• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-Principles Study of Magnetism in Transition Metal Doped Na0.5Bi0.5TiO3System

    2016-09-23 06:06:21LinJuTongshuiXuYongjiZhngLiSunSchoolofPhysicsndElectricEngineeringAnyngNormlUniversityAnyng455000ChinDeprtmentofPhysicsTiyunUniversityofTechnologyTiyun030024Chin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    Lin Ju,Tong-shui Xu,Yong-ji Zhng,Li Sun?.School of Physics nd Electric Engineering,Anyng Norml University,Anyng 455000,Chin.Deprtment of Physics,Tiyun University of Technology,Tiyun 030024,Chin

    (Dated:Received on February 2,2016;Accepted on May 4,2016)

    The origins of magnetism in transition-metal doped Na0.5Bi0.5TiO3system are investigated by ab initio calculations.The calculated results indicate that a transition-metal atom substitution for a Ti atom produces magnetic moments,which are due to the spin-polarization of transition-metal 3d electrons.The characteristics of exchange coupling are also calculated,which shows that in Cr-/Mn-/Fe-/Co-doped Na0.5Bi0.5TiO3system,the antiferromagnetic coupling is favorable.The results can successfully explain the experimental phenomenon that,in Mn-/Fe-doped Na0.5Bi0.5TiO3system,the ferromagnetism disappears at low temperature and the paramagnetic component becomes stronger with the increase of doping concentration of Mn/Fe/Co ions.Unexpectedly,we find the Na0.5Bi0.5Ti0.67V0.33iO3system with ferromagnetic coupling is favorable and produces a magnetic moment of 2.00μB,which indicates that low temperature ferromagnetism materials could be made by introducing V atoms in Na0.5Bi0.5TiO3.This may be a new way to produce low temperature multiferroic materials.

    ?

    First-Principles Study of Magnetism in Transition Metal Doped Na0.5Bi0.5TiO3System

    Lin Jua,Tong-shuai Xua,Yong-jia Zhangb,Li Sunb?
    a.School of Physics and Electric Engineering,Anyang Normal University,Anyang 455000,China
    b.Department of Physics,Taiyuan University of Technology,Taiyuan 030024,China

    (Dated:Received on February 2,2016;Accepted on May 4,2016)

    The origins of magnetism in transition-metal doped Na0.5Bi0.5TiO3system are investigated by ab initio calculations.The calculated results indicate that a transition-metal atom substitution for a Ti atom produces magnetic moments,which are due to the spin-polarization of transition-metal 3d electrons.The characteristics of exchange coupling are also calculated,which shows that in Cr-/Mn-/Fe-/Co-doped Na0.5Bi0.5TiO3system,the antiferromagnetic coupling is favorable.The results can successfully explain the experimental phenomenon that,in Mn-/Fe-doped Na0.5Bi0.5TiO3system,the ferromagnetism disappears at low temperature and the paramagnetic component becomes stronger with the increase of doping concentration of Mn/Fe/Co ions.Unexpectedly,we find the Na0.5Bi0.5Ti0.67V0.33iO3system with ferromagnetic coupling is favorable and produces a magnetic moment of 2.00μB,which indicates that low temperature ferromagnetism materials could be made by introducing V atoms in Na0.5Bi0.5TiO3.This may be a new way to produce low temperature multiferroic materials.

    Transition-metal atom,Substitution,Magnetic moment,F(xiàn)irst-principles calculation.

    I.INTRODUCTION

    Ⅰn recent years,multiferroic materials have drawn increasing interest due to their attractive physical properties and potential applications in spintronics,information storage and sensors[1-4].The coupling between the magnetic and electric properties could lead to magnetoelectric effect[1]in which the magnetization can be controlled by application of electric fields,and vice versa.Multiferroic properties have been found in some oxides with perovskite structure[5-7].The observed single-phase multiferrioc materials are few[8],due to the contradiction between the conventional mechanism for cation off-centering in ferroelectrics(which generally requires d0orbitals),and the formation of magnetic moments(which usually results from partially filled d or f orbitals).Related studies on magnetic ferroelectrics have signalled a revival of interest in this phenomenon [2].Several reports show that doping of transition metal ions in a ferroelectric oxide could induce ferromagnetism,a similar case to that of diluted magnetic semiconductors[9,10].

    Na0.5Bi0.5TiO3attracts much attention as a promising environmental friendly lead-free ferroelectric material due to its possible applicability to electromechanical actuators,sensor,and transducers[11].Ⅰt is one among the non-lead free relaxor ferroelectrics having very high remanent polarization Pr=36μC/cm2with a coercive field of about 70 kV/cm[12].At temperatures below 255?C Na0.5Bi0.5TiO3has a rhombohedral structure with R3c space group which has anti-phase (ˉaˉaˉa)octahedral tilting and ion displacements along the[111]direction of the pseudo-cubic cell,making Na0.5Bi0.5TiO3exhibit unique ferroelectric and piezoelectric properties[13].Ⅰn such systems inducing a multifunctional behavior by site specific substitution will be inevitable.Ⅰn Na0.5Bi0.5TiO3,diluted magnetic behavior has been observed by transition-metal substitution at B-site,such as Fe-/Mn-/Co-doped Na0.5Bi0.5TiO3[14-16].All the results above indicate that the substitutional doping with transition metals play a very important role in tuning the electronic and magnetic properties of Na0.5Bi0.5TiO3and related systems.However,the mechanisms of electronic and magnetic of TM-doped Na0.5Bi0.5TiO3remain unclear.

