常洋,王彤,王海燕,儲昭升,杭前宇,劉凱,侯澤英
1.長安大學(xué)環(huán)境科學(xué)與工程學(xué)院,陜西 西安 710000 2.環(huán)境基準與風(fēng)險評估國家重點實驗室,中國環(huán)境科學(xué)研究院,北京 100012 3.中國環(huán)境科學(xué)研究院水污染控制技術(shù)研究中心,北京 100012 4.中國環(huán)境科學(xué)研究院湖泊生態(tài)環(huán)境創(chuàng)新基地,北京 100012 5.河南理工大學(xué)材料科學(xué)與工程學(xué)院,河南 焦作 454150
?
蘆葦碳源-表面流人工濕地對農(nóng)田退水脫氮的長期效能研究
常洋1,2,王彤1,王海燕2,3*,儲昭升2,4,杭前宇2,3,劉凱2,5,侯澤英2,4
1.長安大學(xué)環(huán)境科學(xué)與工程學(xué)院,陜西 西安710000 2.環(huán)境基準與風(fēng)險評估國家重點實驗室,中國環(huán)境科學(xué)研究院,北京100012 3.中國環(huán)境科學(xué)研究院水污染控制技術(shù)研究中心,北京100012 4.中國環(huán)境科學(xué)研究院湖泊生態(tài)環(huán)境創(chuàng)新基地,北京100012 5.河南理工大學(xué)材料科學(xué)與工程學(xué)院,河南 焦作454150
蘆葦;植物碳源;表面流人工濕地;農(nóng)田退水;脫氮
洱海位于云南省大理州,是云南省第二大高原淡水湖泊,隨著大理旅游經(jīng)濟等的發(fā)展,洱海水質(zhì)呈下降趨勢,21世紀更是由貧中營養(yǎng)級下降為中營養(yǎng)級水質(zhì)。農(nóng)田退水目前是洱海主要外來氮素污染源之一,亟需進一步加強對農(nóng)田退水的脫氮處理。
1.1試驗裝置及污泥接種
PSFW由不銹鋼板制成,長120 cm、寬40 cm、高80 cm。PSFW內(nèi)填料從下至上分別為10 cm厚土壤層、30 cm厚反硝化層(由1~2 cm自然曬干的蘆葦莖葉碎段和土壤混勻)和1 cm厚石英砂覆蓋,蘆葦莖葉碎段投加量為19.2 kgm2。PSFW0為空白對照濕地,不添加蘆葦莖葉碎段,填料從下往上分別為40 cm厚土壤層和1 cm厚石英砂。濕地內(nèi)種植蘆葦和香蒲(1∶1),種植密度均為18株m2;濕地水深25 cm,進水由蠕動泵(河北蘭格蠕動泵廠BT300-2J)經(jīng)穿孔管連續(xù)布水,濕地末端均勻設(shè)置3個出水口溢流排水(圖1)。PSFW0和PSFW的有效體積分別為139和140 L。
PSFW和PSFW0置于洱海大理才村實驗基地溫室內(nèi),溫度為18~30 ℃(夜間最低18 ℃,白天最高30 ℃),濕地自2014年11月18日啟動,共運行334 d。為加速濕地啟動,將回流污泥(取自大理州周城污水處理廠)加水稀釋后接種,接種污泥濃度為150 mgL。
圖1 PSFW工藝流程Fig.1 The PSFW process flow diagram
1.2試驗設(shè)計及進水水質(zhì)
1.3主要儀器與分析方法
表1 試驗運行條件及進水水質(zhì)
表2 檢測方法及主要儀器
蘆葦中的纖維素或半纖維素可作為反硝化碳源進行反硝化脫氮反應(yīng)[13]:
圖2 PSFW和PSFW0的去除效能Fig.2 The -N removal efficiency of PSFW and PSFW0
濕地進水NO-3-NHRT∕d進水濃度∕(mg∕L)NH+4-NNO-2-N出水濃度∕(mg∕L)NH+4-NNO-2-NPSFW0高濃度中濃度低濃度20.4±0.20.01±0.010.1±0.10.06±0.0230.5±0.20.01±0.010.2±0.10.86±0.3940.4±0.20.01±0.010.1±0.10.04±0.0230.4±0.20.01±0.010.3±0.20.03±0.0220.7±0.30.01±0.010.3±0.20.01±0.0110.6±0.20.01±0.010.1±0.10.04±0.0130.8±0.50.01±0.010.5±0.30.01±0.01PSFW高濃度中濃度低濃度20.4±0.20.01±0.010.3±0.10.17±0.0230.5±0.20.01±0.011.0±0.31.99±0.4740.4±0.20.01±0.010.8±0.30.69±0.3130.4±0.20.01±0.010.2±0.10.01±0.0120.7±0.30.01±0.010.3±0.10.02±0.0110.6±0.20.01±0.010.3±0.20.04±0.0130.8±0.50.01±0.010.7±0.50.01±0.01
