• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Li3PO4Surface Modification to Improve Performance of LiNi0.5Mn1.5O4Cathode Material

    2016-09-18 07:59:45RENNingLUShiGangGeneralResearchInstituteforNonferrousMetalsBeijing100088China
    關(guān)鍵詞:充放電鋰離子電導(dǎo)率

    REN NingLU Shi-Gang(General Research Institute for Nonferrous Metals, Beijing 100088, China)

    Li3PO4Surface Modification to Improve Performance of LiNi0.5Mn1.5O4Cathode Material

    REN Ning*LU Shi-Gang*
    (General Research Institute for Nonferrous Metals, Beijing 100088, China)

    Spherical LiNi0.5Mn1.5O4@Li3PO4composite was prepared by a co-precipitation method. The structure and electrochemical performance were investigated by X-ray powder diffraction(XRD), scanning electron microscope (SEM), FT-IR spectroscopy, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge-discharge measurements. XRD and SEM shows that Li3PO4coating influence the lattice parameter of LiNi0.5Mn1.5O4composed of spherical particle size. CV and EIS imply that 5%(mass percent) Li3PO4-coated LiNi0.5Mn1.5O4has higher reversible intercalation and deintercalation of Li+, larger lithium-ion diffusion coefficient and smaller charge transfer resistance corresponding to a much higher conductivity than those of pristine LiNi0.5Mn1.5O4corresponding to the extraction of Li+ions. Charge-discharge test reveals that the in situ Li3PO4modifying improves the electronic conductivity of the electrode in the local environment, electrochemical activity, and then results in their relatively higher capacity at high charge-discharge rate. The enhanced performance of 5% (mass percent) Li3PO4-coated LiNi0.5Mn1.5O4is ascribed to the improved electronic conduction and the reduced polarization resulting from the Li3PO4modification together with sphere-like particles composed of nano particle LiNi0.5Mn1.5O4.

    lithium-ion battery; cathode materials; surface coating; electrochemical performance

    0 Introduction

    Spinel LiMn2O4is one of the most promising cathode for electric vehicles (EVs), hybrid electrical vehicles (HEVs), and plug-in hybrid vehicles (PHEVs) due to its adequate capacity, economical production, safety, low toxicity and high thermal stability[1]. Unfortunately, poor rate capability, cyclability and high-temperature performance limit its further application for power batteries due to the Jahn-Teller distortion[2]. In addition, a further improvement in terms of cycling life and energy density is still required to fulfill the demands of these applications. As we know, the partial substitution by other metals for Mn in LiMn2O4could stabilize the crystal structure and improve the cycling performance[3-5]. Among all doped LiMxMn2-xO4, the Ni-doped spinel LiNi0.5Mn1.5O4has attracted great interests for its good rate capability, high theoretical capacity (147 mAh·g-1) and much high discharge voltage at around 4.7 V corresponding to the redox reactions of Ni2+/Ni3+and Ni3+/Ni4+redox couples[6]. However, LiNi0.5Mn1.5O4usually losses oxygen and disproportionates to a spinel and LixNi1-xO or NiO when it is heated above 650℃[7]. Hence, this LiNi0.5Mn1.5O4compound still has a non-negligible capacity fading during cycling due to the structural and chemical instabilities resulted from the presence of high spin Mn3+ions. Hence, morphology controlling[8], doping[9-12]and surface coating[13-17]were considered as effective ways to improve the electrochemical performance of LiNi0.5Mn1.5O4materials. Various morphologies of LiNi0.5Mn1.5O4, such as nanoparticles[18], nanorods[19], and microspheres[20], have been successfully fabricated to improve the electrochemical performance. However, nanomaterial frequently results in a low volumetric energy density of the cell. A variety of methods used to prepare LiNi0.5Mn1.5O4have been developed, including solid-state reaction[21], sol-gel[22], emulsion drying[23], composite carbonate process[24], hydrothermal method[25]and co-precipitation[26]. Among those routes to preparation of cathode materials, the co-precipitation is one of the most effective and conventional and inexpensive methods to synthesize the final product of LiNi0.5Mn1.5O4[27]. Li3PO4is known to be a fast solid lithium ionic conductor[28], and Li3PO4coating has been used to improve the electrochemical performance of LiMn2O4[29], LiCoO2[30], LiFePO4[31]cathode materials. With this consideration, we have developed a novel ethanol-assisted co-precipitation method to synthesize spherical LiNi0.5Mn1.5O4and Li3PO4-coated LiNi0.5Mn1.5O4composites. With this method, the Mn3+in the LiNi0.5Mn1.5O4can be efficiently limited. Consequently, the overall electrochemical performance of the LiNi0.5Mn1.5O4can be obviously improved.

    1 Experimental

    1.1Material preparation

    For the preparation of Li3PO4, a certain amount of LiOH and H3PO4was dissolved in deionized water, and then heated in water bath with mechanical stirring at 80℃for 6 h. Then the turbid liquid was filtered, and dried in vacuum drying oven for 12 h at 120℃, yielding Li3PO4powders. LiNi0.5Mn1.5O4powders were prepared by ethanol-assisted oxalic acid coprecipitation method. The NiSO4·6H2O and MnSO4· H2O were dissolved in the mixed solution of deionized water and ethanol with a molar ratios of 1∶2, and named solution 1. The NH4HCO3was also dissolved in the deionized water, and the molar ratio between NH4HCO3and sulphate (NiSO4·6H2O+MnSO4·H2O) is 1∶1, and named solution 2. The solution 1 and solution 2 were mixed, and then the resulting precursor solution was transferred to a Teflon-lined stainless steel autoclave and heated at 200℃for 10 h. The powder deposited at the bottom of the reactor was collected by centrifugation. The powder and appropriate Li2CO3was mixed, then the precursors were heat treated at 800℃for 12 h at ambient condition, and then treated at 600℃for 6 h, and then air-cooled to the room temperature, yielding LiNi0.5Mn1.5O4dark powders.

    For the preparation of LiNi0.5Mn1.5O4@Li3PO4, the Li3PO4was added to the mixture of solution 1 and solution 2, and transferred to a Teflon-lined stainless steel autoclave and heated at 200℃for 10 h. The following synthesis process is the same forLiNi0.5Mn1.5O4powders. The predetermined amounts of Li3PO4in LiNi0.5Mn1.5O4are 5% and 10% (mass percent), respectively.

    1.2Material characterization

    The crystal structure was characterized by X-ray diffractometry (XRD) measurements performed on a Rigaku instrument with Cu Kα1radiation (45 kV, 50 mA, step size=0.02°, 10°<2θ<90°). The morphology and the microstructure of the products were examined by a scanning electron microscopy (SEM, SU8000). FT-IR spectroscopy of the samples was performed using a Nicolet Nexus 6700 FT-IR spectrophotometer with a resolution of 4 cm-1. A total of 1.5 mg sample dried at 120℃was thoroughly mixed with 200 mg KBr and pressed into pellets and the scans were performed immediately to avoid water absorption. The frequency range was 800~400 cm-1.