    Ⅰn order to address exactly these above questions,we explore the electronic and magnetic properties of bulk of Na0.5Bi0.5TiO3with transition metals doping via the first-principles density functional theory(DFT). Results demonstrate that,for Na0.5Bi0.5TiO3system,magnetic moments can be induced when one Ti atom is substituted by a TM(TM=V,Cr,Mn,F(xiàn)e,and Co) atom.We also compared the energies of ferromagnetic and antiferromagnetic couplings between two TM atoms substitutions in Na0.5Bi0.5TiO3super-cell.The type of preferential magnetic coupling of system depends upon both the doped transition-metal atoms and the distributions of the Ti atoms substituted.The TM doping concentration was defined as the molar ratio of TM/(TM+Ti).

    II.COMPUTATIONAL DETAILS

    DFT calculations were performed using the planewave pseudopotential method in the Vienna ab initio simulation package(VASP)[17,18].The projector augmented wave(PAW)[19,20]potentials were employed. Considering the fact that LDA may underestimate the Coulomb repulsion and tend to localize the charge density,strong correlation effects were introduced by means of the LDA+U scheme[19].Ⅰn our LDA+U calculation,the on-site effective U parameter(Ueff=U-J=5.8 eV) was proposed by Dudarev et al.[21].The calculated lattice constants of(a=b=5.49?A,c=13.51?A,and α=β=90?,γ=120?)are in good agreement with reported results by Jones and Thomas[13].Special k points were generated with a 3×3×3 grid based on Monkhorst-Pack scheme.We constructed a rhombohedral Na0.5Bi0.5TiO3periodic supercell containing 30 atoms,where a Ti atom is substituted by a TM atom (TM=V,Cr,Mn,F(xiàn)e,and Co).Such substitution corresponds to Na0.5Bi0.5Ti0.84V0.16O3and the doping level is 16%.An energy cutoff of 400 eV was used for the plane wave expansion of the electronic wave function.The cases of pure Na0.5Bi0.5TiO3and TM atoms (TM=V,Cr,Mn,F(xiàn)e,and Co)doped Na0.5Bi0.5TiO3are considered.The total energy is converged to be 1.0×10-4eV/atom,while the Hellman-Feynman force is smaller than 0.01 eV/?A in the optimized structure.

    III.RESULTS AND DISCUSSION

    TherhombohedralNa0.5Bi0.5TiO3,acomplex perovskite-structure compound with Na and Bi ions at the A site of ABO3with a Na:Bi ratio of 1:1 are shown in Fig.1.The density of state(DOS)for the pure system Na0.5Bi0.5TiO3is given in Fig.2(a).Ⅰn addition,the total DOS for pure Na0.5Bi0.5TiO3system also shows that no spin-polarization emerges around the Femi energy level,indicating that the pure Na0.5Bi0.5TiO3is nonmagnetic,as there are no unpaired electrons,the results are in good agreement with Zhang’s report[22].

    Experimentalevidencehasshownthatthe transition-metalatomsreplacetheTiatomsat B-site[14,15].Calculations have been performed on Na0.5Bi0.5Ti0.84V0.16O3(TM=V,Cr,Mn,F(xiàn)e and Co).

    FⅠG.1 The schematic crystal structure of rhombohedral Na0.5Bi0.5TiO3.

    The total DOSs of Na0.5Bi0.5Ti0.84V0.16O3(TM=V,Cr,Mn,F(xiàn)e,and Co)are shown in Fig.2(b)-(f).An obvious spin-split in the spin-up and spin-down total DOS at/near the Fermi level can be found.Clearly,V-,Cr-,F(xiàn)e-,and Co-doped Na0.5Bi0.5TiO3are all half-metals and magnetic with 100%spin polarization. The Mn-doped Na0.5Bi0.5TiO3is magnetic semiconductors,because both the majority and minority spin DOSs are zero at the Fermi level and there is a clear spin polarization between the DOSs of the two spin channels around the Fermi level.According to our calculations,the values of magnetic moments are 1.00,2.00,3.00,2.00,and 1.01μBfor 16%V-,Cr-,Mn-,F(xiàn)e-,and Co-doped Na0.5Bi0.5TiO3,respectively.The total energies of the supercell with Na0.5Bi0.5Ti0.84TM0.16O3(TM=V,Cr,Mn,F(xiàn)e and Co)for spin-polarized and nonspin-polarized modes are also calculated.The correspondingenergydifference?EN-M=EN-EM between the total energies of nonmagnetic state ENand the magnetic state EMare 0.12,0.64,1.32,0.47 and 0.07 eV for 16%V-,Cr-,Mn-,F(xiàn)e-,and Codoped Na0.5Bi0.5TiO3,respectively.All the results show that the magnetic state is more stable than the nonmagnetic one.Figure 3(a)-(e)show the spin-density distribution(spin-up minus spin-down) for Na0.5Bi0.5Ti0.84TM0.16O3(TM=V,Cr,Mn,F(xiàn)e,and Co).The spin density is mainly distributed on the TM atoms.

