• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study on Mechanism and Kinetics of Reaction of O(3P)with Propane

    2016-09-23 06:06:17Fu-qiangJing,Jian-weiCao,Xiao-junLiu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Theoretical Study on Mechanism and Kinetics of Reaction of O(3P)with Propane

    I.INTRODUCTION

    Recently,with the sharp increase of the number of traditional fuel vehicle,the vehicle tail gas exhaust has led to some severe issues to human health and global environment.Liquefied petroleum gas(LPG)fuel,mainly consisting of propane and n-butane,is widely used as green fuel in engine due to its little exhaust producing [1].Ⅰn addition,LPG can be further separated and purified to produce pure propane,which can be used as general engine fuel and potential fuel of turbine engine [2].Therefore,the study on the combustion reaction of propane is of considerable current interest.

    The combustion process of propane involves many kinds of chemical reaction,in which the hydrogenabstraction reaction of propane with O(3P)is the most important.Experimentally,the previous studies on the hydrogen-abstraction reaction of propane were mainly focused on the product branching ratio and rate constant[3-8].Ⅰn the early 1970s,McLain et al.studied the rate constants of hydrogenabstraction reaction of propane with the shock wave [3].Ⅰn 1981,Jewell et al.measured the rate constants of the hydrogen-abstraction reaction of propane both by the measurement of O-atom decay in the presence of excess propane and by measuring the change in propane concentration after an appropriate time in the presence of an excess of oxygen atoms[4].Ⅰn 1991,Cohen and Westberg measured the rate constant of C3H8+O(3P)→C3H7+OH reaction at 298 K and reported a value of 6.6×10-15cm3/(molecule·s) [5].Ⅰn 1994 and 1996,Miyoshi et al.[6,7]studied the C3H8+O(3P)reaction using the laser photolysisphotoionization mass spectrometer and laser photolysisshock tube,and measured the site-specific branching fractions at 593,944,and 1130 K,respectively.

    On the other hand,very limited theoretical studies on the C3H8+O(3P)reaction has been reported,and a detailed research on the mechanism of this hydrogenabstraction reaction is still lacking.Ⅰn 2004,Troya et al.obtained the reaction barrier height using density functional theory method[9].Ⅰn 2007,Troya et al.obtained the thermal rate constants at 298 K using the transition-state theory(TST)method for the title reaction based upon the second-order M?ller-Plesset perturbation theory(MP2)with the aug-cc-pVDZ basissets[10].Up to now,few studies on the isotope effects of the title reaction has been reported.

    Ⅰn this work,the ab initio and dynamical methods are used to study the hydrogen-abstraction reaction of C3H8+O(3P).The main reaction channel is determined and the reaction rate constants are calculated,and the obtained results are in good agreement with the available experimental data and superior to the previous theoretical results.The kinetic isotope effects are also studied and discussed.

    II.COMPUTATIONAL DETAILS AND METHODS

    The unrestricted second-order M?ller-Plesset perturbation(UMP2)method is used to fully optimize the equilibrium geometries of various stationary points of the title reaction with the correlation-consistent triple? basis set of Dunning augmented with diffuse functions (aug-cc-pVTZ)basis set.The intrinsic reaction coordinate(ⅠRC)[11,12]calculations are carried out to confirm the transition states(TSs)connecting the right minima[13-15].To obtain more accurate energies,the dual-level strategy is employed.The details of the duallevel strategy can be found elsewhere and only a brief outline will be given here[16].The idea of the dual-level strategy is to use two levels of ab initio calculations so as to reduce the number of high-level points needed. The final single-point energies for all the points on the ⅠRC are evaluated at coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations(CCSD(T))with aug-cc-pVQZ level.All ab initio calculations reported in the present work are performed using the Gaussian 09 suite of ab initio programs[17].

    The variational transition state theory calculations are carried out using the POLYRATE2015 program [18].All coordinates are scaled to a reduced mass.The reaction path is calculated with sufficiently small step size by the Euler steepest-descent method from the TS geometry and goes downhill to both the asymptotic reactant and product channels.Cartesian coordinates are used to parameterize the reaction path.The rate constants reported here are those obtained from the microcanonical variational theory(μVT)calculations[19]. TheμVT is based on the idea of minimizing the microcanonical rate constants along the minimum energy path(MEP),which can minimize the error caused by the“recrossing”trajectories[19].Within the framework ofμVT,the rate constant at a fixed temperature T can be expressed as:

    where ΦRis the total reactant partition function,which is the product of electronic,rotational,and vibrational partition functions.The relative translational partition function is calculated classically and is included in ΦR. However,the rotational and vibrational partition functions of the reactant are calculated quantum mechanically within the rigid rotor and harmonic oscillator approximations,respectively.NGTS(E,s)is the sum of states of electronic,rotational,and vibrational motions at energy E of the generalized transition state located at the reaction coordinate s.

    Ⅰn addition,the quantum-tunneling effects are accounted for by the multidimensional small-curvaturetunneling(SCT)transmission coefficient[20].The rate constants reported here are those obtained from the μVT with the SCT transmission coefficient calculations.

    FⅠG.1Schematicoftheoxygenattackingspots (S1,S2,and S3)in hydrogen-abstraction reaction of C3H8+O(3P)→C3H7+OH.Theredatomsareoxygen atoms,the green atoms are hydrogen atoms,and others are carbon atoms.

    III.RESULTS AND DISCUSSION

    A.Investigation for main reaction channel in the hydrogen-abstraction of O(3P)+C3H8

    Figure 1 shows the effective sites(denoted with S1,S2,and S3,respectively)of the O(3P)atom attacking in the title reaction.As shown in the Fig.1,S1 corresponds to the H atoms located in the plane of the carbon atoms.Both the TS and n-propyl radical produced by hydrogen abstraction at this site possess Cssymmetry.The second site S2 corresponds to the H atom out-of-plane atoms,and the TS and npropyl radical are not symmetric.The TS and isopropyl radical corresponding to the site S3 are Cs-symmetric. Eventually,there are two final products formed at these three sites in the hydrogen-abstraction reaction of propane with O(3P),namely n-propyl and i-propyl: CH3CH2CH3+O(3P)→n-C3H7+OH or i-C3H7+OH.

