• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polypyridyl Ligands-Based Double-Decker Triggered by Silver(Ⅰ)Coordination: Crystal Structures and Spectroscopic Analysis

    2016-09-18 07:59:49ZHAOQiangLIUXiuMingFENGRuiZHANGYingHuiKONGManManLIUYangCollegeofChemistryandPharmaceuticalEngineeringNanyangNormalUniversityNanyangHenan47306ChinaSchoolofmatrerialsscienceandengineeringNankaiUniversityTianjin30007China
    關(guān)鍵詞:吡啶基光譜學(xué)三明治

    ZHAO QiangLIU Xiu-MingFENG RuiZHANG Ying-Hui*,KONG Man-ManLIU Yang(College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 47306, China)(School of matrerials science and engineering, Nankai University, Tianjin 30007, China)

    Polypyridyl Ligands-Based Double-Decker Triggered by Silver(Ⅰ)Coordination: Crystal Structures and Spectroscopic Analysis

    ZHAO Qiang1LIU Xiu-Ming2FENG Rui2ZHANG Ying-Hui*,2KONG Man-Man1LIU Yang1
    (1College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, China)
    (2School of matrerials science and engineering, Nankai University, Tianjin 300071, China)

    Three Agcoordination complexes, namely [Ag(dpq)(NO3)2]n(1), [Ag4(tppq)2(NO3)4](2) and [Ag6(hpdq)2(NO3)6](3) have been synthesized based on three polypyridyl ligands: 2,3-di(pyridin-2-yl)quinoxaline (dpq), 2,3,7,8-tetra(pyridine-2-yl)pyrazino[2,3-g] -quinoxaline (tppq) and 2,3,6,7,10,11-hexakis(2-pyridyl) dipyrazino[2,3-f:2′,3′-h]quinoxaline) (hpdq), respectively. Single crystal X-ray diffraction analyses reveal that complexes 1~3 assembled based on distinct double-decker unit comprising two respective polypyridyl ligands but four, four, and six Agions, respectively. Among them, The double-decker units in 1 and 2 both extended to two dimensional net via the coordination interaction between Agand NO3-anion, while that in 3 to three dimensional net via C-H…O hydrogen bond. Furthermore, the coordintion interaciton of polypyridyl ligands and Agion in solution was also investigated by UV-Vis absorption and fluorescence spectroscopic analyses, which witnesses the much more sensitive spectral response of hpdq to the additon of Agion than other two ligands. CCDC: 868734, 1; 868735, 2; 790268, 3.

    polypyridyl ligands; metal-organic coordination complexes; self-assembly; UV-Vis spectrum; fluorescence spectrum

    0 Introduction

    With the aim to di versify the architecture and properties of metal organic coordination complexes, increasing attentions have been paid on the design of multidentate organic ligands[1-5], due to their versatile coordination modes. Among them N-donor heterocyclic multidentate ligands have been widely used in the construction of coordination complexes with intriguing topologies[6-10]and nanostructure[11-12], because of their versatile coordination behaviors.

    Scheme 1 Structure of three polypyridyl ligands

    Recently, a large polypyridyl ligand, 2,3,6,7,10,11-hexakis(2-pyridyl)dipyrazino[2,3-f:2′,3′-h]- quinoxaline (hpdq) was reported to react with Ag (CF3SO3)[20], and the resultant complex comprises a novel double decker unit that is extended into three dimension architecture via the hydrogen bond interaction between CF3SO3-and the C-H bonds of hpdq. However, when reacting with Cdor Znions, hpdq exhibits distinctive coordination modes that facilitate to form a discrete planar structure based on single hpdq ligand[21]. Despite several intrinsic characteristics have been unveiled about the coordination interaction between Ag(Ⅰ) ion and polypyridyl quinoxaline ligands, some questions still remain unsettled about the structural dependence of double decker on the backbone of polypridyl quinoxaline ligands. Meanwhile, the influence of counter anions on the packing mode of double decker units is still not clear.

    In order to promote solving these questions, the coordination interaction between AgNO3and several polypyridyl quinoxaline ligands with different size and pyridine number (Scheme 1), i.e. 2,3-di(pyridin-2-yl) quinoxaline (dpq), 2,3,7,8-tetra(pyridin-2-yl)pyrazino [2,3-g]quinoxaline (tppq) and 2,3,6,7,10,11-hexakis(2-pyridyl) dipyrazino[2,3-f:2′,3′-h]quinoxaline (hpdq) had been studied. Based on these ligands, three coordination complexes [Ag(dpq)(NO3)2]n(1), [Ag4(tppq)2(NO3)4] (2) and [Ag6(hpdq)2(NO3)6] (3) have been synthesized. Single crystal analyses reveal distinctive packing mode of double-decker unit for 1~3, associated with different double decker depending on the used ligands. The packing mode of double decker in 3 differs significantly from that reported in literature[20], due to different counter anions used. Furthermore, both fluorescence and UV-absorption spectra titration were utilized to investigate the assembly process of the organic ligands and Agion in solution. The most obvious spectral variation wasobserved for hpdq, indicative of potential application of hpdq as a molecular modle in sepctral detection of metal ions.

    1 Experimental

    1.1Materials and method

    All the starting materials for the synthesis were of reagent grade and used as received. All the solvents used for titration measurements were puried by standard procedures. Hpdq was synthesized according to literature[21]. Elemental analyses (C, H, and N) were performed on a Perkin-Elmer 240C analyzer. IR spectra in the 4 000~400 cm-1range were measured on a TENSOR 27 OPUS FTIR spectrometer using KBr disks dispersed with sample powders. UV-Vis absorption spectra were measured with a Hitachi U-3010 UV-Vis spectrophotometer. Fluorescence spectra were recorded at room temperature on a Varian Cary Eclipse uorescence spectrometer.