    Ⅰn order to further understand the electronic structure,the atom-,orbital-,and spin-projected density of the TM atom(TM=V,Cr,F(xiàn)e and Co)d states,Na atoms s,p states,Bi atoms s,p,d states,Ti s,p,d states,and O p states are calculated and presented in Fig.4 for V-,Cr-,F(xiàn)e-,and Co-doped Na0.5Bi0.5TiO3. Obviously,the TM 3d DOS shows an exchange splitting between the spin-up and spin-down DOS peaks at/near the Fermi level,which results in a magnetic moment. As shown in Fig.3(c)-(e),small induced magnetic moments are also observed for the O atoms.The differencebetween the spin-up and spin-down DOS of O pstates can be found,which can been in Fig.4(a)-(d). The O atoms around the 3d TM atoms are polarized while other O atoms are not.That is to say,the polarized electrons are decided by the distance between the O atom and the TM atom.The spin-projected DOS of spin-up orbitals(or spin-down orbitals)pass through the Fermi level and spin-down orbitals(or spin-up orbitals)can exhibit the characteristics of semiconductor. Therefore,V-,Cr-,F(xiàn)e-,and Co-doped Na0.5Bi0.5TiO3are the half-metal materials.

    Subsequently,we perform spin polarized calculations on the Na0.5Bi0.5TiO3supercell with two TM(TM= V,Cr,Mn,F(xiàn)e and Co)atoms substituting for Ti atoms in the lattice.Such substitution corresponds to Na0.5Bi0.5Ti0.67TM0.33O3and the doping level is 33%. Ⅰn the supercell,we investigate three distributions of the two Ti atoms,which are replaced by TM atoms. The three cases are:(i)the two TM atoms are located at the sites of Ti1 and Ti2,respectively,(ii)the two TM atoms are located at the sites of Ti1 and Ti3,respectively,(iii)the two TM atoms are located at the sites of Ti1 and Ti4,respectively.The value of the distance between the two TM atoms located at the sites of Ti1 and Ti5 is too large(more than 9?A),and the magnetic coupling effect is very weak.Therefore,the case of two TM atoms located at the sites of Ti1 and Ti5 is not meaningful to discuss here.

    FⅠG.2 Total density of state of(a)pure Na0.5Bi0.5TiO3,(b)Na0.5Bi0.5Ti0.84V0.16O3,(c)Na0.5Bi0.5Ti0.84Cr0.16O3,(d) Na0.5Bi0.5Ti0.84Mn0.16O3,(e)Na0.5Bi0.5Ti0.84Fe0.16O3and(f)Na0.5Bi0.5Ti0.84Co0.16O3,respectively.The vertical dotted line indicates the Fermi level.

    FⅠG.3Three-dimensionaliso-surfacesofmagnetizationdensityfor(a)Na0.5Bi0.5Ti0.84V0.16O3,(b)Na0.5Bi0.5Ti0.84Cr0.16O3,(c)Na0.5Bi0.5Ti0.84Mn0.16O3,(d)Na0.5Bi0.5Ti0.84Fe0.16O3,and(e)Na0.5Bi0.5Ti0.84Co0.16O3. The yellow iso-surfaces represent the spin density of spin up.The iso-value is 0.01 e/?A3.

    TABLEⅠDistance between two Ti atoms substituted by TM(TM=V,Cr,Mn,F(xiàn)e,and Co)for the three cases of Na0.5Bi0.5Ti0.67TM0.33O3.

    After absolutely optimized,as shown in TableⅠ,the distances between TM(TM=V,Cr,Mn,F(xiàn)e,and Co)atoms for the three cases are almost the same.Ⅰn order to deal with the effect of the magnetic coupling between the two isolated TM atoms,we evaluate the relative energies between ferro-and antiferromagnetically ordered states by LDA+U calculation.TableⅠⅠprovides the energy differences between ferromagnetic state(FM)and antiferromagnetic state(AFM) as well as magnetic moments of two TM atoms doping.Here,?Em=EAFM-EFMrepresents energy difference between antiferromagnetic state and ferromagnetic state after optimization,which enables us to estimate stable states of magnetism coupling.?Em>0 indicates that the ferromagnetic state is more stable than the antiferromagnetic state,while?Em<0 indicates that the antiferromagnetic state is more stable than the ferromagnetic state.The energy differences?E of structures with different distance between the two TM atoms substitution for Ti atoms in Na0.5Bi0.5TiO3are also listed in TableⅠⅠ.By comparing the total energies of the above three cases for Na0.5Bi0.5Ti0.67TM0.33O3(TM=V,Cr,Mn,F(xiàn)e,and Co),we find that the type of preferential magnetic coupling of system depends upon both the doped transition-metal atoms and the distributions of the Ti atoms substituted.

    For the Na0.5Bi0.5Ti0.67TM0.33O3(TM=Fe and Co) system,when the two Fe/Co atoms are located at the sites of Ti1 and Ti2,the system with antiferromagnetic coupling has the lowest energy among the three cases;For the Na0.5Bi0.5Ti0.67TM0.33O3(TM=Cr and Mn) system,when the two Cr/Mn atoms are located at the sites of Ti1 and Ti3,the system with antiferromagnetic coupling has the lowest energy among the three cases. Wang et al.reported experimentally that,as Mn ions doping concentration was increased to 20%,the Mndoped Na0.5Bi0.5TiO3sample shows a strong ferromagnetism at room temperature.However,with further increasing the doping concentration of Mn ions up to 30%,the paramagnetic component becomes stronger[15]. Duan et al.found the ferromagnetism disappeared at 10 K and indicated that inside the Na0.5Bi0.5Ti1-xMnxO3particles,the antiferromagnetic coupling between the Mn ions can be formed[23],which conformed our calculation results.For the Na0.5Bi0.5Ti0.67V0.33O3system,when the two V atoms are located at the sites of Ti1 and Ti2,the system with ferromagnetic coupling has the lowest energy among the three cases and produces amagnetic moment of 2.00μB,indicating that low temperature ferromagnetism materials could be made by introducing V atoms in Na0.5Bi0.5TiO3.This may be a new way to produce multiferroic materials.

