• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Four- and Three-Fold Interpenetrated (3,4)-Connected d10Metal Coordination Polymers Constructed by 3,5-Bis(pyridin-4-ylmethoxy)benzoic Acid and Aromatic Dicarboxylic Acid Ligands

    2016-09-18 07:59:50WANGGuiXianCHENFeiYanWANGXiaoJuanFENGYunLongDepartmentofchemistryandchemicalengineeringLishuiUniversityLishuiZhejiang33000ChinaZhejiangKeyLaboratoryforReactiveChemistryonSolidSurfacesCollegeofChemistryandLifeScienceZheji
    無機化學(xué)學(xué)報 2016年3期
    關(guān)鍵詞:二羧酸晶體結(jié)構(gòu)麗水

    WANG Gui-XianCHEN Fei-YanWANG Xiao-JuanFENG Yun-Long*,(Department of chemistry and chemical engineering, Lishui University, Lishui, Zhejiang 33000, China)(Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistryand Life Science, Zhejiang Normal University, Jinhua, Zhejiang 3004, China)

    Four- and Three-Fold Interpenetrated (3,4)-Connected d10Metal Coordination Polymers Constructed by 3,5-Bis(pyridin-4-ylmethoxy)benzoic Acid and Aromatic Dicarboxylic Acid Ligands

    WANG Gui-Xian1,2CHEN Fei-Yan2WANG Xiao-Juan2FENG Yun-Long*,2
    (1Department of chemistry and chemical engineering, Lishui University, Lishui, Zhejiang 323000, China)
    (2Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry
    and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China)

    The reaction of 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) and a combination of dicarboxylic acid ligands such as thiophene-2,5-dicarboxylic acid (H2tdc), 5-hydroxybenzene-1,3-dicarboxylic acid (H3hdc), 1,4-benzenedithioacetic acid (H2bdtc) with Znand Cdmetal ions give rise to four coordination polymers with interpenetrating (3,4)-connected networks, namely, [Zn2L2(tdc)]n(1), {[Zn4L4(Hhdc)2]·H2O}n(2), {[Zn2L2(Hhdc)]· H2O}n(3), {[Cd2L2(bdtc)(H2O)]·0.5H2O}n(4). 1~3 exhibit (3,4)-connected 4-fold-interpenetrating 3D networks with point symbol of (4.82)(4.85) (1), (63)(65.8) (2) and (63)(65.8) (3) topology, respectively. 4 displays a (3,4)-connected 3-fold-interpenetrating 2D network with(63) (66) topology. Luminescent properties of 1, 3 and 4 were also investigated. CCDC: 852424, 1; 872035, 2; 887738, 3; 872037, 4.

    coordination polymer; 3,5-bis(pyridin-4-ylmethoxy)benzoic acid; crystal structure; interpenetrating framework; luminescent property

    0 Introduction

    Crystal engineering of coordination polymers (CPs), which involves self-assembly of organic ligands with appropriate functional groups and metal ions with specific directionality and functionality, is one of the facile routes to produce materials of technological importance[1]. The metal-ligand coordination bonds have been widely exploited in organizing molecular building blocks into diverse supramolecular architectures, making use of the strength of coordination bonds and directionality associated with metal ions[2]. Coordination polymers have attracted a great of extensive interest not only for their potential applications in adsorption, nonlinear optics, magnetism, photoluminescence, catalysis, and electrical conductivity, but also for their intriguing variety of architectures and fascinating topologies[3]. A number of topological types are applied in various CPs, because of its ability of simplifying complicated frameworks and the instructive role in the rational design of some predicted functional materials[4]. Of particular interest are interpenetrating frameworks[5]. These species can be regarded as infinite ordered polycatenanes and are characterized by the presence of two or more independent networks that cannot be separated in a topological sense without breaking of bonds. In the past decade, considerable effort has been invested in interpenetrating CPs because of their unique advantages in enhancing stability, specific surface area, gas sorption, and molecular dynamics, as well as their general structural aesthetics[6].

    The long-flexible ligand may be a good candidate as a unique structural motif to produce interpenetrating architectures with interesting topologies and useful functional properties[7]. Hence we selected 3,5-bis(pyridin-4-ylmethoxy) benzoic acid (HL) as primary ligand, because it contains a rigid spacer of phenyl ring and two freely rotating pyridyl arms, which may cause the planes of the pyridyl rings to rotate with respect to the plane of the central phenyl ring. On the other hand, d10metal (Cd, Zn) compounds have attracted extensive interest in recent years because of photoluminescent properties[8]. With this aim of understanding the coordination chemistry of HL[9-10]and preparing new materials with interpenetrating networks and excellent physical properties, we have recently engaged in the research of the CPs with HL ligand[10]. In this paper, we describe the preparations, crystal structures, and photoluminescent properties of four CPs based on HL and dicarboxylic acid ligands, namely, [Zn2L2(tdc)]n(1), {[Zn4L4(hbdc)2]·H2O}n(2), {[Zn2L2(bdtc)]·H2O}n(3) and {[Cd2L2(bdtc)H2O]·0.5H2O}n(4).

    Scheme 1 Reaction scheme for the preparations of 1~4

    1 Experimental

    1.1Materials and physical measurements

    The ligands and other reagents were purchased from Jinan Camolai Trading Company and used without further purification. The elemental analyses of C, H and N were performed on a Perkin-Elmer 2400 Ⅱelemental analyzer. IR spectrum was measured in KBr pellets on a Nicolet 5DX FT-IR spectrometer. The thermogravimetric measurement was performed on preweighed samples in an oxygen stream using a Netzsch STA449C apparatus with a heating rate of 10 ℃·min-1. The crystal data were acquired on a Bruker APEXⅡ diffractometer. Powder X-ray diffraction data were obtained using a Philips PW3040/60 automated powder diffractometer, using Cu Kα radiation (λ=0.154 2 nm) with a 2θ range of 5°~50°. The luminescence spectra were performed on a HITACHIF-2500 fluorescence spectrometer in solid state at room temperature.