    1.2Preparation of complex 1, 2 and 3

    Complexes 1, 2 and 3 were obtained through the reaction of AgNO3with respective polypyridyl ligands by solution diffusion method at room temperature.

    Complex 1: A buffer layer of dichloromethaneacetonitrile (12 mL, 1∶1, V/V) was carefully layered over a dichloromethane solution (2 mL) of dqp (0.1 mmol). Then a solution of AgNO3(0.2 mmol) in acetonitrile (3 mL) was layered over the buffer layer. After ca. four weeks colourless block crystals were obtained with 38% yield (based on dbq). Anal. Calcd. for C18H12N6O6Ag2(% ): C 34.64, H 1.94, N 13.47; Found (%): C 34.59, H 1.57, N 13.84. FTIR (KBr pellets, cm-1): 1 734w, 1 700w, 1 684m, 1 653m, 1 559s, 1 540m, 1 507w, 1 473m, 1 457m, 1 386s, 419w.

    Complex 2: A buffer layer of dichloromethaneacetonitrile (10 mL, 1∶1, V/V) was carefully layered over a dichloromethane solution (3 mL) of tppq (0.1 mmol). Then a solution of AgNO3(0.3 mmol) in acetonitrile (3 mL) was layered over the buffer layer. Orange red block-shaped crystals were obtained after ca. five weeks in 30% yield (based on tppq). Anal. Calcd. for C15.25H10.25N5O3.375Cl0.5Ag (2·CH2Cl2·1.5H2O, %): C 41.33, H 2.33, N 15.80; Found(%): C 41.72, H 2.53, N 16.05. FTIR(KBr pellets, cm-1): 1 684m, 1 653m, 1 559m, 1 540w, 1 457m, 1 340s.

    Complex 3: A buffer layer of chloroformacetonitrile (12 mL, 1∶1, V/V) was carefully layered over a chloroform solution (2 mL) of hpdq (0.1 mmol). Then a solution of AgNO3(0.3 mmol) in acetonitrile (3 mL) was layered on the buffer layer. Yellow blockshaped crystals were obtained after ca. five weeks in 35% yield(based on hpdq). Anal. Calcd. for C96.5H60.5N30O18Cl37.5Ag6(3·12.5CHCl3, %): C 29.68, H 1.56, N 10.76; Found (%): C 31.82, H 2.63, N 13.15. FTIR(KBr pellets, cm-1): 1 734w, 1 700w, 1 684w, 1 653w, 1 559m, 1 540w, 1 507w, 1 362s, 419w.

    Note: The crystal of complex 3 is not stable at room temperature, especially upon the easily losing of the guest solvent molecules(CHCl3) during its collection from solvents, which leads to the deviation of experimental Element. Anal. data from the calculated values.

    1.3X-ray data collection and structure determinations

    Single-crystal X-ray diffraction measurements for 1 and 2 were carried out on a Rigaku SCX-mini diffractometer at 293(2) K with Mo Kα radiation (λ= 0.071 073 nm) by ω scan mode. The structures were solved by direct methods using the SHELXS program of the SHELXTL package and refined with SHELXL[22](semi-empirical absorption corrections were applied by using the SADABS program). The non-hydrogen atoms were located in successive dierence Fourier syntheses and refined using anisotropic thermal para-meters on F2. All hydrogen atoms of ligands were generated theoretically at the specific atoms and refined isotropically using fixed thermal factors. Single-crystal X-ray diffraction measurements for complex 3 was carried out on a Bruker Smart 1000 CCD diffractometer at 113 K with Mo Kα radiation (λ= 0.071 073 nm) . The structure was solved by direct methods with the SHELXS-97 program[23]. Refinements were done by full-matrix least-squares techniques on F2with SHELXL-97[24]. The hydrogen atoms bound tocarbon were located by geometrically calculations. All non-hydrogen atoms were refined by full-matrix leastsquares techniques. The electron density of the disordered guest molecules in complex 2 and 3 was treated using the SQUEEZE routine of PLATON[25-27]. The results were appended to the bottom of the CIF file. Detailed crystallographic data of 1, 2 and 3 (after the SQUEEZE) are summarized in Table 1.

    CCDC: 868734, 1; 868735, 2; 790268, 3.

    Table 1 Crystal data and structure renement parameters for complexes 1~3

    2 Results and discussion

    2.1Crystal structure analysis of complexes 1~3

    Complex 1 crystallizes in the P21/n space group with an asymmetric unit consisting of one dpq ligand and two crystallographically independent Agions (Fig.1a). Ag1 ion is five coordinated by three N atoms (N1, N2, N4A) from two dpq ligands and two O atoms (O1 and O3) from one nitrate ion, while Ag2 ion is five coordinated by one N atom (N3) from dpq and four O atoms (O2C, O3B, O4 and O5) from three nitrate ions. All of the N-Ag-N angles (69.90(11)°~134.64(12)°), O-Ag-N angles (91.66(12)°to 125.23(11)°), Ag-N (0.222 4(3)~0.258 6(4) nm) and Ag-O (0.235 2(3)~0.258 6(4) nm) bond lengths are within the normal range[20,26]. It is worth noticing that two dpq ligands are linked to form a double decker unit via N-Ag1 bonds (Fig.1b). Furthermore, each double decker is linked with other four neighboring one through Ag2-NO3coordination interaction, leading to a two-dimensional (2D) packing net (Fig.1c). Simplifying the double decker unit as a four-connecting node generates a (4,4) topologic structure for complex 1 (Fig.1(d)).

