• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-Principles Study of Magnetism in Transition Metal Doped Na0.5Bi0.5TiO3System

    2016-09-23 06:06:21LinJuTongshuiXuYongjiZhngLiSunSchoolofPhysicsndElectricEngineeringAnyngNormlUniversityAnyng455000ChinDeprtmentofPhysicsTiyunUniversityofTechnologyTiyun030024Chin
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    Lin Ju,Tong-shui Xu,Yong-ji Zhng,Li Sun?.School of Physics nd Electric Engineering,Anyng Norml University,Anyng 455000,Chin.Deprtment of Physics,Tiyun University of Technology,Tiyun 030024,Chin

    (Dated:Received on February 2,2016;Accepted on May 4,2016)

    The origins of magnetism in transition-metal doped Na0.5Bi0.5TiO3system are investigated by ab initio calculations.The calculated results indicate that a transition-metal atom substitution for a Ti atom produces magnetic moments,which are due to the spin-polarization of transition-metal 3d electrons.The characteristics of exchange coupling are also calculated,which shows that in Cr-/Mn-/Fe-/Co-doped Na0.5Bi0.5TiO3system,the antiferromagnetic coupling is favorable.The results can successfully explain the experimental phenomenon that,in Mn-/Fe-doped Na0.5Bi0.5TiO3system,the ferromagnetism disappears at low temperature and the paramagnetic component becomes stronger with the increase of doping concentration of Mn/Fe/Co ions.Unexpectedly,we find the Na0.5Bi0.5Ti0.67V0.33iO3system with ferromagnetic coupling is favorable and produces a magnetic moment of 2.00μB,which indicates that low temperature ferromagnetism materials could be made by introducing V atoms in Na0.5Bi0.5TiO3.This may be a new way to produce low temperature multiferroic materials.

    ?

    First-Principles Study of Magnetism in Transition Metal Doped Na0.5Bi0.5TiO3System

    Lin Jua,Tong-shuai Xua,Yong-jia Zhangb,Li Sunb?
    a.School of Physics and Electric Engineering,Anyang Normal University,Anyang 455000,China
    b.Department of Physics,Taiyuan University of Technology,Taiyuan 030024,China

    (Dated:Received on February 2,2016;Accepted on May 4,2016)

    The origins of magnetism in transition-metal doped Na0.5Bi0.5TiO3system are investigated by ab initio calculations.The calculated results indicate that a transition-metal atom substitution for a Ti atom produces magnetic moments,which are due to the spin-polarization of transition-metal 3d electrons.The characteristics of exchange coupling are also calculated,which shows that in Cr-/Mn-/Fe-/Co-doped Na0.5Bi0.5TiO3system,the antiferromagnetic coupling is favorable.The results can successfully explain the experimental phenomenon that,in Mn-/Fe-doped Na0.5Bi0.5TiO3system,the ferromagnetism disappears at low temperature and the paramagnetic component becomes stronger with the increase of doping concentration of Mn/Fe/Co ions.Unexpectedly,we find the Na0.5Bi0.5Ti0.67V0.33iO3system with ferromagnetic coupling is favorable and produces a magnetic moment of 2.00μB,which indicates that low temperature ferromagnetism materials could be made by introducing V atoms in Na0.5Bi0.5TiO3.This may be a new way to produce low temperature multiferroic materials.

    Transition-metal atom,Substitution,Magnetic moment,F(xiàn)irst-principles calculation.

    I.INTRODUCTION

    Ⅰn recent years,multiferroic materials have drawn increasing interest due to their attractive physical properties and potential applications in spintronics,information storage and sensors[1-4].The coupling between the magnetic and electric properties could lead to magnetoelectric effect[1]in which the magnetization can be controlled by application of electric fields,and vice versa.Multiferroic properties have been found in some oxides with perovskite structure[5-7].The observed single-phase multiferrioc materials are few[8],due to the contradiction between the conventional mechanism for cation off-centering in ferroelectrics(which generally requires d0orbitals),and the formation of magnetic moments(which usually results from partially filled d or f orbitals).Related studies on magnetic ferroelectrics have signalled a revival of interest in this phenomenon [2].Several reports show that doping of transition metal ions in a ferroelectric oxide could induce ferromagnetism,a similar case to that of diluted magnetic semiconductors[9,10].

    Na0.5Bi0.5TiO3attracts much attention as a promising environmental friendly lead-free ferroelectric material due to its possible applicability to electromechanical actuators,sensor,and transducers[11].Ⅰt is one among the non-lead free relaxor ferroelectrics having very high remanent polarization Pr=36μC/cm2with a coercive field of about 70 kV/cm[12].At temperatures below 255?C Na0.5Bi0.5TiO3has a rhombohedral structure with R3c space group which has anti-phase (ˉaˉaˉa)octahedral tilting and ion displacements along the[111]direction of the pseudo-cubic cell,making Na0.5Bi0.5TiO3exhibit unique ferroelectric and piezoelectric properties[13].Ⅰn such systems inducing a multifunctional behavior by site specific substitution will be inevitable.Ⅰn Na0.5Bi0.5TiO3,diluted magnetic behavior has been observed by transition-metal substitution at B-site,such as Fe-/Mn-/Co-doped Na0.5Bi0.5TiO3[14-16].All the results above indicate that the substitutional doping with transition metals play a very important role in tuning the electronic and magnetic properties of Na0.5Bi0.5TiO3and related systems.However,the mechanisms of electronic and magnetic of TM-doped Na0.5Bi0.5TiO3remain unclear.