    1.2Synthesis of [Zn2L2(tdc)]n(1)

    A mixture of ZnSO4·2H2O (0.20 mmol, 0.058 g), HL (0.10 mmol, 0.034 g), H2tdc (0.05 mmol, 0.013 g)and NaOH (0.15 mmol, 0.006 g) in H2O (14 mL) was sealed in a 25 mL Teon-lined stainless steel container, which was heated at 160℃for 72 h and then cooled down to room temperature at a rate of 5℃·h-1. Yellow crystals of 1 were collected and washed with distilled water and dried in air to give the product with 27.4% yield (based on HL). Anal. Calcd. for C44H32N4O12SZn2(% ): C, 54.40; H, 3.32; N, 5.77. Found(%): C, 54.18; H, 3.39; N, 5.86. IR (KBr pellet, cm-1): 3 444, 3 086, 2 930, 2 366, 1 631, 1 603, 1 419, 1 376, 1 235, 1 150, 1 065, 868, 797.

    1.3Syntheses of {[Zn4L4(Hhdc)2]·H2O}n(2) and {[Zn2L2(Hhdc)]·H2O}n(3)

    A mixture of ZnSO4·2H2O (0.20 mmol, 0.058 g), HL (0.10 mmol, 0.034 g), H3hdc (0.10 mmol, 0.018 g) and NaOH (0.30 mmol, 0.012 g) in H2O (14 mL) was sealed in a 25 mL Teflon-lined stainless steel container, which was heated at 160℃for 72 h and then cooled down to room temperature at a rate of 5℃·h-1. The containing pale yellow blocklike crystals of 2 and yellow platelike crystals of 3 were obtained. The yield of 2 is about 3.0%(based on HL). Anal. Calcd. for C92H72N8O27Zn4(%): C, 55.78; H, 3.56; N, 5.66. Found (%): C, 55.70; H, 3.62; N, 5.74. IR (KBr pellet, cm-1): 3 429, 2 943,1 640, 1 560, 1 367, 1 249, 1 161, 1 073, 1 028, 910, 792. The yield of 3 is 30.1%(based on HL). Anal. Calcd. for. C46H36N4O14Zn2(%): C, 55.72; H, 3.66; N, 5.65. Found (%): C, 55.39; H, 3.62; N, 5.52. IR (KBr pellet, cm-1): 3458, 3075, 2943, 2354, 1 617, 1581,1381,1279,1175,1057,1014,778,719,497.

    1.4Synthesis of {[Cd2L2(bdtc)(H2O)]·0.5H2O}n(4)

    A mixture of Cd(CH3COO)2·2H2O (0.20 mmol, 0.053 g), HL(0.10 mmol, 0.034 g), H2bdtc (0.05 mmol, 0.013 g) and NaOH(0.10 mmol, 0.004 g) in H2O(14 mL) was sealed in a 25 mL Teflon-lined stainless steel container, which was heated at 160℃for 72 h and then cooled down to room temperature at a rate of 5℃·h-1. Yellow crystals of 4 were collected and washed with distilled water and dried in air to give the product with 11.8% yield (based on HL). Anal. Calcd. for C48H44Cd2N4O15S2(%): C, 47.81; H, 3.68; N, 4.65. Found (%): C, 47.86; H, 3.72; N, 4.61. IR (KBr pellet, cm-1): 3430, 2970, 2919, 2368, 1 613, 1551,1480,1377,1235,1163,1102,898,796,673.

    1.5X-ray crystallography study

    Data collection of 1~4 was carried out on a Bruker APEXⅡdiffractometer equipped with a graphitemonochromatized Mo Kα radiation (λ=0.071 073 nm) at 296(2) K. Data intensity was corrected by Lorentzpolarization factors and empirical absorption. The structure was solved by the direct methods and refined with the full-matrix least-squares refinements technique based on F2. The anisotropic displacement parameters were applied to all non-hydrogen atoms. The hydrogen atoms were assigned with isotropic displacement factors and included in the final refinement cycles using geometrical restrains. All calculations were performed with SHELXS-97 and SHELXTL-97 program packages[11]. The detailed crystallographic data and structure refinement parameters are summarized in Table 1. Selected bond lengths and angles are given in Table 2.

    Table 1 Crystal data and structure parameters for compounds 1~4

    CCDC:852424,1;872035,2;887738,3;872037,4.

    Continued Table 1

    Table 2 Selected bond lengths (nm) and angles (°) for 1~4

    Continued Table 2

    2 Results and discussion

    Fig.1 (a) Coordination environment of Znin 1; (b) 3D coordination framework; (c) Schematic representation of the (3,4)-connected framework; (d) Schematic representation of the 4-fold interpenetrating net

    2.1Structure of [Zn2L2(tdc)]n(1)

    Single-crystal X-ray diffraction analysis shows that 1 crystallizes in monoclinic with P21/c space group. The asymmetric unit of 1 consists of one Znion, one L-ligand and half tdc2-ligand. As shown in Fig.1a, each Znion is four-coordinated with a distorted tetrahedral geometry supplied by twocarboxylate oxygen atoms from one L-ligand and one tdc2-ligand, two nitrogen atoms from two L-ligands. As shown in Fig.1b, the L-ligand connects three Znions together by two pyridyl-N atoms and one carboxylate oxygen atom to generate a 2D bilayer structure, and then the tdc2 -ligands locate up and down the layer in exo-bidentate mode to form the final 3D network.

