• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-objective Optimization Design of Vented Cylindrical Airbag Cushioning System for Unmanned Aerial Vehicle

    2016-09-14 01:16:40ShaoZhijianHeChengPeiJinhua

    Shao Zhijian,He Cheng,Pei Jinhua

    Research Institute of Pilotless Aircraft,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China(Received 23October 2014;revised 25February 2015;accepted 3March 2015)

    ?

    Multi-objective Optimization Design of Vented Cylindrical Airbag Cushioning System for Unmanned Aerial Vehicle

    Shao Zhijian,He Cheng*,Pei Jinhua

    Research Institute of Pilotless Aircraft,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China
    (Received 23October 2014;revised 25February 2015;accepted 3March 2015)

    Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,and the differential equation of cylindrical gas-filled bag is presented from a theoretical perspective based on the ideal gas state equation and dynamic equation.Then,the effects of exhaust areas and blasting pressure on buffer characteristics are studied,taking those parameters as design variable for the multiobjective optimization problem,and the solution can be determined by comparing Pareto set,which is gained by NSGA-Ⅱ.Finally,the feasibility of the design scheme is verified by experimental results of the ground test.

    airbag;vent orifice;soft landing;multi-objective optimization;unmanned aerial vehicle(UAV)

    0 Introduction

    Parachute-airbag landing is an undamaged recovery method that is commonly used with modern unmanned aerial vehicles(UAVs),manned spacecraft,and heavy cargo airdrops.A parachute′s deceleration is limited because the landing speed of a decelerated UAV cannot be too low;if it is,the weight of the parachute system becomes unreasonable.For instance,the recoverable modules of UAVs and manned spacecraft normally have ground landing speeds between 6m/s and 7m/s after parachute deceleration.Therefore,light and foldable airbags with superior cushioning performance are normally used to cushion the vehicles′landings.

    Because they are effective cushions,after many years of development,airbag cushions with a variety of structures and forms are yielded. Based on cushioning mechanisms,current configurations include enclosed and vented airbags.The enclosed airbags have two maijor advantages. They are not sensitive to the orientation of the payload on landing,and they have a history of use in many applications.However,the multiple impacts and unknow lander orientation during bounces complicates the design.On the other hand,as the final attitude is unpredicatable lander righting is required,increasing system mass and complexity.Vented airbags,due to its deterministic impact load direction,can be deployed with a more targeted arrangement.A properly designed airbag with a suitable size and vent hole dimension can keep the overload within the allowed range,control the recovery object′s final touchdown speed,and prevent bouncing.In view of these advantages,a large number of UAVs and spacecraft are presently recovered by means of vented airbag systems.In the manned spacecraft″Orion″developed by NASA(National Aeronautics and Space Administration)for the Constellation Program[1],six vented airbags cushioning systems were deployed.During the landing process,the externally vented airbag acts as decelerator,and the internally enclosed airbag drops up the spacecraft and prevents it from touching the ground.The U.S.Army′s Natick research center designed a mechanical vent control mechanism for the cushioning airbags used in heavy airdrops,which could adjust the vent area during cushioning to smooth variations in the airbag′s pressure[2,3].In addition,vented airbags were heavily used in the delivery of combat weapons and relief supplies[4-7].In China,relevant research institutions studies this type of airbag.A magnetostrictive actuator was employed to drive vent valves and implement proactive control of vent holes during the cushioning process[8].Shao[9]designed a vented airbag system with a secondary airbag that leveraged gas is recycled to improve the cushioning performance of airbag systems.Chen et al.[10]investigated the pros and cons of airbags with fixed and controllable vents using a theoretical model.Current studies show that,despite all the advantages of airbags with controllable vents,this type of airbag requires a mechanical driver and a control system to complete feedback and perform an action within tens of milliseconds,which proves to be quite challenging with the technology currently available in China.In addition,in China,studies of vented airbag cushioning systems generally remain in the stage of theoretical analysis and simulations,and there are few studies available to guide actual engineering projects.

    In this paper,a cushioned recovery problem for a type of UAV is investigated.Based on a theoretical model and the NSGA-Ⅱalgorithm,a multi-objective method of optimizing design for a horizontal cylindrical vented cushioning airbag is proposed.The cushioning process is divided into an adiabatic compression stage and a venting and energy release stage.Piecewise non-linear differential equations for the horizontal cylindrical vented airbag are established.The relationship between the airbag′s design parameters and cushioning performance is conducted.A multi-objective(Optimize both the area of the vent hole and the crack pressure)design method is proposed for this type of airbag.Finally,the accuracy of the design is verified experimentally.

