• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Assessment of Contemporary Theoretical Methods for Bond Dissociation Enthalpies

    2016-09-23 06:06:19LuLi,Hong-junFan,Hao-quanHu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年4期

    ?

    Assessment of Contemporary Theoretical Methods for Bond Dissociation Enthalpies

    I.INTRODUCTION

    The generating and breaking of bonds is the basis of all chemical reactions.The bond dissociation enthalpies (BDEs)of a chemical bond,which measures the bonding strength plays an important role in determining the reactivity.Therefore,it is desirable to make a responsible knowledge of the energies required to break bonds and the energies released upon their formation.Unfortunately,it is too difficult to obtain the formation enthalpies of some large compounds and radicals[1-3],the number of experimental BDEs is quite limited.

    Theoretical computation offers an alternative approach to obtain BDEs[4-13].Ⅰndeed,since the early studies in computational chemistry,a lot of researchers in various fields have used the theoretical methods either to support their experimental results or to estimate unknown BDEs value.Nevertheless,different levels of theories are very different from each other.Schwabe and Grimme[14]compared the performance of the BLYP,TPSS,B3LYP,B2PLYP and mPW2PLYP methods for the heats of formation(HOF) in the G3/05 set[15],they presented that the B2PLYP and the mPW2PLYP gave by far the lowest mean absolute deviation(MAD)over the whole G3/05 set(2.5 and 2.1 kcal/mol,respectively).Accordingly,they expanded their initial study on the G2 set[16]by 271 HOF,105 ionization potentials,63 electron affinities,10 proton affinities,and 6 binding energies of hydrogenbridged complexes,applying the B3LYP,B2PLYP,and mPW2PLYP methods to the full G3/05 test set for further validation of their performance.Notably,the test set contained many large molecules and heavy atoms up to Kr.Their analyses also revealed that the best performance of mPW2PLYP compared to other studied methods.

    Chan and Radom did a comprehensive investigation to search the theoretical procedures that are both adequately accurate but less demanding on computational resources[17].They concluded that the W1w BDEs generally showed very good agreement with experimental values,but also revealed large discrepancies in a number of cases.Then they had further refined their theoretical values at the W1w+T(Q),and W2w level.These higher-level calculations yielded BDEs that were consistent with W1w in all cases.They also found that double-hybrid DFT procedures generally give smaller overall derivations for absolute BDEs than those obtained from typical DFT procedures.Comparison of the performance of hybrid DFTs,the M06-2X method emerges as the overall best performer.

    According to the findings of other researchers,HF and MP2 are often less reliable because of the spin contamination in dealing with radical species[18-20]. By comparison,high-level precision methods such as the W1w,CCSD(T),CBS series,and Gaussian-n series.Provide an excellent estimation of BDE values [15,17,21-26],however,these methods are expensive and limited to applying on very small systems.For a lot applications in the field of energy such as coal,petroleum,and biomass etc.,the thermal reactions in these processes generally involve larger systems.The large monocyclic aromatic molecules and larger polyaromatic molecules are of high interest in these larger systems.The monocyclic aromatic molecules are representative of the functionalities existing in coal,and understanding the thermochemistry and reactivity knowledge of these monocyclic aromatic molecules is useful to better understand the reactive behavior of complex molecules in the coal,which may lead to advances in coal processing.The polycyclic aromatic hydrocarbons (PAHs)have attracted increasing attention in recent years[27-29].They can be used as model representatives to examine the elementary reactions for the growth of coke layers in coal and petroleum processing[30-32]. The PAHs are also the key elements within incomplete combustion processes,and found to form the largest class of known carcinogens and mutagens[33].Ⅰt is still challenging to understand the thermodynamic characteristics of PAHs.Previous work on BDEs of C-H and C-C bonds of PAHs and the effect of polyaromatic environment on the BDEs generally used DFT methods[34-37].Therefore,it is necessary to find a method that can balance accurate results with computational economy to the greatest extent,especially for relatively large systems including the monocyclic aromatic molecules and PAHs which are the most common compounds appeared in the processing of coal,petroleum and biomass.

    Based on these several suitable methods,in the present work,we screened a number of methods as potential candidates and singled out the B3LYP [38],M06-2X[39],mPW2PLYP[12],mPW2PLYPD [40],B2PLYP[12],B2PLYPD[40],G4MP2[41],and CCSD(T)[42,43]to do systematic investigation.

    II.COMPUTATIONAL DETAILS

    The BDEs are defined as the enthalpy of the following reaction required to break the bond A-B to form two radicals at 298.15 K and 1 atm in the gas phase:

    The BDE value can be estimated from Eq.(2)[34]:

    The enthalpy of each species can be calculated from the following equation[44]:

    where E is electronic energy,ZPE is the zero point energy,Htrans,Hrot,and Hvibare the standard temperature correction terms calculated with the equilibrium statistical mechanics with harmonic oscillator and rigid rotor approximations.

    Ⅰn our work,calculations are all carried out with GAUSSⅠAN 09[45]packages.The geometries of reactants and resultant radical species are optimized on the X/cc-pVDZ[46]level,where the X is the selected studied methods,including B3LYP,M06-2X,mPW2PLYP,and B2PLYP.The double hybrid methods combine exact HF exchange with an MP2-like correlation to a DFT calculation,which have the same computational cost as MP2 and good accuracy.The minimum energy structure can be verified and the thermal contributions can be obtained by frequency calculations at the same level. Single point energy calculations are conducted at the X/cc-pVTZ[47]level(X represents the corresponding method as introduced above).Ⅰn addition,single point energies calculations by mPW2PLYPD at cc-pVDZ,ccpVTZ level and CCSD(T)at cc-pVDZ,cc-pVTZ,and cc-pVQZ[48]level all start with mPW2PLYP/cc-pVDZ geometry optimization and then are corrected the thermochemical data by using mPW2PLYP/cc-pVDZ frequency calculation.Similarly,the single point energies of B2PLYPD method are calculated by using the optimized geometry at B2PLYP/cc-pVDZ level and the thermochemical data are also corrected.