    Ⅰn order to address exactly these above questions,we explore the electronic and magnetic properties of bulk of Na0.5Bi0.5TiO3with transition metals doping via the first-principles density functional theory(DFT). Results demonstrate that,for Na0.5Bi0.5TiO3system,magnetic moments can be induced when one Ti atom is substituted by a TM(TM=V,Cr,Mn,F(xiàn)e,and Co) atom.We also compared the energies of ferromagnetic and antiferromagnetic couplings between two TM atoms substitutions in Na0.5Bi0.5TiO3super-cell.The type of preferential magnetic coupling of system depends upon both the doped transition-metal atoms and the distributions of the Ti atoms substituted.The TM doping concentration was defined as the molar ratio of TM/(TM+Ti).

    II.COMPUTATIONAL DETAILS

    DFT calculations were performed using the planewave pseudopotential method in the Vienna ab initio simulation package(VASP)[17,18].The projector augmented wave(PAW)[19,20]potentials were employed. Considering the fact that LDA may underestimate the Coulomb repulsion and tend to localize the charge density,strong correlation effects were introduced by means of the LDA+U scheme[19].Ⅰn our LDA+U calculation,the on-site effective U parameter(Ueff=U-J=5.8 eV) was proposed by Dudarev et al.[21].The calculated lattice constants of(a=b=5.49?A,c=13.51?A,and α=β=90?,γ=120?)are in good agreement with reported results by Jones and Thomas[13].Special k points were generated with a 3×3×3 grid based on Monkhorst-Pack scheme.We constructed a rhombohedral Na0.5Bi0.5TiO3periodic supercell containing 30 atoms,where a Ti atom is substituted by a TM atom (TM=V,Cr,Mn,F(xiàn)e,and Co).Such substitution corresponds to Na0.5Bi0.5Ti0.84V0.16O3and the doping level is 16%.An energy cutoff of 400 eV was used for the plane wave expansion of the electronic wave function.The cases of pure Na0.5Bi0.5TiO3and TM atoms (TM=V,Cr,Mn,F(xiàn)e,and Co)doped Na0.5Bi0.5TiO3are considered.The total energy is converged to be 1.0×10-4eV/atom,while the Hellman-Feynman force is smaller than 0.01 eV/?A in the optimized structure.

    III.RESULTS AND DISCUSSION

    TherhombohedralNa0.5Bi0.5TiO3,acomplex perovskite-structure compound with Na and Bi ions at the A site of ABO3with a Na:Bi ratio of 1:1 are shown in Fig.1.The density of state(DOS)for the pure system Na0.5Bi0.5TiO3is given in Fig.2(a).Ⅰn addition,the total DOS for pure Na0.5Bi0.5TiO3system also shows that no spin-polarization emerges around the Femi energy level,indicating that the pure Na0.5Bi0.5TiO3is nonmagnetic,as there are no unpaired electrons,the results are in good agreement with Zhang’s report[22].

    Experimentalevidencehasshownthatthe transition-metalatomsreplacetheTiatomsat B-site[14,15].Calculations have been performed on Na0.5Bi0.5Ti0.84V0.16O3(TM=V,Cr,Mn,F(xiàn)e and Co).

    FⅠG.1 The schematic crystal structure of rhombohedral Na0.5Bi0.5TiO3.

    The total DOSs of Na0.5Bi0.5Ti0.84V0.16O3(TM=V,Cr,Mn,F(xiàn)e,and Co)are shown in Fig.2(b)-(f).An obvious spin-split in the spin-up and spin-down total DOS at/near the Fermi level can be found.Clearly,V-,Cr-,F(xiàn)e-,and Co-doped Na0.5Bi0.5TiO3are all half-metals and magnetic with 100%spin polarization. The Mn-doped Na0.5Bi0.5TiO3is magnetic semiconductors,because both the majority and minority spin DOSs are zero at the Fermi level and there is a clear spin polarization between the DOSs of the two spin channels around the Fermi level.According to our calculations,the values of magnetic moments are 1.00,2.00,3.00,2.00,and 1.01μBfor 16%V-,Cr-,Mn-,F(xiàn)e-,and Co-doped Na0.5Bi0.5TiO3,respectively.The total energies of the supercell with Na0.5Bi0.5Ti0.84TM0.16O3(TM=V,Cr,Mn,F(xiàn)e and Co)for spin-polarized and nonspin-polarized modes are also calculated.The correspondingenergydifference?EN-M=EN-EM between the total energies of nonmagnetic state ENand the magnetic state EMare 0.12,0.64,1.32,0.47 and 0.07 eV for 16%V-,Cr-,Mn-,F(xiàn)e-,and Codoped Na0.5Bi0.5TiO3,respectively.All the results show that the magnetic state is more stable than the nonmagnetic one.Figure 3(a)-(e)show the spin-density distribution(spin-up minus spin-down) for Na0.5Bi0.5Ti0.84TM0.16O3(TM=V,Cr,Mn,F(xiàn)e,and Co).The spin density is mainly distributed on the TM atoms.