    Having depicted these three attacked sites,we are endeavoring to explore the main reaction channel.The first step is to locate the stationary points[21,22].As shown in Fig.2,for each channel,five stationary points (the reactants,TSs,products,and two van der Waals (vdW)wells)[23]are optimized at the UMP2/augcc-pVTZ level[24,25]to characterize the core reactivity parameters of the title reaction.The path 1,path 2,and path 3 correspond to the different channels of hydrogen-abstraction locations S1,S2,and S3 respectively.Ⅰt should be noted that the product energies of the n1-C3H7and n2-C3H7channel have small difference due to variation of the dihedral angle.Ⅰn the hydrogen-abstraction reaction process,the barrier for the channel of C3H8+O(3P)→i-C3H7+OH is much lower than that for the channels of C3H8+O(3P)→n1-C3H7+OH and C3H8+O(3P)→n2-C3H7+OH,indicating that C3H8+O(3P)→i-C3H7+OH is the main reaction channel.Additionally,since the difference between the total spin value before annihilation and the theoretical value is within 2%,the spin contamination can be ignored.

    Moreover,for each channel of the title reaction,there is a vdW well in the entrance valley,which is caused by the dispersion force between non-polar O(3P)atom and polar propane molecule;there is also a relative deep vdW well in the exit valley,which is caused by the strong force between permanent dipoles,C3H7and OH radical.These vdW complexes may play an important role in the detailed reaction dynamics[26].For each channel,the energy difference value of vdW wells in the entrance and exit valleys is very obvious.Especially for the main channel,the energy of vdW well in the entrance and exit valleys are 0.6 kcal/mol(relative to the energy of reactant)and 4.6 kcal/mol(relative to the energy of product)respectively.Ⅰn addition,bases set superposition errors(BSSEs)are taken into account for vdW wells,the corrected vdW well depths in the entrance valleys are 0.4 kcal/mol(path 1),0.6 kcal/mol (path 2),and 0.5 kcal/mol(path 3),respectively.As for the vdW wells in the exit valleys,the corrected well depths are 3.5 kcal/mol(path 1),3.6 kcal/mol(path 2),and 4.3 kcal/mol(path 3),respectively.The magnitudes of BSSEs for the vdW wells in the entrance and exit valleys are very small.

    The optimized geometries of various reactants,products,TSs and vdW wells in three reaction channels are obtained at UMP2/aug-cc-pVTZ level,as shown in TableⅠ.The reaction energies and imaginary frequencies for three TSs(denoted TS1,TS2,and TS3,respectively)are also compared.The imaginary frequencies(TS1:2071i,TS2:2053i,TS3:1897i cm-1) are consistent with the result obtained by Troya(2048i,2025i,1891i cm-1).And the imaginary frequency for TS3(1897i cm-1)is more than 100 cm-1smaller than both of other two,which indicates that i-propyl+OH path is much less sharply peaked in the TS region than n-propyl+OH path.Regarding the barrier energy,the barrier energy for hydrogen abstraction at S3 site(11.6 kcal/mol)is more than 2.0 kcal/mol lower than S1(14.1 kcal/mol)and S2(13.6 kcal/mol)sites,which is in agreement with the trend observed in experiment through determining the activation energy values[27].This result also highlights the Troya’s result: the reaction barriers in the hydrogen-abstraction reactions of C3H8+O(3P)are in the primary>secondary order.Ⅰn addition,the zero-point corrected values of reaction barriers for the abstraction at S1,S2,and S3 sites calculated by CCSD(T)/aug-cc-pVQZ level are 10.3,10.0,and 7.9 kcal/mol respectively,and the basis set level is higher than Troya’s(aug-cc-pVTZ).Moreover,for the products of C3H8+O(3P)→C3H7+OH reaction,the forming bond(O-H)length is 0.960?A in path 3,0.975?A in path 1 and path 2,and these three different breaking bonds(C-H)length becomes longer from reactants(1.104?A in path 3,1.101?A in path 1,1.103?A in path 2)in the reaction.While the other C-H bonds length and C-C bonds length are almost unchanged in the entire reaction paths.For the TS geometries,the forming bond(O-H)and the breaking bond(C-H)are respectively 2.5%longer and 1.3% shorter in path 3 than that in path 1 and path 2.Therefore,electronic structure calculations indicate that the TS for hydrogen-abstraction at S3 site is more reactantlike than that at S1 and S2 sites.

    FⅠG.2 Detailed schematic of the three reaction channels of the hydrogen-abstraction reaction of propane with O(3P). The relative energies are computed by taking the energy of reactants as zero.The stationary points of reactant(R),van der Waals wells of the reactant side well(WellR)and the product side well(WellP),transition state(TS)and product (P)are described in detail.

