李建立, 崔紅賞, 郭洪霞, 于 洋, 吳紅海, 侯艷寧
?
氯胺酮誘導(dǎo)發(fā)育期大鼠神經(jīng)細(xì)胞凋亡時(shí)神經(jīng)甾體17β雌二醇水平的變化
李建立1, 崔紅賞2, 郭洪霞1, 于洋3, 吳紅海3, 侯艷寧3
目的探討連續(xù)大劑量應(yīng)用氯胺酮引起發(fā)育期大鼠大腦皮層區(qū)神經(jīng)細(xì)胞凋亡時(shí)神經(jīng)甾體17β雌二醇水平的變化及機(jī)制。方法30只7日齡雄性SD大鼠,隨機(jī)分為對(duì)照組和氯胺酮組,每組15只。對(duì)照組連續(xù)3 d腹腔注射等容量生理鹽水,氯胺酮組連續(xù)3 d腹腔注射75 mg/kg氯胺酮,末次注藥后24 h,每組取5只大鼠用免疫組織化學(xué)法檢測(cè)大腦皮層區(qū)cleaved-caspase-3和CYP19A1的表達(dá),其余幼鼠應(yīng)用高效液相色譜-質(zhì)譜聯(lián)用法(HPLC-MS/MS)測(cè)定大腦皮層區(qū)神經(jīng)甾體17β雌二醇的含量。結(jié)果與對(duì)照組比較,氯胺酮組大鼠大腦皮層區(qū)cleaved-caspase-3陽(yáng)性細(xì)胞顯著性增加(P<0.01),17β雌二醇水平及CYP19A1酶的表達(dá)均顯著性下降(P<0.01)。結(jié)論連續(xù)大劑量應(yīng)用氯胺酮可引起發(fā)育期大鼠大腦皮層區(qū)神經(jīng)細(xì)胞凋亡伴隨神經(jīng)甾體17β雌二醇水平下降,其機(jī)制可能與限速酶CYP19A1表達(dá)下降有關(guān)。
氯胺酮; 雌二醇; 細(xì)胞凋亡; 色譜法,高壓液相; 質(zhì)譜分析法; 基因
氯胺酮作為一種N-甲基-D-天冬氨酸(N-methyl-D-aspartate, NMDA)受體拮抗劑,廣泛應(yīng)用于嬰幼兒手術(shù)的麻醉。最近動(dòng)物實(shí)驗(yàn)研究表明,在中樞神經(jīng)系統(tǒng)的快速發(fā)育期反復(fù)使用氯胺酮可引起發(fā)育期動(dòng)物大腦廣泛腦區(qū)神經(jīng)細(xì)胞凋亡的增加[1-3]。17β雌二醇作為一類(lèi)神經(jīng)甾體,對(duì)發(fā)育期大腦的發(fā)育和成熟起著十分重要的作用。研究表明,氯胺酮可引起斑馬魚(yú)發(fā)育期17β雌二醇水平的下調(diào),導(dǎo)致斑馬魚(yú)發(fā)育期神經(jīng)損傷[4-5]。本研究旨在探討氯胺酮引起發(fā)育期大鼠大腦皮層區(qū)神經(jīng)細(xì)胞凋亡時(shí)是否伴隨神經(jīng)甾體17β雌二醇水平的變化,從神經(jīng)甾體的角度進(jìn)一步探討氯胺酮發(fā)育期神經(jīng)毒性的發(fā)生機(jī)制。
1.1材料
1.1.1動(dòng)物與分組母鼠與7日齡雄性幼鼠均為SD大鼠,由河北醫(yī)科大學(xué)動(dòng)物實(shí)驗(yàn)中心提供(母鼠及幼鼠動(dòng)物合格證編號(hào)分別為1308067,1306107)。30只幼鼠隨機(jī)分為對(duì)照組和氯胺酮組,每組15只,對(duì)照組連續(xù)3 d腹腔注射等容量生理鹽水,氯胺酮組連續(xù)3 d腹腔注射75 mg/kg氯胺酮。麻醉后把幼鼠放在暖箱中,給予低流量氧氣(2 L/min),密切觀(guān)察幼鼠的呼吸頻率以及皮膚顏色。各組幼鼠與母鼠的分離時(shí)間均為250 min[3]。
1.1.2試劑氯胺酮(福建古田藥業(yè)有限公司提供,批號(hào)H35020148),甲睪酮(MT)(中國(guó)藥品生物檢定所),丹酰氯(Sigma-Aldrich公司),乙酰乙酯、正己烷、甲酸(天津康科德科技有限公司),cleaved-caspase-3試劑(美國(guó)Cell Signaling公司),CYP19A1試劑(Abcam公司)。
1.1.3主要儀器液質(zhì)聯(lián)用儀(1100LC/MSD,美國(guó)Agilent公司),固相萃取裝置(Visiprep DL,美國(guó)Supelco公司),固相萃取柱(Oasis HLB SPE,美國(guó)Waters公司,規(guī)格:30 mg/mL,30 μm),氮?dú)獯蹈蓛x(北京八方世紀(jì)公司)。
1.2方法