    Ⅰn order to further understand the electronic structure,the atom-,orbital-,and spin-projected density of the TM atom(TM=V,Cr,F(xiàn)e and Co)d states,Na atoms s,p states,Bi atoms s,p,d states,Ti s,p,d states,and O p states are calculated and presented in Fig.4 for V-,Cr-,F(xiàn)e-,and Co-doped Na0.5Bi0.5TiO3. Obviously,the TM 3d DOS shows an exchange splitting between the spin-up and spin-down DOS peaks at/near the Fermi level,which results in a magnetic moment. As shown in Fig.3(c)-(e),small induced magnetic moments are also observed for the O atoms.The differencebetween the spin-up and spin-down DOS of O pstates can be found,which can been in Fig.4(a)-(d). The O atoms around the 3d TM atoms are polarized while other O atoms are not.That is to say,the polarized electrons are decided by the distance between the O atom and the TM atom.The spin-projected DOS of spin-up orbitals(or spin-down orbitals)pass through the Fermi level and spin-down orbitals(or spin-up orbitals)can exhibit the characteristics of semiconductor. Therefore,V-,Cr-,F(xiàn)e-,and Co-doped Na0.5Bi0.5TiO3are the half-metal materials.

    Subsequently,we perform spin polarized calculations on the Na0.5Bi0.5TiO3supercell with two TM(TM= V,Cr,Mn,F(xiàn)e and Co)atoms substituting for Ti atoms in the lattice.Such substitution corresponds to Na0.5Bi0.5Ti0.67TM0.33O3and the doping level is 33%. Ⅰn the supercell,we investigate three distributions of the two Ti atoms,which are replaced by TM atoms. The three cases are:(i)the two TM atoms are located at the sites of Ti1 and Ti2,respectively,(ii)the two TM atoms are located at the sites of Ti1 and Ti3,respectively,(iii)the two TM atoms are located at the sites of Ti1 and Ti4,respectively.The value of the distance between the two TM atoms located at the sites of Ti1 and Ti5 is too large(more than 9?A),and the magnetic coupling effect is very weak.Therefore,the case of two TM atoms located at the sites of Ti1 and Ti5 is not meaningful to discuss here.

    FⅠG.2 Total density of state of(a)pure Na0.5Bi0.5TiO3,(b)Na0.5Bi0.5Ti0.84V0.16O3,(c)Na0.5Bi0.5Ti0.84Cr0.16O3,(d) Na0.5Bi0.5Ti0.84Mn0.16O3,(e)Na0.5Bi0.5Ti0.84Fe0.16O3and(f)Na0.5Bi0.5Ti0.84Co0.16O3,respectively.The vertical dotted line indicates the Fermi level.

    FⅠG.3Three-dimensionaliso-surfacesofmagnetizationdensityfor(a)Na0.5Bi0.5Ti0.84V0.16O3,(b)Na0.5Bi0.5Ti0.84Cr0.16O3,(c)Na0.5Bi0.5Ti0.84Mn0.16O3,(d)Na0.5Bi0.5Ti0.84Fe0.16O3,and(e)Na0.5Bi0.5Ti0.84Co0.16O3. The yellow iso-surfaces represent the spin density of spin up.The iso-value is 0.01 e/?A3.

    TABLEⅠDistance between two Ti atoms substituted by TM(TM=V,Cr,Mn,F(xiàn)e,and Co)for the three cases of Na0.5Bi0.5Ti0.67TM0.33O3.

    After absolutely optimized,as shown in TableⅠ,the distances between TM(TM=V,Cr,Mn,F(xiàn)e,and Co)atoms for the three cases are almost the same.Ⅰn order to deal with the effect of the magnetic coupling between the two isolated TM atoms,we evaluate the relative energies between ferro-and antiferromagnetically ordered states by LDA+U calculation.TableⅠⅠprovides the energy differences between ferromagnetic state(FM)and antiferromagnetic state(AFM) as well as magnetic moments of two TM atoms doping.Here,?Em=EAFM-EFMrepresents energy difference between antiferromagnetic state and ferromagnetic state after optimization,which enables us to estimate stable states of magnetism coupling.?Em>0 indicates that the ferromagnetic state is more stable than the antiferromagnetic state,while?Em<0 indicates that the antiferromagnetic state is more stable than the ferromagnetic state.The energy differences?E of structures with different distance between the two TM atoms substitution for Ti atoms in Na0.5Bi0.5TiO3are also listed in TableⅠⅠ.By comparing the total energies of the above three cases for Na0.5Bi0.5Ti0.67TM0.33O3(TM=V,Cr,Mn,F(xiàn)e,and Co),we find that the type of preferential magnetic coupling of system depends upon both the doped transition-metal atoms and the distributions of the Ti atoms substituted.

    For the Na0.5Bi0.5Ti0.67TM0.33O3(TM=Fe and Co) system,when the two Fe/Co atoms are located at the sites of Ti1 and Ti2,the system with antiferromagnetic coupling has the lowest energy among the three cases;For the Na0.5Bi0.5Ti0.67TM0.33O3(TM=Cr and Mn) system,when the two Cr/Mn atoms are located at the sites of Ti1 and Ti3,the system with antiferromagnetic coupling has the lowest energy among the three cases. Wang et al.reported experimentally that,as Mn ions doping concentration was increased to 20%,the Mndoped Na0.5Bi0.5TiO3sample shows a strong ferromagnetism at room temperature.However,with further increasing the doping concentration of Mn ions up to 30%,the paramagnetic component becomes stronger[15]. Duan et al.found the ferromagnetism disappeared at 10 K and indicated that inside the Na0.5Bi0.5Ti1-xMnxO3particles,the antiferromagnetic coupling between the Mn ions can be formed[23],which conformed our calculation results.For the Na0.5Bi0.5Ti0.67V0.33O3system,when the two V atoms are located at the sites of Ti1 and Ti2,the system with ferromagnetic coupling has the lowest energy among the three cases and produces amagnetic moment of 2.00μB,indicating that low temperature ferromagnetism materials could be made by introducing V atoms in Na0.5Bi0.5TiO3.This may be a new way to produce multiferroic materials.