    B.The reaction mechanism of C3H8+O(3P)

    For further investigating the reaction mechanism,it is desirable to find a connecting pathway among these stationary points(reactants,TSs,products,and vdW wells)on the potential energy surface.This pathway is defined as the steepest descent path from the TS to the minima and is found in mass-weighted cartesian coordinates[11,28,29].The MEPs are affirmed byⅠRC calculation in Fig.3.For the following kinetic calculations,the energies,gradients,and hessian matrix of the points onⅠRC(101,110,87 points for path 1,path 2,path 3,respectively)are necessary.TheⅠRC is smooth and reasonable,which confirms the reliability of the calculations.As shown in Fig.3,the energy of products ishigher than the energy of reactants,hence the reaction turns out to be endothermic as a whole.These channels can be divided into three regions:the association region is from reactants to vdW potential well,the abstraction region is from vdW potential well to the potential well of product side through TS,the dissociation region is from the potential well of product side to products.The mechanism of the hydrogen-abstraction reaction on the ⅠRC can be explained as follows.For each channel,initially the O(3P)atom attacks one of the H atoms in C3H8molecule,leading to a collision complex,which is a very fast step with the energy releasing.And then the bond between attacked H and O(3P)atom forms.At last,the bond between attacked H and C atom breaks,leading to the formation of products(C3H7+OH)via the TS.

    TABLEⅠCalculated characteristic geometrical parameters and energies of various stationary point in C3H8+O(3P)→C3H7+OH reaction

    FⅠG.3C3H8+O(3P)reaction paths obtained at the UMP2/aug-cc-pVTZ level for S1,S2 and S3.The energies are relative to the energy of reactants.(a)Path 1,(b)path 2,(c)path 3.

    C.The thermal reaction rate constants of C3H8+O(3P) →C3H7+OH

    The reaction channel C3H8+O(3P)→i-C3H7+OH has a single saddle point(typical for the TST),and consequently,the TST andμVT methods were applied in this case.These calculations are based upon dual-level strategy extensive electronic structure determinations. According to the geometries,harmonic frequencies,and energy of reactants,products and TSs,the thermal rate constants of the main reaction channel have been calculated at different temperature ranging from 298 K to 1000 K,which are plotted in Fig.4 as a typical Arrhenius behaviour.The calculated rate constants for C3H8+O(3P)→C3H7+OH reaction are 3.43×10-15,1.46×10-11,1.54×10-11,1.63×10-11cm3/(molecule·s) at 298,939,946,and 957 K by usingμVT/SCT method.The value of the rate constant at 298 K is in better agreement with the experimental result (6.6×10-15cm3/(molecule·s)[5]than that from Troya’s calculation(9.60×10-16cm3/(molecule·s)[10].Besides,these calculated rate constant values at 939,946,and 957 K are also in good agreement with the experimental results(8.44×10-12,5.80×10-12,7.63×10-12cm3/(molecule·s)obtained by Miyoshi et al.[6],respectively.Ⅰn addition,the branching ratios (kn/ki)are calculated at 593,944,and 1130 K,respectively.And the obtained values(0.35,0.72,0.88)are in good agreement with the experimental values(0.41,0.80,0.92)[7].The remaining discrepancy between the experimental and present theoretical values may be because there is some uncertain factors in the experiments [20,29,30].We also find that at low temperatures,the effect of tunneling on rate constants is obvious,and the correction of tunneling effect is necessary[16].For instance,tunnelling accounts for about 91%of reaction rate constant at 298 K,and proportion decreases to 18% at 1000 K.The comparison with previous theoretical calculation as well as the experimental measurements is also shown in Fig.4.Ⅰt is encouraging to see that our results are in good agreement with the experimental values within limits of error.And theμVT/SCT calculation results are closer to the experimental results than μVT calculation results,which indicates that the tunneling effect plays an important role in rate constants. The result estimated by SCT method is improved significantly.

    FⅠG.4Arrheniusplotforthereactionof C3H8+O(3P)→C3H7+OH.TST:presentstudyTST calculation,μVT:present study usingμVT calculation,μVT/SCT:present study usingμVT with SCT calculation,TST(other)from Ref.[10],Expt.1:experimental data from Ref.[5],Expt.2:experimental data from Ref.[6].

    D.The kinetic isotope effects for C3H8+O(3P) →i-C3H7+OH

    Following the calculation for the reaction rate constants of C3H8+O(3P)→i-C3H7+OH,we perform a study for isotopic substitution effect.Ⅰt is well known that the change of isotope will affect rate constants,which can also provide vital clues for reaction pathways. Generally,isotopic substitution occurs in an atom that participates in the reaction,which will produce the primary isotope effect;if the isotopic substitution is made with an atom that does not take part in the reaction directly,a secondary isotope effect will be produced[31].

    Ⅰn our study,these two isotope effects are both considered in the hydrogen-abstraction reaction of C3H8+O(3P)→i-C3H7+OH.As shown in Fig.5,all the rate constants are calculated using TST andμVT methods.And the quantum-tunneling effects are also estimated by SCT method.For the first case(Fig.5(a)),the H atom that participates in the reaction directly is replaced by D atom,C3H7D+O(3P)→i-C3H7+OD (R1),and there is only the primary isotope effect.Compared with the rate constants of C3H8+O(3P)reaction,the obtained rate constants with primary isotope effect are lower.For the second case(Fig.5(b)),where all H atoms in propane molecule are substituted by D atoms,C3D8+O(3P)→i-C3D7+OD(R2),the primary and secondary isotope effects coexist in the hydrogenabstraction reaction.From the Fig.5(b),we notice that the reaction rate constants with the secondary isotope effect are lower than that with only the primary isotope effect.

    Comparing the above reaction rate constants,we notice that rate constants with isotope effects are all lower than C3H8+O(3P)→i-C3H7+OH reaction.This may result from that the C-D bond has a lower zero-point energy than the C-H bond and a higher activation energy for bond breaking is therefore required.We also find that the primary isotope effect is the main impact of the rate constants.This is because that the atom substituted by isotopic atom does not directly participate in the reaction,and extra activation energy for bond breaking is not needed.