    Fig.2 (a) Coordination environment of Znin 2; (b) 3D coordination framework; (c) Schematic representation of the (3,4)-connected framework; (d) Schematic representation of the 4-fold interpenetrating net

    2.2Structure of {[Zn4L4(Hhdc)2]·H2O}n(2)

    Crystallographic analysis reveals that 2 crystallizes in the monoclinic with space group P2/c. The asymmetric unit of 2 consists of one Znion, one L-ligand, half Hhdc2-ligand and a quarter of lattice H2O molecule. As shown in Fig.2a, each Znion is fourcoordinated with a distorted tetrahedral geometry supplied by two pyridyl-N atoms from two L-ligands, two carboxylic oxygen atoms from one L-ligand and one Hhdc2 -ligand. It is worthy to note that the distance of Zn(1)…O(7) is 0.258 1(3) nm, which is a nonnegligible week interaction, and the Znion can be considered as a five coordinated, disorted square pyramidal geometry. As shown in Fig.2b, the L-ligand connects three Znions together by two pyridyl-N atoms and one carboxylate oxygen atom to generate a 2D layer structure, and then the Hhdc2-ligands locate up and down the layer in exo-bidentate mode to form the final 3D network.

    2.3Structure of {[Zn2L2(Hhdc)]·H2O}n(3)

    Crystallographic analysis reveals that 3 crystallizes in the monoclinic with space group P21/c. The asymmetric unit of 3 consists of two Znions, two L-ligands, one Hhdc2 -ligand and one lattice H2O molecule. As shown in Fig.3a, Zn(1) is connected by four carboxylic oxygen atoms from one L-ligand and one Hhdc2-ligand, two pyridyl-N atoms from two L-ligands in a disorted octahedral geometry, and Zn(2) is connected by two carboxylic oxygen atoms from one L-ligand and one Hhdc2-ligand, two pyridyl-N atoms from two L-ligands in a distorted tetrahedral coordination geometry. As shown in Fig.3b, the L-ligands connect three Znions together to generate a 2D layer structure, and then the Hhdc2-ligands locate up and down the layers in exo-bidentate mode to form the final 3D network.

    Fig.3 (a) Coordination environment of Znin 3; (b) 3D coordination framework; (c) Schematic representation of the (3,4)-connected framework; (d) Schematic representation of the 4-fold interpenetrating net

    2.4Structureof{[Cd2L2(bdtc)(H2O)]·0.5H2O}n(4)

    Crystallographic analysis reveals that 4 crystallizes in the triclinic space group P1. The asymmetricunit of 4 consists of one Cdion, one L-ligand, half bdtc2 -ligand, half coordinated water molecule and quarter lattice water molecule. As shown in Fig.4a, each Cdion is six-coordinated with a distorted octahedral geometry supplied by two pyridyl-N atoms from two L-ligands, three carboxylic oxygen atoms from one L-ligand and one bdtc2 -ligand, and one water molecule. As shown in Fig.4b, the L-ligand connects three Cdions together by two pyridyl-N atoms and two carboxylate oxygen atoms, the bdtc2 -ligand connect two Cdions together by two carboxylate oxygen atoms to generate a 2D (3,4)-connected layer structure.

    Fig.4 (a) Local coordination environment of Cdin 4; (b) Wires or sticks representation of the 2D layer; (c) Schematic representation of the 3-fold interpenetrating net

    The topology analysis suggests the(3,4)-connected net with the (63)(66) topology, and each 2D layer is filled via mutual interpenetration to generate a 3-fold interpenetrating architecture (Fig.4c). Simultaneously, the adjacent layers are linked each other by hydrogen bonds (O(1W)-H(1WB)…O(5)#3 0.276 1(5) nm, O(3W)-H(1WA)…O5#4 0.276 8(13) nm; Symmetry codes: #3: x+1, y, z, 4#: -x, 1-y, 2-z) to complete the finally 3D supramolecular network.

    2.5PXRD analysis and thermal property

    Powder X-ray diffraction (PXRD) analysis of 1, 3, 4 has been performed at room temperature. The PXRD patterns are in reasonably good agreement with the calculated ones (Fig.5), confirming the phase purity of the as-synthesized products.

    Thermogravimetric analyses (TGA) were carried out under air atmosphere to examine the thermal stability of complexes 1, 3 and 4 and the results are shown in Fig.6. The TGA curve of 1 shows the framework collapsed at the temperature range of 305~510℃. For 3, the first weight loss of 1.88 % occurred in the temperature range of 70~120℃, due to the release of coordinated water molecules (Calcd. 1.80%), and the decomposition of the residue occurs at the range of 320~510℃. The TGA curve of 4 shows the first weight loss of 2.51% occurred in the temperature range of 100~145℃, due to the release of watermolecules (Calcd. 2.24%), and the decomposition of the residue occurs at the range of 275~330℃, which may be caused by the complete decomposition of bdtc in 4 (Obsd. 19.87%, Calcd. 19.24%). A rapid weight loss can be detected from 500~600℃, which may be attributed to the complete decomposition of the organic ligands.

    Fig.5 Simulated (a) and experimental (b) PXRD patterns of complexes 1, 3 and 4

    Fig.6 TG curves of complexes 1, 3 and 4

    2.6Photoluminescent properties

    Taking the excellent luminescent properties of Znand Cdinto account, the solid-state luminescent spectra of HL, complexes 1, 3 and 4 have been studied at room temperature (Fig.7). 1 shows broad fluorescent emission spectra from 450 to 600 nm and the emission maxima at 504 nm(λex=300 nm). 3 shows broad fluorescent emission spectra from 400 to 600 nm and the emission maxima at 450 nm (λex=360 nm), while 4 presents broad fluorescent emission spectra from 400 to 550 nm and the emission maxima at 452 nm(λex=362 nm). In order to understand the nature of the emission, we analyzed the photoluminescence property of free HL ligand and found that the strongest emission peak at 474 nm(λex=363 nm). In comparison with that of HL, the maximum emission wavelengths of 1 occurs slightly redshifted, 3 and 4 occur slightly blueshifted, which are probably due to L-and auxiliary ligands to metal charge transitions. The enhancement of the intensity of luminescence in the CPs may be attributed to the rigidity of them. The complex enhances the “rigidity”of the ligand and thus reduces the loss of energy through a radiationless pathway[12].