    1 Basic Dynamical Equations of Cylindrical Vented Airbag System

    A certain mass of an ideal gas inside a cylindrical vented airbag satisfies the following state equation

    whereρis the density of the gas,ethe specific internal energy of gas,andγthe gamma constant. The specific internal energy represents the internal energy of one mass unit of the gas.Using the ideal gas law,this parameter can be represented using the gas′s initial specific internal energy.

    It is assumed that the recovery object with mass is in the upper part of the airbag.For simplicity the connections between the recovery object and the airbag will not be included in the representation of the system for the simulation,instead the degrees of freedom of system will be restricted to prevent rotation or movement not in the vertical direction.Upward is defined as the positive direction of the recovery object′s displacement.The balanced position is defined as the initial position,the external pressure is Pe.The airbag deflation geometry is idealised as the double truncation of a cylinder.If the landing craft plate moves 10cm after the bag initially comes into contact with ground,5cm both of the top and the sphere bottom is cut off and the cylinder is compressed without deformation of the rest(See Fig.1).This means that the volume of the airbag is now that of full cylinder minus that of the compressed domes at the top and bottom.This method neglects the reality that a cylindrical bag does not deform in this idealised fashion.More realistically the bag deforms with a more expanded midsection,similar to a donut without the centre removed.In addition,because the stiffness of the airbag′s fabric is significantly less than the supportprovided by the gas,the effect of the airbag fabric′s stiffnes can be ignored.Then,based on Newton′s second law of motion,the equation of motion for the recovery object is as follows

    Fig.1 Deformation in cross section of airbag

    where Sis the interaction area of the recovery object and the airbag.For a horizontal cylindrical airbag with length L,the interaction area Sis

    whereΔu is the initially generated compression when the object is in its balanced position.Assuming that the airbag′s initial volume is V0and its initial pressure is P0,the initial interaction ar-ea isIt is worth noting that all of the initial conditions can be calculated from the balanced condition,the state equation of the gas,and the geometrical relationships.If the gas has an initial density ofρ0,the initial mass of the gas is

    The initial specific internal energy of the gas is

    Because at any moment during the recovery process the volume of the cylindrical airbag is approximately V=V0+u(S+S0)(6)the density of the gas inside the airbag is

    According to the law of conservation of energy,before vent occuring,the total energy of the recovery object/airbag system is conserved.Therefore,the recovery object′s mechanical energy and the internal energy of the gas convert into each other.Assuming that the recovery object′s initial position has zero potential energy,its mechanical energy at the present moment is

    Initially,the mechanical energy of the recovery object is

    The law of conservation of energy can be used to calculate the total internal energy of the gas inside the cylinder at the present moment as follows

    where?E0is gas′s initial total internal energy,which is determined by combining Eq.(4)and Eq.(5)to obtain

    From Eqs.(10),(11),the gas′s specific internal energy at the present moment can be obtained,namely

    Next,the airbag′s internal pressure at the present moment can be obtained from Eq.(1),namely

    Note that ma=ρ0V0=ρV,Eq.(13)can be rewritten as

    Substituting Eq.(14)into Eq.(2)yields the differential equation that describes the dynamics of the airbag recovery system before vent

    Eqs.(3),(6),(15)can be grouped to form a system of simultaneous differential equations for this non-linear problem.With the initial conditions u(0)=0andu(0)=v0,the response of the center can be calculated using the different method.

    As the compression process proceeds,the airbag is in the venting phase when the internal pressure of the airbag reaches the burst pressure Pcr.At that moment,Eq.(20)is still valid.To facilitate explanation,the balance equation for this phase is

    where″ex″denotes a gas state parameter in thevent phase.According to Ref.[11],the venting rate of a vent hole is related to the difference between the internal and external pressures,the area of the vent hole Aex,and the retention coefficient K.The venting rate is

    Assuming that during venting,the temperature of the gas inside the airbag is fixed and″cr″denotes the gas state at the moment of cracking,the gas inside the airbag satisfies

    Pex(Vcr+uex(S+Scr)=maRTcr(18)In addition,since

    ma=ρ0V0-q(19)

    and the initial conditions are uex(0)=ucr,uex(0)=ucr,and q(0)=0,Eqs.(3),(16)—(19)can be grouped to calculate the response of recovery object and the patterns of variations in the airbag parameters during the venting stage.