2.3TN長期去除效能
從圖3可以看出,在高濃度進水期,第29~40天,當(dāng)進水TN濃度為(18.4±1)mgL、HRT為3 d時,PSFW0和PSFW的TN去除率分別為(4.5±2.0)%和(64.3±5.0)%,蘆葦莖葉碎段的加入顯著提升了PSFW對TN的去除率。第41~80天,當(dāng)進水TN濃度為(16.4±0.9)mgL、HRT為4 d時,PSFW0和PSFW對TN去除率均有所提高,分別為(14.4±3.0)%和(74.1±6.0)%。第81~129天,當(dāng)進水TN濃度為(17.2±1)mgL、HRT為2 d時,PSFW0和PSFW的TN去除率分別為(24.0±3.0)%和(53.0±5.0)%。隨著HRT的延長,PSFW的TN去除率有所上升,HRT為4 d時,TN去除率最高。而PSFW0則表現(xiàn)出隨著運行時間的延長,其對TN的去除率逐漸增加的趨勢。
圖3 PSFW和PSFW0對TN的去除率Fig.3 The TN removal efficiency of PSFW and PSFW0
第130~149天,當(dāng)HRT為3 d、進水TN濃度為(16.9±1.5)mgL時,PSFW的TN去除率為(71.8±8.0)%,高于第29~40天時的(64.3±5.0)%。這與前期蘆葦釋放碳源速率較高,釋放的和也相應(yīng)較多有關(guān)[15-16];同時隨著濕地運行逐漸趨于穩(wěn)定,其對TN的去除率也逐漸提升[14]。第130~149天,濕地運行穩(wěn)定、濕地植物生長釋放的有機物為反硝化提供一定碳源[14],PSFW0的TN去除率高達(44.1±5.0)%,遠高于運行初期(第29~40天)的(4.5±2.0)%。
在中濃度進水期(第150~270天),第150~185天,當(dāng)進水TN濃度為(10.9±0.9)mgL、HRT為3 d時,PSFW和PSFW0的TN去除率分別為(90.2±7.0)%和(86.4±6.0)%。第186~207天,當(dāng)進水TN濃度為(10.8±0.4)mgL、HRT為2 d時,PSFW和PSFW0的TN去除率分別為(87.0±7.0)%和(90.0±1.0)%。第208~270天,當(dāng)進水TN濃度為(10.6±0.2)mgL,HRT為1 d時,PSFW和PSFW0出水TN去除率分別為(42.4±7.0)%和(76.9±6.0)%。在HRT為2和3 d條件下,2個濕地對TN去除相差不大。在HRT為1 d時,PSFW對TN的去除率〔(46.6±15.0)%〕要低于PSFW0〔(76.8±9.0)%〕,這與的去除規(guī)律相一致。
在低濃度進水期(第271~334天),進水TN濃度為(7.2±0.8)mgL、HRT為3 d,PSFW0對TN的去除率〔(87.8±3.0)%〕稍高于PSFW〔(82.5±7.0)%〕。
2.4氮污染去除過程中的CODMn變化
在高濃度進水期(第29~149天),進水CODMn為(3.8±0.7)mgL、HRT為2、3、4 d時,PSFW出水CODMn分別為(8.5±1.0)、(8.6±1.0)和(9.5±2.0)mgL,PSFW0出水CODMn分別為(5.6±1.0)、(4.7±2.0)和(7.7±1.0) mgL,PSFW出水CODMn顯著高于PSFW0(圖4),這是因為PSFW蘆葦莖葉碎段釋放的碳源量稍高于PSFW反硝化所需的碳源量。PSFW0出水CODCr較高可能與濕地運行初期土壤層中有機質(zhì)的釋放及接種污泥部分微生物死亡有關(guān)。PSFW出水CODMn高于PSFW0,表明PSFW內(nèi)蘆葦秸稈腐解較快,為反硝化提供了充足的碳源,這也解釋了PSFW比PSFW0脫氮效能好的原因,表明CODMn的去除與濕地對和TN的去除效能有較高的關(guān)聯(lián)性。
圖4 進出水CODMn變化Fig.4 The CODMn change of influent and effluent