    1.3Electrochemical analysis

    The electrochemical characterizations were performed using CR2025 coin-type cell. The working electrode was prepared by mixing 80% (mass percent) active material, 10% (mass percent) conductive super P carbon and 10%(mass percent) polyvinylidene fluoride (PVDF) as binder in N-methyl pyrrolidinone (NMP). After being uniformly coated onto a copper foil, the slurry was dried in a vacuum at 120℃for 10 h. A solution of 1 mol·L-1LiPF6dissolved in a mixture of ethylene carbonate and dimethyl carbonate (1∶1, in volume) was used as the electrolyte and porous polypropylene Celgard 2300 was used as separator. The charge-discharge measurements were recorded on multichannel Land Battery Test System (Wuhan Jinnuo, China) at room temperature between 3.5 and 4.95 V(vs Li/Li+) carried out at different chargedischarge rates. Cyclic voltammetry (CV) test was carried out on a CHI 1000Celectrochemical workstation with a voltage between 3.5 and 4.95 V at a scanning rate of 0.05 mV·s-1. Electrochemical impedance spectroscopy (EIS) of OCV (open circuit voltage, before cycle) is measured by a Princeton P4000 electrochemical working station over a frequency range from 0.01 Hz to 10 kHz at a potentiostatic signal amplitude of 5 mV. The open circuit voltage is about 3.2 V.

    2 Results and discussion

    Fig.1 XRD pattern of pristine and coated LiNi0.5Mn1.5O4(a) pristine LiNi0.5Mn1.5O4; (b) 5% Li3PO4coated-LiNi0.5Mn1.5O4; (c) 10% Li3PO4coated-LiNi0.5Mn1.5O4

    Fig.1 shows the X-ray diffraction patterns of the pristine and Li3PO4coated-LiNi0.5Mn1.5O4powders. All the sharp diffraction peaks can be attributed to the well-defined cubic spinel structure of LiNi0.5Mn1.5O4. This indicates that the Li3PO4coating does not change the spinel structure of LiNi0.5Mn1.5O4. In addition, no trace of impurity phase (such as LixNi1-xO or NiO) is detected. However, the characteristic Li3PO4diffraction peak is not obvious, indicating that the Li3PO4in the LiNi0.5Mn1.5O4/Li3PO4composites are amorphous during the calcination process. The strong reflections located at 19.1°, 36.8°, 38.5°, 44.5°, 48.8°, 58.9°, 64.8°, 68.1°, 76.6°and 77.6°can be indexed to the (111), (311), (222), (400), (331), (511), (440), (531), (533) and (620) diffractions, respectively. It is well known that LiNi0.5Mn1.5O4has two different space groups, Fd3m or P4332 depending on Ni ordering in the lattice. In the Fd3m structure, Li+ions occupy the tetrahedral (8a) sites; Mn or Ni ions reside at the octahedral (16d) sites random; and O2 -ions are located at (32e) sites. In P4332 structure the Li atoms are located at 8c sites, Ni atoms at 4a sites, Mn atoms at 12d sites, and O atoms at 8c and 24e sites[32-33]. In LiNi0.5Mn1.5O4with P4332 space group, it can be found a decrease of lattice parameter and symmetry caused by cation ordering, and weak superstructure reflectionsaround 2θ≈15°, 24°, 35°, 40°, 46°, 47°, 57°, and 75°can be found[34]. However, the scanning rate in this work was too fast for us to detect them.

    In fact, the structural difference between these two space groups is hardly to be clearly distinguished by X-ray diffraction because of the similar scattering factors of Ni and Mn. FT-IR spectroscopy has proved to be an effective technique in qualitatively resolving the cation ordering (Fig.2). It has been reported that the peak at about 623 cm-1in Fd3m phase are more intensive than those at 593 cm-1, which is contrary to the P4332 phase[35]. In addition, three new peaks at about 650, 470 and 432 cm-1are absent in Fd3m structure. Hence, it can be concluded that pristine LiNi0.5Mn1.5O4and 10%Li3PO4-coated LiNi0.5Mn1.5O4has a space P4332 groups. However, the peak of 5% Li3PO4-coated LiNi0.5Mn1.5O4at about 623 cm-1are weaker than that at 593 cm-1, revealing that 5% Li3PO4-coated LiNi0.5Mn1.5O4has a P4332 and Fd3m mixed phase. This indicates that 5% Li3PO4-coated LiNi0.5Mn1.5O4has the biggest degree of disorder among all samples. It has been reported that the crystal with disordered space groups have the better transmission path of electronic and Li+[36]. Therefore, it can be concluded that the 5% Li3PO4-coated LiNi0.5Mn1.5O4has the better electrochemical performance than ordered LiMn1.5Ni0.5O4and 10%Li3PO4-coated LiNi0.5Mn1.5O4.

    Fig.2 FT-IR of pristine and coated LiNi0.5Mn1.5O4(a) pristine LiNi0.5Mn1.5O4; (b) 5% Li3PO4coated-LiNi0.5Mn1.5O4; (c) 10% Li3PO4coated-LiNi0.5Mn1.5O4

    Fig.3 SEM images of pristine and coated LiNi0.5Mn1.5O4(a) pristine LiNi0.5Mn1.5O4; (b) 5% Li3PO4coated-LiNi0.5Mn1.5O4; (c) 10% Li3PO4coated-LiNi0.5Mn1.5O4

    Fig.3 shows the SEM images of the pristine and Li3PO4coated-LiNi0.5Mn1.5O4powders. It can be found that the particles of all samples exist as homogeneous sphere-like particles. The diameters of the spheres distribute within the range of 1~1.5 μm. The spherelike particles are composed of nano particle LiNi0.5Mn1.5O4at about 100 nm. Very small particles of coated LiNi0.5Mn1.5O4powders were found to be highly dispersed on the coated Li3PO4particles as shown in Fig.3b and Fig.3c. In addition, the surface morphology of pristine LiNi0.5Mn1.5O4is extremely smooth. From a comparison of this three powders surface morphology, it can be speculated that the surface of the prepared LiNi0.5Mn1.5O4is covered with small Li3PO4. This indicates that the surface modification leads to formation of uniform coating.

    Fig.4 examines the initial charge and discharge behaviors of a series of Li3PO4-coated LiNi0.5Mn1.5O4materials at room temperature in 3.5~4.95 V range, at a current density of 0.2C. The initial discharge capacities of pristine and 5, 10% Li3PO4-coated LiNi0.5Mn1.5O4cathode material are 118.1, 131.6 and 132.9 mAh·g-1, respectively. Obviously, Li3PO4coating increases the initial discharge capacity of LiNi0.5Mn1.5O4cathode.

