• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Refueling Drogue Oscillation During Refueling Docking

    2016-09-14 01:16:37ChenLeleLiuXueqiang
    關(guān)鍵詞:普通用戶管理員界面

    Chen Lele,Liu Xueqiang

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China(Received 16December 2014;revised 25September 2015;accepted 11October 2015)

    with the following values for the constants

    1.2 Dynamic grid techniqueThere is flexible deformation of the hose in the numerical implementation in addition to drogue oscillation,which requires the new mesh maintain the same topology and density distribution as the original mesh.Since most dynamic grid deformation techniques are iterative based on the spring analogy without maintaining the primary qualities of the grid,another dynamic grid deformation technique based on Delaunay

    ?

    Numerical Analysis of Refueling Drogue Oscillation During Refueling Docking

    Chen Lele,Liu Xueqiang*

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China
    (Received 16December 2014;revised 25September 2015;accepted 11October 2015)

    Refueling docking at different velocities is simulated by using computational fluid dynamics(CFD)method.The Osher scheme and S-A turbulence model are used to solve the compressible Navier-Stokes equations,and the Delaunay mapping dynamic grid method is also employed.All the numerical results show that the velocity of refueling docking is very important for aerial refueling.When the velocity is lower than 3m/s,the refueling drogue will move upward with obvious cycle staggering,while moving upward with slight cycle staggering at the speed of 3m/s.The results can be referenced by aerial refueling design.

    aerial refueling;numerical simulation;refueling drogue;dynamic grid;refueling docking

    0 Introduction

    Aerial refueling is the process of transferring fuel from one aircraft(the tanker)to another(the receiver)during flight.The procedure allows the receiver aircraft to extend its range and combat radius.Generally,the combat radius of a bomber,a fighter and a transport aircraft can be increased by 25%—30%,30%—40%and 100%,respectively[1].A combat aircraft after extending its range can shift fast over a long distance,and make a sudden strike or strategic defence.Aerial refueling also allows aircrafts to take off with the maximum payload by carrying less fuel and topping up once airborne.Alternatively,a shorter takeoff roll can be achieved because takeoff can be at a lighter weight before refueling once airborne. While increasing the cruise duration,aerial refueling can greatly reduce the number and use intensity of aircrafts,which will relieve potential contradiction and the demand for air force or naval aviation in battle.

    The two main refueling systems are probeand-drogue and the flying boom.Generally,the U.S.Air Force uses flying booms,while the Navy and Marines mostly use probe-and-drogue. Each method has its advantages and disadvantages.The probe-and-drogue has simple design and good security whereas the refueling quantity is smaller.The flying boom has higher fuel flow rates but with higher technology requirement and relatively poor security.The probe-and-drogue method is more common in modern air refueling.

    The probe-and-drogue method employs a trailing hose with a drogue attachment from the tanker aircraft,the receiver has a probe placed on the aircraft′s nose or fuselage to make the connection.This method is subject to turbulence and aerodynamic forces of the approaching aircraft,which directly affects the aviation safety.Therefore,the analyses of steady aerodynamic characteristics are far from enough.There are a growing number of researches and flight tests on the flow field of the probe-and-drogue at home and abroad,and some results have been achieved[2-5]. Kapseong and James[6]developed a dynamic model of a hose-paradrogue assembly for aerial refueling using the finite-segment approach and studied theeffects of atmospheric turbulence on paradrogue motion by incorporating the Dryden turbulence model into the hose-paradrogue dynamic model. Sriram et al.[7-9]investigated an improved and more natural method of incorporating the trailing vortex effect associated with aircraft flying in close proximities,including the effect of timevarying mass and inertia properties associated with the fuel transfer,the tanker′s vortex induced wind effect and atmospheric turbulence. Eichler[10]presented the derivation and solution of the nonlinear partial differential equation[11]in closed form for sine-wave gust disturbances and numerically for both sine wave,pulse-type vertical gusts and wing vibration,besides,the anticipated effect of vortex from the wingtip on the hose-drogue system was calculated.Hu et al.[12]modeled the trailing refueling hose-drogue by using an array of discrete point mass nodes that represented the physical properties of the hose-drogue,and analyzed the influence of air turbulence on hosedrogue's motion following the simulation of the motion in the cloudless air turbulence.

    By utilizing numerical simulation methods,the motion of the refueling drogue in the docking phase of an aerial refueling is simulated and analyzed in this paper,and the movements of the refueling drogue at different velocities are covered as well,which is followed by the generalization of the motion characteristics.

    1 Numerical Methods

    The numerical methods consist of two parts,one is numerical simulations for unsteady flows,and the other is dynamic grid technique.