    Fig.7 Solid-state luminescent spectra of HL, complexes 1, 3 and 4 at room temperature

    3 Conclusions

    In summary, complexes 1~4 display four- and three-fold interpenetrated (3,4)-connected coordination polymers. The interpenetration effectively reduced the solvent voids, in which clathrate water molecules reside. The results show that the flexible ligand can take different modes to meet the coordination nature of the metal cations, and the ligands, the metal center, and the reaction conditions have great influence on the structure of the final assembly. The long-flexible ligand with rigid spacers is much more conducive to form interpenetrated framework. The complexes with spacious voids in their frameworks favour interpenetrated crystal forms. The luminescent spectra show that 1, 3 and 4 have different luminescentproperties, both the auxiliary ligands and metal centers will influence the intensity and shift of luminescence.

    References:

    [1] (a)Leong W L, Vitta J J. Chem. Rev., 2011,111:688-764 (b)Moulton B, Zaworotko M. Chem. Rev., 2001,101:1629-1658 (c)Zhao D, Timmons D J, Yuan D, et al. Acc. Chem. Res., 2011,44:123-133

    [2] (a)Hong M C, Chen L. Design and Construction of Coordination Polymers. Hoboken, New Jersey: John Wiley & Sons, Inc., 2009. (b)Batten S R, Neville S M, Turner D R. Coordination Polymers: Design, Analysis and Application. Cambridge UK: Royal Society of Chemistry, 2009.

    [3] (a)Lin Z J, Lu J, Hong M C, et al. Chem. Soc. Rev., 2014, 43:5867-5895 (b)Stock N, Biswas S. Chem. Rev., 2012,112:933-969 (c)Li J R, Sculley J, Zhou H C. Chem. Rev., 2012,112:869-932 (d)Moon H R, Lim D W, Suh M P. Chem. Soc. Rev., 2013, 42:1807-1824 (e)Chaemchuen S, Kabir N A, Zhou K, et al. Chem. Soc. Rev., 2013,42:9304-9332

    [4] (a)O′Keeffe M, Hyde S T. Zeolites, 1997,19:370-374 (b)O′Keeffe M. Nature, 1999,400:617 (c)Ockwig N W, Friedrichs O D, O′Keeffe M, et al. Acc. Chem. Res., 2005,38:176-182

    [5] (a)Wang R, Wang Z, Xu Y, et al. Inorg. Chem., 2014,53:7086-7088 (b)Li F, Clegg J K, Lindoy L F, et al. Nat. Commun., 2001, 205:1208 (c)Wang R, Zhang M, Liu X, et al. Inorg. Chem., 2015,54: 6084-6086

    [6] (a)Wu H, Yang J, Su Z M, et al. J. Am. Chem. Soc., 2011, 133:11406-11409 (b)Kitagawa S, Matsuda R. Coord. Chem. Rev., 2007,251: 2490-2509

    [7] Schneemann A, Bon V, Schwedler I, et al. Chem. Soc. Rev., 2014,43:6062-6096

    [8] (a)Wang X L, Qin C, Wu S X, et al. Angew. Chem. Int. Ed., 2009,48:5291-5295 (b)Zheng S L, Yang J H, Yu X L, et al. Inorg. Chem., 2004, 43:830-836 (c)Zhang L Y, Zhang J P, Lin Y Y, et al. Cryst. Growth Des., 2006,6:1684-1689 (d)Rather B, Moulton B, Walsh R D B, et al. Chem. Commun., 2002:694-695

    [9] (a)Xu G J, Zhao Y H, Shao K Z, et al. CrystEngComm, 2009, 11:1842-1848 (b)Xu G J, Zhao Y H, Shao K Z, et al. Polyhedron, 2009,28: 3155-3163 (c)Xu G J, Zhao Y H, Shao K Z, et al. Inorg. Chem. Commun., 2008,11:1181-1183 (d)Xu G J, Zhao Y H, Shao K Z, et al. Inorg. Chem. Commun., 2010,13:932-934 (e)Xu G J, Zhao Y H, Shao K Z, et al. Inorg. Chem. Commun., 2009,12:1024-1026 (f)Xu G J, Zhao Y H, Shao K Z, et al. Inorg. Chem. Commun., 2009,12:969-971

    [10](a)HAN Min-Min(韓敏敏), CHEN Xiao(陳曉), ZHANG Yi-Ping(張依萍), et al. Chinese J. Inorg. Chem.(無機化學(xué)學(xué)報), 2014,30:1653-1659 (b)Cao K L, Zhang Y P, Cai Y N, et al. J. Solid State Chem., 2014,215:34-42

    [11] (a)Sheldrick G M. SHELXS 97, University of G?ttingen, Germany, 1997. (b)Sheldrick G M. SHELXTL 97, University of G?ttingen, Germany, 1997.

    [12]He Y H, Feng Y L, Lan Y Z, et al. Cryst. Growth Des., 2008,8:3586-1694

    3,5-二(吡啶-4-甲氧基)苯甲酸和芳香二羧酸配體構(gòu)建的具有3,4-連接四重和三重穿插的d10金屬配位聚合物

    王桂仙1,2曹可利2王曉娟2馮云龍*,2
    (1麗水學(xué)院化學(xué)與化工學(xué)院,麗水323000)
    (2浙江師范大學(xué)物理化學(xué)研究所,金華321004)