    2 Optimizing Multiple Objectives in Design of Vented Airbag System for UAV

    2.1 Discussion on characteristics of exhaust airbag

    The design of an airbag recovery system for a UAV in a standard environment is used as an example to investigate the cushioning performance of a vented airbag.Mass of the UAV system is 250 kg.The vertical ground landing speed is 5.4m/s. During the gas injection process,the nitrogen cylinder system carries in the body of the vehicle injects air,and the stable operational pressure is equal to the environmental pressure,i.e.,p0=pe. To facilitate the design,based on previous recovery experiences,the airbag is designed as a cylinder 800mm long and 600mm in diameter.

    Previous studies show that proper real-time control of the vent hole′s area can cause UAV to perform a″zero speed″landing.However,because it is constrained by the development of sensor and control mechanisms in China,actual control of the vent hole′s area is unable to satisfy the theoretical requirements of the ultrashort venting period,and there is a significant delay.Therefore,most of the vent airbags still use fixed vent holes.Fig.2shows the maximum overload and touchdown speed within the vented airbag during impact attenuation.The graph shows as follows:

    (1)When the area of the vent hole is fixed,none of the following parameters exhibits variation with a linear trend:the UAV′s maximum overload,its touchdown speed,and its crack pressure.

    (2)When the crack pressure is fixed,the UAV′s maximum overload decreases as the area of the vent hole increases.After the area exceeds a certain threshold,the maximum overload does not change.In contrast,the touchdown speed gradually increases.

    (3)When the area of the vent hole exceeds a certain threshold,the UAV′s maximum overload does not change.However,at that moment,the touchdown speed continues to increase.

    The above analysis shows that an oversized vent hole is likely to result in an accelerated vent speed and relatively fast cushion stroke height as UAV descends.Therefore,the amount of energy lost per unit mass of gas is reduced,which definitely requires increasing the airbag′s height. When the area of its base is fixed,the discordance between the height and the area of the base reduces the airbag′s stability and reliability,thereby complicating the control rule.In contrast,an undersized vent hole significantly increases the overload level.Therefore,aproper design is necessary to coordinate the relationship between the overload and the touchdown speed.In the following sections,both of these parameters are used as objective functions in the multi-objective optimization process.

    2.2 Multi-objective optimization design

    The vent hole area coefficient cexand the crack pressure Pcrare optimization parameters. The initial area(the aperture is 120mm)and the area coefficient are multiplied to determine the area of the vent hole.A mathematical model of the multi-objective optimization problem whose objec-tive functions are the maximum overload amaxand the final touchdown speed vfinis

    Fig.2 Change of cushioning properties with airbag parameters

    where the superscripts U and L denote the lower and upper limits,respectively,of the design variables.

    The Pareto front(See Fig.3),[cex,Pcr]l(l= 1,2,…,NP),can be obtained for multi-objective optimization problem by NSGA-Ⅱ,where NPis the number of Pareto optimal solutions.Every objective(Ji([cex,Pcr]l),i=1,2,…,Nobj)is normalized with respect to its minimum and maximum values(Jmaxiand Jmini)on the Pareto front approximation,ˉJi([cex,Pcr]l),i=1,2,…,NobjObviously,ifthat meansis the optimal solution of the i th objective function on the Pareto front.Otherwise,that means is the worst solu-tion.The 2-norm values of all of the solutions in the optimal solution set are compared,and the solution with the smallest distance from the ideal optimal solution is chosen as the final identified result.The results are listed in Table 1.

    Fig.3 Pareto optimal solutions

    Table1 Final optimal solution

    3 Experiment on UAV Airbag System

    To verify the accuracy of the optimized design of the airbag system,a relevant study involving an airbag drop test is conducted.The test is conducted in the drop testbed of the Launch and Recovery Technology Laboratory,UAV Research Institute,Nanjing University of Aeronautics and Astronautics.The test article and the airbag are lifted to a height that allows them to reach a parachute landing speed in free fall.After being released,the test article drops to the ground platform.Impact sensors under the platform record and export the impact signals,which are recorded by the data collection system.At the same time,data on the vehicle body′s acceleration are recorded,and the vehicle body′s touchdown speed is recorded using a high-speed photographic system. The overall testbed is shown in Fig.4.