    FⅠG.4 Partial DOS of TM d states,Na s,p states,Bi s,p,d states,Ti s,p,d states,V d states,and O p states for Na0.5Bi0.5Ti0.84TM0.16O3and TM=(a)V,(b)Cr,(c)Fe and(d)Co,respectively.The vertical dotted line indicates the Fermi level.

    TABLEⅠⅠThe relative energies of the states FM and AFM(?Em=EAFM-EFM),values of the relative stabilities?E,calculated for the Na0.5Bi0.5Ti0.67TM0.33O3(TM=V,Cr,Mn,F(xiàn)e,and Co).

    IV.CONCLUSION

    We explore the structural,electronic and magnetic properties of TM-doped(TM=V,Cr,Mn Fe and Co) Na0.5Bi0.5TiO3alloys via the first-principles PAW potential within DFT,employing the exchange-correlation potential provided by the LDA+U.The results demonstrate that,for Na0.5Bi0.5TiO3system,magnetic moments can be induced when one Ti atom is substituted by a TM atom.On the electronic structures,the analyses of total DOSs indicate that V-,Cr-,F(xiàn)eand Co-doped Na0.5Bi0.5TiO3alloys are all half-metals and magnetic with 100%spin polarization.Ⅰt also can be found that the magnetic phase is energetically preferred to the nonmagnetic phase for all the Na0.5Bi0.5Ti0.84TM0.16O3(TM=V,Cr,Mn,F(xiàn)e and Co) systems.For V-,Cr-,F(xiàn)e-and Co-doped Na0.5Bi0.5TiO3alloys,the results of spin-projected DOS show that the spin splitting mainly comes from TM3d states. Small magnetic moments are also observed for the O atoms,which are due to the small spin polarization of p-states of O atoms.We also compared the energies of ferromagnetic and antiferromagnetic couplings between two TM(TM=V,Cr,Mn,F(xiàn)e and Co)atoms substitutions in Na0.5Bi0.5TiO3supercell,in which we investigate three distributions.For Cr-/Mn-/Fe-/Codoped Na0.5Bi0.5TiO3system,antiferromagnetic coupling is more stable.The results can successfully explain the experimental phenomenon that,in Mn/Fe doped Na0.5Bi0.5TiO3system,the ferromagnetism disappears at low temperature and the paramagnetic component becomes stronger with the increase of doping concentration of Mn/Fe/Co ions.Furthermore,we find the Na0.5Bi0.5Ti0.67V0.33O3system with ferromagnetic coupling is favorable and produces a magnetic moment of 2.00μB,which indicating that low temperature ferromagnetism materials could be made by introducing V atoms in Na0.5Bi0.5TiO3.This may be a new way to produce low temperature multiferroic materials.

    V.ACKNOWLEDGMENTS

    This work was supported by National Natural Science Foundation of China(No.11547176)and Henan College Key Research Project(No.15A140017).

    [1]N.A.Spaldin and M.Fiebig,Science 309,391(2005).

    [2]W.Eerenstein,N.D.Mathur,and J.F.Scott,Nature 422,759(2006).

    [3]Y.Tokura,Science 312,1481(2006).

    [4]J.F.Scott,Nat.Mater.6,256(2007).

    [5]S.Dong and J.M.Liu,Mod.Phys.Lett.B 26,1230004 (2012).

    [6]J.Wu and J.Wang,J.Alloys.Compd.507,4(2010).

    [7]F.Yan,T.J.Zhu,M.O.Lai,and L.Lu,Scripta Mater. 63,780(2010).

    [8]M.Venkatesan,C.B.Fitzgerald,and J.M.D.Coey,Nature 430,630(2004).

    [9]C.Song,F(xiàn).Zeng,Y.X.Shen,K.W.Geng,Y.N.Xie,Z.Y.Wu,and F.Pan,Phys.Rev.B 73,172412(2006).

    [10]L.B.Luo,Y.G.Zhao,H.F.Tian,J.J.Yang,J.Q.Li,J.J.Ding,B.He,S.Q.Wei,and C.Gao,Phy.Rev.B 79,115210(2009).

    [11]K.Uchino,F(xiàn)erroelectric Devices,New York:Marcel Dekker,(2000).

    [12]G.A.Smolenskii,V.A.Ⅰsupov,A.Ⅰ.Agranovskaya,and N.N.Krainik,Sov.Phys.Solid State 2,2651(1961).

    [13]G.O.Jones and P.A.Thomas,Acta Cryst.B 58,168 (2002).

    [14]Y.Wang,G.Xu,L.Yang,Z.Ren,X.Wei,W.Weng,P.Du,G.Shen,and G.Han,Mater.Sci.Poland,27,471(2009).

    [15]Y.Wang and Y.Wang,Adv.Mater.Res.311,2110 (2011).

    [16]Y.Wang,G.Xu,X.Ji,Z.Ren,W.Weng,P.Du,G. Shen,and G.Han,J.Alloys.Compd.475,L25(2009).

    [17]G.Kresse and J.Hafner,Phys.Rev.B 47,558(1993).

    [18]G.Kresse and J.Joubert,Phys.Rev.B 59,1758(1999).

    [19]P.E.Blchl,Phys.Rev.B 50,17953(1994).