    以3,5-二(吡啶-4-甲氧基)苯甲酸(HL)與芳香二羧酸為配體,在水熱條件下與Zn或Cd鹽反應(yīng)得到4個具有3,4-連接多重穿插結(jié)構(gòu)的配位聚合物:[Zn2L2(tdc)]n(1),{[Zn4L4(Hhdc)2]·H2O}n(2),{[Zn2L2(Hhdc)]·H2O}n(3),{[Cd2L2(bdtc)(H2O)]·0.5H2O}n(4) (H2tdc=2,5-噻吩二甲酸,H3hdc=5-羥基間苯二甲酸,H2bdtc=1,4-苯二硫乙酸)。晶體結(jié)構(gòu)分析表明,聚合物1~3具有3,4-連接四重穿插的三維網(wǎng)絡(luò)結(jié)構(gòu),拓撲符號分別為(4.82)(4.85) (1)、(63)(65.8) (2)和(63)(65.8) (3)。4為3,4-連接三重穿插的二維平面結(jié)構(gòu),拓撲符號為(63)(66)。測定了配位聚合物1、3和4的熱穩(wěn)定性和熒光性質(zhì)。

    配位聚合物;3,5-二(吡啶-4-甲氧基)苯甲酸;晶體結(jié)構(gòu);熒光性質(zhì)