    FⅠG.4 Partial DOS of TM d states,Na s,p states,Bi s,p,d states,Ti s,p,d states,V d states,and O p states for Na0.5Bi0.5Ti0.84TM0.16O3and TM=(a)V,(b)Cr,(c)Fe and(d)Co,respectively.The vertical dotted line indicates the Fermi level.

    TABLEⅠⅠThe relative energies of the states FM and AFM(?Em=EAFM-EFM),values of the relative stabilities?E,calculated for the Na0.5Bi0.5Ti0.67TM0.33O3(TM=V,Cr,Mn,F(xiàn)e,and Co).

    IV.CONCLUSION

    We explore the structural,electronic and magnetic properties of TM-doped(TM=V,Cr,Mn Fe and Co) Na0.5Bi0.5TiO3alloys via the first-principles PAW potential within DFT,employing the exchange-correlation potential provided by the LDA+U.The results demonstrate that,for Na0.5Bi0.5TiO3system,magnetic moments can be induced when one Ti atom is substituted by a TM atom.On the electronic structures,the analyses of total DOSs indicate that V-,Cr-,F(xiàn)eand Co-doped Na0.5Bi0.5TiO3alloys are all half-metals and magnetic with 100%spin polarization.Ⅰt also can be found that the magnetic phase is energetically preferred to the nonmagnetic phase for all the Na0.5Bi0.5Ti0.84TM0.16O3(TM=V,Cr,Mn,F(xiàn)e and Co) systems.For V-,Cr-,F(xiàn)e-and Co-doped Na0.5Bi0.5TiO3alloys,the results of spin-projected DOS show that the spin splitting mainly comes from TM3d states. Small magnetic moments are also observed for the O atoms,which are due to the small spin polarization of p-states of O atoms.We also compared the energies of ferromagnetic and antiferromagnetic couplings between two TM(TM=V,Cr,Mn,F(xiàn)e and Co)atoms substitutions in Na0.5Bi0.5TiO3supercell,in which we investigate three distributions.For Cr-/Mn-/Fe-/Codoped Na0.5Bi0.5TiO3system,antiferromagnetic coupling is more stable.The results can successfully explain the experimental phenomenon that,in Mn/Fe doped Na0.5Bi0.5TiO3system,the ferromagnetism disappears at low temperature and the paramagnetic component becomes stronger with the increase of doping concentration of Mn/Fe/Co ions.Furthermore,we find the Na0.5Bi0.5Ti0.67V0.33O3system with ferromagnetic coupling is favorable and produces a magnetic moment of 2.00μB,which indicating that low temperature ferromagnetism materials could be made by introducing V atoms in Na0.5Bi0.5TiO3.This may be a new way to produce low temperature multiferroic materials.

    V.ACKNOWLEDGMENTS

    This work was supported by National Natural Science Foundation of China(No.11547176)and Henan College Key Research Project(No.15A140017).

    [1]N.A.Spaldin and M.Fiebig,Science 309,391(2005).

    [2]W.Eerenstein,N.D.Mathur,and J.F.Scott,Nature 422,759(2006).

    [3]Y.Tokura,Science 312,1481(2006).

    [4]J.F.Scott,Nat.Mater.6,256(2007).

    [5]S.Dong and J.M.Liu,Mod.Phys.Lett.B 26,1230004 (2012).

    [6]J.Wu and J.Wang,J.Alloys.Compd.507,4(2010).

    [7]F.Yan,T.J.Zhu,M.O.Lai,and L.Lu,Scripta Mater. 63,780(2010).

    [8]M.Venkatesan,C.B.Fitzgerald,and J.M.D.Coey,Nature 430,630(2004).

    [9]C.Song,F(xiàn).Zeng,Y.X.Shen,K.W.Geng,Y.N.Xie,Z.Y.Wu,and F.Pan,Phys.Rev.B 73,172412(2006).

    [10]L.B.Luo,Y.G.Zhao,H.F.Tian,J.J.Yang,J.Q.Li,J.J.Ding,B.He,S.Q.Wei,and C.Gao,Phy.Rev.B 79,115210(2009).

    [11]K.Uchino,F(xiàn)erroelectric Devices,New York:Marcel Dekker,(2000).

    [12]G.A.Smolenskii,V.A.Ⅰsupov,A.Ⅰ.Agranovskaya,and N.N.Krainik,Sov.Phys.Solid State 2,2651(1961).

    [13]G.O.Jones and P.A.Thomas,Acta Cryst.B 58,168 (2002).

    [14]Y.Wang,G.Xu,L.Yang,Z.Ren,X.Wei,W.Weng,P.Du,G.Shen,and G.Han,Mater.Sci.Poland,27,471(2009).

    [15]Y.Wang and Y.Wang,Adv.Mater.Res.311,2110 (2011).

    [16]Y.Wang,G.Xu,X.Ji,Z.Ren,W.Weng,P.Du,G. Shen,and G.Han,J.Alloys.Compd.475,L25(2009).

    [17]G.Kresse and J.Hafner,Phys.Rev.B 47,558(1993).