    [20]G.Kresse and J.Hafner,Phys.Rev.B 48,13115(1993).

    [21]S.L.Dudarev,G.A.Botton,S.Y.Savrasov,C.J. Humphreys,and A.P.Sutton,Phys.Rev.B 57,1505 (1998).

    [22]Y.Zhang,J.Hu,F(xiàn).Gao,H.Liu,and H.Qin,Comput. Theore.Chem.967,284(2011).

    [23]H.Duan,M.Wu,Y.Qiu,and S.Huo,Chin.J.Low Temp.Phys.34,143(2012).

    ?

    Author to whom correspondence should be addressed.E-mail: sunlitut@163.com,F(xiàn)AX:+86-351-3176638

    深爱激情五月婷婷| 99久久精品热视频| 级片在线观看| av在线播放精品| 国产午夜精品久久久久久一区二区三区| 亚洲三级黄色毛片| 久久精品综合一区二区三区| 国产精品一区二区在线观看99 | 嘟嘟电影网在线观看| 91av网一区二区| 天堂影院成人在线观看| 最后的刺客免费高清国语| 欧美又色又爽又黄视频| 国产精品久久电影中文字幕| 一级毛片久久久久久久久女| 国产精品国产三级专区第一集| 中国美白少妇内射xxxbb| 国产老妇伦熟女老妇高清| 亚洲av成人av| 国产女主播在线喷水免费视频网站 | 亚洲精品亚洲一区二区| 精品久久久久久久久久久久久| 免费观看的影片在线观看| 亚洲av免费在线观看| 国产午夜精品久久久久久一区二区三区| 国产探花在线观看一区二区| 丰满少妇做爰视频| 97在线视频观看| 日韩av在线免费看完整版不卡| 黄色配什么色好看| 最近的中文字幕免费完整| 少妇猛男粗大的猛烈进出视频 | 亚洲激情五月婷婷啪啪| 亚洲美女视频黄频| 国产成人精品婷婷| 国产视频首页在线观看| 亚洲精品国产成人久久av| av国产免费在线观看| 97超碰精品成人国产| 国产精品麻豆人妻色哟哟久久 | 国产亚洲午夜精品一区二区久久 | 91久久精品国产一区二区成人| 爱豆传媒免费全集在线观看| 成年版毛片免费区| 中文字幕久久专区| 国产黄色视频一区二区在线观看 | 午夜福利成人在线免费观看| 深爱激情五月婷婷| 亚洲国产欧洲综合997久久,| 三级国产精品欧美在线观看| 日本熟妇午夜| 蜜桃久久精品国产亚洲av| 日韩成人av中文字幕在线观看| 日韩欧美三级三区| 22中文网久久字幕| 欧美日韩综合久久久久久| videos熟女内射| 亚洲va在线va天堂va国产| 久久精品综合一区二区三区| 日本-黄色视频高清免费观看| 国语自产精品视频在线第100页| 亚洲天堂国产精品一区在线| 午夜福利视频1000在线观看| 九九热线精品视视频播放| 国产午夜精品久久久久久一区二区三区| 成人亚洲欧美一区二区av| 又黄又爽又刺激的免费视频.| 国产美女午夜福利| 一级毛片久久久久久久久女| 精品久久国产蜜桃| 国内精品美女久久久久久| 精品一区二区三区人妻视频| 乱码一卡2卡4卡精品| 一级av片app| 在线免费十八禁| 黑人高潮一二区| 99热网站在线观看| 亚洲乱码一区二区免费版| 日本免费一区二区三区高清不卡| 搞女人的毛片| 国产免费又黄又爽又色| 久久久久性生活片| 女人被狂操c到高潮| 丰满少妇做爰视频| 国产高清国产精品国产三级 | 亚洲av二区三区四区| av在线亚洲专区| 国产精品麻豆人妻色哟哟久久 | 午夜免费激情av| 色综合站精品国产| 亚洲av福利一区| 中文字幕av成人在线电影| 岛国毛片在线播放| 一级毛片aaaaaa免费看小| 国产老妇伦熟女老妇高清| 久久久久九九精品影院| 一边摸一边抽搐一进一小说| 国产亚洲最大av| 亚洲av电影在线观看一区二区三区 | 99久久精品热视频| 国产精品久久久久久精品电影| 日日啪夜夜撸| h日本视频在线播放| 中文字幕av在线有码专区| 极品教师在线视频| 国产黄色视频一区二区在线观看 | 亚洲丝袜综合中文字幕| 最近2019中文字幕mv第一页| 免费黄色在线免费观看| 久久久久久久久大av| 97人妻精品一区二区三区麻豆| 欧美日本亚洲视频在线播放| 亚洲成人av在线免费| 高清视频免费观看一区二区 | 久久精品国产亚洲网站| 日本欧美国产在线视频| 美女xxoo啪啪120秒动态图| 久久久久久国产a免费观看| 国产不卡一卡二| 亚洲自拍偷在线| 在线a可以看的网站| 在线a可以看的网站| 欧美+日韩+精品| 日韩成人伦理影院| 国产探花在线观看一区二区| 啦啦啦韩国在线观看视频| 免费看日本二区| 一级黄片播放器| 日韩欧美精品免费久久| 