從圖4可以看出,在中濃度進水期(第150~269天),當(dāng)進水CODMn為(4.4±1.0)mgL,HRT分別按3、2和1 d運行時,PSFW出水CODMn分別為(4.6±1.0)、(1.9±0.5)和(3.4±1.0)mgL,PSWF0出水CODMn分別為(4.3±0.7)、(1.7±0.8)和(3.6±0.7)mgL。
在低濃度進水期(第270~334天),當(dāng)進水CODMn為(4.7±1.0)mgL時,PSFW和PSFW0出水CODMn分別為(4.5±0.8)和(3.8±1.0)mgL。
在第29~149天,PSFW出水CODMn顯著高于PSFW0,表明該階段內(nèi)PSFW碳源更為充足,這也就可以從CN方面解釋PSFW脫氮效能較高的原因。在濕地運行149 d后,PSFW和PSFW0出水CODMn相差不大,導(dǎo)致了在第150~207天,PSFW和PSFW0對氮的去除率相差不大。而在濕地運行208 d后,雖然PSFW和PSFW0出水CODMn相差不大,但出現(xiàn)了PSFW0對氮的去除率優(yōu)于PSFW的現(xiàn)象。推測其可能是由于PSFW內(nèi)香蒲自然生長為優(yōu)勢植物,其收割期早于PSFW0生長的優(yōu)勢植株(蘆葦)造成的。
2.5氮污染去除過程中的磷變化
PSFW的蘆葦莖葉碎段腐解時也會釋放一定的磷,因此研究氮污染去除過程中的磷變化,對避免磷過度積累有重要意義。在高濃度進水期(第29~149天),進水TP濃度為(1.12±0.06)mgL、HRT分別按3、4和2 d運行時,PSFW和PSFW0出水TP濃度與進水相比均略有降低,二者TP去除率分別為(26.8±7.0)%、(56.0±6.0)%、(38.0±7.0)%和(17.3±7.0)%、(21.0±3.0)%、(33.0±2.0)%(圖5),表明PSFW內(nèi)蘆葦莖葉碎段釋放碳源時會有一定的磷釋放,但由于濕地自身具有除磷能力,出水中的磷仍得到了較好的去除,不同HRT下對TP去除率表現(xiàn)為4 d>3 d>2 d,與表面流人工濕地較高HRT(3 d)下的TP去除率高于較低HRT(1.5 d)下的去除率相一致[7]。第29~149天,PSFW對TP去除率要優(yōu)于PSFW0,這是因為投加蘆葦莖葉碎段可能對磷的去除有一定的促進作用。研究表明,濕地底層積累、腐敗的植物殘體具有吸附結(jié)合與促進共沉淀含磷化合物的作用[21-22];也有研究表明,提高COD有利于磷的去除[23]。PSFW在該階段對磷的去除顯著高于PSFW0,這主要是由于蘆葦莖葉碎段在該階段腐解的量較后期多,有機質(zhì)釋放多,對TP的吸附去除作用強。PSFW和PSFW0運行半年后,其對TP的去除率分別提高了37.1%和35.8%。
圖5 進出水TP濃度變化Fig.5 The total phosphorus change of influent and effluent
第150~185天,當(dāng)HRT為3 d、進水TP濃度為(1.01±0.08)mgL時,PSFW和PSFW0的TP去除率分別為(68.7±11.0)%和(68.0±11.0)%,PSFW稍高于PSFW0。第186~334天,當(dāng)進水TP濃度為(1.07±0.02)mgL,HRT分別按2和1 d運行時,PSFW的TP去除率〔(74.0±9.0)%和(36.7±10.0)%〕低于PSFW0〔(90.0±6.0)%和(63.4±6.0)%〕。這是因為PSFW中自然生長的優(yōu)勢植株為香蒲,后期階段未能及時收割會釋放一定的磷。此外,PSFW的基質(zhì)吸附交換作用達到平衡,因此對磷的去除率下降[24]。陸建蘭[20]曾報道種植香蒲的濕地對磷的凈化效果差于種植蘆葦?shù)臐竦?,這也解釋了末期PSFW對磷的去除差于PSFW0。
[1]李軍,徐影.固體碳源填充床反應(yīng)器反硝化性能的研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2012,31(6):1230-1235.
LI J,XU Y.Denitrification performance of a packed bed reactor using solid carbon source[J].Journal of Agro-Environment Science,2012,31(6):1230-1235.
[2]張?zhí)m河,孫立嬌,仇天雷,等.固體碳源填充床反應(yīng)器脫除污水硝態(tài)氮效能的預(yù)測模型[J].農(nóng)業(yè)工程學(xué)報,2013,29(6):209-213.