    IV.CONCLUSION

    We have used the ab initio and dynamical methods to compute the rate constants,and investigated the path energy and reaction barriers of the hydrogenabstraction reactions between O(3P)atom and propane molecule.Among,the reaction barriers for title abstraction reaction are calculated by using a dual-level strategy.We find out three channels and determine the lowest barrier channel(C3H8+O(3P)→i-C3H7+OH)in this reaction.This theoretical research on the typical reaction reveals the characteristics of the propane combustion reaction,which provides a theoretical support for the accurate measurements of the combustion intermediates and final products.The vdW wells found in this work are expected to play an important role in more detailed dynamical studies.Besides,the reaction rate constants of C3H8+O(3P)→C3H7+OH reaction are calculated usingμVT method with high accuracy,and the quantum-tunneling effects are accounted for by the multidimensional small-curvature-tunneling transmission coefficient.The temperature range for the computed rate constants is from 298 K to 1000 K,and the obtained rate constants at 298,939,946,and 957 K are in very good agreement with the experimental results.Additionally,the calculated branching ratios of the title reaction at 593,944,and 1130 K are also in good agreement with the experimental results.What’s more,the isotope effects of C3H8+O(3P)are calculated and discussed.Ⅰmportantly,these calculations have revealed the hydrogen-abstraction mechanisms of propane,which would be helpful for a deeper under-standing of the combustion of hydrocarbon.

    FⅠG.5Arrhenius plot for the isotope effects on the rateconstants.R1:Hatom,whichisdirectly participateinthereaction,substitutedbyDatom,C3H7D+O(3P)→i-C3H7+OD.R2:all H atoms in propane molecule substituted by D atoms,and secondary isotope effect exists,C3D8+O(3P)→i-C3D7+OD.(a)Comparing the results of TST,μVT,μVT/SCT,and TST(R1),μVT(R1),μVT/SCT(R1).(b)Comparing the results of TST(R1),μVT(R1),μVT/SCT(R1),and TST(R2),μVT(R2),μVT/SCT(R2).TST:present study TST calculation.μVT:present studyμVT calculation.μVT/SCT: present studyμVT with SCT calculation.

    V.ACKNOWLEDGMENTS

    ThisworkissupportedbytheChineseMinistry of Science and Technology(No.2013CB834601),andtheNationalNaturalScienceFoundationof China(No.21303217 and No.21473218),andⅠnstitute of Chemistry,Chinese Academy of Sciences (No.20140160).

    [1]K.J.Morganti,T.M.Foong,M.J.Brear,G.da Silva,Y.Yang,and F.L.Dryer,F(xiàn)uel 108,797(2013).

    [2]N.C.Surawski,B.Miljevic,T.A.Bodisco,R.Situ,R. J.Brown,and Z.D.Ristovski,F(xiàn)uel 133,17(2014).

    [3]A.G.McLain and C.J.Jachimowski,NASA Technical Note.D-8501(1977).

    [4]S.P.Jewell,K.A.Holbrook,and G.A.Oldershaw,Ⅰnt. J.Chem.Kinet.13,69(1981).

    [5]N.Cohen and K.R.Westberg,J.Phys.Chem.20,1211 (1991).

    [6]A.Miyoshi,K.Tsuchiya,N.Yamauchi,and H.Matsui,J.Phys.Chem.98,11452(1994).

    [7]A.Miyoshi,N.Yamauchi,and H.Matsui,J.Phys. Chem.100,4893(1996).

    [8]J.Zhang,L.Yang,and D.Troya,Chin.J.Chem.Phys. 26,765(2013).

    [9]D.Troya and G.C.Schatz,Theor.Chem.Rea.Dynam. 145,329(2004).

    [10]D.Troya,J.Phys.Chem A 111,10745(2007).

    [11]C.Gonzalez and H.B.Schlegel,J.Phys.Chem.94,5523(1990).

    [12]K.Fukuil,J.Phys.Chem.74,4161(1970).

    [13]H.Zhao,W.Bian,and K.Liu,J.Phys.Chem.A 110,7858(2006).

    [14]H.Zhao,L.Pan,and W.Bian,Ⅰnt.J.Quantum.Chem. 112,858(2012).

    [15]H.Ma,C.Shi,W.Bian,H.Su,and F.Kong,Chin.J. Chem.Phys.20,383(2007).

    [16]J.Cao,Z.Zhang,C.Zhang,W.Bian,and Y.Guo,J. Chem.Phys.134.024315(2011).

    [17]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheese-man,G.Scalmani,V. Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Ⅰzmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M. Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ⅰshida, T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F(xiàn).Ogliaro,M. Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V. N.Staroverov,T.Keith,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Ⅰyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Wallingford CT:Gaussian,Ⅰnc.,(2010).

    [18]J.Zheng,S.Zhang,B.J.Lynch,J.C.Corchado,Y.Y. Chuang,P.L.Fast,W.P.Hu,Y.P.Liu,G.C.Lynch,K.A.Nguyen,C.F.Jackels,A.Fernandez Ramos,B. A.Ellingson,V.S.Melissas,J.Vill`a,Ⅰ.Rossi,E.L. Coiti?no,J.Pu,T.V.Albu,A.Ratkiewicz,R.Steckler,B.C.Garrett,A.D.Ⅰsaacson,and D.G.Truhlar,Polyrate,version 2015,Minneapolis:University of Minnesota,(2015).

    [19]Q.S.Li,J.Yang,and S.Zhang,J.Phys.Chem.A.110,11113(2006).

    [20]H.Ma,X.Liu,W.Bian,L.Meng,and S.Zheng,ChemPhysChem.7,1786(2006).

    [21]W.J.van Zeist,A.H.Koers,L.P.Wolters,and F.M. Bickelhaupt,J.Chem.Theory Comput.4,920(2008).

    [

    22]X.Liu,W.Bian,X.Zhao,and X.Tao,J.Chem.Phys. 125,074306(2006).

    [23]D.Skouteris,D.E.Manolopoulos,W.Bian,H.J. Werner,L.H.Lai,and K.Liu,Science 286,1713 (1999).