亚洲欧美清纯卡通| 久久久精品94久久精品| 中文精品一卡2卡3卡4更新| 97人妻精品一区二区三区麻豆| 欧美一区二区精品小视频在线| 99视频精品全部免费 在线| 亚洲丝袜综合中文字幕| 亚洲av成人精品一区久久| 如何舔出高潮| 极品教师在线视频| 久久久久性生活片| 久久99热6这里只有精品| 国模一区二区三区四区视频| 成人无遮挡网站| 国产淫片久久久久久久久| 69人妻影院| 性插视频无遮挡在线免费观看| 最近视频中文字幕2019在线8| 91在线精品国自产拍蜜月| 超碰av人人做人人爽久久| 久久精品影院6| 男女国产视频网站| 欧美精品国产亚洲| 亚洲国产欧美在线一区| 色噜噜av男人的天堂激情| 久久亚洲精品不卡| 国产精品国产三级专区第一集| 免费观看a级毛片全部| 日韩精品青青久久久久久| 五月伊人婷婷丁香| 亚洲精品亚洲一区二区| 国产爱豆传媒在线观看| 三级经典国产精品| 天天躁夜夜躁狠狠久久av| 99久久九九国产精品国产免费| 日韩,欧美,国产一区二区三区 | 日韩精品有码人妻一区| 亚州av有码| 久久99热这里只有精品18| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品国产三级国产av玫瑰| 91av网一区二区| 亚洲精品乱码久久久久久按摩| 日本免费一区二区三区高清不卡| 精品不卡国产一区二区三区| 亚洲国产高清在线一区二区三| 内射极品少妇av片p| 国内精品一区二区在线观看| 日韩,欧美,国产一区二区三区 | 日韩欧美三级三区| 国产 一区精品| 欧美日韩精品成人综合77777| 亚洲精品亚洲一区二区| 久久精品人妻少妇| 你懂的网址亚洲精品在线观看 | 成年女人永久免费观看视频| 一级毛片电影观看 | 久久综合国产亚洲精品| 丰满人妻一区二区三区视频av| 五月玫瑰六月丁香| 久久人人爽人人爽人人片va| 国产男人的电影天堂91| 成年女人永久免费观看视频| 久久精品国产亚洲av涩爱| 不卡视频在线观看欧美| 久久久a久久爽久久v久久| 亚洲精华国产精华液的使用体验| 久久人妻av系列| 欧美潮喷喷水| 一级爰片在线观看| 成人毛片60女人毛片免费| 亚洲最大成人中文| 国产精品久久久久久久电影| 九九在线视频观看精品| 欧美区成人在线视频| 日日啪夜夜撸| 99久久中文字幕三级久久日本| 午夜a级毛片| 少妇的逼好多水| 亚洲国产欧美人成| 日本爱情动作片www.在线观看| 视频中文字幕在线观看| 国产精品女同一区二区软件| 一夜夜www| av在线天堂中文字幕| a级毛片免费高清观看在线播放| av国产久精品久网站免费入址| 18禁在线无遮挡免费观看视频| 毛片一级片免费看久久久久| 毛片女人毛片| 亚洲国产精品成人久久小说| 建设人人有责人人尽责人人享有的 | 日韩欧美在线乱码| 精品久久久久久久人妻蜜臀av| 九九在线视频观看精品| 最近中文字幕2019免费版| 日韩精品青青久久久久久| 日韩人妻高清精品专区| 日本午夜av视频| 国产三级在线视频| www日本黄色视频网| 亚洲av成人av| 久久久久久大精品| 成人漫画全彩无遮挡| 亚洲欧美清纯卡通| 国产精品久久久久久精品电影小说 | 久久欧美精品欧美久久欧美| 美女大奶头视频| 久久精品久久久久久噜噜老黄 | 欧美成人午夜免费资源| 欧美另类亚洲清纯唯美| 欧美一级a爱片免费观看看| 亚洲精华国产精华液的使用体验| 一个人看视频在线观看www免费| 夜夜看夜夜爽夜夜摸| 精品一区二区三区人妻视频| 自拍偷自拍亚洲精品老妇| 成人三级黄色视频| 国产一区二区亚洲精品在线观看| 国产视频首页在线观看| 免费观看的影片在线观看| 男人的好看免费观看在线视频| 秋霞在线观看毛片| 久久精品国产亚洲av天美| av专区在线播放| 三级男女做爰猛烈吃奶摸视频| 亚洲精品aⅴ在线观看| 色噜噜av男人的天堂激情| 亚洲av成人av| 国产精品久久久久久av不卡| 麻豆成人午夜福利视频| 欧美3d第一页| 国产一区有黄有色的免费视频 | 嫩草影院入口| 51国产日韩欧美| 真实男女啪啪啪动态图| 日韩在线高清观看一区二区三区| 九草在线视频观看| 午夜福利网站1000一区二区三区| 亚洲精品日韩av片在线观看| av免费在线看不卡| 美女黄网站色视频| 久久综合国产亚洲精品| 能在线免费观看的黄片| 成人二区视频| 美女被艹到高潮喷水动态| 赤兔流量卡办理| .