    III.RESULTS AND DISCUSSION

    A.Evaluation of different methods for the small molecules

    Ⅰn Chan and Radom’s work,they focused on the nonaromatic compounds with fewer heavy atoms[17],and our previous work contained several calculated BDEs showing that the mPW2PLYP gave excellent performance on evaluating the BDEs of monocyclic aromatic molecules compared to other methods[49],we now examine the performance of various methods for the evaluation of BDEs on more monocyclic aromatic molecules.Several common non-aromatic organic molecules are included to compare together to form a preliminary assessment for the performance of differentmethods.Most of those molecules are not only important chemical raw material,but they are also key factors within petroleum distillate catalytic cracking process. The test set contains 26 parent compounds with small size including monocyclic aromatic molecules and nonaromatic organic molecules,which are no more than 10 heavy atoms.The produced 34 BDEs after related homolytic bond cleavage are summarized in TableⅠ. An exception can be found for pyrimidine of C2-H homolytic bond cleavage.Ⅰt’s clear to see that not only B3LYP but also high level calculation G4MP2 and even CCSD(T)all can’t achieve agreeable value.Therefore,the experimental value should be problematic.Obviously,all of the methods yield reasonable values except B3LYP,after excluding the pyrimidine of C2-H.The B3LYP yields the largest MAD of 4.98 kcal/mol.Ⅰnaddition,it also produces the largest deviation(LD) of-12.6 kcal/mol in the set.The rest methods give more reasonable results with the MADs range from 2 kcal/mol to 4 kcal/mol.The G4MP2 achieves the smallest MAD of 2.23 kcal/mol,and it is slightly better than the double-hybrid methods mPW2PLYP and B2PLYP,with the value of MADs are 2.47 and 2.49 kcal/mol.Adding the empirical dispersion correction(specified by“D”)to mPW2PLYP and B2PLYP give insignificant change,which slightly improved their performance,with MADs of 2.45,2.41 kcal/mol,respectively.The performance of M06-2X is comparable to the double-hybrid methods,with the MAD of 2.49 kcal/mol.The CCSD(T)shows little larger but still acceptable MAD of 3.11 kcal/mol.

    TABLEⅠExperimental BDEs and calculated BDEs by different methods for small molecules(kcal/mol).

    TABLEⅠⅠExperimental BDEs and calculated BDEs by different methods for large aromatic hydrocarbon compounds (kcal/mol).

    B.Evaluation of different methods for larger aromatic hydrocarbon compounds

    Ⅰn addition to these results,the performance of different methods for more aromatic hydrocarbon compounds at larger size are investigated and shown in TableⅠⅠ,including compounds containing no less than two benzene rings or condensed aromatic rings,and these molecules are generally considered as coal model compounds to represent the specific units in coal structure.The referred results are listed to assess various methods.The computed data of B3LYP[r]and B3P86[r]from previous studies of Li et al.[7,35],proposed that B3LYP gave the largest MAD,and the B3P86 method emerges as the overall best performer.Our results show that the double-hybrid methods mPW2PLYP and B2PLYP give smaller MAD of 1.93 and 1.68 kcal/mol for the studied compounds which have relatively large size with heavy atom number≥10. The mPW2PLYPD and B2PLYPD with empirical dispersion correction and G4MP2 methods are generally associated with overestimation of these large compounds,with MADs of 3.28,3.53,4.58 kcal/mol,respectively.The tested DFT methods perform worse for the evaluation of BDEs than the double-hybrid methods as expected.The B3LYP method gives the largest MAD of 7.55 kcal/mol,and is consistent with the literature results with MAD of 7.28 kcal/mol[7,35].The value of MAD for M06-2X is 3.03 kcal/mol.The referenced results of B3P86 show little larger dispersions but still acceptable MAD of 2.70 kcal/mol[7,35].

    C.BDEs of particular methods for branched hydrocarbons

    On the basis of the results in TableⅠand TableⅠⅠ,the double-hybrid methods and the G4MP2 give relatively better performance.The mPW2PLYP,mPW2PLYPD,and the G4MP2 are tested to investigate their performance on evaluating the BDEs of other kinds of compounds.The branched hydrocarbons are common components in the processing of coal and petroleum,which are examined here since they have been extensively interested[50,51],and the results are summarized in TableⅠⅠⅠ.Ⅰn addition,due to the favorable performance of B3P86 method for evaluating BDEs of large aromatic compounds,we also calculate B3P86 BDEs for comparison.The BDEs of B3P86 are obtained using the same equations with other methods(e.g.B3LYP)as introduced in computational details.Ⅰt is worthy to note that G4MP2 provides an excellent approximationto the experimental BDEs for branched hydrocarbons,with an MAD of only 1.17 kcal/mol.The mPW2PLYP gives large discrepancies between experiment and the theoretical values with an MAD of 7.46 kcal/mol.Using a dispersion correction lead to smaller MAD,of 3.93 kcal/mol.The hybrid DFT procedure B3P86 produces the largest MAD of 11.03 kcal/mol,and the maxium discrepancy is up to-15.1 kcal/mol.

    TABLEⅠⅠⅠExperimental BDEs and calculated BDEs by different methods for the branched hydrocarbons(kcal/mol).

    TABLEⅠV Structural optimized geometry comparison with selected methods for bond lengths and bond angle(MADs relative to mPW2PLYP values).

    D.Structural optimized geometry comparison of various methods

    The comparison of structural optimized geometry at different levels is summarized in TableⅠV.The B2PLYP method shows the smallest deviation compared with the mPW2PLYP method.The G4MP2 gives the largest deviation of bond lengths,and the M06-2X gives the largest deviation of bond angle. of~1 kcal/mol,and the A’VTZ to A’VQZ cause energy changes within 0.5 kcal/mol.Thus,it can be concluded that the cc-pVTZ basis set can be used to reliably predict the BDEs for most methods.