    Complex 2 crystallizes in the Fddd space group, and the asymmetric unit consists of one quarter of a tppq ligand, one Agion and one nitrate ion, as shown in Fig.2a. The Agion is four coordinated by three N atoms (N1, N2, N3) from tppq and one O atom(O3) from nitrate ion. Meanwhile, a double decker unit was also observed as in complex 2, but with four coordinated Agions (Fig.2b). Inspection of the double decker in 2 reveals a centroid-to-centroid distance of 0.342 nm between the central benzene ring of two tppq ligands, indicative of π-π interaction existing between two ligands. Furthermore, each double decker unit is further linked with four neighboring units through a weak Ag-O coordination interaction (0.280 51 nm), leading to a 2D network (Fig.2c). All of the N-Ag-N angles (68.63(14)°~152.08(16)°), O-Ag-N angles (90.43(16)°~130.40(15)°), the bond length of Ag-N (0.226 8(5)~0.245 5(4) nm) and Ag-O (0.259 5(5) nm) bond length are within normal range[28]. Simplifying the double decker as a fourconnecting node generates a (4,4) topology structure for complex 2 (Fig.2(d)).

    Fig.1 (a) Coordination geometry of Agin 1; (b) The double-decker unit in 1; (c) The 2D network of 1; (d) Schematic representation of (4,4)-connected topology of 1

    Fig.2 (a) The coordination geometry of Agin 2; (b) The double-decker unit in 2; (c) The 2D network of 2 constructed by weak O-Ag bond (0.280 51 nm, in dotted bond); (d) Schematic representation of (4,4)-connected topology of 2

    The asymmetric unit of 3 consists of one third of hpdq ligand and one Agion (Fig.3a). Differing from the case in 1 and 2, the Ag(I) ion in 3 is six coordinated by four N atoms (N1A, N2, N3, N4B) from hpdq and two O atoms (O1, O2) from a nitrate ion, leading to a deformed octahedral geometry. As shown in Fig.3b and c, 3 assembled to 3D structure based on a similar double decker as in 1 and 2, but with six Agions. The planes of two ligands within one double decker are nearly parallel with each other, with a centroid-to-centroid distance of 0.351 nm between two central benzene rings, indicative of the presence of π-π interaction between the rings.

    Fig.3 (a) The coordination geometry of Agin 3; (b) View of the double-decker in 3 along the direction normal to c axis; (c) View of the double-decker in 3 from ab plane; (d) The packing diagram of double deckers

    Despite similar structure of the double decker in 3 to that in literature[20], several vital differences were revealed via detailed inspection of crystal structure:

    (1) The complex reported in literature[20]consists of two kinds of cyrstallographically independent Agthat are both five coordinated. Whereas the Agions in 3 is crystallographically equivalent and six coordinated. In addition, the distance between two hpdq ligands within one double decker of 3 (0.351 nm) is slight smaller than that reported in literature (0.364 nm), due probably to different coordination environment of Agions as well as different hydrogen bond pattern between two hpdq plane (Fig. S1).

    (2) The most greatest difference lies in the packing pattern of double deckers. The double deckers in literature were linked with each other through the O…H-C and F…H-C hydrogen bonds between CF3SO3-anion and the C-H of hpdq, whereas that in 3 was completed only through O…H-C hydrogen bond(Fig.S2). The difference results in distinctive packing pattern of double decker (Fig.S3) and thereby different cell parameters and space group between 3 (a=2.069 7(3) nm, c=1.904 9(4) nm, V= 7.066(2) nm3, P31c group) and the complex reported in literature (a=3.031 9(2) nm, c=1.011 9(1) nm, V= 8.055 6(11) nm3, R3 group)[20]. Different packing mode of double decker in 3 from that of literature validatesthe vital role of counter anions in controlling the assembly architecture of Ag-based coordination complexes.

    Detailed Comparison among 1~3 reveals some notable differences in their double decker units as well as the networks. Firstly, the Agions exhibit different coordination number in the double decker of 1, 2 and 3, that is 5 4 and 6, respectively. Secondly, the double deckers are linked with each other by strong O-Ag bond, weak O-Ag bond (>0.28 nm) and O …H-C hydrogen bond in 1, 2 and 3, respectively. These differences can be reasonably interpreted in terms of different backbone of used polypyridyl ligands. The strong O-Ag linkage between adjacent double deckers in 1 is repressed in 2 and 3, due probably to increasing steric hindrance of larger ligands, which therefore brings about elongated O-Ag linking in 2, and even more facilitates the hydrogen bond interaction between counter anions and Agions in 3. This underlines the important role of counter anions in the assembly of Agions and hpdq ligands.

    2.2Monitoring the coordination interaction by spectral titration

    dpq, tppq and hpdq all are soluble in CH3CN and are luminescent owing to their conjugating system, which encourages us to investigate and compare their coordination interaction with Agions in solution by spectral analysis method. All of polypyridine ligands were prepared with a concentration of 5×10-5mol·L-1using CH3CN as solvent, while AgNO3solution (0.015 mol·L-1) was prepared using acetonitrile as solvent. During titration, the volume of the polypryridyl ligand solution (3 mL) can be regarded as constant because of negligible added volume of metal ions solution. For fluorescence spectra measurements, excitation and emission slit width were both set as 5 nm.

    Fig.4 (a) Fluorescence emission spectra of hpdq (λex=300 nm) (5×10-5mol·L-1) in CH3CN (3 mL) upon the addition of Ag; (b) UV-Vis absorption spectra of hpdq (2.5×10-5mol·L-1) in the presence of different concentrations of Agin CH3CN (3 mL)

    The Fluorescence variations of hpdq upon the addition of Agions were summarized in Fig.4(a). At beginning of the addition of Agion, the strongest emission peak of hpdq at 409 nm was quenched sharply along with moderate red shift of emission wavelength. The variation becomes stagnant when the addition quantity of Agion approximately approaches to 4 equiv. of hpdq. Finally, the emission peak shifts to 427 nm with intensity less than 15% of the initial peak. The UV-Vis spectra of hpdq were collected in Fig.4(b). The addition of Agresults in the sequential redshift of absorption peaks at 308 and 343 nm, along with the decreasing of the absorbance. The appearance of several isosbestic points between 360~375 nm at different molar ratio of Agto ligands indicates the multistep assembly of hpdq ligand upon interacting with Ag, which is consistent with the coordination of three Agions with one hpdq as observed in the crystal analysis of 3. On the other hand, the variation of Fluorescence and UV-Vis spectra almost has the same equilibrium point with a molar ratio of nhpdq∶nAgequal to 1∶3, which isconsistent with the ratio of nhpdq∶nAgobserved in 3. In addition, the spectral variations of tppq and dpq upon the addition of Agion were also investigated (Fig. S4 and S5), and much more dull variations were observed in comparison with that of hpdq system, due probably to the less π-π interaction of ligands within the double decker in 1, 2 than in 3. This indicates that hpdq is a much sensitive spectral sensor for metal ion detection than tppq and dpq.