    Fig.5show the velocity and overload curves(The filter frequency is 50Hz)for the center ofgravity of the vehicle body,which is collected during the test.A comparison resulted from the theoretical model shows that the peak value and pulse width from the theoretical model match the test results well.In addition,the touchdown speed obtained using the high-speed photographic system is approximately 1.1m/s,which is basically consistent with the theoretically calculated result.

    Fig.4 Impact test for UAV airbag system

    Fig.5 Comparison of test and simulation results

    4 Conclusions

    In this paper,a theoretical model of a horizontal cylindrical vented airbag is developed based on the state equations of internal gases and the law of conservation of energy of the system,and a numerical algorithm is used to analyze the effect of the airbag system′s parameters on its cushioning performance.The touchdown speed and the maximum overload serve as objective functions in a multi-objective optimization process for the cylindrical vented airbag system.Based on the design requirements and screen criteria,a final design is identified.Finally,the feasibility of the proposal is verified experimentally.The design method proposed in this paper is a valuable trial for various systems that use vented airbags for recovery,and it has practical value in engineering applications.The design approach is universal and can be directly applied to recovery design in other space and aviation systems.

    References:

    [1] SMITH T R,WAER J S,WILLEY C E,et al.Orion CEV earth landing impact attenuating airbags-design challenges and application[C]∥Proc of 28th IEEE Aerospace Conference.Montana,USA:IEEE AC Paper,2007.

    [2] LEE C K.Methods for improved airbag performance for airdrop:Technical Report 11-atick/TR-93/002[R].[S.l.]:L.S.Army Natick Reseach,Development and Engineering Center,1992.

    [3] LEE C,ROSATO N,LAI F.An investigation of improved airbag performance by vent control and gas injection[C]∥11th AIAA Aerodynamic Decelerator Systems Technology Conference.San Diego,CA:AIAA,1991:455-464.

    [4] TAYLOR A P.Investigation of the application of airbag technology to provide a soft-landing capability for military heavy airdrop[C]∥16th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Boston,MA:AIAA,2001:284-292.

    [5] WARRICK J C,LEE C K.Advanced airbag system for cargo airdrop[C]∥16th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Boston,MA:AIAA,2001:293-303.

    [6] DREHER P,CANFIELD R,MAPLE R.Dynamic response of a monition to a low pressure airbag[C]∥46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics &Materials Conference.Austin,Texas:AIAA,2005,2031:1-11.

    [7] DREHER P,CANFIELD R,MAPLE R.Experi-mental dynamic response of a solid object to various diameter low pressure airbags[C]∥47th AIAA/ ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Newport,Rhode Island:AIAA,2006:1-7.

    [8] GE Sicheng,CHEN Fei.Experimental study on theory of impact active control of intelligent airbag[J]. Journal of Astronautics,2004,25(6):600-603.(in Chinese)

    [9] SHAO Zhijian.Application of second-airbag to unmanned aerial vehicle[J].Journal of Nanjing University of Aeronautics and Astronautics,2009,41(S):93-96.(in Chinese)

    [10]CHEN Shuai,LI Bin,WEN Jinpeng,et al.Cushioning characteristic and parameter design of a soft landing airbag[J].Journal of Vibration and Shock,2009,28(4):25-30.(in Chinese)

    [11]ESGAR J B,MORGAN W C.Analytical study of soft landings on gas-filled bags:NASA TR R-75[R]. 1975.

    [12]BLASCO X,HERRERO J M,SANCHIS J,et al.A new graphical visualization of n-dimensional Pareto front for decision making in multiobjective optimization[J].Information Sciences,2008,178(20):3908-3924.

    Mr.Shao Zhijianis an assistant professor in Research Institute of Pilotless Aircraft,Nanjing University of Aeronautics and Astronautics.He received his B.S.degree in Nanjing University of Aeronautics and Astronautics.His research interests are emission and recovery for pilotless aircraft.

    Dr.He Chengis an assistant professor in Research Institute of Pilotless Aircraft,Nanjing University of Aeronautics and Astronautics.He received his Ph.D.degree in Nanjing University of Aeronautics and Astronautics.His research interests are emission and recovery for pilotless aircraft.

    Mr.Pei Jinhuais a professor in Research Institute of Pilotless Aircraft,Nanjing University of Aeronautics and Astronautics.He received his M.S.degree in Nanjing University of Science and Technology.His research interests are emission and recovery for pilotless aircraft.