    Fig.4 Initial charge-discharge curves of pristine and coated LiNi0.5Mn1.5O4(a) pristine LiNi0.5Mn1.5O4; (b) 5% Li3PO4coated-LiNi0.5Mn1.5O4; (c) 10% Li3PO4coated-LiNi0.5Mn1.5O4

    Fig.5 shows the rate capabilities for three samples. The cells were discharged at increasingly higher currents from 0.2C to 0.5C rates at room temperature. It can be found that the capacity difference between the pristine LiNi0.5Mn1.5O4electrode and 5%Li3PO4-coated LiNi0.5Mn1.5O4electrode progressively increased. At the 0.5C charge-discharge rate after 20 cycles, the discharge capacity was 107.4 mAh·g-1for the pristine LiNi0.5Mn1.5O4material (90.9% of the capacity at 0.2C), and 120 mAh·g-1for the 5% Li3PO4-coated LiNi0.5Mn1.5O4material (91.2% at 0.2C). This result indicates that the Li3PO4coating improves the rate capability of LiNi0.5Mn1.5O4as well as its capability to store Li ions. The reason may be suggested as follows.

    Fig.5 Rate performance of pristine and coated LiNi0.5Mn1.5O4(a) pristine LiNi0.5Mn1.5O4; (b) 5% Li3PO4coated-LiNi0.5Mn1.5O4; (c) 10% Li3PO4coated-LiNi0.5Mn1.5O4

    Trace water impurity in the electrolyte would cause the liberation of acid HF through the decomposition of LiPF6-based electrolyte. The chemical reactions were proposed as follows[37-38]:

    HF will dissolve LiNi0.5Mn1.5O4proposed as follows[39]:

    Therefore, it can be concluded that a uniform Li3PO4coating on the surface of the LiNi0.5Mn1.5O4not only can act as an ion-conductive layer, but also acts to suppress the decomposition of Mn and Ni during cycling, as demonstrated in Fig.6. However, 10% Li3PO4-coated LiNi0.5Mn1.5O4electrode shows an unsatisfactory rate performance, indicating that the contents of coated Li3PO4have strong impact on the rate capability of LiNi0.5Mn1.5O4electrode. Therefore, it is important to optimize the coated Li3PO4content in order achieve a good cell performance.

    Fig.6 Schematic illustration of how the Li3PO4layer acts as a conductive and protective layer to suppress the direct contact between electrolyte and LNMO and decomposition of electrolyte

    Fig.7 presents typical cyclic voltammograms (CVs) of pristine and Li3PO4coated-LiNi0.5Mn1.5O4. The intense and sharp reduction/oxidation peaks of Ni2 +/Ni4+are observed at around 4.7 V in pristine and Li3PO4coated-LiNi0.5Mn1.5O4, with trace amount of the couple of Mn4+/Mn3+that usually appears at around 4.0 V shown in inset. The appearance of 4 V peak was due to Mn3 +which was formed by the oxygen lossduring high temperature calcinations. It can be found that the CV curve of pristine LiNi0.5Mn1.5O4presents a much more obvious redox peaks in the potential region around 4.0 V (from the redox couples Mn4+/Mn3+), which means that the oxygen deficiency is more severe from the oxygen loss due to the Li3PO4coating[40]. This indicates that Li3PO4coating destroys the ordering of Ni and Mn ions, and the proportion of Fd3m spinel increase with the rise of Li3PO4content.

    Fig.7 CV curves of pristine and coated LiNi0.5Mn1.5O4(a) pristine LiNi0.5Mn1.5O4; (b) 5% Li3PO4coated-LiNi0.5Mn1.5O4; (c) 10% Li3PO4coated-LiNi0.5Mn1.5O4

    The potential differences between anodic and cathodic peaks reflect the polarization degree of the electrode[41]. The potential difference of the pristine and Li3PO4coated-LiNi0.5Mn1.5O4electrodes between oxidation and reduction peaks is listed in Table 1. It can be found that the potential difference (Δφp=φpaφpc) of pristine LiNi0.5Mn1.5O4is 393 mV, obviously much larger than those for the pristine and Li3PO4coated-LiNi0.5Mn1.5O4electrodes. 5%Li3PO4-coated LiNi0.5Mn1.5O4sample shows the lowest potential interval between anodic and cathodic peak (353 mV), which indicate that the right amount of Li3PO4coating is favorable for reducing the electrode polarization. This means that 5% Li3PO4coated-LiNi0.5Mn1.5O4has the excellent electrochemical reversibility and faster lithium insertion/extraction kinetics. This observation confirms that right amount of Li3PO4coating enhances the reversibility of the LiNi0.5Mn1.5O4, and then exhibits reversibility and good rate capability.

    The kinetics of lithium ion extraction and insertion of the pristine and Li3PO4coated-LiNi0.5Mn1.5O4electrodes were further investigated by EIS. Fig.8 shows the Nyquist plots of all samples, and the inset is the equivalent circuit used to fit impedance spectra. The circuit consists of Rs(ohmic resistance), Rf(the resistance of a solid electrolyte interphase film), Cf(the capacitance of a solid electrolyte interphase film), Rct(charge-transfer resistance), Cdl(double layer capacitance for lithium-ion intercalation) and W (Warburg impedance of solid phase diffusion)[42-43]. The fitted results are summarized in Table 2.

    Fig.8 Nyquist plots of pristine and coated LiNi0.5Mn1.5O4(a) pristine LiNi0.5Mn1.5O4; (b) 5% Li3PO4coated-LiNi0.5Mn1.5O4; (c) 10% Li3PO4coated-LiNi0.5Mn1.5O4

    Table 1 Peak potential differences of CV test for pristine and coated LiNi0.5Mn1.5O4material

    The Rsreflects electric conductivity of the electrolyte, separator, and electrodes. It can be found that 5% Li3PO4coated-LiNi0.5Mn1.5O4has the smallest ohmic resistance among all samples, indicating a high conductivity between electrolyte and electrodes. Table 2 shows that the charge transfer resistance of Li3PO4coated-LiNi0.5Mn1.5O4electrode is much lower than that of the pristine one. This reveals that Li3PO4modification is favorable to improve upon the electronic cond-uctivity. In addition, 5% Li3PO4coated-LiNi0.5Mn1.5O4has the smallest charge transfer resistance among all samples. It is reasonable to infer that the lowest charge transfer resistance of 5% Li3PO4coated-LiNi0.5Mn1.5O4electrode corresponds with the smallest electrochemical polarization, and then lead to the best electrochemical performance. Afterwards, the exchange current density, i0, can be calculated by means of the charge transfer resistance,

    Table 2 Some fitting parameters obtained by EIS

    where R is the gas constant (8.314 5 J·mol-1·K-1); T is the absolute temperature(298.15 K); F is the Faraday′s constant (96 485 C·mol-1), and A is the area of the electrode surface (1.54 cm2). The calculated results are given in Table 2. Obviously, 5% Li3PO4coated-LiNi0.5Mn1.5O4has the biggest c exchange current density among all samples, revealing the lowest intercalation/deintercalation resistance and highest electrochemical activity.