    O614.24+1;O614.24+2

    A

    1001-4861(2016)03-0545-10

    10.11862/CJIC.2016.062

    2015-10-20。收修改稿日期:2016-01-09。

    國家自然科學(xué)基金(No.21173197)資助項目。

    *通信聯(lián)系人。E-mail:sky37@zjnu.cn;會員登記號:S06N0984M1401。

    猜你喜歡
    二羧酸晶體結(jié)構(gòu)麗水
    麗水發(fā)現(xiàn)新物種
    浙江麗水郵儲扶貧助古村美麗蝶變
    化學(xué)軟件在晶體結(jié)構(gòu)中的應(yīng)用
    浙江麗水:打好劣V類水剿滅戰(zhàn)
    鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結(jié)構(gòu)及量子化學(xué)研究
    聚丙烯成核劑雙環(huán)[2.2.1]-庚烷-2,3-二羧酸鈉的合成
    化工進展(2015年6期)2015-11-13 00:27:25
    含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶體結(jié)構(gòu)及催化性能
    從《麗水日報》、麗水網(wǎng)實踐看地方媒體網(wǎng)絡(luò)問政著力點
    中國記者(2014年6期)2014-03-01 01:40:40
    兩個基于2,2’-聯(lián)吡啶-3,3’-二羧酸的稀土配合物的晶體結(jié)構(gòu)和熒光性質(zhì)
    吡啶-3,5-二羧酸鎳(Ⅱ)配合物的合成、結(jié)構(gòu)、性質(zhì)及密度泛函研究
    大话2 男鬼变身卡| 丝瓜视频免费看黄片| 欧美成人午夜免费资源| a级片在线免费高清观看视频| 欧美日韩一区二区视频在线观看视频在线| 菩萨蛮人人尽说江南好唐韦庄| 成人影院久久| 人妻少妇偷人精品九色| 欧美一级a爱片免费观看看| 国产成人精品在线电影| 国产一区二区在线观看日韩| 欧美日韩视频高清一区二区三区二| 欧美日韩av久久| 亚洲av成人精品一区久久| 日本黄色日本黄色录像| 精品久久久久久久久亚洲| 国产高清国产精品国产三级| 五月天丁香电影| 97在线人人人人妻| 99精国产麻豆久久婷婷| 一本—道久久a久久精品蜜桃钙片| 青春草亚洲视频在线观看| 在线观看美女被高潮喷水网站| 久久久久人妻精品一区果冻| 日本wwww免费看| 国产无遮挡羞羞视频在线观看| 国产一级毛片在线| 在线观看www视频免费| 人妻少妇偷人精品九色| 内地一区二区视频在线| 欧美日韩亚洲高清精品| 国内精品宾馆在线| 欧美日韩国产mv在线观看视频| 国模一区二区三区四区视频| 日韩免费高清中文字幕av| 最近中文字幕高清免费大全6| 精品卡一卡二卡四卡免费| 夜夜骑夜夜射夜夜干| 最近的中文字幕免费完整| 免费观看的影片在线观看| 狠狠精品人妻久久久久久综合| 亚洲精品乱码久久久v下载方式| 又黄又爽又刺激的免费视频.| 高清在线视频一区二区三区| 一级爰片在线观看| 两个人免费观看高清视频| 80岁老熟妇乱子伦牲交| 国产又色又爽无遮挡免| 免费高清在线观看日韩| 国产成人freesex在线| 欧美激情国产日韩精品一区| 日日摸夜夜添夜夜添av毛片| 九草在线视频观看| 女人久久www免费人成看片| 久久久久久久久久成人| 欧美激情极品国产一区二区三区 | 国产精品久久久久成人av| 一本大道久久a久久精品| 国产精品久久久久成人av| 最近的中文字幕免费完整| 国产精品蜜桃在线观看| 午夜激情福利司机影院| 国产亚洲一区二区精品| 美女视频免费永久观看网站| 免费看av在线观看网站| 久久久久网色| 啦啦啦啦在线视频资源| 欧美亚洲日本最大视频资源| 欧美日韩av久久| 国产精品久久久久久久久免| 如何舔出高潮| 99久久人妻综合| 黄色欧美视频在线观看| 在线观看一区二区三区激情| 亚洲人成网站在线观看播放| 日韩成人伦理影院| 欧美激情国产日韩精品一区| 97超碰精品成人国产| 国产精品一区二区三区四区免费观看| 精品人妻熟女毛片av久久网站| 精品国产露脸久久av麻豆| 中文天堂在线官网| 男人操女人黄网站| 午夜激情福利司机影院| 99热6这里只有精品| 亚洲欧美色中文字幕在线| 亚洲精品第二区| 少妇猛男粗大的猛烈进出视频| 人人妻人人爽人人添夜夜欢视频| 超碰97精品在线观看| 婷婷成人精品国产| 国产精品嫩草影院av在线观看| 少妇熟女欧美另类| 国产黄色视频一区二区在线观看| 性色av一级| 日韩一区二区三区影片| 丝袜脚勾引网站| 欧美丝袜亚洲另类| 国产高清三级在线| 99久久精品一区二区三区| 女性生殖器流出的白浆| 九九在线视频观看精品| 成人毛片a级毛片在线播放| 午夜av观看不卡| 大码成人一级视频| 国产高清国产精品国产三级| 美女视频免费永久观看网站| av视频免费观看在线观看| 夜夜看夜夜爽夜夜摸| av在线观看视频网站免费| √禁漫天堂资源中文www| 日韩欧美精品免费久久| 香蕉精品网在线| 热99久久久久精品小说推荐| 亚洲欧美一区二区三区黑人 | av不卡在线播放| 纯流量卡能插随身wifi吗| 不卡视频在线观看欧美| 在线看a的网站| 亚洲伊人久久精品综合| 久久青草综合色| 丰满饥渴人妻一区二区三| 亚洲丝袜综合中文字幕| 亚洲性久久影院| 丰满少妇做爰视频| 男女啪啪激烈高潮av片| 亚洲精品亚洲一区二区| 国产伦理片在线播放av一区| 天堂8中文在线网| 久久午夜福利片| 美女国产高潮福利片在线看| 老女人水多毛片| 国产高清三级在线| kizo精华| 欧美日韩综合久久久久久| 边亲边吃奶的免费视频| 国产精品无大码| 亚洲精品色激情综合| 中文字幕最新亚洲高清| 成人18禁高潮啪啪吃奶动态图 | 人妻系列 视频| 丝瓜视频免费看黄片| 精品人妻在线不人妻| 91精品三级在线观看| 一个人看视频在线观看www免费| 日韩熟女老妇一区二区性免费视频| 看十八女毛片水多多多| 天堂中文最新版在线下载| 免费高清在线观看视频在线观看| 亚洲美女黄色视频免费看| av免费在线看不卡| 日韩制服骚丝袜av| 一区在线观看完整版| 欧美激情极品国产一区二区三区 | 91精品伊人久久大香线蕉| 好男人视频免费观看在线| 性色avwww在线观看| 99久久精品国产国产毛片| 丝袜美足系列| 欧美日韩国产mv在线观看视频| 男男h啪啪无遮挡| 黄色毛片三级朝国网站| 午夜福利,免费看| 