国产精品久久| 国产成人精品久久久久久| 亚洲欧美成人综合另类久久久 | 精品99又大又爽又粗少妇毛片| 一级爰片在线观看| 国产白丝娇喘喷水9色精品| 日本免费在线观看一区| 国产精品国产三级专区第一集| 我的女老师完整版在线观看| 久久久精品欧美日韩精品| 能在线免费看毛片的网站| 成人性生交大片免费视频hd| 乱码一卡2卡4卡精品| 久久久久免费精品人妻一区二区| 岛国毛片在线播放| 亚洲精品日韩在线中文字幕| 丰满人妻一区二区三区视频av| 欧美一区二区国产精品久久精品| 欧美成人一区二区免费高清观看| 99热6这里只有精品| 国产免费又黄又爽又色| 天堂av国产一区二区熟女人妻| 免费观看精品视频网站| 国产高清有码在线观看视频| 成人午夜高清在线视频| 能在线免费观看的黄片| 蜜桃久久精品国产亚洲av| 看片在线看免费视频| 国产精品一区二区在线观看99 | 国产探花在线观看一区二区| 国产av码专区亚洲av| 国内精品美女久久久久久| 黄片wwwwww| 免费观看性生交大片5| 国产v大片淫在线免费观看| 亚洲av成人精品一区久久| 国产精品99久久久久久久久| 边亲边吃奶的免费视频| 久久精品影院6| 乱系列少妇在线播放| 国产精品人妻久久久久久| 免费观看在线日韩| 成人国产麻豆网| 嫩草影院精品99| 日韩 亚洲 欧美在线| 在线播放国产精品三级| 不卡视频在线观看欧美| 亚洲成人精品中文字幕电影| 国产成年人精品一区二区| 国模一区二区三区四区视频| 国产麻豆成人av免费视频| av线在线观看网站| 国产精品乱码一区二三区的特点| 婷婷色麻豆天堂久久 | 久久精品国产亚洲av天美| 亚洲成av人片在线播放无| 午夜福利在线在线| 日韩欧美三级三区| 国模一区二区三区四区视频| 一级爰片在线观看| 一区二区三区高清视频在线| 亚洲美女视频黄频| 六月丁香七月| 国产av一区在线观看免费| 特级一级黄色大片| 日韩中字成人| 嫩草影院精品99| 精品一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久 | 国产精品不卡视频一区二区| 身体一侧抽搐| 有码 亚洲区| 一二三四中文在线观看免费高清| 国产黄色视频一区二区在线观看 | 欧美bdsm另类| 亚洲av一区综合| 久热久热在线精品观看| 国产午夜精品一二区理论片| 插逼视频在线观看| 国产成年人精品一区二区| av国产久精品久网站免费入址| 亚洲人成网站在线播| 国产精品乱码一区二三区的特点| 2021天堂中文幕一二区在线观| 日韩成人av中文字幕在线观看| av黄色大香蕉| 高清午夜精品一区二区三区| 日韩中字成人| 两个人视频免费观看高清| 欧美成人精品欧美一级黄| 亚洲精华国产精华液的使用体验| 日本免费一区二区三区高清不卡| 亚洲av男天堂| av卡一久久| 老师上课跳d突然被开到最大视频| 亚洲国产精品合色在线| 成人毛片a级毛片在线播放| 久久这里只有精品中国| 一二三四中文在线观看免费高清| 亚洲av不卡在线观看| 波野结衣二区三区在线| 91av网一区二区| 欧美一区二区国产精品久久精品| 欧美色视频一区免费| 国产免费又黄又爽又色| 男女啪啪激烈高潮av片| 麻豆国产97在线/欧美| 久久久久性生活片| 国产精品乱码一区二三区的特点| 欧美日本亚洲视频在线播放| 91在线精品国自产拍蜜月| 韩国av在线不卡| 亚洲无线观看免费| 精品久久久久久久久亚洲| 91在线精品国自产拍蜜月| 久久久久久久国产电影| 日本黄大片高清| 国产高清视频在线观看网站| 成人av在线播放网站| 国产伦一二天堂av在线观看| 深夜a级毛片| 日韩av在线大香蕉| 国产色婷婷99| 国产爱豆传媒在线观看| 男女边吃奶边做爰视频| 久久精品国产亚洲网站| 日本熟妇午夜| 亚洲精品,欧美精品| 国产精品女同一区二区软件| 亚洲av电影不卡..在线观看| 三级经典国产精品| 99久久中文字幕三级久久日本| 日韩一区二区三区影片| 久久久久免费精品人妻一区二区| 最新中文字幕久久久久| 日日干狠狠操夜夜爽| 色尼玛亚洲综合影院| 边亲边吃奶的免费视频| 精品久久国产蜜桃| 久久精品久久久久久久性| 白带黄色成豆腐渣| 国产成人免费观看mmmm| 男人和女人高潮做爰伦理| 亚洲精华国产精华液的使用体验| 黄片无遮挡物在线观看| 久久6这里有精品| 国产成人精品一,二区| 三级国产精品欧美在线观看| 狂野欧美激情性xxxx在线观看| 成人高潮视频无遮挡免费网站| 欧美bdsm另类| 2021少妇久久久久久久久久久| 亚洲国产日韩欧美精品在线观看| 人体艺术视频欧美日本| 亚洲av福利一区| 女人被狂操c到高潮| 久久久久国产网址| 国内揄拍国产精品人妻在线| 亚洲精品国产av成人精品| 亚洲人成网站在线观看播放| www.