    3 Conclusions

    In summary, three polypyridyl ligands, dpq, tppq and hpdq, were investigated in their coordination interaction with Agion by single crystal analysis and spectral analysis. Single crystal structure analysis unveiled different double decker unit as well as different assembly framework of the resultant complexes 1~3, which was attributed to the cooperation of counter anions and different polypyridyl ligands. Meanwhile, Spectral titration was utilized to study the coordination interaction of polypyridyl ligands with Agin solution, and it was observed that the spectral response of hpdq to the addition of Agions is much more sensitive than the other two ligands, which can be used to guide the design of new organic spectral sensor for Agions detection.

    Supporting information is available at http://www.wjhxxb.cn

    References:

    [1] Ma L, Mihalcik D J, Lin W. J. Am. Chem. Soc., 2009,131: 4610-4612

    [2] Li Y P, Yang H R, Zhao Q, et al. Inorg. Chem., 2012,51: 9642-9648

    [3] Yang X L, Wu C D. Inorg. Chem., 2014,53:4797-4799

    [4] Zhang Y B, Furukawa H, Ko N, et al. J. Am. Chem. Soc., 2015,137:2641-2650

    [5] Xue D X, Cairns A J, Belmabkhout Y, et al. J. Am. Chem. Soc., 2013,135:7660-7667

    [6] Tian D, Chen Q, Li Y, et al. Angew. Chem. Int. Ed., 2014, 53:837-841

    [7] Wang Y T, Fan H H, Wang H Z, et al. Inorg. Chem., 2005, 44:4148-4150

    [8] Harris K, Sun Q F, Sato S, et al. J. Am. Chem. Soc., 2013, 135:12497-12499

    [9] Zhao Q, Liu X M, Song W C, et al. Dalton Trans., 2012,41: 6683-6688

    [10]Li X H, Chen Z, Zhao Q, et al. Inorg. Chem., 2007,46:5518 -5527

    [11]Osuga T, Murase T, Fujita M. Angew. Chem. Int. Ed., 2012, 51:12199-12201

    [12]Cui Y, Lee S J, Lin W. J. Am. Chem. Soc., 2003,125:6014 -6015

    [13]Lubick N. Environ. Sci. Technol., 2008,42:8617-8617

    [14]Hamasaki Y, Nakashima N, Niidome Y. J. Phys. Chem. C, 2013,117:2521-2530

    [15]Njua E Y, Steiner A, Stahl L. Inorg. Chem., 2010,49:2163-2172

    [16]Zhang X H, Zhao Q, Liu X M, et al. Talanta, 2013,108:150-156

    [17]Nakamura T, Ube H, Shionoya M. Angew. Chem. Int. Ed., 2013,52:12096-12100

    [18]Li X, Xu H, Kong F, et al. Angew. Chem. Int. Ed., 2013,52: 13769-13773

    [19]Liu C S, Chen P Q, Yang E C, et al. Inorg. Chem., 2006,45: 5812-5821

    [20]Xiao Z Y, Zhao X, Jiang X K, et al. Chem. Mater., 2011,23: 1505-1511

    [21]Zhao Q, Li R F, Xing S K, et al. Inorg. Chem., 2011,50: 10041-10046

    [22]Sheldrick G M. SHELXTL Ver6.1, Program for Solution and Refinement of Crystal Structures, University of G?ttingen, Germany, 1998.

    [23]Sheldrick G M. SHELXS-97, Program for the Solution of Crystal Structures. University of G?ttingen, Germany, 1997. [24]Sheldrick G M. SHELXL-97, Program for Crystal Structure Refinement. University of G?ttingen, Germany, 1997.

    [25]Spek A L. PLATON, Utrecht University, Utrecht, The Netherlands, 2008.

    [26]Tan C H, Yang S H, Champness N R, et al. Chem. Commun., 2011,47:4487-4489

    [27]Yang W B, Greenaway A, Lin X, et al. J. Am. Chem. Soc., 2010,132:14457-14469

    [28]Zhang Z Y, Deng Z P, Huo L H, et al. Inorg. Chem., 2013,52:5914-5923

    多吡啶配體和銀(Ⅰ)三明治配合物的構(gòu)筑、結(jié)構(gòu)及光譜學(xué)分析

    趙強(qiáng)1劉秀明2馮睿2章應(yīng)輝*,2孔曼曼1劉洋1
    (1南陽(yáng)師范學(xué)院化學(xué)與制藥工程學(xué)院,南陽(yáng)473061)
    (2南開(kāi)大學(xué)材料科學(xué)與工程學(xué)院,天津300071)