    E.Effect of basis sets on mPW2PLYP and CCSD(T) calculation

    The effects of different basis sets on BDEs calculations are also investigated,the results are shown in Table V.Due to the size limitation of computing system at CCSD(T)/cc-pVQZ level,the values we don’t have are ommited.From Table V,it is clear that the BDEs of mPW2PLYP change from a relatively small basis set(cc-pVDZ)to a extended one(cc-pVTZ),and the medium basis set(cc-pVTZ)to a larger one(cc-pVQZ) cause variations of 2.10 and 0.46 kcal/mol,respectively. Ⅰn comparison,the same change of basis set results in variations of as large as 4.35 and 2.46 kcal/mol for the CCSD(T)BDEs calculations.Therefore,the CCSD(T) method is fairly sensitive toward the basis sets in the calculation of BDEs,which means that it is necessary to employ large enough basis set(e.g.cc-pVQZ)when using CCSD(T)BDEs calculations as the benchmark. O’Reilly et al.[52]investigated the BDEs of 31 N-H and 31 N-Cl bonds by a large variety of contemporary methods,their results show that changing the size of the basis sets cause different energy variations of different DFT methods,the BDEs of DFT methods change from A’VDZ to A’VTZ cause energy variations

    F.BDEs of particular methods for the extended compounds

    Despite the importance of the BDEs and lots of researches on it.Most of these studies focused on hydrocarbons which produced carbon-centered radicals even if several heteroatoms can be found in the molecule,and numerous C-H BDEs and C-C BDEs have been reported[53-64].Ⅰn this work,we are interested to verify the credibility of selected computing methods on a broader range.Various typical inorganic compounds have been chosen and the BDEs of non single bonds are calculated.Due to lacking of enough experiment values,in our further studies we will use CCSD(T)as the benchmark theoretical method which is generally considered to be the most accurate method and cc-pVQZ is selected because it is affected obviously by the size of the basis set.The results are summarized in Table VⅠ.The G4MP2 and mPW2PLYPD can not be used for some certain elements,therefore the BDEs of some molecules cannot be computed.

    Overall,the G4MP2 show the best performance,which is consistent with our former study on the small molecule compounds,showing an MAD of 1.51 kcal/mol to the selected benchmark.The results using other two methods mPW2PLYP and mPW2PLYPD are reasonably close to the benchmark values for the majority of investigated species,with MADs being 2.67,2.55 kcal/mol,respectively.The LDs for mPW2PLYP,mPW2PLYPD and G4MP2 are very close,with the values of 5.8,5.8,and 5.2 kcal/mol,respectively. Notably,the largest discrepancies are all found for BDEs of HC≡N.Ⅰn addition,G4MP2 method mainly overestimate the BDEs and large deviations are observed for CH2=O,HC≡N,and CH2=S,which are all non single bond species.Ⅰt can also be noted that the dispersion-corrected procedure mPW2PLYPD give slightly better performance than the corresponding method mPW2PLYP,but the effect is almost negligible.

    TABLE V Comparison of basis sets for mPW2PLYP and CCSD(T)calculation of BDEs(kcal/mol).

    IV.CONCLUSION

    Systematic assessment of the accuracy of quantum chemistry methods is an essential prerequisite for their routine use on predicting molecule thermochemistry.Ⅰn this work,the performance of a variety of contemporary theoretical procedures on calculating the BDEs of the selected species is assessed.The final MAD values for all examined compounds by various tested methods are summarized in Table VⅠⅠ.The following key observations emerge from the present study:

    (i)G4MP2 generally gives the best agreement with the experiment values for small molecule compounds,especially for the branched hydrocarbons.Among the large aromatic compounds examined in this study,G4MP2 procedure perform less well than the doublehybrid DFT methods mPW2PLYP and B2PLYP.Ⅰn addition,G4MP2 is generally associated with overestimation of these large aromatic compounds.

    (ii)Double-hybridDFTmethodsincluding mPW2PLYPandB2PLYPgivereasonablyclose to the experimental values or the benchmark for the major investigated species(whether for small systems,or relatively large systems),except for the branched hydrocarbons.The mPW2PLYP performs comparably to B2PLYP for the test sets under study.The basisset effects on mPW2PLYP calculation of BDEs are not significant,especially changing the medium basis set(cc-pVTZ)to a extended one(cc-pVQZ)leads to negligible differences.

    (iii)The mPW2PLYPD and B2PLYPD with empirical dispersion correction greatly improve the performance of predicting BDEs of branched hydrocarbons compared to the mPW2PLYP and B2PLYP,but show slightly even insignificant change to the small compounds in our study.The larger derivations can be found in calculating BDEs of large aromatic compounds,comparable to those obtained by the corresponding methods without the empirical dispersion correction.

    (iv)The CCSD(T)method is fairly sensitive toward the basis sets in the calculation of BDEs.Thus,it is necessary to choose enough large basis set using the CCSD(T)method to evaluate BDEs.

    (v)Among the studied hybrid DFT methods,namely,B3LYP,M06-2X,B3P86,for the evaluation of BDEs,the M06-2X and B3P86 methods provide acceptable performance for the majority studied systems,even though they are not as good as double-hybrid DFTs methods.Large discrepancies can be found in the calculating of B3P86 for branched hydrocarbons.

    Taken together with the results of our work,the G4MP2 and double-hybrid DFT methods give satisfactory performance on evaluating BDEs for majorityexaminedcompounds.Forsmallsystems (atoms number≤20),including monocyclic aromatic molecules,non-aromatic organic molecules and inorganic molecules,the G4MP2 and double-hybrid DFT methods all give reasonable BDEs,and the G4MP2 performs a little better than double-hybrid DFT methods.Thus,we recommend choosing the G4MP2 method for small molecules.For medium systems(20≤atoms number≤50),that the scope include the most common compounds which involved in the processing of various raw materials of fuel.The double-hybrid DFT methods mPW2PLYP and B2PLYP are advised for large aromatic molecules,and the thermodynamic characteristics of these PAHs is significant for understanding the processing of the coal,petroleum and biomass.The mPW2PLYPD and B2PLYPD with empirical dispersion correction are recommended for long-chain and branched hydrocarbons.For large systems(atomsnumber≥50),DFT methods are the most appropriate solution.The M06-2X and B3P86 methods are suggested to apply for the calculation of large molecules.

    TABLE VⅠCalculated BDEs of the molecules at different levels(kcal/mol).

    TABLE VⅠⅠThe final MAD and LD values for all examined compounds by various tested methods(kcal/mol).

    V.ACKNOWLEDGMENTS

    This work was supported by the National Basic Research Program of China(No.2011CB201301),the Key Program Project of Joint Fund of Coal Research,the National Natural Science Foundation of China and Shenhua Group(No.51134014),DⅠCP DMTO201404,and KeyⅠnternational ST Cooperation and Exchange Projects(No.2013DFG60060).

    [1]O.Dorofeeva,V.P.Novikov,and D.B.Neumann,J. Phys.Chem.Ref.Data 30,475(2001).

    [2]S.J.Blanksby and G.B.Ellison,Acc.Chem.Res.36,255(2003).