    As we know, lithium ion diffusion rate also plays an important role in accelerating lithium ion insertion/extraction during the charge/discharge process[44]. The diffusion coefficient of lithium ion (DLi) can be calculated from the plots in the low frequency region, and can be obtained according to the following equations[45]:

    where ω is the angular frequency in the low frequency region; R is the gas constant (8.314 5 J·mol-1·K-1); T is the absolute temperature(298.15 K); n is the number of electrons transferred in the half-reaction for the redox couple (n=1); F is the Faraday′s constant (96 485 C·mol-1); A is the area of the electrode surface (1.54 cm2); CLiis the molar concentration of Li+ions calculated by the molar volume (2.37×10-2mol·cm-3)[46], and σ is the Warburg impedance coefficient, which is relative to Zre-σ can be obtained from the slope of the lines in Fig.9.

    Fig.9 Graph of Zreplotted against ω-1/2in the lowfrequency region for the pristine and coated LiNi0.5Mn1.5O4(a) pristine LiNi0.5Mn1.5O4; (b) 5% Li3PO4coated-LiNi0.5Mn1.5O4; (c) 10% Li3PO4coated-LiNi0.5Mn1.5O4

    The calculated diffusion coefficient of lithium ion is given in Table 2. For the 5% Li3PO4-coated LiNi0.5Mn1.5O4, lithium-ion diffusion coefficient is estimated to be 2.72×10-16cm2·s-1, which is larger than that of 7.89×10-17cm2·s-1for pristine LiNi0.5Mn1.5O4cathode. Considering the similar particle sizes and morphologies of three samples, it can be concluded that the improved lithium-diffusivity might be attributed to the modification of Li3PO4. Based on the above calculation, the charge transfer resistance and lithium-ion diffusion coefficient indicate that Li3PO4coating can enhance the conductivity of LiNi0.5Mn1.5O4, enabling much easier charge transfer at the interface between the electrode and the electrolyte.

    Beaulieu et al reported that lithium ions can react with the grain boundary phase in polycrystalline materials or the liquid electrolyte at the solid/liquid interface[47]. According to the model of the LiNi0.5Mn1.5O4-Li3PO4composites shown in Fig.10, in situ coatedLi3PO4is tightly combined with LiNi0.5Mn1.5O4, and then many LiNi0.5Mn1.5O4-Li3PO4phase interfaces can be formed. Li3PO4is a super ionic conductors, and the Li ionic conductivity of Li3PO4(about 10-6S·m-1) facilitates the charge transfer reactions on the electrode/electrolyte interface[48]. The combination of in situ coated Li3PO4can improve the Li diffusion coefficient and reduce the charge transfer resistance. The LiNi0.5Mn1.5O4-Li3PO4phase interfaces can also store electrolyte and provide more places for the insertion/extraction reactions of lithium ions, and then improve the reaction kinetics and reduce electrochemical polarization during cycling. Thus it may be a reason for the superior high rate capability of Li3PO4-coated LiNi0.5Mn1.5O4. Hence, Li3PO4in situ modification is an effective way to improve the electrochemical performance of LiNi0.5Mn1.5O4.

    Fig.10 Model of the LiNi0.5Mn1.5O4-Li3PO4composites

    3 Conclusions

    Surface modification of the spherical LiNi0.5Mn1.5O4is successfully done by Li3PO4coating by the precipitation method. The combination of in situ coated Li3PO4can improve the Li diffusion coefficient and reduce the charge transfer resistance of LiNi0.5Mn1.5O4, and then provides more places for the insertion/extraction reactions of lithium ions, leading to the improvement of the reaction kinetics. 5% Li3PO4-coated LiNi0.5Mn1.5O4exhibits the lowest charge-transfer resistance and the highest lithium diffusion coefficient among all samples, and it thus shows higher discharge capacities and better rate capability than the pristine material. The improved electrochemical properties also can be attributed that the Li3PO4coating layer retards the side reactions of the active material with electrolyte. Hence, it is reasonable to infer that the Li3PO4coating would be an effective way to improve the electrochemical properties of LiNi0.5Mn1.5O4cathode materials.

    References:

    [1] LIU Dong-Qiang(劉東強(qiáng)),YU Ji(吁霽), SUN Yu-Heng(孫玉恒), et al. Chinese J. Inorg. Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2007,23 (1):41-45

    [2] CHEN Zhao-Yong(陳召勇), LIU Xing-Quan(劉興泉), GAO Li-Zhen(高利珍), et al. Chinese J. Inorg. Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2001,17(3):325-330

    [3] WANG Chao(王超), LIU Xing-Quan(劉興泉), LIU Hong-Ji(劉宏基), et al. Chinese J. Inorg. Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2012,28(9):1835-1842

    [4] LIU Xing-Quan(劉興泉), ZHONG Hui(鐘輝), TANG Yi(唐毅), et al. Chinese J. Inorg. Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2003,19 (5):467-472

    [5] Yi T F, Yin L C, Ma Y Q, et al. Ceram. Int., 2013,39(4): 4673-4678

    [6] NIE Xiang(聶翔), Guo Xiao-Dong(郭孝東), ZHONG Ben-He(鐘本和), et al. Chinese J. Inorg. Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2012,28(12):2573-2580

    [7] Zhong Q, Bonakdarpour A, Zhong M, et al. J. Electrochem. Soc., 1997,144(1):205-213

    [8] Wang J, Lin W, Wu B, et al. J. Mater. Chem. A, 2014,2(48): 16434-16442

    [9] ZHANG Sheng-Li(張勝利), LI Liang-YU(李良玉), SONG Yan-Hua(宋延華), et al. Rare Metal Mater. Eng.(稀有金屬材料與工程), 2010,39(3): 515-518

    [10]DENG Hai-Fu(鄧海福), NIE Ping(聶平), SHEN Lai-Fa(申來(lái)法), et al. Prog. Chem.(化學(xué)進(jìn)展), 2014,26(6):939-949

    [11]Wang S, Li P, Shao L, et al. Ceram. Int., 2015,41(1):1347-1353

    [12]Li H, Luo Y, Xie J, et al. J. Alloys Compd., 2015,639:346-351

    [13]WANG Zhao-Xiang(王兆翔), CHEN Li-Quan(陳立泉), HUANG Xue-Jie(黃學(xué)杰). Prog. Chem.(化學(xué)進(jìn)展), 2011,23 (2/3):284-301

    [14]Konishi H, Suzuki K, Taminato S, et al. J. Power Sources, 2014,269:293-298

    [15]Li X, Guo W, Liu Y, et al. Electrochim. Acta, 2014,116: 278-283

    [16]Arrebola J C, Caballero A, Hernán L, et al. J. Power Sources,2010,195(13):4278-4284