1.2.1免疫組織化學(xué)染色法檢測(cè)大鼠大腦皮層區(qū)cleaved-caspase-3和CYP19A1的表達(dá)末次給藥后24 h,每組取5只幼鼠給予巴比妥麻醉,斷頭取皮層組織。4%多聚甲醛固定皮層腦組織48 h,用梯度乙醇脫水,石蠟包埋,5 μm厚度切片。切片經(jīng)二甲苯浸泡3次,梯度乙醇脫水(每次5 min),自來(lái)水浸泡5 min??乖迯?fù)20 min,自然冷卻。滴加3% H2O2去離子水,室溫孵育10 min,PBS沖洗3次,每次5 min。滴加正常山羊血清工作液,室溫孵育15 min,進(jìn)行封閉。去除血清,滴加兔抗cleaved-caspase-3(1∶50)和CYP19A1(1∶100),4 ℃過(guò)夜,PBS沖洗3次,每次5 min。滴加生物素化二抗工作液,室溫孵育15 min,PBS沖洗3次,每次5 min。滴加辣根酶標(biāo)記鏈霉卵白素工作液,室溫孵育15 min,PBS沖洗3次,每次5 min。滴加DAB試劑顯色,顯微鏡下控制顯色時(shí)間,自來(lái)水沖洗終止反應(yīng),常規(guī)脫水,中性樹(shù)膠封片。
1.2.2神經(jīng)甾體提取末次給藥后24 h,每組取10只幼鼠給予巴比妥麻醉,斷頭取皮層組織。每100 mg腦組織加入1 mL PBS液勻漿,通過(guò)液液萃取的方法提取神經(jīng)甾體。加入20 μL內(nèi)標(biāo)MT(30 ng/mL),然后加入2 mL乙酸乙酯/正己烷(9∶1),渦旋混勻5 min,12 000 r/min離心5 min,轉(zhuǎn)移上層有機(jī)相至7 mL玻璃試管中,重復(fù)萃取3次,合并有機(jī)相,50 ℃水浴N2吹干。然后依次加入10 μL Na2CO3、10 μL丹酰氯(5 mg/mL)、乙腈80 μL,超聲1 min,渦旋1 min,瞬時(shí)離心,60 ℃水浴中衍生40 min,衍生反應(yīng)結(jié)束后,12 000 r/min離心10 min,取上清,4 ℃保存待測(cè)神經(jīng)甾體。
1.2.3神經(jīng)甾體含量測(cè)定(1)色譜條件:分析柱為Agilent XDB C18(4.6 mm×50 mm,1.8 μm);保護(hù)柱為Agilent XDB C18(4.6 mm×12 mm);流動(dòng)相為A水(含0.1%甲醇),B甲醇(含0.1%甲醇),柱溫40 ℃,流速0.5 mL/min;洗劑梯度為0~6.5 min,36%A;6.5~6.6 min,30%A;6.6~17 min,10%A;17~18 min,36%A。進(jìn)樣量30 μL,每針運(yùn)行18 min。(2)質(zhì)譜條件:離子化方式為大氣壓化學(xué)離子源;噴霧電壓4 500 V;鞘氣(N2)壓力30 L/min;輔助氣壓力5 L/min;離子傳輸管溫度270 ℃。離子檢測(cè)方式:正離子多反應(yīng)監(jiān)測(cè),用于定量分析的離子反應(yīng)分別為(m/z)254.97→(m/z)132.9,158.9(17β雌二醇),(m/z)303.1→(m/z)97.04,109.06(MT)。
2.1氯胺酮對(duì)發(fā)育期大鼠大腦皮層區(qū)cleaved-caspase-3表達(dá)的影響與對(duì)照組比較,氯胺酮組大鼠大腦皮層區(qū)cleaved-caspase-3陽(yáng)性細(xì)胞數(shù)/0.01 mm2顯著增加(P<0.01,圖1~2)。
2.2神經(jīng)甾體的測(cè)定17β雌二醇和內(nèi)標(biāo)MT的保存時(shí)間分別為7.1,6.5 min。標(biāo)準(zhǔn)曲線(xiàn)如下,線(xiàn)性范圍1~200 ng/g,在此范圍內(nèi)待測(cè)物線(xiàn)性關(guān)系良好。待測(cè)物回收率為(98.8±5)%,日間和日內(nèi)變異均<12.6%和<9.5%,準(zhǔn)確度(相對(duì)誤差)<15%。色譜圖見(jiàn)圖3。
Y=0.036 938 9+0.141 111 4×X
R2=0.993 7
W=1/X2
2.3氯胺酮對(duì)發(fā)育期大鼠皮層區(qū)17β雌二醇水平及CYP19A1表達(dá)的影響與對(duì)照組比較,氯胺酮組大鼠大腦皮層區(qū)神經(jīng)甾體17β雌二醇水平及CYP19A1表達(dá)顯著下降(P<0.01,圖4~6)。