    1.1 Numerical methods for unsteady flows

    The governing equations are Reynolds-averaged Navier-Stokes equations which are solved using finite volume method based on unstructured grids.In addition,S-A one equation turbulence model[13]is adopted.The computing software employed in this paper has own intellectual property right and is verified by many numerical case,which guarantees reliable and rational computa-tion results.

    1.1.1 Governingequations

    The three-dimensional compressible Reynolds-averaged Navier-Stokes equations can be expressed as

    where Uis the conservative variable vector,F(xiàn)ithe inviscid flux vector,and Githe viscous flux vector.They are defined by

    whereρ,p,e,Tand kdenote the density,the pressure,the total energy per unit volume,the temperature,and the thermal conductivity coefficient.uiis the velocity component in xidirection and σmithe components of the viscous stress tensor.

    1.1.2 Spacialandtemporaldiscretization

    The spatial flux terms are discretized by using Osher scheme[14].

    Osher's approach assumes that there exist vector-valued functions F+(U)and F-(U)satisfying

    and

    where the integrals are evaluated along each of the partial integration paths U0,U1/3,U2/3,U1.

    The set of equations is then discretized intime by using a fully implicit time discretisation to give

    where ndenotes the time level,Rthe flux residual after discretisation that contains all of the terms arising from the spatial discretisation,P=(ρ,u,v,w,p),the primitive variable,and Pn+1= Pn+nΔP.

    1.1.3 Turbulencemodel

    The turbulence model employs the following S-A one-equation turbulence model

    While the left hand side term represents the advection along a streamline,the terms on the right hand side are defined using the following functions

    whereνis the molecular viscosity,?νthe working variable,dthe distance to the closest wall,and S the magnitude of the vorticity.graph[15]is employed in this paper,within which the original grid is mapped back onto the deformed Delaunay graph to provide the new mesh for the new time step or the new design cycle. The method consists of four steps:(1)Generating the Delaunay graph;(2)Locating the mesh points in the graph;(3)Moving the Delaunay graph according to the specified geometric change;(4)Relocating the mesh points in the new graph.The mapping guarantees that the original mesh topology and density distribution are maintained without mesh crossing or overlapping cells.Besides,it is much more efficient,as it requires only non-iterative algebraic calculations. Figs.1,2show the Delaunay graphs and meshes before and after movement,respectively.

    with the following values for the constants

    1.2 Dynamic grid technique
    There is flexible deformation of the hose in the numerical implementation in addition to drogue oscillation,which requires the new mesh maintain the same topology and density distribution as the original mesh.Since most dynamic grid deformation techniques are iterative based on the spring analogy without maintaining the primary qualities of the grid,another dynamic grid deformation technique based on Delaunay

    Fig.1 Delaunay graphs

    Fig.2 Meshes before and after movement

    2 Simulation of Refueling Drogue Movement

    In the process of air refueling,the flow field around the receiver aircraft suffers from intense airflow turbulence from both the wing and refueling drogue of the tanker aircraft.When approaching to the refueling drogue,the forward pres-sure from the receiver aircraft breaks the balance of the drogue and make it oscillate.The interaction exacerbates the oscillation and wake influence of refueling drogue on the receiver aircraft,which makes the turbulence from the receiver aircraft winglet couple with the strong airflow between the wing of the tanker aircraft and refueling drogue,thus leading to the drogue to oscillate substantially.The closer the drogue is to the probe on the receiver aircraft,the greater the oscillation amplitude is and the faster the oscillation velocity is.Parameters related to refueling docking,such as docking velocity,distance from the drogue to the probe,oscillation amplitude,oscillation velocity,reel frequency and so on,provide references for pilots to correct and improve flight operations and control over the relative velocity between the two aircrafts.The results of air refueling flight tests indicate that in the docking phase,with the receiver aircraft gradually approaching to the refueling drogue,it is normal for the drogue to escape away from the receiver aircraft due to the effect of forward airflow.Therefore,the docking process should be as short as possible,in addition,right adjustments of both docking velocity and stable flight are critical factors to guarantee the success of refueling docking.

    進(jìn)入系統(tǒng)前,用戶需要先登錄(用戶分為管理員用戶和普通用戶),登錄界面如圖2所示。管理員和普通用戶對(duì)應(yīng)的權(quán)限不同,管理員可操作功能最多,下面以管理員用戶登錄后進(jìn)入主界面如圖3所示。

    The following simplification is made for the simulation:the refueling hose is flexible and does not expected to generate the greater stiff force. The displacement of refueling drogue of a fighter at different docking velocities is then simulated. For convenience,the real-time display is conducted by setting the refueling drogue moving toward the receiver aircraft,and x-axis being docking velocity.Besides,the distances before movement between the receiver and the drogue are 3,0and 0min x,yand zdirections,respectively.The simulations are carried out with docking velocities of 0.6,1.2,2.0and 3.0m/s.The results are displayed in Figs.3—7,where x,yand zstand for the central locations of the refueling drogue.