    [3]J.Berkowitz,G.B.Ellison,and D.Gutman,J.Phys. Chem 98,2744(1994).

    [4]W.Zheng,W.Xu,Y.Wang,and Z.Chen,Comp. Theor.Chem.1027,116(2014).

    [5]A.Vag′anek,J.Rimar?c′?k,M.Ⅰl?cin,P.?Skor?na,V.Luke?s,and E.Klein,Comp.Theor.Chem.1014,60(2013).

    [6]E.R.Johnson,O.J.Clarkin,and G.A.DiLabio,J. Phys.Chem.A 107,9953(2003).

    [7]X.Q.Yao,X.J.Hou,H.Jiao,H.W.Xiang,and Y.W. Li,J.Phys.Chem.A 107,9991(2003).

    [8]Ⅰ.Ⅰ.Marochkin and O.V.Dorofeeva,Comp.Theor. Chem.991,182(2012).

    [9]G.P.F.Wood,D.Moran,R.Jacob,and L.Radom,J. Phys.Chem.A 109,6318(2005).

    [10]H.Z.Yu,F(xiàn).Fu,L.Zhang,Y.Fu,Z.M.Dang,and J. Shi,Phys.Chem.Chem.Phys.16,20964(2014).

    [11]W.R.Zheng,J.L.Xu,T.Huang,Z.C.Chen,and Q. Yang,Comp.Theor.Chem.968,1(2011).

    [12]W.R.Zheng,Z.C.Chen,and W.X.Xu,Chin.J. Chem.Phys.26,541(2013).

    [13]B.Wang,Y.Fu,H.Z.Yu,and J.Shi,Chin.J.Chem. Phys.27,640(2014).

    [14]T.Schwabe and S.Grimme,Phys.Chem.Chem.Phys. 8,4398(2006).

    [15]L.A.Curtiss,P.C.Redfern,and K.Raghavachari,J. Chem.Phys.123,124107(2005).

    [16]S.Grimme,J.Chem.Phys.124,034108(2006).

    [17]B.Chan and L.Radom,J.Phys.Chem.A 116,4975 (2012).

    [18]D.J.Henry,C.J.Parkinson,P.M.Mayer,and L. Radom,J.Phys.Chem.A 105,6750(2001).

    [19]K.S.Song,Y.H.Cheng,Y.Fu,L.Liu,X.S.Li,and Q.X.Guo,J.Phys.Chem.A 106,6651(2002).

    [20]J.Cioslowski,G.Liu,M.Martinov,P.Piskorz,and D. Moncrieff,J.Am.Chem.Soc.118,5261(1996).

    [21]L.A.Curtiss,K.Raghavachari,P.C.Redfern,V.Rassolov,and J.A.Pople,J.Chem.Phys.109,7764 (1998).

    [22]J.W.Ochterski,G.A.Petersson,and K.B.Wiberg,J. Am.Chem.Soc.117,11299(1995).

    [23]A.G.Baboul,L.A.Curtiss,P.C.Redfern,and K. Raghavachari,J.Chem.Phys.110,7650(1999).

    [24]S.W.Zhao,L.Liu,Y.Fu,and Q.X.Guo,J.Phys. Org.Chem.18,353(2005).

    [25]L.A.Curtiss,P.C.Redfern,and K.Raghavachari,J. Chem.Phys.126,084108(2007).

    [26]A.S.Menon,G.P.F.Wood,D.Moran,and L.Radom,J.Phys.Chem.A 111,13638(2007).

    [27]A.K.Haritash and C.P.Kaushik,J Hazard.Mater 169,1(2009).

    [28]S.K.Samanta,O.V.Singh,and R.K.Jain,Trends Biotechnol.20,243(2002).

    [29]W.Wilcke,J.Soil Sci.Plant Nut.163,229(2000).

    [30]S.Wauters and G.B.Marin,Chem.Eng.J.82,267 (2001).

    [31]K.Hemelsoet,V.Van Speybroeck,D.Moran,G.B. Marin,L.Radom,and M.Waroquier,J.Phys.Chem. A 110,13624(2006).

    [32]V.Van Speybroeck,K.Hemelsoet,B.Minner,G.B. Marin,and M.Waroquier,Mol.Simul.33,879(2007).

    [33]M.F.Denissenko,A.Pao,M.S.Tang,and G.P.Pfeifer,Science 274,430(1996).

    [34]K.Hemelsoet,V.V.Speybroeck,and M.Waroquier,J. Phys.Chem.A 112,13566(2008).

    [35]X.Q.Yao,X.J.Hou,G.S.Wu,Y.Y.Xu,H.W. Xiang,H.Jiao,and Y.W.Li,J.Phys.Chem.A 106,7184(2002).

    [36]C.Barckholtz,T.A.Barckholtz,and C.M.Hadad,J. Am.Chem.Soc.121,491(1999).

    [37]V.Van Speybroeck,G.B.Marin,and M.Waroquier,ChemPhysChem 7,2205(2006).

    [38]P.J.Stephens,F(xiàn).J.Devlin,C.F.Chabalowski,and M. J.Frisch,J.Phys.Chem.98,11623(1994).

    [39]Y.Zhao and D.Truhlar,Theor.Chem.Account.120,215(2008).

    [40]T.Schwabe and S.Grimme,Phys.Chem.Chem.Phys. 9,3397(2007).

    [41]L.A.Curtiss,P.C.Redfern,and K.Raghavachari,J. Chem.Phys.127,124105(2007).

    [42]G.E.Scuseria,C.L.Janssen,and H.F.Schaefer,J. Chem.Phys.89,7382(1988).

    [43]J.A.Pople,M.Headgordon,and K.Raghavachari,J. Chem.Phys.87,5968(1987).

    [44]J.Shi,X.Y.Huang,J.P.Wang,and R.Li,J.Phys. Chem.A 114,6263(2010).

    [45]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Ⅰzmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ⅰshida,T.Nakajima,Y.Honda,O.Kitao,H. Nakai,T.Vreven,J.A.Montgomery,J.E.Peralta,F(xiàn). Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Ⅰyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J.Cioslowski,and D.J.Fox,Gaussian 09,Revision A.02,Wallingford CT:GaussianⅠnc.,(2009).

    [46]J.T.H.Dunning,J.Chem.Phys.90,1007(1989).