ZHANG L H,SUN L J,QIU T L,et al.Prediction model for performance of nitrate removal from contaminated water using reactor packed with solid carbon source[J].Transactions of the Chinese Society of Agricultural Engineering,2013,29(6):209-213.
[3]范振興,王建龍.利用聚乳酸作為反硝化固體碳源的研究[J].環(huán)境科學(xué),2010,30(8):2315-2319.
FAN Z X,WANG J L.Denitrification using polylactic acid as solid carbon source[J].Environmental Science,2010,30(8):2315-2319.
[4]OVEZ B.Batch biological denitrification usingArundodonax,Glycyrrhizaglabra, andGracilariaverrucosaas carbon source[J].Process Biochemistry,2006,41(1):1289-1295.
[5]GODINI H,REZAEE A,KHAVANIN A,et al.Heterotrophic biological denitrification using microbial cellulos as carbon source[J].Journal of Polymers & the Environment,2011,19(1):283-287.
[6]紹留,徐祖信,金偉,等.農(nóng)業(yè)廢物反硝化固體碳源的優(yōu)選[J].中國環(huán)境科學(xué),2011,31(5):748-754.
SHAO L,XU Z X,JIN W,et al.Optimization of solid carbon source for denitrification of agriculture wastes[J].China Environmental Science,2011,31(5):748-754.
[7]李志元,張永祥,李維垚,等.表流人工濕地對微污染水脫氮除磷效果中試研究[C]中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集,北京:中國環(huán)境科學(xué)學(xué)會,2012:1666-1669.
[8]ZHAO Y X,ZHANG B G,FENG C P,et al.Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment[J].Bioresource Technology,2011,107(1):159-165.
[9]陳川.自養(yǎng)菌-異養(yǎng)菌系統(tǒng)反硝化脫硫工藝的運行與調(diào)控策略[D].哈爾濱:哈爾濱工業(yè)大學(xué),2011.
[10]王建.表面流人工濕地污水處理技術(shù)應(yīng)用探討[J].安徽建筑工業(yè)學(xué)院學(xué)報(自然科學(xué)版),2010,18(4):51-55.
WANG J.Discussion of application on surface flow constructed wetlands for sewage treatment[J].Journal of Anhui Institute of Architecture & Industry(Natural Science),2010,18(4):51-55.
[11]魏星,朱偉,趙聯(lián)芳,等.植物秸稈作補充碳源對人工濕地脫氮效果的影響[J].湖泊科學(xué),2010,22(6):916-922.
WEI X,ZHU W,ZHAO L F,et al.Effect of the carbon source of plant straw supplement in constructed artificial wetland on nitrogen removal[J].Journal of Lake Sciences,2010,22(6):916-922.
[12]國家環(huán)境保護總局.水和廢水監(jiān)測分析方法[M].4版.北京:中國環(huán)境科學(xué)出版社,2002.
[14]譚洪新,周琪,楊殿海,等.寬葉香蒲表面流人工濕地脫氮除磷效果研究[J].環(huán)境污染與防治,2009,31(5):11-15.
TANG H X,ZHOU Q,YANG D H,et al.Removal of nitrogen and phosphorus by free water surface constructed wetland planted withTyphalaifolia[J].Environmental Pollution & Control,2009,31(5):11-15.
[15]葉碧碧,曹德菊,儲昭升,等.洱海湖濱帶挺水植物殘體腐解特征及其環(huán)境效應(yīng)初探[J].環(huán)境科學(xué)研究,2011,24(12):1364-1369.
YE B B,CAO D J,CHU Z S,et al.Decomposition characteristics of emergent aquatic plant residues from the lakeshore of Erhai Lake and their environmental effects[J].Research of Environmental Sciences,2011,24(12):1364-1369.
[16]唐金艷,曹培培,徐馳,等.水生植物腐爛分解對水質(zhì)的影響[J].應(yīng)用生態(tài)學(xué)報,2013,24(1):83-89.
TANG J Y,CAO P P,XU C,et al.Effects of aquatic plants during their decay and decomposition on water quality[J].Chinese Journal of Applied Ecology,2013,24(1):83-89.
[17]楊柯.人工濕地植物的篩選及試驗研究[D].南寧:廣西大學(xué),2007.
[18]王海明.表面流人工濕地處理北方污染河水的長期凈化效果及相關(guān)機理研究[D].濟南:山東大學(xué),2011.
[19]石雷,楊璇.人工濕地植物量及其對凈化效果影響的研究[J].生態(tài)環(huán)境學(xué)報,2010,19(1):28-33.
SHI L, YANG X.Phytomass and its impact on the pollutant removal ability of constructed wetland[J].Ecology and Environmental Sciences,2010,19(1):28-33.