    (1)0.6m/s

    The trajectory path of the refueling drogue at the docking velocity of 0.6m/s is shown in Fig.3.

    ig.3 Trajectory path of drogue at 0.6m/s

    From the results above,it is clear that when docking at the velocity of 0.6m/s,the refueling drogue oscillates with an amplitude of 0.6mand a frequency of 0.5Hz accompanied with an upward movement,as shown in Fig.4.

    (2)1.2m/s

    Here is the trajectory path of the refueling drogue at the docking velocity of 1.2m/s(See Fig.5).

    It is known from the results that when doc-king at the velocity of 1.2m/s,the refueling drogue still oscillates at the frequency of 0.5Hz with an upward movement.Since the docking velocity has doubled,the period of oscillations reduces to one from two.However,there are still many difficulties in the refueling docking because of periodical oscillations.

    Fig.4 Trajectory path of refueling drogue

    (3)2m/s

    The results for the refueling drogue at the docking velocity of 2m/s are displayed in Fig.6.

    It is clear that the refueling drogue still oscillates at the frequency of 0.5Hz with an upward movement,but the period of oscillations reduces to a half because the docking velocity is three times faster than that of the first case.Besides,the technical difficulties still remain the same with the oscillations of the drogue.

    (4)3m/s

    Fig.7depicts the trajectory path of the refueling drogue at the docking velocity of 3m/s.

    As can be seen from the above results,the refueling drogue will move upward with a drift distance of about 0.6mat the speed of 3m/s,whereas the periodic oscillation is slight.This is mainly because the periodic oscillation is only just beginning after increasing the speed,but does not yet go through 1/4cycle,which makes the oscillation very slight.Therefore,in aerodynamic terms,it is much easier to dock and refuel when the docking velocity is no less than 3m/s.But if the velocity is too fast,the hose will float upward due to the aerodynamic forces,which will break the probe owning to sudden bending moment. Thus,various factors need to be balanced when determining the docking velocity.

    ig.5 Trajectory path of drogue at 1.2m/s

    Fig.6 Trajectory path of drogue at 2m/s

    3 Conclusions

    The CFD method and the Delaunay mapping dynamic grid technique are applied to simulate the dynamic behavior of the refueling docking at different velocities varying from 0.6m/s to 3m/s. Compared with other numerical simulation methods,this paper directly simulates the motion between the receiver and the drogue around the coupled flow field,thus being more effective and general.Conclusions can be drawn from numerical simulations and analysis as follows:

    (1)When docking at lower velocity,the refueling drogue exhibits periodical oscillations, which makes the refueling docking quite difficult.

    g.7 Trajectory path of the drogue at 3m/s

    (2)When the docking velocity increases to a certain value,the refueling drogue has little oscillation except upward float,it is then much easier to refuel.

    The aerodynamic force transmission and the following response after the instant contact will cause the hose to exhibit interactive coupling phenomenon and backward transverse wave oscillation,which will leave the probe to subject to great bending moment.For this reason,the future work on this research will be carried out combining with structural dynamics.

    Acknowledgements

    This work is supported by the Funding of Jiangsu In-novation Program for Graduate Education(No.CXLX13_ 133)and the Fundamental Research Funds for the Central Universities.

    References:

    [1] XU Gan,CAO JinQi.The status and development of overseas in-flight refueling technology[J].Aeronautical Science and Technology,1995(1):27-30.(in Chinese)

    [2] VASSBERG J C,YEH D T,BLAIR A J,et al.Dynamic characteristics of a KC-10wing-pod refueling hose by numerical simulation:AIAA,2002-2712[R]. 2002.

    [3] VASSBERG J C,YEH D T,BLAIR A J,et al.Numerical simulation of KC-10in-flight refueling hosedrogue dynamics with an approaching F/A-18Dreceiver aircraft:AIAA,2005-4605[R].2005.

    [4] VASSBERG J C,YEH D T,BLAIR A J,et al.Numerical simulations of KC-10wing-mount aerial refueling hose-drogue dynamics with a reel take-up system:AIAA,2003-3508[R].2003.

    [5] RIBBENS W B,SAGGIO F,WIERENGA R,et al. Dynamic modeling of an aerial refueling hose & drogue system:AIAA,2007-3802[R].2007.

    [6] RO K,KAMMAN J W.Modeling and simulation of hose-paradrogue aerial refueling systems[J].Journal of Guidance,Contral and Dynamics,2010,33(1):53-63.

    [7] VENKATARAMANAN S,DOGAN A.Dynamic effects of trailing vortex with turbulence &time-varying inertia in aerial refueling:AIAA,2004-4945[R].2004.

    [8] VENKATARAMANAN S,DOGAN A.Modeling of aerodynamic coupling between aircraft in close prox-imities:AIAA,2004-5172[R].2004.

