精品久久久久久久人妻蜜臀av| 极品教师在线免费播放| 757午夜福利合集在线观看| 性色avwww在线观看| 我的老师免费观看完整版| 国内精品久久久久久久电影| 日本 av在线| 久久久精品大字幕| 国内毛片毛片毛片毛片毛片| 小说图片视频综合网站| 狂野欧美白嫩少妇大欣赏| 欧美乱妇无乱码| 一区二区三区激情视频| 在线免费观看不下载黄p国产 | 怎么达到女性高潮| 香蕉丝袜av| 三级男女做爰猛烈吃奶摸视频| 午夜福利视频1000在线观看| 嫩草影视91久久| 精品日产1卡2卡| 香蕉av资源在线| 天堂av国产一区二区熟女人妻| 搡老妇女老女人老熟妇| 亚洲国产高清在线一区二区三| 无人区码免费观看不卡| 久久人人精品亚洲av| 欧美3d第一页| 2021天堂中文幕一二区在线观| 久久这里只有精品中国| 久久性视频一级片| 久久精品亚洲精品国产色婷小说| 精品久久久久久久毛片微露脸| 美女被艹到高潮喷水动态| 亚洲国产欧洲综合997久久,| 制服人妻中文乱码| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲激情在线av| 国产高清videossex| 欧美午夜高清在线| 国产精品永久免费网站| 最新中文字幕久久久久 | 精品国产乱子伦一区二区三区| 久久久成人免费电影| 日本三级黄在线观看| 草草在线视频免费看| 成人18禁在线播放| 草草在线视频免费看| 欧美成人性av电影在线观看| 黑人操中国人逼视频| 欧美日本视频| 国产精品自产拍在线观看55亚洲| 国产亚洲精品av在线| 噜噜噜噜噜久久久久久91| 99久久99久久久精品蜜桃| 香蕉丝袜av| 熟女电影av网| 非洲黑人性xxxx精品又粗又长| 日本 av在线| 国产av麻豆久久久久久久| av视频在线观看入口| 人妻夜夜爽99麻豆av| 亚洲一区高清亚洲精品| 亚洲av免费在线观看| 一本综合久久免费| 男人的好看免费观看在线视频| 人人妻人人澡欧美一区二区| 九色国产91popny在线| 噜噜噜噜噜久久久久久91| 在线a可以看的网站| x7x7x7水蜜桃| 一进一出好大好爽视频| 亚洲国产日韩欧美精品在线观看 | 亚洲欧洲精品一区二区精品久久久| 亚洲中文av在线| 色老头精品视频在线观看| 欧美色视频一区免费| 国产成人系列免费观看| 中文字幕久久专区| 69av精品久久久久久| 国内少妇人妻偷人精品xxx网站 | 女生性感内裤真人,穿戴方法视频| 欧美精品啪啪一区二区三区| 在线观看日韩欧美| 日本 av在线| 成人精品一区二区免费| 在线观看午夜福利视频| 亚洲乱码一区二区免费版| 国产精品一区二区免费欧美| 日韩欧美免费精品| 精品国产亚洲在线| 中出人妻视频一区二区| 19禁男女啪啪无遮挡网站| 国产精品一区二区三区四区免费观看 | 狂野欧美白嫩少妇大欣赏| 一a级毛片在线观看| 亚洲 欧美一区二区三区| 国产成人精品久久二区二区91| 亚洲成人久久性| 人妻久久中文字幕网| 久久香蕉国产精品| 国产精品一区二区精品视频观看| 免费在线观看亚洲国产| 久久精品国产清高在天天线| 亚洲一区二区三区不卡视频| 两性夫妻黄色片| 亚洲国产精品999在线| 午夜福利成人在线免费观看| 19禁男女啪啪无遮挡网站| 婷婷精品国产亚洲av| 免费在线观看亚洲国产| 久久久久久久久久黄片| www日本在线高清视频| 操出白浆在线播放| 国产精品av视频在线免费观看| 亚洲av成人一区二区三| 嫁个100分男人电影在线观看| 在线视频色国产色| 国产精品电影一区二区三区| 中亚洲国语对白在线视频| 人人妻人人澡欧美一区二区| 天堂网av新在线| 日韩av在线大香蕉| 亚洲精品在线观看二区| 九色国产91popny在线| 亚洲七黄色美女视频| 国产高清视频在线播放一区| 高清在线国产一区| 日韩欧美免费精品| 国产精品综合久久久久久久免费| 99久久成人亚洲精品观看| 国产精品女同一区二区软件 | 特大巨黑吊av在线直播| 亚洲av日韩精品久久久久久密| 九九在线视频观看精品| 亚洲第一欧美日韩一区二区三区| 国产精品日韩av在线免费观看| 一级黄色大片毛片| 欧美中文日本在线观看视频| 久久香蕉国产精品| 久久香蕉精品热| 欧美成人免费av一区二区三区| 成人特级av手机在线观看| 成人特级黄色片久久久久久久| 人妻久久中文字幕网| 噜噜噜噜噜久久久久久91| 国产一区二区三区视频了| 欧洲精品卡2卡3卡4卡5卡区| 偷拍熟女少妇极品色| 老汉色∧v一级毛片| 国产激情久久老熟女| 偷拍熟女少妇极品色| 国产精品综合久久久久久久免费| 亚洲欧洲精品一区二区精品久久久| 床上黄色一级片| 免费看光身美女| 亚洲无线在线观看|