    三個(gè)不同的多吡啶配體:2,3-二(2-吡啶基)喹喔啉(dpq)、2,3,7,8-四(2-吡啶基)喹喔啉(tppq)和2,3,6,7,10,11-六(2-吡啶基)喹喔啉(hpdq)分別和銀反應(yīng)得到3個(gè)銀的配合物:[Ag(dpq)(NO3)2]n(1)、[Ag4(tppq)2(NO3)4](2)和[Ag6(hpdq)2(NO3)6] (3)。結(jié)果顯示,3個(gè)配體分別和銀形成了四核(1)、四核(2)以及六核(3)的三明治單晶結(jié)構(gòu),1和2的四核結(jié)構(gòu)依靠Ag和NO3-之間的相互作用進(jìn)一步延伸為二維面,而3的六核結(jié)構(gòu)依靠C-H…O的氫鍵作用形成三維網(wǎng)。此外,在研究3個(gè)配體和金屬銀在溶液中的光譜學(xué)性質(zhì)時(shí)發(fā)現(xiàn),配體hpdq和銀反應(yīng)的紫外吸收光譜和熒光發(fā)射光譜都要比其它2個(gè)配體靈敏度高。

    多吡啶配體;金屬有機(jī)配合物;自主裝;紫外光譜;熒光光譜

    O614.122

    A

    1001-4861(2016)03-0537-08

    10.11862/CJIC.2016.060

    2015-09-05。收修改稿日期:2016-01-06。

    國(guó)家自然科學(xué)基金(No.21301100)、河南省教育廳基金(No.13A150819)和南陽(yáng)師范學(xué)院專(zhuān)項(xiàng)基金(No.ZX2013029)資助項(xiàng)目。*通信聯(lián)系人。E-mail:zhangyhi@nankai.edu.cn;會(huì)員登記號(hào):S06N8293M1405。