    [9] VENKATARAMANAN S,DOGAN A.Vortex effect modeling in aircraft formation flight:AIAA,2003-5385[R].2003.

    [10]EICHLER J.Dynamic analysis of an in-fIight refueling system[J].Journal of Aircraft,1978,15(5):311-318.

    [11]HOERNER S F.Fluid-dynamic drag[M].Brick Town:Hoerner,1965:454-455.

    [12]HU Mengquan,LIU Ping,NIE Xin,et al.Influence of air turbulence on the movement of hose-drogue[J]. Flight Dynamics,2010,28(5):20-23.(in Chinese)

    [13]SPALART P R,ALLMARAS S R.A one-equation turbulence model for aerodynamic flows:AIAA,92-0439[R].1992.

    [14]OSHER S,SOLOMON F.Upwind difference schemes for hyperbolic systems of conservation laws[J].Mathematics of Computation,1982,38(158):339-374.

    [15]LIU X Q,QIN N,XIA H.Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics,2006,211(2):405-423.

    Ms.Chen Lele is currently a Ph.D.candidate of fluid mechanics in College of Aerospace Engineering at Nanjing University of Aeronautics and Astronautics.Her research interests focus on high-order discontinuous Galerkin method.

    Dr.Liu Xueqiang is currently aprofessor at Nanjing University of Aeronautics and Astronautics.His research interests include high-order discontinuous Galerkin method and aerodynamic optimization design.

    (Executive Editor:Xu Chengting)

    V211.3 Document code:A Article ID:1005-1120(2016)02-0173-07

    *Corresponding author,E-mail address:liuxq@nuaa.edu.cn.

    How to cite this article:Chen Lele,Liu Xueqiang.Numerical analysis of refueling drogue oscillation during refueling docking[J].Trans.Nanjing Univ.Aero.Astro.,2016,33(2):173-179.