    [18]G.Kresse and J.Joubert,Phys.Rev.B 59,1758(1999).

    [19]P.E.Blchl,Phys.Rev.B 50,17953(1994).

    [20]G.Kresse and J.Hafner,Phys.Rev.B 48,13115(1993).

    [21]S.L.Dudarev,G.A.Botton,S.Y.Savrasov,C.J. Humphreys,and A.P.Sutton,Phys.Rev.B 57,1505 (1998).

    [22]Y.Zhang,J.Hu,F(xiàn).Gao,H.Liu,and H.Qin,Comput. Theore.Chem.967,284(2011).

    [23]H.Duan,M.Wu,Y.Qiu,and S.Huo,Chin.J.Low Temp.Phys.34,143(2012).

    ?

    Author to whom correspondence should be addressed.E-mail: sunlitut@163.com,F(xiàn)AX:+86-351-3176638

    欧美激情 高清一区二区三区| 18在线观看网站| 啦啦啦在线免费观看视频4| 人人妻人人添人人爽欧美一区卜| 成年人午夜在线观看视频| 18禁观看日本| 美女高潮到喷水免费观看| 国产精品 国内视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久国产亚洲av麻豆专区| 激情视频va一区二区三区| 另类亚洲欧美激情| 欧美日韩成人在线一区二区| 两个人看的免费小视频| 国产精品久久久久久精品古装| 久久国产精品男人的天堂亚洲| 精品国产一区二区三区久久久樱花| av免费观看日本| 人人澡人人妻人| 国产 精品1| 国产xxxxx性猛交| 香蕉丝袜av| 亚洲欧美成人综合另类久久久| 国产一区二区 视频在线| 亚洲精品成人av观看孕妇| 日韩一区二区视频免费看| 制服丝袜香蕉在线| 亚洲欧洲日产国产| 国产精品一二三区在线看| kizo精华| 观看av在线不卡| 人人妻人人添人人爽欧美一区卜| 999久久久国产精品视频| 十八禁网站网址无遮挡| 成人国产麻豆网| 一区二区三区四区激情视频| 国产在线一区二区三区精| 亚洲久久久国产精品| 久久免费观看电影| 欧美日韩视频高清一区二区三区二| 欧美成人午夜精品| 高清视频免费观看一区二区| 中文字幕人妻熟女乱码| netflix在线观看网站| 丝瓜视频免费看黄片| 日韩熟女老妇一区二区性免费视频| 观看av在线不卡| av在线播放精品| 丝袜在线中文字幕| 国产精品一区二区在线观看99| 操出白浆在线播放| 女人爽到高潮嗷嗷叫在线视频| 99久久人妻综合| 90打野战视频偷拍视频| 国产一区二区在线观看av| 国产成人免费无遮挡视频| 亚洲色图综合在线观看| 黑丝袜美女国产一区| 色94色欧美一区二区| 国产免费福利视频在线观看| 最新的欧美精品一区二区| 亚洲美女视频黄频| 大片电影免费在线观看免费| 夫妻午夜视频| 久久国产亚洲av麻豆专区| 男人爽女人下面视频在线观看| 国产亚洲一区二区精品| 亚洲国产精品国产精品| 欧美黑人精品巨大| 19禁男女啪啪无遮挡网站| 亚洲av日韩在线播放| 一区在线观看完整版| 中文字幕色久视频| 中文字幕最新亚洲高清| 卡戴珊不雅视频在线播放| a级毛片黄视频| 久久久久久人妻| 亚洲欧美成人精品一区二区| av福利片在线| 无限看片的www在线观看| 亚洲成人免费av在线播放| 你懂的网址亚洲精品在线观看| 久久久久视频综合| 9热在线视频观看99| 考比视频在线观看| 欧美日韩福利视频一区二区| 欧美人与性动交α欧美软件| 热99久久久久精品小说推荐| 日韩精品有码人妻一区| 大片免费播放器 马上看| 丁香六月天网| 中文字幕人妻丝袜制服| 国产高清国产精品国产三级| 久久久久久久国产电影| 免费观看av网站的网址| 欧美久久黑人一区二区| 久久精品国产a三级三级三级| 天天添夜夜摸| 多毛熟女@视频| 欧美成人午夜精品| 色网站视频免费| 亚洲精品乱久久久久久| 一边摸一边做爽爽视频免费| www.av在线官网国产| 亚洲国产av新网站| 亚洲欧美精品综合一区二区三区| 国产一区二区三区综合在线观看| 亚洲成国产人片在线观看| 下体分泌物呈黄色| 黄色视频不卡| 精品一区二区免费观看| 最近的中文字幕免费完整| 亚洲,欧美精品.