    [47]R.A.Kendall,J.T.H.Dunning,and R.J.Harrison,J.Chem.Phys.96,6796(1992).

    [48]D.E.Woon and J.T.H.Dunning,J.Chem.Phys.98,1358(1993).

    [49]L.Li,H.J.Fan,and H.Q.Hu,F(xiàn)uel 153,70(2015).

    [50]W.C.McKee and P.V.Schleyer,J.Am.Chem.Soc. 135,13008(2013).

    [51]M.D.Wodrich,W.C.McKee,and P.V.Schleyer,J. Org.Chem.76,2439(2011).

    [52]R.J.O’Reilly,A.Karton,and L.Radom,Ⅰnt.J.Quantum.Chem.112,1862(2012).

    [53]Y.Feng,L.Liu,J.T.Wang,S.W.Zhao,and Q.X. Guo,J.Org.Chem.69,3129(2004).

    [54]Z.Tian,A.Fattahi,L.Lis,and S.R.Kass,J.Am. Chem.Soc.128,17087(2006).

    [55]E.Ⅰ.Ⅰzgorodina,M.L.Coote,and L.Radom,J.Phys. Chem.A 109,7558(2005).

    [56]C.J.Hayes and C.M.Hadad,J.Phys.Chem.A 113,12370(2009).

    [57]M.L.Coote,A.Pross,and L.Radom,Org.Lett.5, 4689(2003).

    [58]J.P.Senosiain,J.H.Han,C.B.Musgrave,and D.M. Golden,F(xiàn)araday Disc.119,173(2002).

    [59]D.Kaur,R.P.Kaur,and R.Kaur,J.Mol.Struct.: THEOCHEM 803,95(2007).

    [60]K.Hemelsoet,F(xiàn).Van Durme,V.Van Speybroeck,M. F.Reyniers,and M.Waroquier,J.Phys.Chem.A 114,2864(2010).

    [61]P.C.Nam,M.T.Nguyen,and A.K.Chandra,J.Phys. Chem.A 109,10342(2005).

    [62]Y.Feng,L.Liu,J.T.Wang,H.Huang,and Q.X.Guo,J.Chem.Ⅰnf.Comput.Sci.43,2005(2003).

    [63]A.A.Zavitsas,D.W.Rogers,and N.Matsunaga,J. Org.Chem.75,5697(2010).

    [64]D.A.Robaugh and S.E.Stein,J.Am.Chem.Soc.108,3224(1986).

    [65]K.A.Peterson,J.Chem.Phys.119,11099(2003).

    [66]B.Metz,H.Stoll,and M.Dolg,J.Chem.Phys.113,2563(2000).

    [67]K.A.Peterson,B.C.Shepler,D.Figgen,and H.Stoll,J.Phys.Chem.A 110,13877(2006).

    Lu Lia,b,Hong-jun Fanb?,Hao-quan Hua?
    a.State Key Laboratory of Fine Chemicals,Institute of Coal Chemical Engineering,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,China
    b.State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China
    (Dated:Received on December 30,2015;Accepted on January 25,2016)
    The density functional theory(DFT)is the most popular method for evaluating bond dissociation enthalpies(BDEs)of most molecules.Thus,we are committed to looking for alternative methods that can balance the computational cost and higher precision to the best for large systems.The performance of DFT,double-hybrid DFT,and high-level composite methods are examined.The tested sets contain monocyclic and polycyclic aromatic molecules,branched hydrocarbons,small inorganic molecules,etc.The results show that the mPW2PLYP and G4MP2 methods achieve reasonable agreement with the benchmark values for most tested molecules,and the mean absolute deviations are 2.43 and 1.96 kcal/mol after excluding the BDEs of branched hydrocarbons.We recommend the G4MP2 is the most appropriate method for small systems(atoms number≤20);the double-hybrid DFT methods are advised for large aromatic molecules in medium size(20≤atoms number≤50),and the double-hybrid DFT methods with empirical dispersion correction are recommended for long-chain and branched hydrocarbons in the same size scope;the DFT methods are advised to apply for large systems(atoms number≥50),and the M06-2X and B3P86 methods are also favorable.Moreover,the differences of optimized geometry of different methods are discussed and the effects of basis sets for various methods are investigated.
    Key words:Bond dissociation enthalpies,Density functional theory,Double-hybrid density functional theory,High-level composite methods

    ?Authors to whom correspondence should be addressed.E-mail: fanhj@dicp.ac.cn,hhu@dlut.edu.cn