[20]陸建蘭.蘆葦與香蒲對富營養(yǎng)化水體中氮磷去除效果的比較[J].廣東農(nóng)業(yè)科學(xué),2010,4(9):409-411.
LU J L.Removal effect comparison of reed and cattail on nitrogen and phosphorus in eutrophic water[J].Guangdong Agricultural Sciences,2010,4(9):409-411.
[21]張軍,周琪,何蓉.表面流濕地中氮磷去除機理[J].生態(tài)環(huán)境,2004,13(1):98-101.
[22]KIM S Y,GEARY P M.The impact of biomass harvesting on phosphorus uptake by wetland plants[J].Water Science & Technology,2001,44(1112):61-67.
[23]譚洪新,劉艷紅,周琪,等.添加碳源對潛流+表面流組合濕地脫氮除磷的影響[J].環(huán)境科學(xué),2007,28(6):1209-1215.
TAN H X,LIU Y H,ZHOU Q,et al.Effects of external carbon source on nitrogen and phosphorus removal in subsurface flow and free water surface integrated constructed wetland[J].Environmental Science,2007,28(6):1209-1215.
[24]TANNER C C.Substratum phosphorus accumulation during maturation of gravel-bed constructed wetlands[J].Water Science & Technology,1999,40(3):147-154.?
金曉丹,吳昊,王啟明,等.鈣離子和pH對長江河口青草沙水庫水體磷濃度的影響[J].環(huán)境工程技術(shù)學(xué)報,2016,6(5):462-468.
JIN X D, WU H, WANG Q M, et al.Impact of calcium and pH on content of phosphorus in water of Qingcaosha reservoir of Yangtze Estuary[J].Journal of Environmental Engineering Technology,2016,6(5):462-468.
The Long-term Nitrogen Removal Efficiency from Agricultural Runoff inPhragmitesAustralisPacked Surface Flow Constructed Wetland
CHANG Yang1,2, WANG Tong1, WANG Haiyan2,3, CHU Zhaosheng2,4, HANG Qianyu2,3, LIU Kai2,5, HOU Zeying2,4
1.School of Environmental Science and Engineering, Chang’an University, Xi’an 710000, China 2.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 3.Research Center for Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 4.Research Center of Lake Eco-environments, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 5.School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454150, China
The low CN ratio and high nitrate proportion characteristics of agricultural runoff make its nitrate removal difficult. To resolve such problem, the economically and easily obtainedPhragmitesaustralisstems and leaves were applied and packed in the surface layer of the surface flow constructed wetland (PSFW) as external carbon sources to study the long-term nitrogen removal from agricultural runoff. Compared with control PSFW0, obviously higher nitrate removal efficiency was observed inPhragmitesaustralispacked PSFW during 29-149 d operation. When the influentand TN were (16.4±1.0) mgL and (17.7±2.0) mgL and the HRTs were 2 d, 3 d and 4 d, the highest nitrogen removal efficiency was achieved under 4 d HRT condition, and the-N and TN removal efficiency in PSFW were (87.4±6.0)% and (74.1%±6.0)%. Those removal in PSFW0were (14.4±4.0)% and (14.4±3.0)%, respectively. Slightly higher denitrification efficiency was obtained in PSFW than that in PSFW0during 150-269 d operation. When the influent-N and TN were (10.4±1.0) mgL and (10.8±1.0) mgL and the HRTs were 3 d, 2 d and 1 d, the highest nitrogen removal efficiency was achieved under 3 d HRT condition, and the-N and TN removal efficiency in PSFW were (91.9±7.0)% and (90.2±7.0)%. Those removal were (91.3±5.0)% and (86.4±6.0)% in PSFW0accordingly. Slightly lower denitrification efficiency was obtained in PSFW than that in PSFW0during 270-334 d operation. When the influent-N and TN were (5.7±0.4) mgL and (7.2±0.8) mgL and the HRT was 3 d, the-N and TN removal efficiency in PSFW were (88.6±10.0)% and (82.5±7.0)%. Those removal were (94.0±6.0)% and (87.8±3.0)% in PSFW0accordingly.
Phragmitesaustralis; plant carbon source; surface flow constructed wetland; agricultural runoff; nitrogen removal
2016-03-10
國家水體污染控制與治理科技重大專項(2012ZX07105-002)
常洋(1990—),男,碩士研究生,461140419@qq.com
*責(zé)任作者:王海燕(1976—),女,研究員,博士,主要從事水污染控制原理與技術(shù)研究,wanghy@craes.org.cn
X703.1
1674-991X(2016)05-0453-09
10.3969j.issn.1674-991X.2016.05.067