| 国产熟女午夜一区二区三区| 欧美乱码精品一区二区三区| 久久天堂一区二区三区四区| 日韩制服骚丝袜av| 久久久久国产精品人妻一区二区| 国产一区二区三区综合在线观看| 大码成人一级视频| 热re99久久精品国产66热6| 日韩,欧美,国产一区二区三区| 日韩精品有码人妻一区| 亚洲精品日本国产第一区| 久久天堂一区二区三区四区| 婷婷色综合大香蕉| 2021少妇久久久久久久久久久| 午夜福利一区二区在线看| 成人手机av| 国产av国产精品国产| 精品亚洲成a人片在线观看| 久久精品国产亚洲av高清一级| 亚洲欧洲日产国产| 自线自在国产av| 国产免费福利视频在线观看| 看免费av毛片| 欧美成人午夜精品| 黄色一级大片看看| 国产亚洲午夜精品一区二区久久| 午夜精品国产一区二区电影| 国产精品av久久久久免费| 国产精品免费大片| 蜜桃国产av成人99| 在线看a的网站| 两个人看的免费小视频| 国产欧美日韩一区二区三区在线| 亚洲,欧美,日韩| 亚洲av日韩精品久久久久久密 | 久久久精品94久久精品| 久久韩国三级中文字幕| 久久精品久久久久久久性| 在线观看人妻少妇| 亚洲欧美成人精品一区二区| 香蕉丝袜av| 国产精品一国产av| av又黄又爽大尺度在线免费看| 91精品伊人久久大香线蕉| 婷婷色av中文字幕| 国产精品香港三级国产av潘金莲 | 亚洲国产精品一区二区三区在线| 日韩制服骚丝袜av| 一区二区三区四区激情视频| 麻豆乱淫一区二区| 午夜福利视频在线观看免费| 亚洲中文av在线| 亚洲精品,欧美精品| 中国国产av一级| 美女国产高潮福利片在线看| 国产精品久久久av美女十八| 久久99精品国语久久久| 国产免费一区二区三区四区乱码| 亚洲视频免费观看视频| 成人国语在线视频| 国产一级毛片在线| 大话2 男鬼变身卡| 午夜福利视频精品| 午夜福利,免费看| 日本vs欧美在线观看视频| 美女国产高潮福利片在线看| 夫妻性生交免费视频一级片| 我的亚洲天堂| 久热这里只有精品99| 美女主播在线视频| 亚洲精品成人av观看孕妇| 久久精品人人爽人人爽视色| 日韩av免费高清视频| 亚洲成人一二三区av| 大陆偷拍与自拍| 日韩一卡2卡3卡4卡2021年| 精品国产一区二区久久| 国产精品一区二区在线观看99| 国产黄色免费在线视频| 欧美另类一区| 免费黄色在线免费观看| 亚洲国产日韩一区二区| 欧美人与性动交α欧美精品济南到| 人人澡人人妻人| 久久久久久免费高清国产稀缺| 久久鲁丝午夜福利片| 久久久国产精品麻豆| 一本色道久久久久久精品综合| 欧美人与性动交α欧美软件| 国产不卡av网站在线观看| 观看av在线不卡| 精品久久久精品久久久| 巨乳人妻的诱惑在线观看| 日韩一本色道免费dvd| av国产精品久久久久影院| 国产在线一区二区三区精| 制服丝袜香蕉在线| 国产精品 欧美亚洲| 下体分泌物呈黄色| 18禁国产床啪视频网站| 香蕉国产在线看| 亚洲,一卡二卡三卡| 精品亚洲乱码少妇综合久久| 久久久国产精品麻豆| 日韩不卡一区二区三区视频在线| 久久热在线av| 狠狠精品人妻久久久久久综合| 夫妻性生交免费视频一级片| 中文精品一卡2卡3卡4更新| 9热在线视频观看99| 捣出白浆h1v1| 色婷婷av一区二区三区视频| 男人爽女人下面视频在线观看| 国产又色又爽无遮挡免| 国产精品偷伦视频观看了| 日日爽夜夜爽网站| 九九爱精品视频在线观看| 亚洲第一区二区三区不卡| 欧美中文综合在线视频| 国产乱来视频区| 国产成人精品福利久久| 爱豆传媒免费全集在线观看| 九色亚洲精品在线播放| 十八禁网站网址无遮挡| 一级毛片 在线播放| 最近2019中文字幕mv第一页| 亚洲精品一二三| 这个男人来自地球电影免费观看 | 一区二区三区乱码不卡18| 搡老岳熟女国产| 国产在线免费精品| 少妇人妻久久综合中文| 我要看黄色一级片免费的| 晚上一个人看的免费电影| 老汉色av国产亚洲站长工具| 日韩精品有码人妻一区| 亚洲欧美清纯卡通| 国产爽快片一区二区三区| 性高湖久久久久久久久免费观看| 最新在线观看一区二区三区 | 精品久久久久久电影网| 免费日韩欧美在线观看| 久久天堂一区二区三区四区| 国产精品无大码| 欧美日韩视频高清一区二区三区二| 久久精品久久久久久久性| 不卡视频在线观看欧美| 亚洲国产精品一区三区| 另类亚洲欧美激情| 国产精品欧美亚洲77777| 涩涩av久久男人的天堂| 国产麻豆69| 国产精品国产三级国产专区5o| 国产探花极品一区二区| 日本午夜av视频| 热re99久久国产66热| av线在线观看网站| 亚洲欧美成人精品一区二区| 在线天堂最新版资源| 精品人妻一区二区三区麻豆| 母亲3免费完整高清在线观看| 亚洲精品国产色婷婷电影| 另类精品久久| 日韩熟女老妇一区二区性免费视频| 亚洲国产av影院在线观看| netflix在线观看网站| 女人高潮潮喷娇喘18禁视频| 国产高清不卡午夜福利| 日韩av免费高清视频| 婷婷色综合www| 女人高潮潮喷娇喘18禁视频| 免费观看av网站的网址| 国产精品三级大全| 在线 av 中文字幕| 欧美激情 高清一区二区三区| 日本av免费视频播放| 亚洲国产欧美网| 涩涩av久久男人的天堂| 在线看a的网站| 成人国语在线视频| 91老司机精品| 18禁观看日本| 亚洲视频免费观看视频| 这个男人来自地球电影免费观看 | 久久人人97超碰香蕉20202| 欧美激情高清一区二区三区 | 久久久精品免费免费高清| 久久99精品国语久久久| 日日摸夜夜添夜夜爱| 十八禁高潮呻吟视频| 亚洲av欧美aⅴ国产| 日本爱情动作片www.