    成人欧美大片| 欧美黑人巨大hd| 老司机午夜十八禁免费视频| 最好的美女福利视频网| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久人妻精品电影| 免费在线观看完整版高清| 国产高清激情床上av| 久久久久国产精品人妻aⅴ院| 成人一区二区视频在线观看| 亚洲一区高清亚洲精品| 久久久久九九精品影院| 99国产综合亚洲精品| 久久久久免费精品人妻一区二区| x7x7x7水蜜桃| 一夜夜www| 男女做爰动态图高潮gif福利片| netflix在线观看网站| 俺也久久电影网| 在线观看一区二区三区| 亚洲美女黄片视频| 精品福利观看| 欧美乱码精品一区二区三区| 九色国产91popny在线| 国内精品久久久久久久电影| 亚洲欧美日韩高清专用| av福利片在线| 欧美黄色淫秽网站| 欧洲精品卡2卡3卡4卡5卡区| svipshipincom国产片| www.精华液| 欧美久久黑人一区二区| 精品高清国产在线一区| 激情在线观看视频在线高清| 动漫黄色视频在线观看| 我的老师免费观看完整版| 大型黄色视频在线免费观看| 国产精品久久久久久亚洲av鲁大| 国产精品久久久av美女十八| 欧美午夜高清在线| 哪里可以看免费的av片| 欧美性猛交黑人性爽| 亚洲av第一区精品v没综合| 99久久国产精品久久久| 国产亚洲精品av在线| 91字幕亚洲| 国产亚洲欧美在线一区二区| 亚洲成a人片在线一区二区| 中文字幕高清在线视频| 午夜福利在线在线| 男女之事视频高清在线观看| 色尼玛亚洲综合影院| 午夜激情av网站| 美女免费视频网站| а√天堂www在线а√下载| 久久久国产成人精品二区| 欧美高清成人免费视频www| 国产三级中文精品| 制服丝袜大香蕉在线| 97超级碰碰碰精品色视频在线观看| 色综合婷婷激情| 日韩精品青青久久久久久| av国产免费在线观看| 亚洲精品美女久久久久99蜜臀| www.www免费av| 国产精品永久免费网站| 国产午夜福利久久久久久| 99精品欧美一区二区三区四区| 午夜福利视频1000在线观看| 亚洲人成网站高清观看| 18禁观看日本| 久久人妻福利社区极品人妻图片| 狂野欧美激情性xxxx| 亚洲最大成人中文| 神马国产精品三级电影在线观看 | 中亚洲国语对白在线视频| 熟女少妇亚洲综合色aaa.| 久久久久国产精品人妻aⅴ院| 国产真人三级小视频在线观看| 久久婷婷人人爽人人干人人爱| 久久婷婷人人爽人人干人人爱| 此物有八面人人有两片| 国产精品综合久久久久久久免费| 亚洲精品一卡2卡三卡4卡5卡| 欧美不卡视频在线免费观看 | 国产精品综合久久久久久久免费| 日韩 欧美 亚洲 中文字幕| 一进一出好大好爽视频| 国产精品九九99| 色精品久久人妻99蜜桃| 狂野欧美白嫩少妇大欣赏| 国产成人啪精品午夜网站| 亚洲中文日韩欧美视频| 久久婷婷成人综合色麻豆| 久久精品夜夜夜夜夜久久蜜豆 | 禁无遮挡网站| 中文字幕av在线有码专区| 日本熟妇午夜| 欧美激情久久久久久爽电影| 国产精品亚洲一级av第二区| 久久久久国产精品人妻aⅴ院| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美在线一区亚洲| 免费观看人在逋| 亚洲国产欧美一区二区综合| 麻豆成人午夜福利视频| 日本撒尿小便嘘嘘汇集6| 黄色丝袜av网址大全| 啦啦啦观看免费观看视频高清| 无限看片的www在线观看| 全区人妻精品视频| 少妇人妻一区二区三区视频| 老汉色av国产亚洲站长工具| 久久久精品欧美日韩精品| 久久精品91无色码中文字幕| 美女 人体艺术 gogo| 久久人妻av系列| 夜夜看夜夜爽夜夜摸| 亚洲精品美女久久av网站| 国产成人av教育| 欧美日韩国产亚洲二区| 久久天堂一区二区三区四区| 国产精品美女特级片免费视频播放器 | 国产熟女xx| 国产成人系列免费观看| 一本一本综合久久| 亚洲av片天天在线观看| 亚洲专区中文字幕在线| 午夜福利18| 两个人的视频大全免费| 999久久久国产精品视频| 少妇粗大呻吟视频| 日韩成人在线观看一区二区三区| 日韩精品免费视频一区二区三区| 亚洲av美国av| 黄色视频不卡| a级毛片在线看网站| 又大又爽又粗| 久久久久性生活片| 国产高清videossex| 91大片在线观看| 男男h啪啪无遮挡| 一本大道久久a久久精品| 国产精品1区2区在线观看.| 日本免费一区二区三区高清不卡| 男女下面进入的视频免费午夜| 99热只有精品国产| 国产黄a三级三级三级人| 亚洲国产精品成人综合色| 在线观看日韩欧美| 两个人看的免费小视频| 熟妇人妻久久中文字幕3abv| 成人高潮视频无遮挡免费网站| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品久久男人天堂| 成人欧美大片| 欧美激情久久久久久爽电影| 精品国产亚洲在线| 国产精品久久久av美女十八| 国产免费av片在线观看野外av| 极品教师在线免费播放| 中亚洲国语对白在线视频| 精品免费久久久久久久清纯| 一边摸一边抽搐一进一小说| 制服诱惑二区| 伦理电影免费视频| www.熟女人妻精品国产| 亚洲一区高清亚洲精品| 亚洲成a人片在线一区二区| 欧美久久黑人一区二区| 国产精品亚洲一级av第二区| 国产不卡一卡二| 国产高清视频在线观看网站| 亚洲av第一区精品v没综合| 欧美丝袜亚洲另类 | 精品久久久久久久毛片微露脸| a级毛片在线看网站| 99riav亚洲国产免费| 日韩欧美在线二视频| 国产激情偷乱视频一区二区| 精品一区二区三区视频在线观看免费| 亚洲片人在线观看| 舔av片在线| 后天国语完整版免费观看| 成熟少妇高潮喷水视频| 精品第一国产精品| 99国产精品99久久久久| 久久精品91蜜桃| 午夜影院日韩av| 国产亚洲欧美在线一区二区| 欧美人与性动交α欧美精品济南到| 欧美国产日韩亚洲一区| 亚洲国产精品合色在线| 国产精品影院久久| 亚洲熟妇熟女久久| 午夜福利在线观看吧| 人妻久久中文字幕网| 国产精品电影一区二区三区| 日韩中文字幕欧美一区二区| 国产蜜桃级精品一区二区三区| 99久久无色码亚洲精品果冻| 特大巨黑吊av在线直播| 