    猜你喜歡
    吡啶基光譜學(xué)三明治
    三明治
    中老年保健(2021年2期)2021-08-22 07:29:38
    更 正
    不同形狀的三明治
    幼兒園(2019年8期)2019-09-09 16:04:00
    紐約市最著名的三明治
    海外星云(2016年15期)2016-12-01 04:18:27
    敬告讀者
    ——《光譜學(xué)與光譜分析》已全文上網(wǎng)
    敬告讀者
    ——《光譜學(xué)與光譜分析》已全文上網(wǎng)
    敬告讀者
    ——《光譜學(xué)與光譜分析》已全文上網(wǎng)
    一個(gè)基于β-[Mo8O26]和5-(3-吡啶基)-四唑橋連的二核鎳配合物構(gòu)筑的無(wú)機(jī)-有機(jī)雜化化合物
    1,3-二吡啶基苯和4,4′-二羧基二苯砜構(gòu)筑的鈷(Ⅱ)配合物合成、結(jié)構(gòu)和性質(zhì)
    2,4-二氨基-6-(2'-吡啶基)均三嗪銅(Ⅱ)配合物的結(jié)構(gòu)、抗菌活性及DNA作用
    亚洲中文字幕一区二区三区有码在线看| 少妇高潮的动态图| 婷婷精品国产亚洲av| 国产男靠女视频免费网站| 精品午夜福利在线看| 嫩草影院入口| 成年免费大片在线观看| 国产伦精品一区二区三区四那| 国产亚洲精品久久久久久毛片| 日本色播在线视频| 嫩草影院新地址| 中文字幕精品亚洲无线码一区| 国产综合懂色| 成人高潮视频无遮挡免费网站| 99国产极品粉嫩在线观看| 九色成人免费人妻av| 男人的好看免费观看在线视频| 别揉我奶头 嗯啊视频| 日韩国内少妇激情av| 最好的美女福利视频网| a级毛片a级免费在线| 国产亚洲精品久久久com| 国产精品伦人一区二区| 尾随美女入室| 日韩欧美精品v在线| 国产一区二区在线av高清观看| 99久久精品国产国产毛片| 亚洲国产精品久久男人天堂| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久久亚洲 | 亚洲精华国产精华液的使用体验 | h日本视频在线播放| 国产真实伦视频高清在线观看 | 国产精品1区2区在线观看.| www日本黄色视频网| 欧美性猛交╳xxx乱大交人| 热99re8久久精品国产| 日韩一区二区视频免费看| 精品一区二区三区人妻视频| 成年女人永久免费观看视频| 简卡轻食公司| 免费一级毛片在线播放高清视频| 97碰自拍视频| 一级毛片久久久久久久久女| 婷婷丁香在线五月| 黄色日韩在线| 免费不卡的大黄色大毛片视频在线观看 | 国产精品精品国产色婷婷| 国产麻豆成人av免费视频| 人妻丰满熟妇av一区二区三区| 中文亚洲av片在线观看爽| 久久99热这里只有精品18| 男女视频在线观看网站免费| 中文在线观看免费www的网站| 小说图片视频综合网站| 波多野结衣高清作品| 春色校园在线视频观看| 窝窝影院91人妻| 老熟妇仑乱视频hdxx| 亚洲熟妇中文字幕五十中出| 1024手机看黄色片| 国产精品野战在线观看| 国产高清视频在线播放一区| 舔av片在线| 国产视频内射| 黄色配什么色好看| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩卡通动漫| 日本在线视频免费播放| 亚洲av二区三区四区| 18禁黄网站禁片免费观看直播| 午夜亚洲福利在线播放| 欧美日韩亚洲国产一区二区在线观看| 小说图片视频综合网站| 亚洲国产欧洲综合997久久,| 亚洲人成伊人成综合网2020| 亚洲欧美日韩东京热| 美女大奶头视频| 嫩草影院新地址| 成人亚洲精品av一区二区| 欧美不卡视频在线免费观看| 亚洲一级一片aⅴ在线观看| 男插女下体视频免费在线播放| 在线播放国产精品三级| 在线观看免费视频日本深夜| 亚洲精品粉嫩美女一区| 麻豆av噜噜一区二区三区| 国产精品99久久久久久久久| 亚洲精品成人久久久久久| 亚洲aⅴ乱码一区二区在线播放| 精品99又大又爽又粗少妇毛片 | 国产淫片久久久久久久久| 精品久久久久久久久久久久久| 99久久精品一区二区三区| 九九爱精品视频在线观看| 亚洲七黄色美女视频| 欧美成人a在线观看| 日本黄色片子视频| 免费av不卡在线播放| 久久久久久久久大av| 男人的好看免费观看在线视频| 国产色婷婷99| 大型黄色视频在线免费观看| 最近视频中文字幕2019在线8| 最新在线观看一区二区三区| 国产高清不卡午夜福利| 国产一区二区亚洲精品在线观看| 一级av片app| 婷婷亚洲欧美| 丰满人妻一区二区三区视频av| 美女cb高潮喷水在线观看| 午夜精品一区二区三区免费看| 成人毛片a级毛片在线播放| 91久久精品国产一区二区三区| 国产亚洲欧美98| 一个人看视频在线观看www免费| 久久精品国产自在天天线| 亚洲五月天丁香| 观看免费一级毛片| 精品人妻1区二区| 日韩欧美 国产精品| 男女边吃奶边做爰视频| 日本撒尿小便嘘嘘汇集6| 特级一级黄色大片| 久久精品夜夜夜夜夜久久蜜豆| 性色avwww在线观看| 黄色欧美视频在线观看| 午夜福利在线在线| 亚洲黑人精品在线| 国产久久久一区二区三区| 成人特级黄色片久久久久久久| 精品一区二区免费观看| 国产成年人精品一区二区| 91狼人影院| 中文资源天堂在线| 黄色配什么色好看| 久久久午夜欧美精品| 国产精品,欧美在线| 欧美激情在线99| 最新在线观看一区二区三区| 可以在线观看毛片的网站| 在线观看免费视频日本深夜| 美女大奶头视频| 亚洲无线在线观看| 午夜精品在线福利| 久久精品国产亚洲av天美| 黄色一级大片看看| 久久99热这里只有精品18| 亚洲欧美日韩高清专用| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲综合色惰| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 九色成人免费人妻av| 亚洲一区高清亚洲精品| 日韩中文字幕欧美一区二区| 麻豆国产97在线/欧美| 桃色一区二区三区在线观看| 熟女电影av网| 日韩欧美免费精品| av在线老鸭窝| 一级a爱片免费观看的视频| 午夜福利在线观看吧| 精品久久久噜噜| 免费看a级黄色片| 久久天躁狠狠躁夜夜2o2o| 国内精品久久久久精免费| 日本五十路高清| 啪啪无遮挡十八禁网站| 少妇的逼水好多| www日本黄色视频网| 99久久精品国产国产毛片| 