亚洲第一av免费看| 国产无遮挡羞羞视频在线观看| 91精品国产国语对白视频| 啦啦啦视频在线资源免费观看| 亚洲成人手机| 91久久精品国产一区二区成人| 亚洲精品国产av成人精品| 精品卡一卡二卡四卡免费| 高清不卡的av网站| 青青草视频在线视频观看| 欧美日韩一区二区视频在线观看视频在线| av视频免费观看在线观看| 欧美精品一区二区大全| 美女内射精品一级片tv| 99久久精品国产国产毛片| 久久国产亚洲av麻豆专区| 激情五月婷婷亚洲| 亚洲精品久久成人aⅴ小说 | 51国产日韩欧美| a级毛色黄片| 国产成人aa在线观看| 麻豆乱淫一区二区| 秋霞在线观看毛片| 亚洲欧美日韩卡通动漫| 视频中文字幕在线观看| 一级毛片电影观看| 国产av国产精品国产| 一本—道久久a久久精品蜜桃钙片| 久久久久久久久大av| 久久久久久伊人网av| 亚洲内射少妇av| 亚洲美女视频黄频| 亚洲欧美成人综合另类久久久| 日韩av在线免费看完整版不卡| 亚洲精品亚洲一区二区| 黄色一级大片看看| 亚洲在久久综合| 免费看不卡的av| 免费看光身美女| 亚洲第一av免费看| av黄色大香蕉| 精品亚洲乱码少妇综合久久| 少妇被粗大的猛进出69影院 | 美女内射精品一级片tv| 婷婷色综合www| 一边摸一边做爽爽视频免费| 狠狠精品人妻久久久久久综合| 在线观看人妻少妇| 国产日韩欧美亚洲二区| 精品亚洲乱码少妇综合久久| 久久狼人影院| 另类亚洲欧美激情| 久久这里有精品视频免费| 精品视频人人做人人爽| 成人综合一区亚洲| 欧美变态另类bdsm刘玥| 中国美白少妇内射xxxbb| 欧美+日韩+精品| 国产男女超爽视频在线观看| 国产午夜精品久久久久久一区二区三区| 日韩中文字幕视频在线看片| 久久久久国产精品人妻一区二区| 亚洲国产日韩一区二区| 精品一区在线观看国产| 麻豆精品久久久久久蜜桃| 亚洲,欧美,日韩| 精品国产乱码久久久久久小说| 高清不卡的av网站| 黄色欧美视频在线观看| www.色视频.com| 大香蕉97超碰在线| 欧美老熟妇乱子伦牲交| 少妇人妻 视频| 插阴视频在线观看视频| 亚洲伊人久久精品综合| 亚洲激情五月婷婷啪啪| 老司机亚洲免费影院| 亚洲国产日韩一区二区| 视频区图区小说| 人人澡人人妻人| 女的被弄到高潮叫床怎么办| 一区二区三区精品91| 91久久精品国产一区二区成人| av黄色大香蕉| 亚洲精品日韩在线中文字幕| 免费大片18禁| 另类亚洲欧美激情| 五月伊人婷婷丁香| 能在线免费看毛片的网站| 亚洲三级黄色毛片| 国产一区二区三区av在线| 成人18禁高潮啪啪吃奶动态图 | videosex国产| 七月丁香在线播放| 国产精品99久久99久久久不卡 | 国产午夜精品久久久久久一区二区三区| 精品少妇久久久久久888优播| 18禁观看日本| 交换朋友夫妻互换小说| 午夜免费鲁丝| 内地一区二区视频在线| 久久久午夜欧美精品| 夜夜骑夜夜射夜夜干| 考比视频在线观看| 亚洲欧美成人综合另类久久久| 夜夜骑夜夜射夜夜干| 午夜免费观看性视频| 这个男人来自地球电影免费观看 | 在线观看三级黄色| 秋霞在线观看毛片| 少妇高潮的动态图| 国产亚洲欧美精品永久| 欧美亚洲日本最大视频资源| 国产黄色免费在线视频| 嫩草影院入口| 国产又色又爽无遮挡免| 一级毛片电影观看| 久久久久久久大尺度免费视频| 久久精品国产亚洲网站| a级片在线免费高清观看视频| 亚州av有码| 中文字幕精品免费在线观看视频 | 高清欧美精品videossex| 国产免费又黄又爽又色| 久久99蜜桃精品久久| 春色校园在线视频观看| 在线播放无遮挡| 精品国产乱码久久久久久小说| 日本欧美国产在线视频| 五月开心婷婷网| 亚洲av电影在线观看一区二区三区| 亚洲国产成人一精品久久久| 亚洲精品自拍成人| 精品少妇内射三级| 久久毛片免费看一区二区三区| 久久99精品国语久久久| 婷婷色综合www| 久久久国产精品麻豆| 日韩中文字幕视频在线看片| 热re99久久精品国产66热6| 成人免费观看视频高清| 色吧在线观看| 成人二区视频| 久久国产精品大桥未久av| 最近中文字幕高清免费大全6| 国产色爽女视频免费观看| 亚洲精品视频女| 国产成人a∨麻豆精品| 日韩在线高清观看一区二区三区| 亚洲国产av新网站| 99热这里只有是精品在线观看| 免费高清在线观看日韩| 国模一区二区三区四区视频| 国产欧美亚洲国产| 亚洲综合色网址| 国产无遮挡羞羞视频在线观看| 九九在线视频观看精品| 一级二级三级毛片免费看| 久久久精品免费免费高清| 精品国产乱码久久久久久小说| 色婷婷久久久亚洲欧美| 黄色一级大片看看| 日韩不卡一区二区三区视频在线| 九色成人免费人妻av| 狠狠精品人妻久久久久久综合| 久久久久久久久久人人人人人人| 美女xxoo啪啪120秒动态图| 另类亚洲欧美激情| 日本vs欧美在线观看视频| 免费看av在线观看网站| 永久免费av网站大全| 综合色丁香网| 新久久久久国产一级毛片| 亚洲美女视频黄频| 欧美丝袜亚洲另类| 大话2 男鬼变身卡| 一本久久精品| 国产精品一区二区三区四区免费观看| 亚洲av.av天堂| 蜜桃久久精品国产亚洲av| 久久99一区二区三区| 国精品久久久久久国模美| 国产精品99久久久久久久久| 欧美国产精品一级二级三级| 亚洲美女搞黄在线观看| 日韩中字成人| 熟女人妻精品中文字幕| 99视频精品全部免费 在线| 丝袜美足系列| 十八禁网站网址无遮挡| 九色成人免费人妻av| 美女中出高潮动态图| 国产国语露脸激情在线看| 精品一区二区三区视频在线| 满18在线观看网站| 99久久综合免费| 乱码一卡2卡4卡精品| 菩萨蛮人人尽说江南好唐韦庄| 久久99热6这里只有精品| 精品国产一区二区三区久久久樱花| 校园人妻丝袜中文字幕| 久久婷婷青草| 少妇人妻久久综合中文| 女的被弄到高潮叫床怎么办| 欧美精品人与动牲交sv欧美| 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区久久久樱花| 久久人人爽av亚洲精品天堂| 午夜免费观看性视频| 亚洲美女视频黄频| 欧美日韩av久久| .