在线观看| 亚洲人成网站在线观看播放| 国产片内射在线| 国产免费又黄又爽又色| 啦啦啦在线观看免费高清www| 国产日韩欧美亚洲二区| 久久这里只有精品19| 999精品在线视频| 国产极品天堂在线| 韩国av在线不卡| 成年美女黄网站色视频大全免费| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美中文字幕日韩二区| 咕卡用的链子| 日韩制服丝袜自拍偷拍| 久久国产精品大桥未久av| 99热网站在线观看| 99久国产av精品国产电影| 80岁老熟妇乱子伦牲交| 只有这里有精品99| 99久久综合免费| 亚洲国产毛片av蜜桃av| 汤姆久久久久久久影院中文字幕| 国产精品女同一区二区软件| 免费黄网站久久成人精品| 免费观看av网站的网址| 日韩av免费高清视频| 欧美日韩精品网址| 老汉色av国产亚洲站长工具| 国产成人欧美在线观看 | 纵有疾风起免费观看全集完整版| 亚洲精品国产一区二区精华液| 国产精品国产三级国产专区5o| 亚洲,欧美,日韩| 99久久精品国产亚洲精品| 亚洲国产最新在线播放| 国产av一区二区精品久久| 国产精品一国产av| av电影中文网址| 国产精品久久久久久精品古装| 另类精品久久| 美女高潮到喷水免费观看| 亚洲中文av在线| 高清av免费在线| 蜜桃国产av成人99| 在线天堂最新版资源| 久久精品国产综合久久久| 成人免费观看视频高清| 国产1区2区3区精品| 日本黄色日本黄色录像| 少妇猛男粗大的猛烈进出视频| 国产一区二区三区综合在线观看| 国产免费视频播放在线视频| 成人亚洲欧美一区二区av| 毛片一级片免费看久久久久| 99国产综合亚洲精品| 久久久国产一区二区| 免费看av在线观看网站| 黄片无遮挡物在线观看| 天堂俺去俺来也www色官网| 亚洲av中文av极速乱| 国产 精品1| 色精品久久人妻99蜜桃| 亚洲熟女毛片儿| 丝袜人妻中文字幕| 国产精品免费视频内射| 在线观看免费日韩欧美大片| 激情视频va一区二区三区| 欧美精品一区二区免费开放| 国产欧美日韩一区二区三区在线| 精品一区二区免费观看| 午夜影院在线不卡| 美女扒开内裤让男人捅视频| 热99久久久久精品小说推荐| 综合色丁香网| videosex国产| av电影中文网址| 黄频高清免费视频| 欧美精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 久久久久精品性色| 国产成人精品在线电影| 老鸭窝网址在线观看| 制服诱惑二区| 国产在视频线精品| 免费看不卡的av| 极品人妻少妇av视频| 丰满饥渴人妻一区二区三| 黄频高清免费视频| 9色porny在线观看| 亚洲图色成人| 国产99久久九九免费精品| 天天影视国产精品| 亚洲天堂av无毛| 一边摸一边抽搐一进一出视频| 亚洲成色77777| 久久久精品94久久精品| 亚洲专区中文字幕在线 | 欧美国产精品一级二级三级| 黑人巨大精品欧美一区二区蜜桃| 如日韩欧美国产精品一区二区三区| 精品卡一卡二卡四卡免费| 99re6热这里在线精品视频| 亚洲欧洲日产国产| 亚洲第一av免费看| 天天躁夜夜躁狠狠躁躁| 国产精品三级大全| 精品人妻一区二区三区麻豆| 久久精品亚洲av国产电影网| 欧美日韩av久久| 欧美日韩一区二区视频在线观看视频在线| 人人妻人人添人人爽欧美一区卜| 精品人妻在线不人妻| 亚洲免费av在线视频| 亚洲精品国产av蜜桃| 青草久久国产| 丝袜脚勾引网站| 国产伦人伦偷精品视频| 嫩草影院入口| 欧美日本中文国产一区发布| 青春草亚洲视频在线观看| 久久婷婷青草| 狂野欧美激情性xxxx| 老熟女久久久| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 永久免费av网站大全| 欧美乱码精品一区二区三区| 亚洲精品美女久久av网站| 激情五月婷婷亚洲| 午夜福利视频在线观看免费| 日韩av在线免费看完整版不卡| 亚洲国产欧美一区二区综合| 国产免费视频播放在线视频| 亚洲人成网站在线观看播放| 一级片'在线观看视频| 999精品在线视频| 你懂的网址亚洲精品在线观看| 日日爽夜夜爽网站| 国产av一区二区精品久久| 少妇的丰满在线观看| 狠狠精品人妻久久久久久综合| av在线观看视频网站免费| 