    [24]C.Zhang,M.Fu,Z.Shen,H.Ma,and W.Bian,J. Chem.Phys.140,234301(2014).

    [25]J.Yu,S.Chen,and C.Yu,J.Chem.Phys.118,582 (2003).

    [26]A.Neugebauer and G.H¨afelinger,Ⅰnt.J.Mol.Sci.6,157(2005).

    [27]K.G.M.Florian Ausfeldera,Prog.React.Kinet.Mech. 25,299(2000).

    [28]K.Ukui,Acc.Chem.Res.14,363(1981).

    [29]K.Ⅰshida,K.Morokuma,and A.Komornicki,J.Chem. Phys.66,2153(1977).

    [30]X.Liu,M.A.MacDonald,and R.D.Coombe,J.Phys. Chem.96,4907(1992).

    [31]T.H.R.Lowry,K.S Richardson,Mechanism and Theory in Organic Chemistry,New York:Harper and Row,232(1987).

    Fu-qiang Jinga,b,Jian-wei Caob,Xiao-jun Liua,Yu-feng Hua,Hai-tao Mab?,Wen-sheng Bianb,c?
    a.Key Laboratory of Luminescence and Optical Information,Ministry of Education,Beijing Jiaotong University,Beijing 100044,China
    b.Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China
    c.University of Chinese Academy of Sciences,Beijing 100049,China
    (Dated:Received on March 7 2016;Accepted on April 29,2016)
    The reaction of C3H8+O(3P)→C3H7+OH is investigated using ab initio calculation and dynamical methods.Electronic structure calculations for all stationary points are obtained using a dual-level strategy.The geometry optimization is performed using the unrestricted second-order M?ller-Plesset perturbation method and the single-point energy is computed using the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method.Results indicate that the main reaction channel is C3H8+O(3P)→i-C3H7+OH.Based upon the ab initio data,thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K.These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies,and the branching ratios of the reaction are also calculated in the present work.Furthermore,the isotope effects of the title reaction are calculated and discussed.The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.
    Key words:Reaction mechanism,Thermal rate constant,Variational transition state theory,Ⅰsotope effect

    ?

    Authors to whom correspondence should be addressed.E-mail: mht@iccas.ac.cn,bian@iccas.ac.cn