    http://dx.doi.org/10.16356/j.1005-1120.2016.02.173

    猜你喜歡
    普通用戶管理員界面
    我是小小午餐管理員
    A quantitative analysis method for contact force of mechanism with a clearance joint based on entropy weight and its application in a six-bar mechanism
    我是圖書管理員
    我是圖書管理員
    國(guó)企黨委前置研究的“四個(gè)界面”
    可疑的管理員
    即使是普通用戶也需要備一張家庭影院入門攻略:影音調(diào)校工具篇1
    基于FANUC PICTURE的虛擬軸坐標(biāo)顯示界面開(kāi)發(fā)方法研究
    人機(jī)交互界面發(fā)展趨勢(shì)研究
    手機(jī)界面中圖形符號(hào)的發(fā)展趨向
    新聞傳播(2015年11期)2015-07-18 11:15:04
    精品亚洲成国产av| 一本久久精品| 七月丁香在线播放| 免费观看av网站的网址| 99re6热这里在线精品视频| 1024香蕉在线观看| 亚洲三级黄色毛片| 亚洲精品第二区| 免费观看无遮挡的男女| 欧美中文综合在线视频| 久久久精品国产亚洲av高清涩受| 免费人妻精品一区二区三区视频| 久久久a久久爽久久v久久| 久久久久久久精品精品| 日韩制服骚丝袜av| 亚洲av日韩在线播放| 看免费成人av毛片| 日本欧美国产在线视频| 免费人妻精品一区二区三区视频| 天天躁夜夜躁狠狠躁躁| 国产精品 欧美亚洲| av福利片在线| 男女边吃奶边做爰视频| 亚洲激情五月婷婷啪啪| 黑丝袜美女国产一区| 岛国毛片在线播放| 国产欧美日韩一区二区三区在线| 黄色毛片三级朝国网站| 伦理电影免费视频| 777米奇影视久久| 精品少妇黑人巨大在线播放| 丝袜脚勾引网站| 日日摸夜夜添夜夜爱| 搡老乐熟女国产| 免费高清在线观看视频在线观看| 亚洲中文av在线| h视频一区二区三区| 亚洲精品国产av蜜桃| 狂野欧美激情性bbbbbb| 亚洲精品国产av成人精品| 亚洲情色 制服丝袜| 午夜久久久在线观看| 大香蕉久久成人网| 亚洲国产精品一区二区三区在线| 秋霞伦理黄片| 麻豆乱淫一区二区| 亚洲成人手机| √禁漫天堂资源中文www| 欧美精品一区二区免费开放| 久久鲁丝午夜福利片| 精品一区二区三卡| 男人舔女人的私密视频| 九色亚洲精品在线播放| 99久久综合免费| 久久青草综合色| 久久精品久久久久久噜噜老黄| a级片在线免费高清观看视频| 一区二区三区激情视频| 国产精品亚洲av一区麻豆 | 99久国产av精品国产电影| 免费观看无遮挡的男女| 校园人妻丝袜中文字幕| 亚洲综合色网址| 91午夜精品亚洲一区二区三区| 欧美激情高清一区二区三区 | 亚洲第一av免费看| 精品国产国语对白av| 色哟哟·www| 免费播放大片免费观看视频在线观看| 欧美日韩成人在线一区二区| 日韩欧美一区视频在线观看| 亚洲一区中文字幕在线| 最近中文字幕高清免费大全6| av网站在线播放免费| 亚洲国产精品一区二区三区在线| 欧美日韩综合久久久久久| 亚洲av电影在线进入| 秋霞伦理黄片| 狠狠精品人妻久久久久久综合| 啦啦啦在线免费观看视频4| 国产麻豆69| 国产精品偷伦视频观看了| 波多野结衣一区麻豆| 一区福利在线观看| 中文乱码字字幕精品一区二区三区| 人人澡人人妻人| 亚洲欧洲日产国产| 一级,二级,三级黄色视频| 亚洲精华国产精华液的使用体验| 亚洲国产精品国产精品| 热re99久久精品国产66热6| 欧美日韩精品网址| 欧美 亚洲 国产 日韩一| 91精品国产国语对白视频| 欧美人与性动交α欧美精品济南到 | 丰满少妇做爰视频| 精品第一国产精品| 久久久国产一区二区| 美女国产视频在线观看| 欧美日韩视频精品一区| 国产成人精品久久二区二区91 | 丝袜在线中文字幕| 免费黄色在线免费观看| 国产精品熟女久久久久浪| 少妇猛男粗大的猛烈进出视频| 午夜福利视频在线观看免费| 18禁动态无遮挡网站| 欧美bdsm另类| 国产免费福利视频在线观看| 亚洲精华国产精华液的使用体验| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久精品电影小说| 亚洲综合精品二区| 亚洲av电影在线观看一区二区三区| 精品午夜福利在线看| 久久99精品国语久久久| 黄片无遮挡物在线观看| 亚洲人成电影观看| 男的添女的下面高潮视频| 九草在线视频观看| 成人免费观看视频高清| 在线精品无人区一区二区三| 