久久精品亚洲精品国产色婷小说| 午夜福利18| av福利片在线| 免费观看精品视频网站| 999精品在线视频| 久久香蕉国产精品| 在线观看免费午夜福利视频| 国产精品野战在线观看| 欧美一区二区精品小视频在线| 亚洲熟妇熟女久久| 欧美色视频一区免费| 亚洲av成人精品一区久久| 国产精品久久久久久久电影 | 久久午夜综合久久蜜桃| 午夜两性在线视频| 国产私拍福利视频在线观看| 国产精品日韩av在线免费观看| 狠狠狠狠99中文字幕| 女警被强在线播放| 色尼玛亚洲综合影院| 国产精品亚洲美女久久久| 日本黄大片高清| 亚洲精品久久成人aⅴ小说| 制服丝袜大香蕉在线| 嫁个100分男人电影在线观看| 狂野欧美激情性xxxx| 欧美一级a爱片免费观看看 | 99热只有精品国产| 老鸭窝网址在线观看| 免费在线观看日本一区| 亚洲精品在线观看二区| 国产精品一及| 90打野战视频偷拍视频| 两个人视频免费观看高清| aaaaa片日本免费| xxx96com| 妹子高潮喷水视频| 久久这里只有精品中国| 极品教师在线免费播放| 日韩有码中文字幕| 女同久久另类99精品国产91| 女生性感内裤真人,穿戴方法视频| 免费看十八禁软件| 热99re8久久精品国产| 午夜精品一区二区三区免费看| 少妇熟女aⅴ在线视频| 国产精品久久久av美女十八| 午夜亚洲福利在线播放| 久久久国产成人免费| 人人妻人人看人人澡| av中文乱码字幕在线| 国产免费av片在线观看野外av| 一个人观看的视频www高清免费观看 | 色综合亚洲欧美另类图片| 欧美乱妇无乱码| 高清在线国产一区| 精品少妇一区二区三区视频日本电影| 国产91精品成人一区二区三区| 国产一区二区三区在线臀色熟女| 麻豆国产av国片精品| 午夜成年电影在线免费观看| 老司机深夜福利视频在线观看| 999精品在线视频| 欧美av亚洲av综合av国产av| 十八禁网站免费在线| 91av网站免费观看| 欧美乱妇无乱码| 午夜成年电影在线免费观看| 一级毛片精品| 少妇粗大呻吟视频| 国产一区二区在线观看日韩 | 五月玫瑰六月丁香| 99国产精品一区二区蜜桃av| 欧美成狂野欧美在线观看| 亚洲第一欧美日韩一区二区三区| 国产在线精品亚洲第一网站| 国产精品国产高清国产av| 日韩欧美国产一区二区入口| 91麻豆精品激情在线观看国产| 亚洲中文av在线| 最近最新免费中文字幕在线| 精品久久久久久久久久久久久| 色老头精品视频在线观看| 伊人久久大香线蕉亚洲五| 88av欧美| tocl精华| 香蕉久久夜色| 久久亚洲精品不卡| 一边摸一边抽搐一进一小说| 性欧美人与动物交配| 国产成+人综合+亚洲专区| 国产精品久久久av美女十八| 老鸭窝网址在线观看| 久99久视频精品免费| 99久久综合精品五月天人人| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲美女黄片视频| 欧美成狂野欧美在线观看| 99久久99久久久精品蜜桃| 久久99热这里只有精品18| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成+人综合+亚洲专区| 国产真人三级小视频在线观看| 最近在线观看免费完整版| 久久精品亚洲精品国产色婷小说| 欧美黑人精品巨大| 在线看三级毛片| 中文字幕高清在线视频| 国产欧美日韩一区二区三| 女警被强在线播放| 欧美不卡视频在线免费观看 | 老司机福利观看| 久久热在线av| 黄色 视频免费看| a级毛片在线看网站| 亚洲欧美日韩东京热| 极品教师在线免费播放| 久久久久免费精品人妻一区二区| 露出奶头的视频| 人妻丰满熟妇av一区二区三区| 免费av毛片视频| 亚洲国产中文字幕在线视频| 欧美在线黄色| 大型黄色视频在线免费观看| 中亚洲国语对白在线视频| 久久 成人 亚洲| 成人特级黄色片久久久久久久| 最好的美女福利视频网| 少妇裸体淫交视频免费看高清 | 怎么达到女性高潮| 国产精品香港三级国产av潘金莲| 久久久精品国产亚洲av高清涩受| 麻豆成人av在线观看| 18禁国产床啪视频网站| 久久精品成人免费网站| 高潮久久久久久久久久久不卡| 老司机靠b影院| 91成年电影在线观看| 精品欧美一区二区三区在线| 757午夜福利合集在线观看| 91麻豆精品激情在线观看国产| 国产欧美日韩一区二区精品| 怎么达到女性高潮| 日韩免费av在线播放| 黄频高清免费视频| 人妻久久中文字幕网| 人妻夜夜爽99麻豆av| av在线天堂中文字幕| 伦理电影免费视频| 午夜视频精品福利| 制服丝袜大香蕉在线| 中文在线观看免费www的网站 | 日本一二三区视频观看| 99国产精品99久久久久| 欧美av亚洲av综合av国产av| 嫩草影院精品99| 欧美色欧美亚洲另类二区| 激情在线观看视频在线高清| 母亲3免费完整高清在线观看| 欧美性长视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产真实乱freesex| 色哟哟哟哟哟哟| 毛片女人毛片| 国产99白浆流出| 免费看十八禁软件| 欧美日韩国产亚洲二区| 免费av毛片视频| 国产精华一区二区三区| 久久久久久久久中文| 97人妻精品一区二区三区麻豆| 大型av网站在线播放| 午夜成年电影在线免费观看| 成人av一区二区三区在线看| 岛国在线免费视频观看| 中文在线观看免费www的网站 | 日本 欧美在线| 91老司机精品| 999久久久国产精品视频| 九九热线精品视视频播放| 在线观看免费午夜福利视频| 国产av麻豆久久久久久久| 久久久久亚洲av毛片大全| 啪啪无遮挡十八禁网站| 免费在线观看日本一区| 搡老岳熟女国产| 国产精华一区二区三区| 看片在线看免费视频| 亚洲成人中文字幕在线播放| 国产亚洲av嫩草精品影院| 女人爽到高潮嗷嗷叫在线视频| 在线永久观看黄色视频| 热99re8久久精品国产| 欧美绝顶高潮抽搐喷水| 丰满的人妻完整版| av片东京热男人的天堂| 999久久久精品免费观看国产| 香蕉丝袜av| 欧美一级a爱片免费观看看 | 亚洲免费av在线视频| 不卡一级毛片| 中亚洲国语对白在线视频| 搞女人的毛片| 亚洲精品美女久久av网站| 