    [17]Kim J W, Kim D H, Oh D Y, et al. J. Power Sources, 2015, 274:1254-1262

    [18]Elia G A, Nobili F, Tossici R, et al. J. Power Sources, 2015, 275:227-233

    [19]Zhang X, Cheng F, Yang J, et al. Nano Lett., 2013,13(6): 2822-2825

    [20]Zhu Z, Zhang D, Yan H, et al. J. Mater. Chem. A, 2013,1 (18):5492-5496

    [21]Zhu Z, Yan H, Zhang D, et al. J. Power Sources, 2013,224: 13-19

    [22]Liu G, Kong X, Sun H, et al. Ceram. Int., 2014,40(9):14391 -14395

    [23]Myung S T, Komaba S, Kumagai N, et al. Electrochim. Acta, 2002,47(15):2543-2549

    [24]Wen L, Lu Q, Xu G. Electrochim. Acta, 2006,51(21):4388-4392

    [25]Xue Y, Wang Z, Yu F, et al. J. Mater. Chem. A, 2014,2(12): 4185-4191

    [26]Feng J, Huang Z, Guo C, et al. Appl. Mater. Interfaces, 2013,5(20):10227-10232

    [27]Yi T F, Fang Z K, Xie Y, et al. Electrochim. Acta, 2014, 147:250-256

    [28]Zhang S Q, Xie S, Chen C H. Mater. Sci. Eng. B, 2005,121 (1/2):160-165

    [29]Li X, Yang R, Cheng B, et al. Mater. Lett., 2012,66(1):168-171

    [30]Jin N L Y, Chen C H, Wei S Q. Electrochem. Solid-State Lett., 2006,9(6):A273-A276

    [31]Zhao S X, Ding H, Wang Y C, et al. J. Alloys Compd., 2013,566:206-211

    [32]Wang L, Li H, Huang X, et al. Solid State Ionics, 2011,193 (1):32-38

    [33]Yi T F, Zhu Y R, Zhu R S. Solid State Ionics, 2008,179 (38):2132-2136

    [34]Kim J H, Yoon C S, Myung S T, et al. Electrochem. Solid-State Lett., 2004,7(7):A216-A220

    [35]Kunduraci M, Amatucci G G. J. Electrochem. Soc., 2006, 153(7):A1345-A1352

    [36]Kunduraci M, Al-Sharab J F, Amatucci G G. Chem. Mater., 2006,18(15):3585-3592

    [37]Aurbach D. J. Power Sources, 2000,89(2):206-218

    [38]Yang L, Takahashi M, Wang B. Electrochim. Acta, 2006,51 (16):3228-3234

    [39]Gao X W, Deng Y F, Wexler D, et al. J. Mater. Chem. A, 2015,3(1):404-41

    [40]Yi T F, Chen B, Zhu Y R, et al. J. Power Sources, 2014, 247:778-785

    [41]Yi T F, Xie Y, Wu Q, et al. J. Power Sources, 2012,214: 220-226

    [42]Hjelm A K, Lindbergh G. Electrochim. Acta, 2002,47(11): 1747-1759

    [43]Liu H, Wen G, Bi S, et al. Electrochim. Acta, 2015,171: 114-120

    [44]Yi T F, Yang S Y, Zhu Y R, et al. Int. J. Hydrogen Energy, 2015,40(27):8571-8578

    [45]SU Jing(蘇婧), WU Xing-Long(吳興隆), GUO Yu-Guo(郭玉國(guó)). J. Inorg. Mater.(無(wú)機(jī)材料學(xué)報(bào)), 2013,28(11):1248-1254

    [46]Yi T F, Li C Y, Zhu Y R, et al. Russ. J. Electrochem., 2010,46(2):227-232

    [47]Beaulieu L Y, Larcher D, Dunlap R A, et al. J. Electrochem. Soc., 2000,147(9):3206-3212

    [48]Bian X, Fu Q, Bie X, et al. Electrochim. Acta, 2015,174: 875-884

    Li3PO4表面修飾提高球形LiNi0.5Mn1.5O4正極材料的性能

    任寧*盧世剛*
    (北京有色金屬研究總院,北京100088)

    通過(guò)共沉淀法制備了球形LiNi0.5Mn1.5O4@Li3PO4復(fù)合材料,并采用X射線衍射(XRD)、掃描電鏡(SEM)、紅外光譜(FT-IR)、循環(huán)伏安(CV)、電化學(xué)阻抗譜(EIS)及充放電測(cè)試研究了其結(jié)構(gòu)與電化學(xué)性能。XRD和SEM表明,Li3PO4包覆影響了球形LiNi0.5Mn1.5O4的晶格常數(shù)。CV和EIS表明,質(zhì)量百分?jǐn)?shù)5% Li3PO4包覆的LiNi0.5Mn1.5O4具有比純LiNi0.5Mn1.5O4更高的鋰離子嵌脫可逆性,更大的鋰離子擴(kuò)散系數(shù)和更小的電荷轉(zhuǎn)移電阻,說(shuō)明在鋰離子擴(kuò)散過(guò)程中,質(zhì)量百分?jǐn)?shù)5%Li3PO4包覆的LiNi0.5Mn1.5O4具有更高的電子電導(dǎo)率。充放電測(cè)試表明,原位Li3PO4改性提高了材料的電子電導(dǎo)率、電化學(xué)活性,進(jìn)而提高了高倍率放電容量。質(zhì)量百分?jǐn)?shù)5% Li3PO4包覆的LiNi0.5Mn1.5O4提高的電化學(xué)性能歸因于Li3PO4的包覆、納米顆粒組成球形的粒徑引起的高的電子電導(dǎo)率和小的電化學(xué)極化。