    (Executive Editor:Xu Chengting)

    V224.1 Document code:A Article ID:1005-1120(2016)02-0208-07

    *Corresponding author,E-mail address:hechengary@163.com.

    How to cite this article:Shao Zhijian,He Cheng,Pei Jinhua.Multi-objective optimization design of vented cylindrical airbag cushioning system for unmanned aerial vehicle[J].Trans.Nanjing Univ.Aero.Astro.,2016,33(2):208-214.

    http://dx.doi.org/10.16356/j.1005-1120.2016.02.208

    一本综合久久免费| 久久这里只有精品19| 在线观看美女被高潮喷水网站 | 日韩国内少妇激情av| 欧美激情久久久久久爽电影| 搞女人的毛片| 亚洲一区二区三区不卡视频| 国产伦在线观看视频一区| 老司机深夜福利视频在线观看| 老司机深夜福利视频在线观看| 亚洲一区中文字幕在线| 婷婷精品国产亚洲av| 黄色成人免费大全| 三级男女做爰猛烈吃奶摸视频| 久久香蕉精品热| 不卡一级毛片| 欧美性长视频在线观看| 国产免费男女视频| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久久电影 | 97超级碰碰碰精品色视频在线观看| 首页视频小说图片口味搜索| 两人在一起打扑克的视频| 国产视频内射| 正在播放国产对白刺激| 国产成人av激情在线播放| netflix在线观看网站| 午夜日韩欧美国产| 国产又黄又爽又无遮挡在线| 久久久国产精品麻豆| 久久人妻福利社区极品人妻图片| 麻豆国产av国片精品| 九色国产91popny在线| 免费在线观看完整版高清| 国产欧美日韩精品亚洲av| 亚洲熟妇熟女久久| 欧美一区二区国产精品久久精品 | 国产精品美女特级片免费视频播放器 | 一二三四在线观看免费中文在| 午夜两性在线视频| 欧美成人午夜精品| 亚洲中文字幕一区二区三区有码在线看 | 国产激情欧美一区二区| 国产精品野战在线观看| 欧美乱色亚洲激情| 中文字幕久久专区| 精品一区二区三区av网在线观看| 窝窝影院91人妻| 亚洲专区字幕在线| 婷婷亚洲欧美| 精品国产超薄肉色丝袜足j| 欧美激情久久久久久爽电影| 在线国产一区二区在线| 无限看片的www在线观看| 激情在线观看视频在线高清| 婷婷亚洲欧美| 小说图片视频综合网站| 一进一出抽搐gif免费好疼| 免费看a级黄色片| 一级a爱片免费观看的视频| 久久中文看片网| 国产精品一区二区三区四区久久| videosex国产| 黄频高清免费视频| 国模一区二区三区四区视频 | 亚洲五月婷婷丁香| 黄色片一级片一级黄色片| 可以免费在线观看a视频的电影网站| 国产精品 欧美亚洲| 久久久精品大字幕| 人人妻人人看人人澡| 亚洲欧美日韩东京热| 亚洲精品在线美女| 久久精品人妻少妇| 99re在线观看精品视频| 亚洲男人天堂网一区| 舔av片在线| 欧美成人性av电影在线观看| 99riav亚洲国产免费| 三级毛片av免费| 欧美国产日韩亚洲一区| 国产1区2区3区精品| 天天一区二区日本电影三级| 亚洲人成网站在线播放欧美日韩| 嫩草影视91久久| 午夜福利欧美成人| 99精品欧美一区二区三区四区| 国产三级黄色录像| 亚洲av电影在线进入| 亚洲五月天丁香| 日韩有码中文字幕| av片东京热男人的天堂| 成熟少妇高潮喷水视频| 91大片在线观看| 欧美高清成人免费视频www| 国产精品1区2区在线观看.