色视频.com| 国产精品国产三级国产专区5o | 一边亲一边摸免费视频| 国产视频内射| 成年女人看的毛片在线观看| 亚洲最大成人av| 99热这里只有精品一区| 22中文网久久字幕| 免费观看人在逋| 亚洲天堂国产精品一区在线| 国产三级在线视频| 水蜜桃什么品种好| 纵有疾风起免费观看全集完整版 | 国产女主播在线喷水免费视频网站 | 国产又色又爽无遮挡免| 3wmmmm亚洲av在线观看| 18禁在线无遮挡免费观看视频| 大又大粗又爽又黄少妇毛片口| 成人三级黄色视频| 性插视频无遮挡在线免费观看| 中文字幕久久专区| 国产一区二区在线观看日韩| 男人的好看免费观看在线视频| 国产成人午夜福利电影在线观看| 九九久久精品国产亚洲av麻豆| 三级毛片av免费| 国产成人精品久久久久久| 日本猛色少妇xxxxx猛交久久| 欧美成人免费av一区二区三区| 免费观看在线日韩| 97在线视频观看| 欧美3d第一页| 小说图片视频综合网站| 亚洲最大成人av| 午夜福利成人在线免费观看| 国产精品一区二区性色av| 国产黄色小视频在线观看| 精品久久久久久久久久久久久| 亚洲精品亚洲一区二区| 一区二区三区四区激情视频| 一级爰片在线观看| 少妇被粗大猛烈的视频| 国产人妻一区二区三区在| 亚洲在久久综合| 一边亲一边摸免费视频| 精品久久久久久久久久久久久| 亚洲精品日韩在线中文字幕| av国产久精品久网站免费入址| 国产免费男女视频| 九色成人免费人妻av| 中文字幕制服av| 亚洲精品乱码久久久久久按摩| 男插女下体视频免费在线播放| 国产精品99久久久久久久久| 国产精品人妻久久久影院| 一卡2卡三卡四卡精品乱码亚洲| 免费看a级黄色片| 51国产日韩欧美| 精品国产露脸久久av麻豆 | 国内精品美女久久久久久| 91在线精品国自产拍蜜月| 成人午夜精彩视频在线观看| 爱豆传媒免费全集在线观看| 国产亚洲一区二区精品| 国产免费福利视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 中文字幕久久专区| 久久精品夜夜夜夜夜久久蜜豆| 秋霞在线观看毛片| 三级男女做爰猛烈吃奶摸视频| 深爱激情五月婷婷| 日韩一区二区视频免费看| 亚洲av免费在线观看| 国产精品蜜桃在线观看| 国产三级中文精品| 国产精品熟女久久久久浪| 日本熟妇午夜| 国产精品爽爽va在线观看网站| 亚洲av成人精品一区久久| 精品久久久久久电影网 | 国产午夜福利久久久久久| 日韩av在线大香蕉| 欧美激情国产日韩精品一区| 国产高清国产精品国产三级 | 观看免费一级毛片| 亚洲精品成人久久久久久| 少妇人妻精品综合一区二区| 高清午夜精品一区二区三区| 欧美zozozo另类| 尾随美女入室| 国产亚洲最大av| 国产日韩欧美在线精品| 亚洲欧美成人综合另类久久久 | 一区二区三区高清视频在线| 亚洲国产最新在线播放| 黄色一级大片看看| 精品免费久久久久久久清纯| 波多野结衣巨乳人妻| 国产一区亚洲一区在线观看| 国产乱人偷精品视频| 看非洲黑人一级黄片| 色视频www国产| 久久久亚洲精品成人影院| 在现免费观看毛片| 高清午夜精品一区二区三区| 成人无遮挡网站| 国产毛片a区久久久久| 日本爱情动作片www.在线观看| 在线播放无遮挡| 久久精品影院6| 男女那种视频在线观看| 高清日韩中文字幕在线| 欧美另类亚洲清纯唯美| 美女大奶头视频| 麻豆乱淫一区二区| 久久久亚洲精品成人影院| 中文乱码字字幕精品一区二区三区 | 又爽又黄a免费视频| 国产不卡一卡二| 久久久国产成人精品二区| 日日啪夜夜撸| 国产精品一区www在线观看| 国产免费福利视频在线观看| 欧美成人一区二区免费高清观看| 大香蕉久久网| 精品免费久久久久久久清纯| 国产精品福利在线免费观看| 成人av在线播放网站| 国产精品一区二区性色av| 春色校园在线视频观看| 精品不卡国产一区二区三区| 91久久精品国产一区二区成人| 伊人久久精品亚洲午夜| 舔av片在线| 91精品一卡2卡3卡4卡| 综合色av麻豆| 18+在线观看网站| 国产精品三级大全| 欧美潮喷喷水| 色哟哟·www| 欧美变态另类bdsm刘玥| 久久久久久大精品| 熟妇人妻久久中文字幕3abv| 免费大片18禁| 尾随美女入室| 亚洲av一区综合| 国产精品不卡视频一区二区| 中文字幕熟女人妻在线| kizo精华| 青青草视频在线视频观看| av在线亚洲专区| 美女xxoo啪啪120秒动态图| 久久久久免费精品人妻一区二区| 乱人视频在线观看| 亚洲欧美成人精品一区二区| a级毛片免费高清观看在线播放| 赤兔流量卡办理| 久久久久久大精品| 日韩在线高清观看一区二区三区| 最近视频中文字幕2019在线8| 日韩在线高清观看一区二区三区| 中文字幕熟女人妻在线| 欧美高清成人免费视频www| 中文字幕熟女人妻在线| av在线亚洲专区| 天美传媒精品一区二区| 国产成人freesex在线| 免费搜索国产男女视频| 波野结衣二区三区在线| 国语对白做爰xxxⅹ性视频网站| 熟女电影av网| 国产片特级美女逼逼视频| 男的添女的下面高潮视频| 国产中年淑女户外野战色| av在线观看视频网站免费| 女人被狂操c到高潮| 精品国产三级普通话版| 欧美一级a爱片免费观看看| 色哟哟·www|