    鋰離子電池;正極材料;表面包覆;電化學(xué)性能

    O646.21;TM912.9

    A

    1001-4861(2016)03-0499-09

    10.11862/CJIC.2016.068

    2015-08-31。收修改稿日期:2015-11-26。

    *通信聯(lián)系人。E-mail:rnrm040412@163.com,lusg8867@163.com

    猜你喜歡
    充放電鋰離子電導(dǎo)率
    V2G模式下電動(dòng)汽車充放電效率的研究
    高能鋰離子電池的“前世”與“今生”
    科學(xué)(2020年1期)2020-08-24 08:07:56
    基于SG3525的電池充放電管理的雙向DC-DC轉(zhuǎn)換器設(shè)計(jì)
    電子制作(2019年23期)2019-02-23 13:21:36
    基于比較測(cè)量法的冷卻循環(huán)水系統(tǒng)電導(dǎo)率檢測(cè)儀研究
    低溫脅迫葡萄新梢電導(dǎo)率和LT50值的研究
    鋰離子電池充放電保護(hù)電路的研究
    鋰離子動(dòng)力電池的不同充電方式
    高電導(dǎo)率改性聚苯胺的合成新工藝
    V2G充放電機(jī)的設(shè)計(jì)及其仿真
    鋰離子電池組不一致性及其彌補(bǔ)措施
    汽車電器(2014年5期)2014-02-28 12:14:15
    国产男人的电影天堂91| 熟女人妻精品中文字幕| 97在线视频观看| 97人妻精品一区二区三区麻豆| 欧美激情久久久久久爽电影| 中文亚洲av片在线观看爽| 我的老师免费观看完整版| 国产黄片美女视频| 国产精品国产高清国产av| 一级黄色大片毛片| 成人高潮视频无遮挡免费网站| 少妇的逼水好多| 亚洲av中文字字幕乱码综合| 欧美一级a爱片免费观看看| 又爽又黄a免费视频| 亚洲av电影不卡..在线观看| 国产视频内射| 51国产日韩欧美| 亚洲欧美清纯卡通| 一边摸一边抽搐一进一小说| 亚洲欧美日韩卡通动漫| 嫩草影院新地址| 国产精品精品国产色婷婷| 在线观看美女被高潮喷水网站| 国产私拍福利视频在线观看| 国产不卡一卡二| 久久精品夜夜夜夜夜久久蜜豆| 国产精品无大码| 欧美日本亚洲视频在线播放| 亚洲精品久久久久久婷婷小说 | 91麻豆精品激情在线观看国产| 2022亚洲国产成人精品| av天堂在线播放| 午夜福利在线在线| 日产精品乱码卡一卡2卡三| 12—13女人毛片做爰片一| 欧美区成人在线视频| 国产老妇女一区| 白带黄色成豆腐渣| 三级经典国产精品| 欧美不卡视频在线免费观看| 美女脱内裤让男人舔精品视频 | www.色视频.com| 国内揄拍国产精品人妻在线| avwww免费| 一区二区三区高清视频在线| 91久久精品电影网| 日韩欧美 国产精品| 一区二区三区高清视频在线| 久久久午夜欧美精品| 最好的美女福利视频网| 免费看a级黄色片| 久久99蜜桃精品久久| av天堂在线播放| 国产av在哪里看| 亚洲成人中文字幕在线播放| 热99在线观看视频| 国产精品久久久久久亚洲av鲁大| 国产三级在线视频| 亚洲欧美日韩无卡精品| 久久亚洲精品不卡| 精品国产三级普通话版| 国内揄拍国产精品人妻在线| 丰满人妻一区二区三区视频av| 九色成人免费人妻av| 色吧在线观看| 亚洲国产欧洲综合997久久,| 成人二区视频| 亚洲最大成人手机在线| 久久午夜亚洲精品久久| 免费看光身美女| 小蜜桃在线观看免费完整版高清| 国产免费男女视频| 2022亚洲国产成人精品| 亚洲成人久久爱视频| 毛片一级片免费看久久久久| 最后的刺客免费高清国语| 精品一区二区三区视频在线| 成人av在线播放网站| 成熟少妇高潮喷水视频| 99热精品在线国产| 亚洲精华国产精华液的使用体验 | 我的女老师完整版在线观看| АⅤ资源中文在线天堂| 国产一区二区在线av高清观看| 免费电影在线观看免费观看| 男女下面进入的视频免费午夜| av在线观看视频网站免费| avwww免费| 亚洲熟妇中文字幕五十中出| 一夜夜www| 国产精品嫩草影院av在线观看| 国产亚洲欧美98| 欧美一级a爱片免费观看看| av专区在线播放| 国产白丝娇喘喷水9色精品| 国内精品美女久久久久久| 日本免费一区二区三区高清不卡| 只有这里有精品99| 国产精品久久久久久精品电影| 亚洲精品粉嫩美女一区| 日本免费a在线| 老司机影院成人| 成人鲁丝片一二三区免费| 精品久久久噜噜| 内射极品少妇av片p| 婷婷亚洲欧美| 欧美+亚洲+日韩+国产| 国产 一区精品| 亚洲综合色惰| 国产精品爽爽va在线观看网站| 亚洲欧美日韩卡通动漫| 久久久国产成人免费| 晚上一个人看的免费电影| 国产在线精品亚洲第一网站| 欧美日韩国产亚洲二区| 欧美日韩综合久久久久久| 国产精品福利在线免费观看| 日韩欧美一区二区三区在线观看| 亚洲精品色激情综合| av视频在线观看入口| 午夜福利视频1000在线观看| 国产成人aa在线观看| 亚洲久久久久久中文字幕| 又爽又黄a免费视频| 老师上课跳d突然被开到最大视频| 亚洲国产精品久久男人天堂| 欧美潮喷喷水| 搞女人的毛片| 美女脱内裤让男人舔精品视频 | 精品国产三级普通话版| 一边亲一边摸免费视频| 国产一区二区在线av高清观看| 亚洲欧美日韩卡通动漫| 最近2019中文字幕mv第一页| 成年av动漫网址| 99久久人妻综合| 久久久欧美国产精品| 变态另类成人亚洲欧美熟女| 国产午夜精品久久久久久一区二区三区| 国产精品,欧美在线| 久久久久久久午夜电影| 嫩草影院入口| 狂野欧美白嫩少妇大欣赏| 成年av动漫网址| 人人妻人人看人人澡| 变态另类成人亚洲欧美熟女| 只有这里有精品99| 日韩欧美一区二区三区在线观看| 国产av不卡久久| 最近视频中文字幕2019在线8| 给我免费播放毛片高清在线观看| 欧美极品一区二区三区四区| 国产亚洲精品av在线| 中文亚洲av片在线观看爽| 亚洲精品成人久久久久久| 麻豆国产97在线/欧美| 午夜亚洲福利在线播放| 亚洲四区av| 蜜桃久久精品国产亚洲av| 免费av观看视频| 国产熟女欧美一区二区| 少妇人妻一区二区三区视频| 国产男人的电影天堂91| 国产精品久久久久久av不卡| 青春草国产在线视频 | 国产伦理片在线播放av一区 | 99久久精品热视频| 国产视频首页在线观看| 亚洲电影在线观看av| 欧美日韩精品成人综合77777| 嫩草影院新地址| 