氯胺酮作為NMDA受體拮抗藥,動(dòng)物實(shí)驗(yàn)研究表明,在中樞神經(jīng)系統(tǒng)快速發(fā)育期反復(fù)應(yīng)用氯胺酮可導(dǎo)致大腦神經(jīng)細(xì)胞凋亡,并可能引起動(dòng)物成年后的學(xué)習(xí)記憶功能損傷[1-3]。眾多學(xué)者對(duì)氯胺酮引起發(fā)育期大腦神經(jīng)損傷的機(jī)制進(jìn)行了大量的研究,但其確切機(jī)制目前尚不十分清楚[1-3]。以往研究表明,氯胺酮誘導(dǎo)神經(jīng)元凋亡與引起神經(jīng)遞質(zhì)NMDA的受體亞單位NR1的上調(diào)有關(guān)[6]。神經(jīng)甾體作為第4代神經(jīng)遞質(zhì),具有催眠鎮(zhèn)靜、抗焦慮、抗驚厥、改善學(xué)習(xí)記憶功能及神經(jīng)保護(hù)作用。研究表明,在大腦發(fā)育和成熟過(guò)程,神經(jīng)甾體水平的下降甚至缺乏會(huì)導(dǎo)致神經(jīng)發(fā)育和行為學(xué)方面的異常[7]。有研究發(fā)現(xiàn),大腦神經(jīng)甾體含量變化與帕金森病、阿爾茨海默病、多發(fā)性硬化癥、創(chuàng)傷性顱腦損傷等在內(nèi)的各類(lèi)疾病有關(guān)[8-11]。本研究著重探討氯胺酮引起發(fā)育期大鼠大腦神經(jīng)損傷是否與神經(jīng)甾體如17β雌二醇的水平變化有關(guān)。
雌二醇作為一種內(nèi)源性神經(jīng)甾體,在神經(jīng)元發(fā)育過(guò)程中發(fā)揮著重要的調(diào)節(jié)作用,促進(jìn)神經(jīng)元的存活以及功能維護(hù)。張吉強(qiáng)等研究發(fā)現(xiàn),出生后大鼠大腦可表達(dá)雌激素合成酶即芳香化酶和雌激素β受體,提示雌激素可能通過(guò)其受體對(duì)早期神經(jīng)發(fā)育產(chǎn)生調(diào)節(jié)作用[12]。17β雌二醇可抑制大腦皮層成神經(jīng)細(xì)胞DNA斷裂,抑制神經(jīng)細(xì)胞凋亡,同時(shí)誘導(dǎo)成神經(jīng)細(xì)胞的增生和分化,還具有促進(jìn)神經(jīng)細(xì)胞軸突及樹(shù)突的生長(zhǎng),建立和維持突觸功能的作用[13]。有研究表明,抑制膠質(zhì)細(xì)胞膽固醇合成雌二醇的過(guò)程,可導(dǎo)致尼曼匹克癥C型的神經(jīng)退化性改變,而使用17β雌二醇可減輕神經(jīng)損傷[14]。另有研究表明,NMDA受體拮抗劑MK-801誘導(dǎo)的神經(jīng)毒性與神經(jīng)甾體17β雌二醇水平下降有關(guān)[15]。以上研究均表明,17β雌二醇對(duì)發(fā)育期大腦的發(fā)育及成熟發(fā)揮著重要的調(diào)節(jié)作用。本研究結(jié)果還表明,氯胺酮引起皮層區(qū)神經(jīng)甾體17β雌二醇水平下降,這說(shuō)明連續(xù)大劑量應(yīng)用氯胺酮引起發(fā)育期大鼠皮層區(qū)神經(jīng)細(xì)胞凋亡可能與神經(jīng)甾體17β雌二醇水平下降有關(guān)。
在神經(jīng)甾體的合成通路中,睪酮是雌二醇合成的上游產(chǎn)物,通過(guò)CYP19A1酶合成雌二醇[16]。有研究認(rèn)為,氯胺酮通過(guò)抑制CYP19A1酶的基因表達(dá),抑制發(fā)育期斑馬魚(yú)睪酮向雌二醇的合成,導(dǎo)致神經(jīng)甾體17β雌二醇水平的明顯下降[4]。在中樞神經(jīng)系統(tǒng),通過(guò)激活CYP19A1酶的表達(dá)可促進(jìn)17β雌二醇的合成,進(jìn)而發(fā)揮神經(jīng)保護(hù)作用[13]。研究證實(shí),大腦合成神經(jīng)甾體所需的各類(lèi)酶主要位于神經(jīng)元和膠質(zhì)細(xì)胞的線(xiàn)粒體內(nèi)[17-18]。研究表明,氯胺酮引起發(fā)育期大腦損傷與激活線(xiàn)粒體凋亡通路有關(guān)[19]。因此推測(cè),氯胺酮可能通過(guò)抑制神經(jīng)甾體17β雌二醇合成限速酶CYP19A1的活性,引起17β雌二醇的合成代謝下降,抑制17β雌二醇對(duì)神經(jīng)元的調(diào)節(jié)作用,引起神經(jīng)元功能障礙,最終導(dǎo)致神經(jīng)元凋亡。