    国产成人系列免费观看| 日韩免费av在线播放| 亚洲欧洲精品一区二区精品久久久| a在线观看视频网站| 欧美激情极品国产一区二区三区| 男女午夜视频在线观看| 一边摸一边做爽爽视频免费| 亚洲五月色婷婷综合| netflix在线观看网站| 一级毛片女人18水好多| 久久久久久亚洲精品国产蜜桃av| 欧美一级毛片孕妇| 国产成人啪精品午夜网站| 9色porny在线观看| 在线观看免费高清a一片| 成人18禁高潮啪啪吃奶动态图| 真人做人爱边吃奶动态| 中文字幕高清在线视频| 又黄又粗又硬又大视频| 亚洲欧美日韩另类电影网站| 九色亚洲精品在线播放| 成人特级黄色片久久久久久久| 国产精品99久久99久久久不卡| 黄网站色视频无遮挡免费观看| 一级黄色大片毛片| 一区二区三区激情视频| ponron亚洲| 乱人伦中国视频| av中文乱码字幕在线| av欧美777| 一区福利在线观看| 亚洲久久久国产精品| 精品久久久久久久毛片微露脸| 久久人妻熟女aⅴ| 夜夜爽天天搞| 女警被强在线播放| 中出人妻视频一区二区| 一级毛片女人18水好多| 亚洲va日本ⅴa欧美va伊人久久| 亚洲伊人色综图| 97碰自拍视频| 久久人妻福利社区极品人妻图片| 日本vs欧美在线观看视频| 久久香蕉激情| 日本五十路高清| 99久久精品国产亚洲精品| 亚洲欧美激情综合另类| 99久久综合精品五月天人人| 国产精品一区二区免费欧美| 精品久久久精品久久久| 女同久久另类99精品国产91| 嫩草影视91久久| 国产主播在线观看一区二区| 亚洲精品国产精品久久久不卡| 天堂中文最新版在线下载| 美女高潮到喷水免费观看| 国产成年人精品一区二区 | 极品教师在线免费播放| 久久精品成人免费网站| 三级毛片av免费| 日韩欧美在线二视频| 91精品国产国语对白视频| 岛国在线观看网站| 亚洲成人久久性| 久久国产精品男人的天堂亚洲| 欧美黑人欧美精品刺激| 国产有黄有色有爽视频| 国产精品成人在线| 亚洲免费av在线视频| 欧美大码av| 女人爽到高潮嗷嗷叫在线视频| 老熟妇乱子伦视频在线观看| 女人被躁到高潮嗷嗷叫费观| 巨乳人妻的诱惑在线观看| 长腿黑丝高跟| 国产成人精品无人区| 99香蕉大伊视频| 成熟少妇高潮喷水视频| 精品高清国产在线一区| 欧美国产精品va在线观看不卡| 欧美不卡视频在线免费观看 | 无遮挡黄片免费观看| 1024香蕉在线观看| 一个人免费在线观看的高清视频| 久久香蕉国产精品| 欧美激情 高清一区二区三区| 亚洲国产看品久久| 在线观看免费视频网站a站| 中文字幕人妻丝袜一区二区| 99精国产麻豆久久婷婷| 18禁裸乳无遮挡免费网站照片 | 成人特级黄色片久久久久久久| 久久欧美精品欧美久久欧美| 日韩欧美三级三区| 母亲3免费完整高清在线观看| 香蕉国产在线看| 高潮久久久久久久久久久不卡| 老熟妇仑乱视频hdxx| 欧美日韩中文字幕国产精品一区二区三区 | 国产亚洲精品久久久久久毛片| 国产一卡二卡三卡精品| 99热国产这里只有精品6| 久久久久久久久中文| 午夜影院日韩av| 精品免费久久久久久久清纯| 天堂影院成人在线观看| 丝袜在线中文字幕| 一个人免费在线观看的高清视频| 欧美一级毛片孕妇| 亚洲一区二区三区色噜噜 | 高清在线国产一区| 18禁观看日本| 日本a在线网址| 日本三级黄在线观看| 亚洲五月色婷婷综合| 男女床上黄色一级片免费看| 69精品国产乱码久久久| 成人永久免费在线观看视频| 久久天堂一区二区三区四区| 热99re8久久精品国产| av电影中文网址| 美女午夜性视频免费| 亚洲国产欧美一区二区综合| 亚洲精品久久午夜乱码| 12—13女人毛片做爰片一| 久久久国产精品麻豆| 女人被狂操c到高潮| 欧美日韩精品网址| 亚洲精品粉嫩美女一区| 老司机福利观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲第一青青草原| 精品无人区乱码1区二区| 一本大道久久a久久精品| 国产精品香港三级国产av潘金莲| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| 国产精品99久久99久久久不卡| 亚洲av成人不卡在线观看播放网| 精品国产美女av久久久久小说| 男女下面插进去视频免费观看| 午夜成年电影在线免费观看| 岛国在线观看网站| 精品人妻1区二区| 他把我摸到了高潮在线观看| 国产亚洲精品久久久久5区| 欧美日韩视频精品一区| 97超级碰碰碰精品色视频在线观看| 色综合欧美亚洲国产小说| 亚洲精品av麻豆狂野| 变态另类成人亚洲欧美熟女 | 男女午夜视频在线观看| 天堂动漫精品| 十八禁人妻一区二区| 校园春色视频在线观看| 亚洲av成人一区二区三| 午夜视频精品福利| 久久精品国产清高在天天线| 国产精品国产av在线观看| 色综合站精品国产| 无人区码免费观看不卡| 黑人欧美特级aaaaaa片| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产看品久久| 久久久国产成人免费| 女人爽到高潮嗷嗷叫在线视频| 欧美黑人精品巨大| 极品人妻少妇av视频| 757午夜福利合集在线观看| 亚洲激情在线av| 欧美成狂野欧美在线观看| 精品久久蜜臀av无| av网站在线播放免费| 欧美大码av| 欧美日韩精品网址| 免费少妇av软件| 午夜福利免费观看在线| 亚洲色图 男人天堂 中文字幕| 欧美成人免费av一区二区三区| 亚洲中文日韩欧美视频| a级毛片黄视频| 天天躁狠狠躁夜夜躁狠狠躁| 美女高潮到喷水免费观看| 男人的好看免费观看在线视频 | 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av香蕉五月| 欧美日韩视频精品一区| 欧美日韩av久久| 黄片小视频在线播放| 美女 人体艺术 gogo| 亚洲国产精品合色在线| 国产一区二区激情短视频| 人妻久久中文字幕网| 国产无遮挡羞羞视频在线观看| 俄罗斯特黄特色一大片| 搡老乐熟女国产| 韩国精品一区二区三区| 超色免费av| 91在线观看av| 80岁老熟妇乱子伦牲交| 国产单亲对白刺激| 亚洲一区二区三区色噜噜 | 日日爽夜夜爽网站| 另类亚洲欧美激情| 国产极品粉嫩免费观看在线| a级毛片黄视频| 老汉色av国产亚洲站长工具| 狂野欧美激情性xxxx| 丰满饥渴人妻一区二区三| 国产精品自产拍在线观看55亚洲| 精品国产乱子伦一区二区三区| 精品久久久久久,| 大香蕉久久成人网| 欧美日韩精品网址| videosex国产| 久久久久久久久免费视频了| 国产高清激情床上av| 国产极品粉嫩免费观看在线| 丰满饥渴人妻一区二区三| 国内毛片毛片毛片毛片毛片| 中文字幕av电影在线播放| 日韩精品免费视频一区二区三区| 极品人妻少妇av视频| 国产精品亚洲一级av第二区| 在线看a的网站| 精品国内亚洲2022精品成人| 国产91精品成人一区二区三区| 亚洲免费av在线视频| 激情视频va一区二区三区| 国产精品av久久久久免费| av天堂久久9| 伊人久久大香线蕉亚洲五| 亚洲精华国产精华精| 亚洲中文日韩欧美视频| 亚洲熟妇中文字幕五十中出 | 国产91精品成人一区二区三区| 女人精品久久久久毛片| 不卡一级毛片| 一个人观看的视频www高清免费观看 | 日本vs欧美在线观看视频| 欧美成人午夜精品| 久久久久久久精品吃奶| 看片在线看免费视频| 国产精品国产av在线观看| 桃色一区二区三区在线观看| 18禁观看日本| 一区在线观看完整版| 亚洲午夜精品一区,二区,三区| av有码第一页| 亚洲情色 制服丝袜| 亚洲国产毛片av蜜桃av| 一级作爱视频免费观看| 激情视频va一区二区三区| 欧美成人性av电影在线观看| 免费一级毛片在线播放高清视频 | a级毛片在线看网站| 99久久99久久久精品蜜桃| 宅男免费午夜| 国产成人啪精品午夜网站| 99国产极品粉嫩在线观看| 成人手机av| 欧美激情久久久久久爽电影 | 黄色片一级片一级黄色片| 亚洲精品成人av观看孕妇| 日本免费a在线| xxxhd国产人妻xxx| 久久精品国产清高在天天线| 法律面前人人平等表现在哪些方面| 韩国精品一区二区三区| av福利片在线| 在线观看www视频免费| cao死你这个sao货| 超碰成人久久| 大陆偷拍与自拍| 看免费av毛片| 天堂动漫精品| 欧美久久黑人一区二区| 国产精品国产av在线观看| 中文字幕色久视频| 男女午夜视频在线观看| 精品一区二区三区四区五区乱码| 亚洲成人久久性| 1024视频免费在线观看| 国产精品99久久99久久久不卡| 叶爱在线成人免费视频播放| 久久精品国产综合久久久| 国产一区二区三区综合在线观看| 久久国产精品人妻蜜桃| 1024香蕉在线观看| 亚洲精品国产色婷婷电影| 搡老岳熟女国产| 国产成人一区二区三区免费视频网站| 12—13女人毛片做爰片一| 日韩大码丰满熟妇| 少妇 在线观看| 男女之事视频高清在线观看| 欧美乱色亚洲激情| 国产av精品麻豆| 精品久久久久久久久久免费视频 | 国产区一区二久久| 999久久久国产精品视频| 91国产中文字幕| 老司机在亚洲福利影院| 国产亚洲精品久久久久5区| 男男h啪啪无遮挡| 亚洲男人天堂网一区| 夫妻午夜视频| 自线自在国产av| 免费在线观看影片大全网站| 少妇 在线观看| 亚洲成av片中文字幕在线观看| www国产在线视频色| 亚洲五月色婷婷综合| 国产黄a三级三级三级人| 国产精品秋霞免费鲁丝片| 久久精品国产综合久久久| 国产野战对白在线观看| 亚洲国产精品一区二区三区在线| 正在播放国产对白刺激| 夜夜看夜夜爽夜夜摸 | 老鸭窝网址在线观看| av国产精品久久久久影院| 亚洲自拍偷在线| 久久精品91无色码中文字幕| 性色av乱码一区二区三区2| 如日韩欧美国产精品一区二区三区| 一级毛片高清免费大全| 国产在线观看jvid| 午夜亚洲福利在线播放| 可以免费在线观看a视频的电影网站| 超碰成人久久| 一区二区日韩欧美中文字幕| 麻豆av在线久日| 91老司机精品| 成人av一区二区三区在线看| 国产av精品麻豆| 国产精品 欧美亚洲| 麻豆久久精品国产亚洲av | 十分钟在线观看高清视频www| av免费在线观看网站| 欧美日本中文国产一区发布| 久99久视频精品免费| 欧美 亚洲 国产 日韩一| 久久天堂一区二区三区四区| bbb黄色大片| 9热在线视频观看99| 亚洲精品美女久久久久99蜜臀| 很黄的视频免费| 欧美精品亚洲一区二区| 国产精品av久久久久免费| 国产成人精品久久二区二区免费| 日韩三级视频一区二区三区| 日日摸夜夜添夜夜添小说| 日本黄色日本黄色录像| 黄色怎么调成土黄色| 免费在线观看完整版高清| 成人影院久久| 免费在线观看完整版高清| 国产精品一区二区在线不卡| 1024香蕉在线观看| 最近最新中文字幕大全电影3 | 香蕉久久夜色| 男女之事视频高清在线观看| 不卡av一区二区三区| 久久人妻福利社区极品人妻图片| 无限看片的www在线观看| 黑丝袜美女国产一区| 欧美最黄视频在线播放免费 | 精品久久蜜臀av无| avwww免费| 少妇的丰满在线观看| 精品久久久久久,| 国产成人欧美在线观看| 午夜福利欧美成人| 午夜成年电影在线免费观看| 91麻豆精品激情在线观看国产 | 琪琪午夜伦伦电影理论片6080| xxxhd国产人妻xxx| 久久久国产精品麻豆| 看黄色毛片网站| 午夜福利在线免费观看网站| 高清欧美精品videossex| 露出奶头的视频| 99久久99久久久精品蜜桃| 大陆偷拍与自拍| 美国免费a级毛片| 露出奶头的视频| 91在线观看av| 亚洲欧美一区二区三区黑人| 亚洲av五月六月丁香网| 国产成人影院久久av| 国产亚洲精品久久久久久毛片| 午夜免费激情av| 日韩中文字幕欧美一区二区| 欧美色视频一区免费| 欧美一区二区精品小视频在线| 日本一区二区免费在线视频| 欧美日本亚洲视频在线播放| 成人三级做爰电影| 久久精品aⅴ一区二区三区四区| √禁漫天堂资源中文www| 日韩欧美一区二区三区在线观看| 精品一区二区三区av网在线观看| 成年人免费黄色播放视频| 在线观看免费高清a一片| 国产成人精品在线电影| 两性午夜刺激爽爽歪歪视频在线观看 | 成人18禁在线播放| 免费在线观看完整版高清| 亚洲欧美日韩高清在线视频| 亚洲中文av在线| 亚洲国产欧美网| 99国产综合亚洲精品| 