校园春色视频在线观看| 在线a可以看的网站| 国产精品av视频在线免费观看| 免费人成视频x8x8入口观看| 国产精品久久电影中文字幕| 国产精品国产高清国产av| 男女做爰动态图高潮gif福利片| 嫩草影院入口| 高清毛片免费看| 日本成人三级电影网站| 亚洲一级一片aⅴ在线观看| 男插女下体视频免费在线播放| 国产亚洲av片在线观看秒播厂 | 美女xxoo啪啪120秒动态图| 嫩草影院入口| 干丝袜人妻中文字幕| 99精品在免费线老司机午夜| 人人妻人人澡人人爽人人夜夜 | 一区二区三区四区激情视频 | 你懂的网址亚洲精品在线观看 | 婷婷色综合大香蕉| 99在线人妻在线中文字幕| 一区二区三区免费毛片| 一级av片app| kizo精华| 欧美一区二区精品小视频在线| 亚州av有码| 亚洲精品影视一区二区三区av| 一级黄片播放器| 亚洲av成人精品一区久久| 国产精品99久久久久久久久| 国产精品一区二区性色av| 少妇被粗大猛烈的视频| 嫩草影院精品99| 麻豆乱淫一区二区| 欧美一级a爱片免费观看看| 大香蕉久久网| 91aial.com中文字幕在线观看| 国国产精品蜜臀av免费| 精品久久久久久久末码| 欧美色欧美亚洲另类二区| 99久久精品一区二区三区| 午夜福利在线观看免费完整高清在 | 全区人妻精品视频| 久久久午夜欧美精品| 麻豆国产97在线/欧美| 毛片女人毛片| 午夜久久久久精精品| 亚洲国产精品合色在线| av天堂在线播放| or卡值多少钱| 人妻系列 视频| 91精品一卡2卡3卡4卡| 日韩一本色道免费dvd| АⅤ资源中文在线天堂| 美女cb高潮喷水在线观看| 尤物成人国产欧美一区二区三区| 伦理电影大哥的女人| 少妇丰满av| 日韩av在线大香蕉| 欧美成人免费av一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 只有这里有精品99| 国产男人的电影天堂91| 精品久久久久久久久av| 中国美女看黄片| 99热这里只有精品一区| 婷婷精品国产亚洲av| 国产高清激情床上av| av卡一久久| 欧洲精品卡2卡3卡4卡5卡区| 婷婷亚洲欧美| 男女下面进入的视频免费午夜| 两个人视频免费观看高清| 人妻久久中文字幕网| 久久久久国产网址| 欧美日韩精品成人综合77777| 欧美zozozo另类| 亚洲精品乱码久久久v下载方式| 亚洲色图av天堂| 午夜a级毛片| 午夜福利在线观看吧| 天堂影院成人在线观看| 熟女电影av网| 久久精品国产清高在天天线| 高清毛片免费观看视频网站| 丝袜喷水一区| 变态另类成人亚洲欧美熟女| 草草在线视频免费看| 少妇猛男粗大的猛烈进出视频 | 美女被艹到高潮喷水动态| 麻豆久久精品国产亚洲av| 亚洲一级一片aⅴ在线观看| 禁无遮挡网站| 久久久久久久亚洲中文字幕| 高清午夜精品一区二区三区 | 精品人妻一区二区三区麻豆| 国产熟女欧美一区二区| 亚洲国产欧美在线一区| 在现免费观看毛片| 国产精品野战在线观看| 久久久午夜欧美精品| 久久综合国产亚洲精品| 成人鲁丝片一二三区免费| 特级一级黄色大片| 精品久久久久久久久亚洲| 毛片一级片免费看久久久久| 蜜桃久久精品国产亚洲av| 在线a可以看的网站| 国产成年人精品一区二区| 精品欧美国产一区二区三| 午夜视频国产福利| 22中文网久久字幕| 偷拍熟女少妇极品色| 成人鲁丝片一二三区免费| 亚洲在久久综合| 国产一区亚洲一区在线观看| 性色avwww在线观看| 日韩一区二区视频免费看| 日产精品乱码卡一卡2卡三| 欧美激情在线99| 国产 一区 欧美 日韩| 成年女人看的毛片在线观看| 国产精品日韩av在线免费观看| 日本撒尿小便嘘嘘汇集6| 日韩国内少妇激情av| 男女做爰动态图高潮gif福利片| 久久午夜福利片| 真实男女啪啪啪动态图| 国产精品一区二区性色av| 国产成人福利小说| 久久精品国产亚洲网站| 国产伦在线观看视频一区| 日韩精品有码人妻一区| 亚洲最大成人手机在线| 麻豆一二三区av精品| 只有这里有精品99| 卡戴珊不雅视频在线播放| 精品久久久久久久久久久久久| 两个人的视频大全免费| 国产精品女同一区二区软件| 日本在线视频免费播放| 麻豆久久精品国产亚洲av| 亚洲av一区综合| 天堂影院成人在线观看| 亚洲精品日韩在线中文字幕 | 国产成人一区二区在线| 草草在线视频免费看| 午夜激情欧美在线| 日本成人三级电影网站| 成人特级av手机在线观看| 欧美极品一区二区三区四区| 国产午夜福利久久久久久| 亚洲无线在线观看| 麻豆av噜噜一区二区三区| 国内精品一区二区在线观看| 国产亚洲91精品色在线| 国产亚洲欧美98| 日本-黄色视频高清免费观看| 亚洲国产精品sss在线观看| 99在线人妻在线中文字幕| 亚洲精品456在线播放app| 成人亚洲欧美一区二区av| 亚洲国产欧洲综合997久久,| 国产精品一二三区在线看| 波野结衣二区三区在线| 97在线视频观看| 免费黄网站久久成人精品| 插逼视频在线观看| 亚洲内射少妇av| 国产精品伦人一区二区| 免费观看在线日韩| 99九九线精品视频在线观看视频| 高清毛片免费看| 两个人的视频大全免费| 观看美女的网站| 国产亚洲av片在线观看秒播厂 | 夜夜爽天天搞| 久久久精品大字幕| 日日啪夜夜撸| 校园人妻丝袜中文字幕| 九九爱精品视频在线观看| 我的老师免费观看完整版| 日本av手机在线免费观看| 天堂影院成人在线观看| 1000部很黄的大片| 一级毛片久久久久久久久女| 高清在线视频一区二区三区 | 国产成人freesex在线| 日日撸夜夜添| 一级黄片播放器| 人人妻人人澡人人爽人人夜夜 | 给我免费播放毛片高清在线观看| 国产激情偷乱视频一区二区| 哪个播放器可以免费观看大片| 午夜免费激情av| 亚洲精华国产精华液的使用体验 | 直男gayav资源| 一区二区三区高清视频在线| 最近视频中文字幕2019在线8| 亚洲av不卡在线观看| 全区人妻精品视频| 99九九线精品视频在线观看视频| 国内久久婷婷六月综合欲色啪| 欧美+亚洲+日韩+国产| 欧美xxxx黑人xx丫x性爽| 久久久久久久久中文| 成人国产麻豆网| 麻豆国产av国片精品| 岛国毛片在线播放| 国产精品日韩av在线免费观看| 中文字幕免费在线视频6| 亚洲精品亚洲一区二区| 一区二区三区免费毛片| 国产午夜精品一二区理论片| 亚洲欧美成人综合另类久久久 | 亚洲四区av| 亚洲最大成人中文| 久久人人爽人人爽人人片va| 99热这里只有是精品在线观看| 国产精品一区二区在线观看99 | 亚洲美女搞黄在线观看| 