總之,連續(xù)大劑量應(yīng)用氯胺酮可引起發(fā)育期大鼠皮層區(qū)神經(jīng)細(xì)胞凋亡,凋亡發(fā)生可能與氯胺酮抑制皮層區(qū)CYP19A1酶的表達(dá)導(dǎo)致神經(jīng)甾體17β雌二醇水平的下降有關(guān)。本研究從神經(jīng)甾體的角度探討了氯胺酮誘導(dǎo)發(fā)育期大腦神經(jīng)損傷的機(jī)制,下一步應(yīng)研究外源性給予17β雌二醇恢復(fù)神經(jīng)甾體17β雌二醇水平是否對(duì)氯胺酮引起的發(fā)育期大鼠皮層區(qū)神經(jīng)細(xì)胞凋亡產(chǎn)生保護(hù)作用。
[1]Duan X, Li Y, Zhou C,etal. Dexmedetomidine provides neuroprotection:impact on ketamine-induced neuroapoptosis in the developing rat brain[J].ActaAnaesthesiolScand, 2014,58(9):1121-1126.
[2]Liu J R, Baek C, Han X H,etal. Role of glycogen synthase kinase-3β in ketamine-induced developmental neuroapoptosis in rats[J].BrJAnaesth, 2013,110(Suppl 1):i3-9.
[3]Huang L, Liu Y, Jin W,etal. Ketamine potentiates hippocampal neurodegeneration and persistent learning and memory impairment through the PKCgamma-ERK signaling pathway in the developing brain[J].BrainRes, 2012,1476:164-171.
[4]Trickler W J, Guo X, Cuevas E,etal. Ketamine attenuates cytochrome p450 aromatase gene expression and estradiol-17β levels in zebrafish early life stages[J].JApplToxicol, 2014,34(5):480-488.
[5]Kanungo J, Cuevas, Ali S F,etal. Ketamine induces motor neuron toxicity and alters neurogenic and proneural gene expression in zebrafish[J].ApplToxicol, 2013,33(6):410-417.
[6]Wang C,Sadovova N,F(xiàn)u X,etal. The role of the N-methyl-D-aspartate receptor in ketamine-induced apoptosis in rat forebrain culture[J].Neuroscience, 2005,132(4):967-977.
[7]Kawato S, Yamada M, Kimoto T. Brain neurosteroids are 4thgeneration neuromessengers in the brain:cell biophysical analysis of steroid signal transduction[J].AdvBiophy, 2001,37(1):1-48.
[8]于洋, 薛改, 吳紅海, 等. Aβ25-35對(duì)大鼠大腦皮層皮質(zhì)神經(jīng)元神經(jīng)甾體水平的影響[J]. 中國(guó)藥理學(xué)通報(bào), 2010,26(6):783-786.
[9]Luchetti S, Huitinga I, Swaab D F. Neurosteroid and GABA-A receptor alterations in Alzheimer’s disease, Parkinson’s disease and multiple sclerosis[J].Neuroscience, 2011,191:6-21.