国产精品嫩草影院av在线观看| 天堂8中文在线网| 日韩av免费高清视频| 亚洲av中文av极速乱| 亚洲美女视频黄频| 亚洲av欧美aⅴ国产| 亚洲成人av在线免费| 国产一区二区三区综合在线观看| 中文字幕人妻丝袜一区二区 | 一本大道久久a久久精品| 久久午夜福利片| 中文乱码字字幕精品一区二区三区| 侵犯人妻中文字幕一二三四区| 一本大道久久a久久精品| 亚洲综合色网址| 日本wwww免费看| 免费在线观看黄色视频的| 日本色播在线视频| 亚洲av.av天堂| 国产精品欧美亚洲77777| 国产成人精品婷婷| 亚洲精品自拍成人| 国产女主播在线喷水免费视频网站| 久久av网站| 少妇被粗大的猛进出69影院| 欧美变态另类bdsm刘玥| 欧美精品亚洲一区二区| 一级片'在线观看视频| 搡女人真爽免费视频火全软件| 桃花免费在线播放| 亚洲伊人久久精品综合| 性少妇av在线| 有码 亚洲区| 丰满乱子伦码专区| 成人影院久久| 在线观看三级黄色| 国产精品免费大片| 2018国产大陆天天弄谢| √禁漫天堂资源中文www| 91久久精品国产一区二区三区| 国产精品三级大全| 精品一区在线观看国产| 久久热在线av| 卡戴珊不雅视频在线播放| av电影中文网址| 色婷婷久久久亚洲欧美| 在线免费观看不下载黄p国产| 亚洲欧美日韩另类电影网站| 日韩 亚洲 欧美在线| 免费日韩欧美在线观看| videossex国产| 少妇猛男粗大的猛烈进出视频| 丝袜美足系列| 最近的中文字幕免费完整| 少妇熟女欧美另类| 亚洲一区中文字幕在线| 热99国产精品久久久久久7| 丰满乱子伦码专区| xxx大片免费视频| 少妇被粗大猛烈的视频| 久久久久久伊人网av| 国产精品秋霞免费鲁丝片| 国产国语露脸激情在线看| 日韩一卡2卡3卡4卡2021年| 国产片内射在线| 精品久久蜜臀av无| av又黄又爽大尺度在线免费看| 日本wwww免费看| av网站在线播放免费| 免费观看性生交大片5| a级毛片黄视频| a 毛片基地| 成年人午夜在线观看视频| 女的被弄到高潮叫床怎么办| 久久这里有精品视频免费| 欧美激情极品国产一区二区三区| 久热这里只有精品99| 精品亚洲成a人片在线观看| 天天躁夜夜躁狠狠躁躁| 国产在线一区二区三区精| 蜜桃在线观看..| 亚洲第一区二区三区不卡| 91国产中文字幕| 99国产综合亚洲精品| 日本-黄色视频高清免费观看| 午夜福利网站1000一区二区三区| 亚洲精品自拍成人| 免费观看av网站的网址| 欧美精品一区二区免费开放| 国产精品人妻久久久影院| 国产1区2区3区精品| 中文字幕av电影在线播放| 午夜老司机福利剧场| 精品国产超薄肉色丝袜足j| 亚洲三区欧美一区| 九九爱精品视频在线观看| 赤兔流量卡办理| 深夜精品福利| 国产高清不卡午夜福利| 欧美激情极品国产一区二区三区| 99国产精品免费福利视频| 成年人免费黄色播放视频| 久久99一区二区三区| 亚洲美女黄色视频免费看| 欧美精品一区二区免费开放| 亚洲欧美成人综合另类久久久| 国产激情久久老熟女| 国产成人av激情在线播放| 午夜福利影视在线免费观看| 丰满饥渴人妻一区二区三| videos熟女内射| 欧美激情 高清一区二区三区| 亚洲人成77777在线视频| 一级片免费观看大全| 国产极品天堂在线| 18禁裸乳无遮挡动漫免费视频| 亚洲精品国产色婷婷电影| 日韩成人av中文字幕在线观看| 午夜91福利影院| 国产精品99久久99久久久不卡 | 国产综合精华液| 亚洲综合精品二区| 青春草国产在线视频| 女人高潮潮喷娇喘18禁视频| 一区二区日韩欧美中文字幕| 国产在线免费精品| 天天操日日干夜夜撸| 久久99蜜桃精品久久| 视频区图区小说| 亚洲精品,欧美精品| 十分钟在线观看高清视频www| 亚洲国产精品一区三区| 精品少妇内射三级| 亚洲欧美一区二区三区国产| 婷婷色av中文字幕| 考比视频在线观看| 交换朋友夫妻互换小说| 精品午夜福利在线看| 久久久久久久久免费视频了| 欧美国产精品va在线观看不卡| 日韩制服丝袜自拍偷拍| 岛国毛片在线播放| 制服诱惑二区| 观看av在线不卡| 在线观看免费日韩欧美大片| 亚洲欧洲国产日韩| 91久久精品国产一区二区三区| 国产成人a∨麻豆精品| 精品少妇一区二区三区视频日本电影 | 欧美av亚洲av综合av国产av | 亚洲成人一二三区av| 丝袜在线中文字幕| av视频免费观看在线观看| 精品福利永久在线观看| 亚洲av福利一区| 午夜日韩欧美国产| 天堂俺去俺来也www色官网| 亚洲少妇的诱惑av| 国产色婷婷99| 国产精品av久久久久免费| 日本色播在线视频| 国产精品一区二区在线不卡| 欧美国产精品va在线观看不卡| 欧美成人精品欧美一级黄| 18禁国产床啪视频网站| 国产成人精品久久二区二区91 | 女人高潮潮喷娇喘18禁视频| 成年人免费黄色播放视频| 哪个播放器可以免费观看大片| 久久热在线av| 性色av一级| 免费在线观看完整版高清| 日韩,欧美,国产一区二区三区| 精品人妻偷拍中文字幕| 爱豆传媒免费全集在线观看| 久久 成人 亚洲| 婷婷成人精品国产| 日韩在线高清观看一区二区三区| 亚洲欧美精品自产自拍| 国产精品秋霞免费鲁丝片| xxxhd国产人妻xxx| 狂野欧美激情性bbbbbb| 国产色婷婷99| 国产男女超爽视频在线观看| 麻豆av在线久日| av免费在线看不卡| 精品少妇久久久久久888优播| 最近2019中文字幕mv第一页| 免费黄频网站在线观看国产| 黄色配什么色好看| 亚洲精品,欧美精品| 国产精品免费大片| 一本大道久久a久久精品| 成年av动漫网址| 91精品三级在线观看| 国产黄色免费在线视频| 一边亲一边摸免费视频| 国产1区2区3区精品| 激情视频va一区二区三区| 国产精品国产av在线观看| 一级片免费观看大全| 日本wwww免费看| 青春草亚洲视频在线观看| 午夜激情av网站| 亚洲三级黄色毛片| 满18在线观看网站| 一本—道久久a久久精品蜜桃钙片| 咕卡用的链子| 亚洲av在线观看美女高潮| 国产在线免费精品| 99热国产这里只有精品6| 毛片一级片免费看久久久久| 伊人久久大香线蕉亚洲五| 欧美日韩综合久久久久久| 视频区图区小说| 亚洲av电影在线观看一区二区三区| 午夜福利视频精品| 飞空精品影院首页| 尾随美女入室| 黄片无遮挡物在线观看| 青春草亚洲视频在线观看| 欧美亚洲日本最大视频资源| www.av在线官网国产| 国产精品国产三级专区第一集| 人人妻人人澡人人看| 国产一区二区 视频在线| 最近2019中文字幕mv第一页| 1024香蕉在线观看| 一区二区三区精品91| 国产片内射在线| 国产精品蜜桃在线观看| 国产精品一区二区在线观看99| 国产一区二区在线观看av| 日日爽夜夜爽网站| 免费黄网站久久成人精品| 亚洲经典国产精华液单| 一本色道久久久久久精品综合| 国产成人免费无遮挡视频| 国产爽快片一区二区三区| 女人久久www免费人成看片| 精品一区二区免费观看| 中文字幕精品免费在线观看视频| 成年动漫av网址| 亚洲一码二码三码区别大吗| 免费播放大片免费观看视频在线观看| 一边亲一边摸免费视频| 美女国产高潮福利片在线看| 80岁老熟妇乱子伦牲交| 人人妻人人澡人人爽人人夜夜| 亚洲av男天堂| 美女福利国产在线| 久久久a久久爽久久v久久| 亚洲国产精品一区二区三区在线| 大码成人一级视频| 亚洲一区中文字幕在线| 国产午夜精品一二区理论片| av在线观看视频网站免费| 校园人妻丝袜中文字幕| 久久久久久人妻| 熟女电影av网| 一边亲一边摸免费视频| 亚洲五月色婷婷综合| 亚洲男人天堂网一区| 美女主播在线视频| 一级毛片我不卡| 国产午夜精品一二区理论片| 成人毛片60女人毛片免费| 亚洲精品国产一区二区精华液| 下体分泌物呈黄色| 80岁老熟妇乱子伦牲交| 欧美日韩成人在线一区二区| 啦啦啦中文免费视频观看日本| 黄色 视频免费看| 五月开心婷婷网| 亚洲一级一片aⅴ在线观看| 水蜜桃什么品种好| 成年人免费黄色播放视频| 亚洲精品久久午夜乱码| 国产无遮挡羞羞视频在线观看| 黄片小视频在线播放| 久久久精品国产亚洲av高清涩受| 超碰成人久久| 午夜免费男女啪啪视频观看| 黄片无遮挡物在线观看| 亚洲国产精品一区三区| 亚洲图色成人| 国产白丝娇喘喷水9色精品| 婷婷色麻豆天堂久久| 亚洲精品久久午夜乱码| 如何舔出高潮| 亚洲一码二码三码区别大吗| 国产成人av激情在线播放| 伊人久久国产一区二区| 成人亚洲欧美一区二区av| 色吧在线观看| 夜夜骑夜夜射夜夜干| 新久久久久国产一级毛片| 黄频高清免费视频| 精品久久蜜臀av无| 国产无遮挡羞羞视频在线观看| 国产欧美亚洲国产| 熟女少妇亚洲综合色aaa.| 欧美 日韩 精品 国产| 老司机影院毛片| 亚洲精品乱久久久久久| 色播在线永久视频| 久久精品aⅴ一区二区三区四区 | 成人国产麻豆网| 国产免费一区二区三区四区乱码| 国产亚洲av片在线观看秒播厂| 最新的欧美精品一区二区| videossex国产| 亚洲欧美成人精品一区二区| 国产黄频视频在线观看| 久久人人爽av亚洲精品天堂| 成年av动漫网址| 国产女主播在线喷水免费视频网站| 制服人妻中文乱码| 在线亚洲精品国产二区图片欧美| 精品国产一区二区三区久久久樱花| 午夜激情久久久久久久| 国产亚洲一区二区精品| 免费女性裸体啪啪无遮挡网站| 一级毛片电影观看| 免费看av在线观看网站| 成人免费观看视频高清| 成人国产av品久久久| 亚洲,欧美精品.