欧美人与性动交α欧美软件| 国产精品 国内视频| 国产亚洲av高清不卡| 两性夫妻黄色片| 999精品在线视频| 日韩有码中文字幕| 午夜影院日韩av| 色综合欧美亚洲国产小说| 日本 av在线| 亚洲欧洲精品一区二区精品久久久| 在线免费观看的www视频| 淫妇啪啪啪对白视频| 19禁男女啪啪无遮挡网站| 亚洲av成人一区二区三| 亚洲国产精品一区二区三区在线| 女同久久另类99精品国产91| 亚洲一卡2卡3卡4卡5卡精品中文| 女人高潮潮喷娇喘18禁视频| 成人亚洲精品av一区二区 | 久久 成人 亚洲| 亚洲狠狠婷婷综合久久图片| 757午夜福利合集在线观看| 日韩人妻精品一区2区三区| 亚洲人成网站在线播放欧美日韩| 国产av又大| 日韩免费av在线播放| 桃色一区二区三区在线观看| 国产主播在线观看一区二区| 国产成人av激情在线播放| 亚洲精品国产精品久久久不卡| netflix在线观看网站| а√天堂www在线а√下载| 亚洲精品一卡2卡三卡4卡5卡| 久久精品亚洲av国产电影网| 18禁观看日本| 久久久久国产一级毛片高清牌| 18禁黄网站禁片午夜丰满| 国产精品乱码一区二三区的特点 | 18禁黄网站禁片午夜丰满| 女人高潮潮喷娇喘18禁视频| 亚洲avbb在线观看| 亚洲男人天堂网一区| 久久国产亚洲av麻豆专区| 国产一区二区三区在线臀色熟女 | 久久精品91无色码中文字幕| 欧美亚洲日本最大视频资源| 亚洲欧美激情综合另类| av在线播放免费不卡| svipshipincom国产片| 丁香欧美五月| 欧美日韩一级在线毛片| 日本黄色日本黄色录像| 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 人妻久久中文字幕网| 亚洲国产毛片av蜜桃av| 精品久久久久久电影网| 纯流量卡能插随身wifi吗| 如日韩欧美国产精品一区二区三区| 不卡av一区二区三区| 天天添夜夜摸| 欧美久久黑人一区二区| 日韩精品免费视频一区二区三区| 成人国语在线视频| 午夜精品国产一区二区电影| 午夜免费激情av| 亚洲专区国产一区二区| 黄频高清免费视频| 热re99久久国产66热| www.999成人在线观看| 高清在线国产一区| 午夜福利欧美成人| 美女 人体艺术 gogo| 久久婷婷成人综合色麻豆| 中国美女看黄片| 国产精品国产高清国产av| 国产一区二区三区在线臀色熟女 | 99国产精品免费福利视频| 在线播放国产精品三级| 精品国产一区二区三区四区第35| 久久久久久亚洲精品国产蜜桃av| 男人舔女人的私密视频| 久久性视频一级片| 国产精品国产高清国产av| 天堂中文最新版在线下载| 精品久久久精品久久久| av网站免费在线观看视频| 久久久久久免费高清国产稀缺| 女警被强在线播放| 在线观看一区二区三区激情| 国产aⅴ精品一区二区三区波| av有码第一页| 色老头精品视频在线观看| 久久精品亚洲av国产电影网| 婷婷精品国产亚洲av在线| www.精华液| 国产欧美日韩精品亚洲av| 午夜福利影视在线免费观看| 丝袜人妻中文字幕| 波多野结衣高清无吗| 欧美成人免费av一区二区三区| 欧美激情 高清一区二区三区| 午夜日韩欧美国产| 亚洲黑人精品在线| 亚洲精品中文字幕在线视频| 十分钟在线观看高清视频www| 另类亚洲欧美激情| 热re99久久国产66热| cao死你这个sao货| 身体一侧抽搐| 精品久久蜜臀av无| 国产欧美日韩精品亚洲av| 老司机深夜福利视频在线观看| 一区二区三区精品91| 最好的美女福利视频网| av天堂久久9| 久久久精品欧美日韩精品| 久热爱精品视频在线9| 视频区图区小说| av欧美777| 国产精品野战在线观看 | 亚洲一区二区三区色噜噜 | 91字幕亚洲| 亚洲国产中文字幕在线视频| 久久香蕉国产精品| 亚洲色图av天堂| 别揉我奶头~嗯~啊~动态视频| 国产真人三级小视频在线观看| av天堂久久9| 女生性感内裤真人,穿戴方法视频| 欧美日韩瑟瑟在线播放| 99香蕉大伊视频| 日韩精品免费视频一区二区三区| 欧美大码av| 国内毛片毛片毛片毛片毛片| 精品国产亚洲在线| 成人国语在线视频| 男女下面进入的视频免费午夜 | 久99久视频精品免费| 国产精品香港三级国产av潘金莲| 黄色丝袜av网址大全| 99热只有精品国产| 亚洲在线自拍视频| 久久精品影院6| 国产1区2区3区精品| 亚洲狠狠婷婷综合久久图片| 在线观看舔阴道视频| 久久人妻福利社区极品人妻图片| 757午夜福利合集在线观看| 亚洲国产欧美一区二区综合| 国产精品98久久久久久宅男小说| 久久99一区二区三区| 老熟妇乱子伦视频在线观看| 欧美在线一区亚洲| 欧美精品亚洲一区二区| 1024视频免费在线观看| 亚洲三区欧美一区| 久久午夜亚洲精品久久| 老司机靠b影院| 国产欧美日韩综合在线一区二区| 成人国产一区最新在线观看| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品第一综合不卡| 91麻豆av在线| 两个人免费观看高清视频| 久久影院123| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| 极品教师在线免费播放| 欧美国产精品va在线观看不卡| 亚洲七黄色美女视频| 在线观看66精品国产| 欧美精品一区二区免费开放| 日韩免费av在线播放| 操美女的视频在线观看| 国产精品久久久av美女十八| www.精华液| 欧美黄色片欧美黄色片| 看片在线看免费视频| 中文字幕人妻丝袜制服| 老熟妇乱子伦视频在线观看| 午夜免费激情av| 999久久久国产精品视频| 国产区一区二久久| 欧美在线黄色| 正在播放国产对白刺激| 亚洲精品粉嫩美女一区| netflix在线观看网站| 日本a在线网址| 九色亚洲精品在线播放| 桃红色精品国产亚洲av| 99久久久亚洲精品蜜臀av| 日本vs欧美在线观看视频| 啦啦啦免费观看视频1| 黄色丝袜av网址大全| 亚洲精品美女久久av网站| 美国免费a级毛片| 亚洲精华国产精华精| 亚洲成人久久性| 国产单亲对白刺激| 久久天堂一区二区三区四区| 国产精品电影一区二区三区|