欧美 亚洲 国产 日韩一| 日本黄色日本黄色录像| 中文字幕最新亚洲高清| 久久亚洲国产成人精品v| 成人国产av品久久久| 国产精品亚洲av一区麻豆 | 国产乱来视频区| 伊人亚洲综合成人网| 我要看黄色一级片免费的| 国产成人精品在线电影| 亚洲 欧美一区二区三区| 国产精品二区激情视频| av一本久久久久| avwww免费| 777米奇影视久久| 亚洲精品一区蜜桃| 欧美日韩一级在线毛片| 婷婷色av中文字幕| 欧美日韩成人在线一区二区| 老司机在亚洲福利影院| 久久久精品国产亚洲av高清涩受| 美女脱内裤让男人舔精品视频| 啦啦啦在线免费观看视频4| 中文字幕人妻丝袜一区二区 | 自线自在国产av| 婷婷色综合大香蕉| 亚洲精品国产区一区二| 中文欧美无线码| 一区二区三区激情视频| av在线观看视频网站免费| 999久久久国产精品视频| 久久久久视频综合| 欧美老熟妇乱子伦牲交| 精品国产国语对白av| 男的添女的下面高潮视频| 999精品在线视频| e午夜精品久久久久久久| 成人午夜精彩视频在线观看| 久久国产亚洲av麻豆专区| 亚洲av日韩在线播放| 在线观看www视频免费| 日韩制服骚丝袜av| 久久久精品免费免费高清| 国精品久久久久久国模美| 亚洲欧美精品自产自拍| 青春草国产在线视频| 日本wwww免费看| 午夜免费观看性视频| 综合色丁香网| 天堂中文最新版在线下载| 国产精品一二三区在线看| 日韩一卡2卡3卡4卡2021年| 人妻 亚洲 视频| 久久青草综合色| 一级毛片黄色毛片免费观看视频| 亚洲熟女毛片儿| 色婷婷av一区二区三区视频| 久久久欧美国产精品| 男男h啪啪无遮挡| 欧美精品人与动牲交sv欧美| 999久久久国产精品视频| av网站在线播放免费| 精品少妇黑人巨大在线播放| 热99国产精品久久久久久7| 国产精品成人在线| 男女午夜视频在线观看| 伦理电影免费视频| 色网站视频免费| 99热全是精品| 91国产中文字幕| 久久精品国产a三级三级三级| 男女边吃奶边做爰视频| 成人免费观看视频高清| 亚洲欧美一区二区三区国产| 一区二区av电影网| 80岁老熟妇乱子伦牲交| 王馨瑶露胸无遮挡在线观看| 欧美日韩一区二区视频在线观看视频在线| 2021少妇久久久久久久久久久| 国产精品久久久久久人妻精品电影 | 亚洲精品日本国产第一区| 天堂中文最新版在线下载| 国产精品嫩草影院av在线观看| 免费观看人在逋| 久久久久精品性色| 十八禁人妻一区二区| 蜜桃国产av成人99| 精品国产一区二区久久| 国产成人系列免费观看| 2018国产大陆天天弄谢| 美女视频免费永久观看网站| 免费在线观看黄色视频的| 精品亚洲乱码少妇综合久久| 日韩中文字幕视频在线看片| 国产日韩欧美视频二区| 热99久久久久精品小说推荐| 国产人伦9x9x在线观看| 国产成人午夜福利电影在线观看| 看免费av毛片| 久久久国产精品麻豆| av卡一久久| 大话2 男鬼变身卡| 亚洲一级一片aⅴ在线观看| 两个人免费观看高清视频| 久久午夜综合久久蜜桃| 19禁男女啪啪无遮挡网站| 亚洲综合精品二区| 满18在线观看网站| 97精品久久久久久久久久精品| av免费观看日本| 伊人久久国产一区二区| 亚洲国产欧美在线一区| 国产淫语在线视频| 国产人伦9x9x在线观看| 黄色视频不卡| 婷婷色综合www| 母亲3免费完整高清在线观看| 狂野欧美激情性bbbbbb| 大香蕉久久成人网| 纯流量卡能插随身wifi吗| 精品久久久久久电影网| 亚洲国产看品久久| 欧美久久黑人一区二区| videosex国产| 久久久久网色| 成人手机av| 自线自在国产av| 一级片'在线观看视频| 久久av网站| 王馨瑶露胸无遮挡在线观看| 亚洲精品aⅴ在线观看| 在线观看www视频免费| 亚洲国产av影院在线观看| 精品国产一区二区三区四区第35| 久久午夜综合久久蜜桃| 欧美日本中文国产一区发布| 午夜福利影视在线免费观看| 久久久亚洲精品成人影院| 另类精品久久| 性少妇av在线| 搡老岳熟女国产| 中国国产av一级| 久久精品人人爽人人爽视色| 国产老妇伦熟女老妇高清| 免费高清在线观看视频在线观看| 亚洲国产欧美日韩在线播放| e午夜精品久久久久久久| 午夜免费男女啪啪视频观看| 中文字幕av电影在线播放| 国产伦人伦偷精品视频| 韩国av在线不卡| 精品国产一区二区久久| 国产淫语在线视频| 精品少妇久久久久久888优播| 老司机影院毛片| 一级a爱视频在线免费观看| 91aial.com中文字幕在线观看| 国产乱人偷精品视频| 黑人猛操日本美女一级片| 精品酒店卫生间| 亚洲精品日本国产第一区| 91aial.com中文字幕在线观看| 日日啪夜夜爽| 欧美中文综合在线视频| 久久鲁丝午夜福利片| 日本欧美国产在线视频| 只有这里有精品99| 亚洲成人免费av在线播放|