国产亚洲精品综合一区在线观看| 亚洲综合色惰| xxxwww97欧美| 亚洲经典国产精华液单| 国产一区二区激情短视频| 99热这里只有是精品在线观看| 看十八女毛片水多多多| 久久久久久大精品| 国产大屁股一区二区在线视频| 中文字幕av成人在线电影| 久久久久久久精品吃奶| 亚洲中文日韩欧美视频| 国产91精品成人一区二区三区| 午夜精品久久久久久毛片777| 尾随美女入室| 五月玫瑰六月丁香| 亚洲一区高清亚洲精品| 国产高潮美女av| 搡老妇女老女人老熟妇| 中文字幕人妻熟人妻熟丝袜美| 欧美+亚洲+日韩+国产| 一个人观看的视频www高清免费观看| 精品一区二区三区av网在线观看| 日本五十路高清| 亚洲精品久久国产高清桃花| 在线国产一区二区在线| 日本精品一区二区三区蜜桃| 午夜福利成人在线免费观看| 欧美一区二区精品小视频在线| 91在线精品国自产拍蜜月| 欧美一级a爱片免费观看看| 国产午夜精品久久久久久一区二区三区 | 少妇被粗大猛烈的视频| 国产精品美女特级片免费视频播放器| 欧美日韩综合久久久久久 | 亚洲三级黄色毛片| 精华霜和精华液先用哪个| 春色校园在线视频观看| 伦理电影大哥的女人| 亚洲精品粉嫩美女一区| 老师上课跳d突然被开到最大视频| 午夜福利在线在线| 麻豆国产av国片精品| 搞女人的毛片| a级毛片免费高清观看在线播放| 成人亚洲精品av一区二区| 成人av一区二区三区在线看| a在线观看视频网站| 亚洲国产日韩欧美精品在线观看| 深夜精品福利| 直男gayav资源| 久久精品人妻少妇| 毛片女人毛片| 婷婷精品国产亚洲av| 亚洲狠狠婷婷综合久久图片| 大又大粗又爽又黄少妇毛片口| 97人妻精品一区二区三区麻豆| 亚洲四区av| 国内精品一区二区在线观看| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩高清在线视频| 在线观看一区二区三区| 美女高潮的动态| 亚洲一区二区三区色噜噜| 变态另类丝袜制服| 一个人观看的视频www高清免费观看| av在线观看视频网站免费| 亚洲自偷自拍三级| 啪啪无遮挡十八禁网站| 精品日产1卡2卡| 国语自产精品视频在线第100页| 精品一区二区免费观看| 国产精华一区二区三区| 欧美一级a爱片免费观看看| 精品人妻偷拍中文字幕| a级毛片免费高清观看在线播放| 国产日本99.免费观看| 欧美激情国产日韩精品一区| 国产不卡一卡二| 天天躁日日操中文字幕| 午夜久久久久精精品| 国内精品美女久久久久久| 有码 亚洲区| 日韩欧美在线二视频| 亚洲真实伦在线观看| 99久久精品国产国产毛片| 人妻制服诱惑在线中文字幕| 免费看美女性在线毛片视频| 午夜视频国产福利| 变态另类丝袜制服| 黄色欧美视频在线观看| 97超视频在线观看视频| 亚洲av电影不卡..在线观看| 91av网一区二区| 国产高清视频在线观看网站| 可以在线观看的亚洲视频| 在线a可以看的网站| 亚洲av一区综合| 可以在线观看毛片的网站| 精品一区二区免费观看| 欧美高清性xxxxhd video| 人人妻人人澡欧美一区二区| 男人的好看免费观看在线视频| 人妻制服诱惑在线中文字幕| 国产伦人伦偷精品视频| 国产伦一二天堂av在线观看| 久久久精品欧美日韩精品| 亚洲在线观看片| 婷婷精品国产亚洲av在线| 亚洲精品国产成人久久av| 精品久久久久久,| 久久久久久伊人网av| 久久午夜福利片| 老师上课跳d突然被开到最大视频| 成年女人看的毛片在线观看| 亚洲精品粉嫩美女一区| 一级黄片播放器| 色综合色国产| 日韩欧美三级三区| 国产成人aa在线观看| 久久久久久久久久成人| 久久这里只有精品中国| 久久国内精品自在自线图片| 美女被艹到高潮喷水动态| 国产男靠女视频免费网站| 亚洲国产精品成人综合色| 亚洲在线自拍视频| 欧美黑人欧美精品刺激| 日本一本二区三区精品| 亚洲av美国av| 十八禁国产超污无遮挡网站| 久久久久久久久久黄片| 在线播放国产精品三级| 免费av毛片视频| 亚洲欧美精品综合久久99| av天堂在线播放| 成人av在线播放网站| 国产精品亚洲一级av第二区| www.www免费av| 日韩精品中文字幕看吧| 女人十人毛片免费观看3o分钟| 韩国av一区二区三区四区| АⅤ资源中文在线天堂| 啦啦啦韩国在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 18禁黄网站禁片午夜丰满| 欧美日韩黄片免| 18禁裸乳无遮挡免费网站照片| 看十八女毛片水多多多| 日本 欧美在线| 国产精品乱码一区二三区的特点| 亚洲av第一区精品v没综合| 搡老熟女国产l中国老女人| 欧美性猛交黑人性爽| 人妻丰满熟妇av一区二区三区| 我的女老师完整版在线观看| 乱码一卡2卡4卡精品| 婷婷六月久久综合丁香| 又爽又黄a免费视频| 亚洲美女视频黄频| 日本在线视频免费播放| 久久久久久伊人网av| 久久精品国产亚洲av天美| 男人舔女人下体高潮全视频| 九九爱精品视频在线观看| eeuss影院久久| 最新在线观看一区二区三区| 日韩欧美精品v在线| 国产亚洲欧美98| av中文乱码字幕在线| 99热6这里只有精品| 一进一出抽搐gif免费好疼| 久久九九热精品免费| 亚洲中文字幕日韩| 久久久色成人| 一进一出抽搐gif免费好疼| 麻豆国产av国片精品| 不卡一级毛片| 精品欧美国产一区二区三| 欧美三级亚洲精品| 亚洲欧美日韩高清专用| 22中文网久久字幕| 无人区码免费观看不卡| 亚洲精品在线观看二区| 97超级碰碰碰精品色视频在线观看| 神马国产精品三级电影在线观看| 久久精品国产亚洲网站| 色在线成人网| 午夜福利成人在线免费观看| 男女做爰动态图高潮gif福利片| 精品99又大又爽又粗少妇毛片 | 精品久久久久久久久久免费视频| 国产亚洲91精品色在线| 99久久精品一区二区三区| 国产成人福利小说| a级一级毛片免费在线观看| 亚洲内射少妇av| 午夜精品一区二区三区免费看| 久久久久久久久久黄片| 国产精品电影一区二区三区| 色综合站精品国产| 亚洲性久久影院| 美女xxoo啪啪120秒动态图| 中国美白少妇内射xxxbb| 舔av片在线| 亚洲性久久影院| 国产伦人伦偷精品视频| 国内精品一区二区在线观看| 欧美成人a在线观看| 国产精品1区2区在线观看.