国产精品久久| 美女福利国产在线| a级片在线免费高清观看视频| 国产高清国产精品国产三级| 成年女人在线观看亚洲视频| 亚洲av.av天堂| 精品亚洲成国产av| 亚洲天堂av无毛| 51国产日韩欧美| 精品国产一区二区三区久久久樱花| 多毛熟女@视频| 午夜激情av网站| 中国美白少妇内射xxxbb| 久久久久人妻精品一区果冻| 欧美日韩亚洲高清精品| 日本免费在线观看一区| 热re99久久国产66热| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一本—道久久a久久精品蜜桃钙片| 婷婷色av中文字幕| 免费观看在线日韩| 国产 精品1| 久久国产精品大桥未久av| 人人澡人人妻人| 秋霞伦理黄片| 2018国产大陆天天弄谢| 国产又色又爽无遮挡免| 一级片'在线观看视频| 久久久久久久久久久丰满| 超色免费av| videossex国产| 在线播放无遮挡| 国产极品粉嫩免费观看在线 | av女优亚洲男人天堂| 精品少妇黑人巨大在线播放| 91精品伊人久久大香线蕉| 国产探花极品一区二区| 亚洲欧洲精品一区二区精品久久久 | 久久精品国产亚洲av天美| av播播在线观看一区| av不卡在线播放| 亚洲精品aⅴ在线观看| 精品国产国语对白av| a级毛片免费高清观看在线播放| 精品99又大又爽又粗少妇毛片| av在线观看视频网站免费| 人妻少妇偷人精品九色| 黄色一级大片看看| 日日摸夜夜添夜夜爱| 中国美白少妇内射xxxbb| 亚洲综合色网址| av黄色大香蕉| av福利片在线| av在线app专区| 美女主播在线视频| 日本黄色片子视频| 18在线观看网站| 一本大道久久a久久精品| 九九在线视频观看精品| 99九九在线精品视频| 国产一区二区三区综合在线观看 | 日日爽夜夜爽网站| 欧美激情 高清一区二区三区| 亚洲内射少妇av| 免费黄频网站在线观看国产| 国产熟女午夜一区二区三区 | 新久久久久国产一级毛片| 日日撸夜夜添| 极品少妇高潮喷水抽搐| 中文欧美无线码| 国产精品久久久久久精品电影小说| 免费黄色在线免费观看| 肉色欧美久久久久久久蜜桃| 熟女人妻精品中文字幕| 中文欧美无线码| 内地一区二区视频在线| 亚洲国产日韩一区二区| 亚洲国产av影院在线观看| 久久久国产欧美日韩av| 男女国产视频网站| 亚洲国产日韩一区二区| 一本大道久久a久久精品| 日韩人妻高清精品专区| 国产精品久久久久久精品古装| 亚洲欧洲国产日韩| 中文字幕久久专区| 在线观看国产h片| 伦精品一区二区三区| 男男h啪啪无遮挡| 亚洲欧美精品自产自拍| 毛片一级片免费看久久久久| 人妻夜夜爽99麻豆av| 99热全是精品| 欧美亚洲 丝袜 人妻 在线| 大香蕉97超碰在线| 亚洲精品久久久久久婷婷小说| 美女cb高潮喷水在线观看| 久久久国产精品麻豆| 国内精品宾馆在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 大又大粗又爽又黄少妇毛片口| 九九久久精品国产亚洲av麻豆| 日韩视频在线欧美| 亚洲欧洲日产国产| 久久久久久久国产电影| 欧美精品国产亚洲| 少妇精品久久久久久久| 亚洲精品国产色婷婷电影| 两个人免费观看高清视频| 日韩成人av中文字幕在线观看| 亚洲无线观看免费| 免费久久久久久久精品成人欧美视频 | 五月伊人婷婷丁香| 纯流量卡能插随身wifi吗| 日本免费在线观看一区| 黄色怎么调成土黄色| 老司机影院毛片| 大片免费播放器 马上看| 亚洲成色77777| 在线观看免费高清a一片| 制服丝袜香蕉在线| 曰老女人黄片| 日韩一本色道免费dvd| av女优亚洲男人天堂| 亚洲熟女精品中文字幕| 嘟嘟电影网在线观看| 一区二区三区精品91| 久久精品久久久久久久性| 久久精品久久久久久噜噜老黄| 自线自在国产av| 99热国产这里只有精品6| 另类精品久久| 如日韩欧美国产精品一区二区三区 | 建设人人有责人人尽责人人享有的| 亚洲精品自拍成人| a级毛片黄视频| 中文欧美无线码| 亚洲精品中文字幕在线视频| 日本午夜av视频| 亚洲国产成人一精品久久久| 日韩视频在线欧美| 国产成人91sexporn| 人妻 亚洲 视频| 91在线精品国自产拍蜜月| 国产av码专区亚洲av| 亚洲欧美日韩另类电影网站| 亚洲美女视频黄频| 少妇的逼水好多| 国产成人免费无遮挡视频| 国产白丝娇喘喷水9色精品| 在现免费观看毛片| 一区在线观看完整版| 三上悠亚av全集在线观看| 少妇的逼好多水| 国产日韩欧美在线精品| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品国产精品| 菩萨蛮人人尽说江南好唐韦庄| 精品一品国产午夜福利视频| 日韩大片免费观看网站| 美女视频免费永久观看网站| 777米奇影视久久| 男女无遮挡免费网站观看| 九九久久精品国产亚洲av麻豆| videos熟女内射| 中国国产av一级| 国产成人一区二区在线| 一级毛片我不卡| 国产精品久久久久久久电影| 一边摸一边做爽爽视频免费| 日本av免费视频播放| 国产成人精品一,二区| 又粗又硬又长又爽又黄的视频| 国产一区二区三区综合在线观看 | 卡戴珊不雅视频在线播放| 国产女主播在线喷水免费视频网站| 男人爽女人下面视频在线观看| 美女大奶头黄色视频| 久久久久久人妻| 桃花免费在线播放| 熟女av电影| 日韩成人av中文字幕在线观看| 永久网站在线| 久久精品夜色国产| 一区二区av电影网| 免费少妇av软件| 大片电影免费在线观看免费| 女性生殖器流出的白浆| 亚洲国产最新在线播放| 欧美日韩成人在线一区二区| 国产精品久久久久久久久免| 国产男女内射视频| kizo精华| 最近手机中文字幕大全| 久久热精品热| 亚洲精品中文字幕在线视频| 日产精品乱码卡一卡2卡三| 一本一本综合久久| videosex国产| 国产精品熟女久久久久浪| 高清午夜精品一区二区三区| 美女福利国产在线| 午夜福利在线观看免费完整高清在| 毛片一级片免费看久久久久| 精品人妻熟女毛片av久久网站| 亚洲精品av麻豆狂野| a级片在线免费高清观看视频| 国产国拍精品亚洲av在线观看| 国产一区二区在线观看日韩| 99久久人妻综合| 国产男人的电影天堂91| 国产午夜精品一二区理论片| 亚洲av电影在线观看一区二区三区| 在线观看免费视频网站a站| 亚洲美女视频黄频| 亚洲欧美一区二区三区国产| 人成视频在线观看免费观看| 国产免费一区二区三区四区乱码| 麻豆成人av视频| 中文字幕av电影在线播放| 国产欧美日韩一区二区三区在线 | 在线观看免费日韩欧美大片 | 99热这里只有精品一区| 永久免费av网站大全| 曰老女人黄片| 国产精品 国内视频| 嘟嘟电影网在线观看| 欧美bdsm另类| 国产一级毛片在线| 欧美日韩精品成人综合77777| 青春草视频在线免费观看| av一本久久久久| 亚洲丝袜综合中文字幕| 亚洲色图综合在线观看| 伊人久久精品亚洲午夜| 亚洲,一卡二卡三卡| 日本黄大片高清| 国产 精品1| 久久99精品国语久久久| 秋霞在线观看毛片| 免费高清在线观看视频在线观看|