男女啪啪激烈高潮av片| 免费搜索国产男女视频| 久久久a久久爽久久v久久| 国产av在哪里看| 99riav亚洲国产免费| 欧美人与善性xxx| 亚洲国产欧美在线一区| 能在线免费观看的黄片| 精品久久久噜噜| 男人舔女人下体高潮全视频| 日本av手机在线免费观看| 晚上一个人看的免费电影| 国产成人精品久久久久久| 综合色丁香网| 亚洲在线观看片| 色噜噜av男人的天堂激情| 国产精品一区www在线观看| 亚洲经典国产精华液单| 91久久精品国产一区二区三区| 99久久人妻综合| 日本与韩国留学比较| 久久午夜亚洲精品久久| 国产成人freesex在线| 日韩欧美三级三区| 午夜精品国产一区二区电影 | 亚洲av男天堂| 99热全是精品| 美女脱内裤让男人舔精品视频 | 老司机福利观看| ponron亚洲| 99riav亚洲国产免费| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲91精品色在线| 亚洲人成网站在线播| 欧美又色又爽又黄视频| 亚洲欧美清纯卡通| 日韩,欧美,国产一区二区三区 | 校园人妻丝袜中文字幕| 国产精品野战在线观看| 亚洲av男天堂| 国产精品久久久久久久久免| 12—13女人毛片做爰片一| 亚洲婷婷狠狠爱综合网| 久久久久免费精品人妻一区二区| 亚洲国产欧洲综合997久久,| 高清毛片免费看| 日韩欧美精品v在线| 可以在线观看的亚洲视频| 在线a可以看的网站| av在线播放精品| 国产精品不卡视频一区二区| 色综合亚洲欧美另类图片| 欧美色欧美亚洲另类二区| 国产一级毛片七仙女欲春2| 亚洲aⅴ乱码一区二区在线播放| 亚洲av一区综合| 天美传媒精品一区二区| 国产av麻豆久久久久久久| 久久亚洲精品不卡| 亚洲四区av| av在线老鸭窝| 一区福利在线观看| 亚洲精品国产av成人精品| 一级毛片aaaaaa免费看小| av免费在线看不卡| 99热这里只有精品一区| 欧美又色又爽又黄视频| 日韩亚洲欧美综合| 精品不卡国产一区二区三区| 精品久久国产蜜桃| 男女那种视频在线观看| 草草在线视频免费看| 国产精品久久久久久久久免| 男女啪啪激烈高潮av片| 久久午夜亚洲精品久久| 变态另类成人亚洲欧美熟女| а√天堂www在线а√下载| 成人一区二区视频在线观看| 亚洲一级一片aⅴ在线观看| 欧美另类亚洲清纯唯美| 国产午夜精品久久久久久一区二区三区| 能在线免费观看的黄片| 亚洲第一区二区三区不卡| 亚洲高清免费不卡视频| 熟妇人妻久久中文字幕3abv| 成人特级av手机在线观看| 大又大粗又爽又黄少妇毛片口| 色吧在线观看| 中文在线观看免费www的网站| 免费av毛片视频| 色尼玛亚洲综合影院| 久久精品久久久久久噜噜老黄 | 中文在线观看免费www的网站| 色噜噜av男人的天堂激情| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品久久久久久毛片| 深爱激情五月婷婷| 一级毛片aaaaaa免费看小| 免费电影在线观看免费观看| 99热这里只有精品一区| 久久人人精品亚洲av| 日韩亚洲欧美综合| 在线观看免费视频日本深夜| 日日摸夜夜添夜夜爱| 尾随美女入室| 亚洲无线在线观看| 可以在线观看毛片的网站| 深夜精品福利| 十八禁国产超污无遮挡网站| 免费av毛片视频| 高清在线视频一区二区三区 | av福利片在线观看| 欧美激情在线99| 久久鲁丝午夜福利片| 日本免费a在线| 欧美激情国产日韩精品一区| 成人漫画全彩无遮挡| 日韩欧美在线乱码| 欧美精品国产亚洲| 中文字幕人妻熟人妻熟丝袜美| 黄片wwwwww| 成熟少妇高潮喷水视频| 美女大奶头视频| 青春草国产在线视频 | 少妇的逼好多水| 啦啦啦观看免费观看视频高清| 国产成人91sexporn| 日本三级黄在线观看| 精品国产三级普通话版| 如何舔出高潮| 亚洲欧美精品专区久久| 干丝袜人妻中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲成人久久爱视频| 国内精品美女久久久久久| 亚洲欧美日韩高清专用| 国产午夜福利久久久久久| 亚洲四区av| 亚洲一区二区三区色噜噜| 国内精品宾馆在线| 成人特级黄色片久久久久久久| 成人无遮挡网站| 三级经典国产精品| 亚洲五月天丁香| 在线观看免费视频日本深夜| 在线观看午夜福利视频| 亚洲av二区三区四区| 成人无遮挡网站| 全区人妻精品视频| 免费观看的影片在线观看| 亚洲欧美精品自产自拍| 国产精华一区二区三区| 国语自产精品视频在线第100页| 男女视频在线观看网站免费| 99久久九九国产精品国产免费| 99国产精品一区二区蜜桃av| 99久久九九国产精品国产免费| 一边摸一边抽搐一进一小说| 变态另类成人亚洲欧美熟女| 国产精华一区二区三区| 12—13女人毛片做爰片一| 一本一本综合久久| 日韩欧美 国产精品| 最近2019中文字幕mv第一页| 欧美+亚洲+日韩+国产| 秋霞在线观看毛片| 人人妻人人澡欧美一区二区| 免费看日本二区| 少妇丰满av| 亚洲国产色片| 国产高潮美女av| 午夜激情福利司机影院| 国产精品福利在线免费观看| 成人二区视频| 久久精品久久久久久噜噜老黄 | 国产精品永久免费网站| 男女下面进入的视频免费午夜| 九九爱精品视频在线观看| 亚洲美女视频黄频| 晚上一个人看的免费电影| eeuss影院久久| 内地一区二区视频在线| 久久婷婷人人爽人人干人人爱| av黄色大香蕉| 亚洲国产欧洲综合997久久,| 国产精品野战在线观看| 听说在线观看完整版免费高清| 欧美高清成人免费视频www| 一级毛片久久久久久久久女| 黄色一级大片看看| 99久久无色码亚洲精品果冻| 亚洲成人av在线免费| 一本久久中文字幕| 欧美一区二区精品小视频在线| 韩国av在线不卡| 哪个播放器可以免费观看大片| 蜜桃久久精品国产亚洲av| 99热网站在线观看| 又黄又爽又刺激的免费视频.| 亚洲18禁久久av| 国产精品人妻久久久久久| 超碰av人人做人人爽久久| 看十八女毛片水多多多| 春色校园在线视频观看| 久久热精品热| 亚洲精品456在线播放app| 亚洲美女视频黄频| 天堂网av新在线| 国产视频首页在线观看| 看免费成人av毛片| 日韩亚洲欧美综合| 欧美日本亚洲视频在线播放| 亚洲第一电影网av| 一边亲一边摸免费视频| 久久亚洲国产成人精品v| 亚洲七黄色美女视频| .国产精品久久| 久久久久九九精品影院| 成人毛片a级毛片在线播放| 国产一级毛片在线| 久久久久久久久大av|