| 精品久久久久久久末码| 亚洲人成网站在线播放欧美日韩| 久久九九热精品免费| 日本黄大片高清| 久久久国产成人免费| 1000部很黄的大片| 一级黄片播放器| 最好的美女福利视频网| 女的被弄到高潮叫床怎么办 | 韩国av在线不卡| 成年女人看的毛片在线观看| 国产高清有码在线观看视频| 久久久久久久久久久丰满 | 十八禁网站免费在线| 99热这里只有精品一区| 亚洲精品亚洲一区二区| 春色校园在线视频观看| 国产精品国产高清国产av| or卡值多少钱| 人妻丰满熟妇av一区二区三区| 国产主播在线观看一区二区| 久久99热6这里只有精品| 成年女人看的毛片在线观看| 色播亚洲综合网| 国产亚洲精品av在线| 波多野结衣高清作品| 别揉我奶头 嗯啊视频| 国产真实伦视频高清在线观看 | 日日啪夜夜撸| 给我免费播放毛片高清在线观看| 国产精品乱码一区二三区的特点| 变态另类丝袜制服| 乱码一卡2卡4卡精品| 少妇被粗大猛烈的视频| 一进一出抽搐动态| 999久久久精品免费观看国产| 99久久无色码亚洲精品果冻| a级一级毛片免费在线观看| 我的女老师完整版在线观看| 欧美成人免费av一区二区三区| 波多野结衣高清无吗| 久久九九热精品免费| av福利片在线观看| 日本爱情动作片www.在线观看 | 一本精品99久久精品77| 少妇被粗大猛烈的视频| 两人在一起打扑克的视频| 日本黄大片高清| 中国美女看黄片| 伊人久久精品亚洲午夜| 露出奶头的视频| 免费在线观看日本一区| 日韩欧美一区二区三区在线观看| 91精品国产九色| 欧美最黄视频在线播放免费| 麻豆国产97在线/欧美| 在线播放无遮挡| 欧美成人性av电影在线观看| 国产精品久久久久久久电影| 国产人妻一区二区三区在| 日韩精品青青久久久久久| 久久精品国产99精品国产亚洲性色| 村上凉子中文字幕在线| 午夜激情欧美在线| 身体一侧抽搐| 一区二区三区四区激情视频 | 国产高清有码在线观看视频| 亚洲成av人片在线播放无| 女生性感内裤真人,穿戴方法视频| 在线播放国产精品三级| 色噜噜av男人的天堂激情| 国产视频内射| 日日啪夜夜撸| 少妇人妻精品综合一区二区 | 搡老熟女国产l中国老女人| 我的女老师完整版在线观看| 亚洲欧美精品综合久久99| av中文乱码字幕在线| 好男人在线观看高清免费视频| 女同久久另类99精品国产91| 俄罗斯特黄特色一大片| 国产精品久久久久久久久免| 九色国产91popny在线| 国产 一区精品| 精品一区二区三区视频在线| 精品不卡国产一区二区三区| 极品教师在线免费播放| 十八禁国产超污无遮挡网站| 91av网一区二区| 精品无人区乱码1区二区| 精品人妻偷拍中文字幕| 真人一进一出gif抽搐免费| 精品不卡国产一区二区三区| 夜夜爽天天搞| 伦理电影大哥的女人| 啪啪无遮挡十八禁网站| 成人高潮视频无遮挡免费网站| 欧美日韩乱码在线| 亚洲精华国产精华液的使用体验 | 我要看日韩黄色一级片| 国产综合懂色| 久久99热这里只有精品18| 欧美另类亚洲清纯唯美| 自拍偷自拍亚洲精品老妇| 久久精品国产亚洲网站| 男女啪啪激烈高潮av片| 午夜精品久久久久久毛片777| 欧美日韩黄片免| 给我免费播放毛片高清在线观看| 亚洲中文字幕日韩| 美女cb高潮喷水在线观看| 熟女电影av网| 亚洲欧美清纯卡通| 日韩中文字幕欧美一区二区| a在线观看视频网站| 亚洲人成网站在线播放欧美日韩| 久久久久国内视频| 欧美区成人在线视频| 最后的刺客免费高清国语| 国产视频一区二区在线看| www.www免费av| 国产精品久久久久久久电影| 午夜福利视频1000在线观看| 99视频精品全部免费 在线| 能在线免费观看的黄片| 亚洲精品成人久久久久久| 亚洲av成人精品一区久久| 噜噜噜噜噜久久久久久91| 国产精品98久久久久久宅男小说| 可以在线观看的亚洲视频| 国产不卡一卡二| 成人综合一区亚洲| 成人特级av手机在线观看| 中文字幕av在线有码专区| 久久亚洲真实| 91午夜精品亚洲一区二区三区 | 天堂动漫精品| 特级一级黄色大片| 国内精品宾馆在线| 97人妻精品一区二区三区麻豆| 日本一本二区三区精品| 我要搜黄色片| 亚洲中文字幕一区二区三区有码在线看| 麻豆av噜噜一区二区三区| 免费电影在线观看免费观看| 91在线观看av| 男人的好看免费观看在线视频| av中文乱码字幕在线| 国产精品不卡视频一区二区| or卡值多少钱| 亚洲最大成人中文| 欧美区成人在线视频| 性插视频无遮挡在线免费观看| 成年免费大片在线观看| 国内揄拍国产精品人妻在线| 级片在线观看| 欧美黑人欧美精品刺激| 在线国产一区二区在线| 欧美一区二区国产精品久久精品| 国产综合懂色| 波多野结衣高清作品| 日本一本二区三区精品| 深夜a级毛片| 国产麻豆成人av免费视频| 婷婷精品国产亚洲av在线| 久久草成人影院| 99久久精品热视频| 日韩大尺度精品在线看网址| 国产一区二区亚洲精品在线观看| av在线亚洲专区| 亚洲av第一区精品v没综合| 在线a可以看的网站| 麻豆成人午夜福利视频| 成人国产一区最新在线观看| 国内精品久久久久久久电影| 男人舔奶头视频| 啦啦啦啦在线视频资源| 97人妻精品一区二区三区麻豆| 欧美另类亚洲清纯唯美| 他把我摸到了高潮在线观看| 精品一区二区三区av网在线观看| 亚洲国产欧美人成| 91狼人影院| 啪啪无遮挡十八禁网站| 国产视频一区二区在线看| 亚洲欧美日韩高清专用| 嫩草影视91久久| 麻豆精品久久久久久蜜桃| 成人三级黄色视频| 久久久久久久久久久丰满 | 91久久精品国产一区二区成人| 国产精品亚洲一级av第二区| 真人一进一出gif抽搐免费| 嫩草影视91久久| 蜜桃亚洲精品一区二区三区| 一区福利在线观看| 真实男女啪啪啪动态图| 日本免费a在线| 一进一出抽搐gif免费好疼| 色尼玛亚洲综合影院| 俄罗斯特黄特色一大片| 三级国产精品欧美在线观看| 免费黄网站久久成人精品| 久久久精品欧美日韩精品| 午夜福利在线观看免费完整高清在 | 久久精品影院6| 婷婷精品国产亚洲av| 美女高潮的动态| 床上黄色一级片| 国产精品98久久久久久宅男小说| 99热这里只有是精品在线观看| 国产男人的电影天堂91| 免费无遮挡裸体视频| xxxwww97欧美| 色吧在线观看| 黄色配什么色好看| 很黄的视频免费| 亚洲18禁久久av| 成年版毛片免费区| 在线看三级毛片| АⅤ资源中文在线天堂| 国产高清不卡午夜福利| 老司机午夜福利在线观看视频| 成年女人永久免费观看视频| 国产熟女欧美一区二区| 亚洲av电影不卡..在线观看| 国产精品三级大全| 婷婷亚洲欧美| 国产成人av教育| 午夜a级毛片| 精品国内亚洲2022精品成人| 69人妻影院| 免费在线观看成人毛片|