国产av一区在线观看免费| 亚洲国产精品sss在线观看| 99精品久久久久人妻精品| 国产精品久久久久久久电影 | 老司机靠b影院| 丝袜美腿诱惑在线| 午夜精品一区二区三区免费看| 国产av在哪里看| 欧美性猛交黑人性爽| 99热这里只有精品一区 | 欧美乱码精品一区二区三区| 丰满人妻一区二区三区视频av | 男人舔奶头视频| 国产精品 国内视频| 看黄色毛片网站| 国产不卡一卡二| 一进一出抽搐动态| 老熟妇乱子伦视频在线观看| 黄片小视频在线播放| 国产单亲对白刺激| 成人国产一区最新在线观看| 俺也久久电影网| 一二三四在线观看免费中文在| 亚洲七黄色美女视频| 久久精品国产综合久久久| 麻豆国产97在线/欧美 | 国产亚洲精品一区二区www| 精品乱码久久久久久99久播| 日韩有码中文字幕| 中文亚洲av片在线观看爽| 成人午夜高清在线视频| 国产1区2区3区精品| 国产一区在线观看成人免费| 国产成人av教育| 国产精品99久久99久久久不卡| 久久人妻av系列| 99久久久亚洲精品蜜臀av| 可以在线观看的亚洲视频| 国产精品影院久久| 一卡2卡三卡四卡精品乱码亚洲| 久久99热这里只有精品18| 亚洲av成人精品一区久久| 久久久久久国产a免费观看| 久久久久免费精品人妻一区二区| 一个人观看的视频www高清免费观看 | 国产精品野战在线观看| 国产高清有码在线观看视频 | 亚洲18禁久久av| 欧美大码av| 色噜噜av男人的天堂激情| 久99久视频精品免费| 一二三四在线观看免费中文在| 精品国产乱码久久久久久男人| 日本三级黄在线观看| 在线视频色国产色| e午夜精品久久久久久久| 此物有八面人人有两片| 国产精华一区二区三区| 麻豆成人av在线观看| cao死你这个sao货| 亚洲一区二区三区不卡视频| 国产亚洲欧美在线一区二区| 亚洲国产中文字幕在线视频| 国产av在哪里看| 啦啦啦免费观看视频1| 日韩精品青青久久久久久| 最近最新免费中文字幕在线| 亚洲午夜精品一区,二区,三区| 日本免费a在线| 欧美高清成人免费视频www| 宅男免费午夜| 成人亚洲精品av一区二区| 12—13女人毛片做爰片一| 久久久久国内视频| 在线十欧美十亚洲十日本专区| 国产精品免费一区二区三区在线| 亚洲精品国产一区二区精华液| 又紧又爽又黄一区二区| 最近视频中文字幕2019在线8| 国产激情欧美一区二区| 国产欧美日韩一区二区三| 精品日产1卡2卡| 久久人妻av系列| 亚洲成av人片在线播放无| 久久人人精品亚洲av| 免费在线观看亚洲国产| 精品电影一区二区在线| 桃红色精品国产亚洲av| 黄色成人免费大全| 国模一区二区三区四区视频 | 精品一区二区三区四区五区乱码| 每晚都被弄得嗷嗷叫到高潮| 久久九九热精品免费| 亚洲国产中文字幕在线视频| 一区二区三区国产精品乱码| 久久中文看片网| 久久久国产成人精品二区| 男人舔奶头视频| 免费在线观看黄色视频的| 全区人妻精品视频| 国产av又大| 无遮挡黄片免费观看| 一本精品99久久精品77| 国产精品爽爽va在线观看网站| 国产精品国产高清国产av| 午夜精品在线福利| 日韩成人在线观看一区二区三区| 国产又黄又爽又无遮挡在线| 黄色视频,在线免费观看| 三级男女做爰猛烈吃奶摸视频| 在线观看免费午夜福利视频| 男女下面进入的视频免费午夜| 久久久精品大字幕| 午夜亚洲福利在线播放| 久久久久久免费高清国产稀缺| e午夜精品久久久久久久| 亚洲激情在线av| 亚洲午夜理论影院| 99riav亚洲国产免费| 波多野结衣高清无吗| 成人18禁在线播放| 精品久久久久久久毛片微露脸| 一二三四在线观看免费中文在| 国产麻豆成人av免费视频| 亚洲片人在线观看| 一级毛片高清免费大全| 日本 欧美在线| 嫩草影视91久久| 欧洲精品卡2卡3卡4卡5卡区| videosex国产| 在线a可以看的网站| 亚洲人与动物交配视频| 亚洲精品久久成人aⅴ小说| 久久 成人 亚洲| 亚洲欧美一区二区三区黑人| 老司机靠b影院| 亚洲av电影不卡..在线观看| 老汉色av国产亚洲站长工具| 男男h啪啪无遮挡| 亚洲狠狠婷婷综合久久图片| 国产精品国产高清国产av| av福利片在线| 97人妻精品一区二区三区麻豆| 老司机福利观看| 在线永久观看黄色视频| 99久久99久久久精品蜜桃| a在线观看视频网站| 午夜免费成人在线视频| 欧美大码av| 精品国产乱码久久久久久男人| 精品一区二区三区视频在线观看免费| www国产在线视频色| 波多野结衣高清作品| 757午夜福利合集在线观看| 好男人在线观看高清免费视频| 中文字幕人成人乱码亚洲影| 久久 成人 亚洲| 麻豆av在线久日| 欧美日本亚洲视频在线播放| 淫妇啪啪啪对白视频| 成人午夜高清在线视频| 亚洲全国av大片| 精品久久久久久久久久久久久| 嫩草影院精品99| 亚洲电影在线观看av| 精品欧美一区二区三区在线| 国产一区二区在线av高清观看| av免费在线观看网站| 日本撒尿小便嘘嘘汇集6| 亚洲av美国av| 色老头精品视频在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲激情在线av| 特级一级黄色大片| 别揉我奶头~嗯~啊~动态视频| 啦啦啦免费观看视频1| 黄色丝袜av网址大全| 国产高清激情床上av| 视频区欧美日本亚洲| 99精品在免费线老司机午夜| a级毛片a级免费在线| 女人爽到高潮嗷嗷叫在线视频| 精品免费久久久久久久清纯| 国产伦一二天堂av在线观看| 国产精品精品国产色婷婷| 99国产精品一区二区三区| 精品国产乱码久久久久久男人| 亚洲专区字幕在线| 国产亚洲精品久久久久5区| 99国产精品一区二区三区| 夜夜爽天天搞| 亚洲中文字幕日韩| 99久久国产精品久久久| 一级a爱片免费观看的视频| 午夜久久久久精精品| 床上黄色一级片| 欧美乱码精品一区二区三区| 亚洲黑人精品在线| 熟女电影av网| 国产真实乱freesex| 最好的美女福利视频网| 精品欧美一区二区三区在线| 日韩 欧美 亚洲 中文字幕| 国产激情久久老熟女| 色综合亚洲欧美另类图片| 精品一区二区三区av网在线观看| 久久久水蜜桃国产精品网| 国产亚洲精品av在线| 一夜夜www|