[10]Lapchak P A. The neuroactive steroid 3-alpha-ol-5-beta-pregnan-20-one hemisuccinate, a selective NMDA receptor antagonist improves behavioral performance following spinal cord ischemia[J].BrainRes, 2004,997(2):152-158.
[11]Roglio I, Bianchi R, Gotti S,etal. Neuroprotective effects of dihydroprogesterone and progesterone in an experimental model of nerve crush injury[J].Neuroscience, 2008,155(3):673-685.
[12]張吉強(qiáng), 蔡文琴. 雌激素Beta受體在成年雄性大鼠腦內(nèi)的免疫組化定位研究[J]. 第三軍醫(yī)大學(xué)學(xué)報(bào), 2001,23(8):895-897.
[13]衛(wèi)永旭, 初明, 藺友志. 腦芳香酶的神經(jīng)保護(hù)作用[J]. 中國(guó)微侵襲神經(jīng)外科雜志, 2011,16(4):187-189.
[14]Chen G, Li H M, Chen Y R,etal. Decreased estradiol release from astrocytes contributes to the neurodegeneration in a mouse model of Niemann-Pick disease type C[J].Glia, 2007,55(15):1509-1518.
[15]de Olmos S, Bueno A, Bender C,etal. Sex differences and influence of gonadal hormones on MK801-induced neuronal degeneration in the granular retrosplenial cortex of the rat[J].BrainStructFunct, 2008,213(1-2):229-238.
[16]Luchetti S, Bossers K, Vande Bilt S,etal. Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer’s disease[J].NeurobioAgeing, 2011,32(11):1964-1976.
[17]Mellon S H, Griffin L D, Compagnone N A. Biosynthesis and action of neurosteroids[J].BrainResRev, 2001,37(1-3):1-12.
[18]Leskiewicz M, Budziszewska B, Basta-Kaim A,etal. Effects of neurosteroids on neuronal survival.Molecular basis and clinical perspectives[J].ActaNeurobiolExp, 2006,66(4):359-367.
[19]Braun S, Gaza N, Werdehausen R,etal. Ketamine induces apoptosis via the mitochondrial pathway in human lymphocytes and neuronal cells[J].BrJAnaesth, 2010,105(3):347-354.
(編輯:何佳鳳)
Changes in Level of 17β-estradiol when Ketamine Induces Neuroapoptosis in the Developing Rat Brain
LI Jianli1, CUI Hongshang2, GUO Hongxia1, YU Yang3, WU Honghai3, HOU Yanning3
1.Department of Anesthesiology, Hebei General Hospital, Shijiazhuang 050051, China;2.Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang 050051, China;3.Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, China
ObjectiveTo investigate the effect of ketamine on 17β-estradiol level in the developing rat brain.Methods30 aged 7 days SD male rats were randomly divided into two group: Group C and Group K.Group C was intraperitoneally injected with same volume of saline for three consecutive days, Group K was intraperitoneally injected with 75 mg/kg ketamine for three consecutive days. 24 hours after the last injection, five rats from each group were decapitated under deep anesthesia and the PFC portion was isolated todetect cleaved caspase-3 and CYP19A1 expressions by immunohistochemical analysis (n=5).The PFC of other rats was harvested to determine 17β-estradiol concentration by HPLC-MS/MS assay(n=10).ResultsCompared with the Group C, the expression of cleaved caspase-3 in Group K increased significantly after being treated with 75 mg/kg ketamine for three consecutive days(P<0.01), while 17β-estradiol level and CYP19A1 expression in PFC significantly reduced(P<0.01).ConclusionKetamine can cause decrease in the endogenous 17β-estradiol level, which was associated with the decrease of CYP19A1 expression.
ketamine; estradiol; apoptosis; chromatography, high pressure liquid; mass spectrometry; genes
2015-11-19
河北省衛(wèi)生廳醫(yī)學(xué)重點(diǎn)課題(ZL20140095)
1.河北省人民醫(yī)院 麻醉科,石家莊050051;
2.河北省人民醫(yī)院 胸外科,石家莊050051;
李建立(1976-),男,副教授,醫(yī)學(xué)博士
侯艷寧. Email:biph2011@163.com
R322.8; R347.913; R741.02; R971.2; R977.12
A
1672-4194(2016)02-0093-05
3.白求恩國(guó)際和平醫(yī)院 藥劑科,石家莊050082
福建醫(yī)科大學(xué)學(xué)報(bào)2016年2期