| 又大又黄又爽视频免费| 亚洲欧美中文字幕日韩二区| 十八禁网站网址无遮挡| 久久久久视频综合| 妹子高潮喷水视频| 成年美女黄网站色视频大全免费| 国产综合精华液| 久久精品国产综合久久久| 在线观看免费视频网站a站| 如日韩欧美国产精品一区二区三区| 丰满少妇做爰视频| 尾随美女入室| 亚洲国产欧美在线一区| 晚上一个人看的免费电影| 天天躁夜夜躁狠狠久久av| 亚洲欧美一区二区三区久久| 人妻一区二区av| 一级片'在线观看视频| 中文字幕亚洲精品专区| 国产成人精品无人区| 卡戴珊不雅视频在线播放| 国产av一区二区精品久久| 一级毛片 在线播放| 美女视频免费永久观看网站| av网站免费在线观看视频| 在线观看免费高清a一片| 欧美激情 高清一区二区三区| 日本wwww免费看| 亚洲欧美日韩另类电影网站| 亚洲av电影在线进入| 久久ye,这里只有精品| 精品亚洲成a人片在线观看| 青草久久国产| 亚洲一区中文字幕在线| 久久精品人人爽人人爽视色| 伦理电影免费视频| 亚洲第一av免费看| 视频区图区小说| 麻豆精品久久久久久蜜桃| 啦啦啦中文免费视频观看日本| 人妻 亚洲 视频| 性少妇av在线| 午夜精品国产一区二区电影| 亚洲精品视频女| 好男人视频免费观看在线| 午夜福利,免费看| 高清av免费在线| 精品亚洲成a人片在线观看| 99香蕉大伊视频| 99热全是精品| 美女脱内裤让男人舔精品视频| 午夜免费鲁丝| 一区福利在线观看| 一本—道久久a久久精品蜜桃钙片| 蜜桃国产av成人99| 亚洲精品自拍成人| 久久国内精品自在自线图片| 久久久国产精品麻豆| 午夜免费鲁丝| 日韩在线高清观看一区二区三区| 熟女少妇亚洲综合色aaa.| 国产乱人偷精品视频| 日本色播在线视频| 亚洲精品第二区| 人成视频在线观看免费观看| 久久韩国三级中文字幕| 人人妻人人爽人人添夜夜欢视频| 国产精品 欧美亚洲| 国产野战对白在线观看| 久久久久精品久久久久真实原创| 精品国产超薄肉色丝袜足j| 老鸭窝网址在线观看| 最近手机中文字幕大全| 在线天堂中文资源库| 久久久久久久久免费视频了| 午夜福利乱码中文字幕| 亚洲一级一片aⅴ在线观看| 纯流量卡能插随身wifi吗| 国产精品成人在线| 9热在线视频观看99| 免费女性裸体啪啪无遮挡网站| 嫩草影院入口| 看免费成人av毛片| 青青草视频在线视频观看| 久久久精品免费免费高清| 777米奇影视久久| 欧美成人午夜免费资源| 精品国产乱码久久久久久小说| 纯流量卡能插随身wifi吗| 视频区图区小说| 日日啪夜夜爽| 精品国产一区二区久久| 超碰97精品在线观看| 国产精品国产三级专区第一集| 国产精品99久久99久久久不卡 | 少妇被粗大的猛进出69影院| 成人国语在线视频| 韩国精品一区二区三区| 欧美人与性动交α欧美精品济南到 | 久久国产亚洲av麻豆专区| 亚洲男人天堂网一区| 黑人猛操日本美女一级片| 美女午夜性视频免费| 久久久久久伊人网av| 国产爽快片一区二区三区| 波多野结衣一区麻豆| 日韩中文字幕欧美一区二区 | 在线 av 中文字幕| 熟女电影av网| 99久久综合免费| 国产精品.久久久| 看免费av毛片| 精品少妇黑人巨大在线播放| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区四区第35| av免费在线看不卡| 亚洲少妇的诱惑av| 久久这里只有精品19| 中文字幕制服av| 观看av在线不卡| 国产成人欧美| 日本av免费视频播放| 妹子高潮喷水视频| 丝袜人妻中文字幕| 人妻少妇偷人精品九色| 高清黄色对白视频在线免费看| 热99国产精品久久久久久7| 寂寞人妻少妇视频99o| 在现免费观看毛片| 中文天堂在线官网| 侵犯人妻中文字幕一二三四区| 国产女主播在线喷水免费视频网站| 中文字幕精品免费在线观看视频| 国产高清不卡午夜福利| 精品少妇内射三级| 99精国产麻豆久久婷婷| 我要看黄色一级片免费的| 中文字幕另类日韩欧美亚洲嫩草| 春色校园在线视频观看| 制服丝袜香蕉在线| 777久久人妻少妇嫩草av网站| 母亲3免费完整高清在线观看 | www.自偷自拍.com| 免费播放大片免费观看视频在线观看| 九九爱精品视频在线观看| 极品人妻少妇av视频| 新久久久久国产一级毛片| 日韩中文字幕视频在线看片| 日韩电影二区| 精品一区在线观看国产| 国产不卡av网站在线观看| 人人澡人人妻人| 日本黄色日本黄色录像| 国精品久久久久久国模美| 国产成人精品福利久久| 91精品伊人久久大香线蕉| 夫妻性生交免费视频一级片| 人妻人人澡人人爽人人| 日本-黄色视频高清免费观看| 中文乱码字字幕精品一区二区三区| 母亲3免费完整高清在线观看 | 一区二区日韩欧美中文字幕| av一本久久久久| a级片在线免费高清观看视频| 青青草视频在线视频观看|