| 又粗又爽又猛毛片免费看| 亚洲成人中文字幕在线播放| 黄片小视频在线播放| 国产高清视频在线观看网站| 中文字幕熟女人妻在线| 日本a在线网址| 午夜精品在线福利| 狂野欧美激情性xxxx| 精品第一国产精品| 亚洲av成人一区二区三| 日本成人三级电影网站| www.自偷自拍.com| 日韩欧美一区二区三区在线观看| www.999成人在线观看| 我要搜黄色片| 国产亚洲av嫩草精品影院| 欧美色欧美亚洲另类二区| 亚洲天堂国产精品一区在线| 9191精品国产免费久久| 国产亚洲av高清不卡| 国产野战对白在线观看| 国产精品久久久人人做人人爽| 中文字幕熟女人妻在线| 桃红色精品国产亚洲av| xxxwww97欧美| 男女那种视频在线观看| 国产伦一二天堂av在线观看| 在线观看www视频免费| 国产精品久久久久久亚洲av鲁大| 婷婷六月久久综合丁香| 90打野战视频偷拍视频| av超薄肉色丝袜交足视频| 中文字幕精品亚洲无线码一区| 国产片内射在线| 亚洲专区字幕在线| 精品国产超薄肉色丝袜足j| 免费看a级黄色片| 中文字幕人妻丝袜一区二区| 岛国在线免费视频观看| 国产欧美日韩一区二区精品| www.精华液| 99久久99久久久精品蜜桃| 一区二区三区激情视频| 成人三级黄色视频| 九色成人免费人妻av| 啪啪无遮挡十八禁网站| 日本一区二区免费在线视频| 九色国产91popny在线| 手机成人av网站| 嫩草影视91久久| 久久久久久久午夜电影| 一夜夜www| 制服诱惑二区| 日韩欧美在线二视频| 亚洲国产日韩欧美精品在线观看 | www.www免费av| 国产麻豆成人av免费视频| 久久久精品大字幕| av免费在线观看网站| 精品人妻1区二区| 19禁男女啪啪无遮挡网站| a级毛片在线看网站| av福利片在线| 成人三级做爰电影| 黄色毛片三级朝国网站| 在线观看免费视频日本深夜| 亚洲真实伦在线观看| 在线观看一区二区三区| 免费av毛片视频| 国产精品,欧美在线| 国产一区二区激情短视频| 日韩三级视频一区二区三区| 1024视频免费在线观看| 狂野欧美白嫩少妇大欣赏| 一本精品99久久精品77| 亚洲最大成人中文| 成人国产一区最新在线观看| 亚洲精品色激情综合| 国产精品 国内视频| 成人国语在线视频| 看免费av毛片| 777久久人妻少妇嫩草av网站| 最好的美女福利视频网| 美女高潮喷水抽搐中文字幕| 俄罗斯特黄特色一大片| 亚洲欧美日韩高清专用| 美女扒开内裤让男人捅视频| 中文资源天堂在线| 日本黄大片高清| 他把我摸到了高潮在线观看| 精品国产乱码久久久久久男人| 非洲黑人性xxxx精品又粗又长| 观看免费一级毛片| 一本大道久久a久久精品| 我的老师免费观看完整版| 国产精品,欧美在线| 精品久久久久久久末码| 老司机午夜福利在线观看视频| 国产1区2区3区精品| 老司机靠b影院| 深夜精品福利| a级毛片在线看网站| 99久久综合精品五月天人人| 中文字幕av在线有码专区| 亚洲中文字幕一区二区三区有码在线看 | 天堂影院成人在线观看| 亚洲国产精品合色在线| 成人三级黄色视频| 欧美日韩亚洲综合一区二区三区_| 欧美日韩一级在线毛片| 精品国产乱子伦一区二区三区| 亚洲国产高清在线一区二区三| 国产高清激情床上av| 69av精品久久久久久| 色av中文字幕| 亚洲av成人一区二区三| 国产三级中文精品| 亚洲国产欧美人成| 在线观看日韩欧美| 校园春色视频在线观看| 99国产精品一区二区三区| 亚洲精品在线观看二区| 亚洲中文av在线| a在线观看视频网站| 特大巨黑吊av在线直播| 久久久久免费精品人妻一区二区| 久久欧美精品欧美久久欧美| 亚洲激情在线av| 久久精品成人免费网站| 国产精品 欧美亚洲| 亚洲国产精品合色在线| 亚洲国产看品久久| 国产伦人伦偷精品视频| 国产97色在线日韩免费| 在线国产一区二区在线| 国产av在哪里看| 最近视频中文字幕2019在线8| 成年免费大片在线观看| 亚洲国产日韩欧美精品在线观看 | 欧美日韩亚洲国产一区二区在线观看| 9191精品国产免费久久| 日韩精品青青久久久久久| 国产精品日韩av在线免费观看| 久久香蕉激情| 日韩大尺度精品在线看网址| 国产午夜福利久久久久久| 中文字幕人妻丝袜一区二区| 一本久久中文字幕| 91大片在线观看| 国产午夜福利久久久久久| АⅤ资源中文在线天堂| 毛片女人毛片| 制服人妻中文乱码| 一边摸一边做爽爽视频免费| 午夜a级毛片| 欧美zozozo另类| 欧洲精品卡2卡3卡4卡5卡区| 婷婷亚洲欧美| av欧美777| 日韩欧美免费精品| 亚洲欧美激情综合另类| 欧美日本视频| 色在线成人网| а√天堂www在线а√下载| 国产精品亚洲av一区麻豆| 亚洲av成人一区二区三| 美女大奶头视频| 日韩av在线大香蕉| 日本一本二区三区精品| 亚洲一区二区三区不卡视频| 久久欧美精品欧美久久欧美| 天天添夜夜摸| 久久久国产成人精品二区| 亚洲专区字幕在线| 丁香欧美五月| 欧美成人性av电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 在线观看66精品国产| 一二三四社区在线视频社区8| 成人av在线播放网站| 成人欧美大片| 大型黄色视频在线免费观看| 久久中文字幕人妻熟女| 亚洲一区高清亚洲精品| 搡老熟女国产l中国老女人| 97人妻精品一区二区三区麻豆| 大型av网站在线播放| 一卡2卡三卡四卡精品乱码亚洲| 亚洲午夜精品一区,二区,三区| 婷婷六月久久综合丁香| 久久天躁狠狠躁夜夜2o2o| xxx96com| 伊人久久大香线蕉亚洲五| 黄色视频,在线免费观看| 国产区一区二久久| 久久国产精品影院| 国产免费av片在线观看野外av| 这个男人来自地球电影免费观看| 国产又黄又爽又无遮挡在线| 日韩中文字幕欧美一区二区| 亚洲精品色激情综合| 一本久久中文字幕| 国产激情偷乱视频一区二区| 人人妻人人澡欧美一区二区| 99国产精品一区二区蜜桃av| 级片在线观看| 999精品在线视频| 91成年电影在线观看| 欧美一级毛片孕妇| 精品福利观看| АⅤ资源中文在线天堂| xxxwww97欧美| 欧美精品亚洲一区二区| 久久久久久久久久黄片| 亚洲成人久久爱视频| 欧美日本视频| 国产不卡一卡二| 18禁裸乳无遮挡免费网站照片| 淫妇啪啪啪对白视频| 天天躁狠狠躁夜夜躁狠狠躁| cao死你这个sao货| 国产人伦9x9x在线观看| 999久久久国产精品视频| 成在线人永久免费视频| 欧美极品一区二区三区四区| 变态另类成人亚洲欧美熟女| 亚洲熟妇中文字幕五十中出| e午夜精品久久久久久久| 婷婷精品国产亚洲av| 国产精品av视频在线免费观看| 俺也久久电影网| 亚洲av成人一区二区三| 99久久精品热视频| 99在线视频只有这里精品首页| 亚洲中文日韩欧美视频| 18禁黄网站禁片免费观看直播| cao死你这个sao货| 午夜久久久久精精品| 一区二区三区高清视频在线| 欧美日韩乱码在线| 法律面前人人平等表现在哪些方面| 999久久久精品免费观看国产| 90打野战视频偷拍视频| 成人亚洲精品av一区二区| 欧美日韩精品网址| 国产精品久久久人人做人人爽| 久久香蕉激情| 欧美乱色亚洲激情| 2021天堂中文幕一二区在线观| 亚洲国产精品成人综合色| 久久午夜综合久久蜜桃| 午夜视频精品福利| 香蕉丝袜av| 91大片在线观看| 91字幕亚洲| 老鸭窝网址在线观看| 国产99久久九九免费精品| 久久久国产欧美日韩av| 久久久久国内视频| 日日夜夜操网爽| 国产真人三级小视频在线观看| 桃红色精品国产亚洲av| 久久久久免费精品人妻一区二区| 久久精品国产亚洲av香蕉五月| 一进一出抽搐动态| 757午夜福利合集在线观看| 十八禁网站免费在线| 99久久综合精品五月天人人| 999精品在线视频| 成在线人永久免费视频| 国产又黄又爽又无遮挡在线| 老熟妇仑乱视频hdxx| 免费人成视频x8x8入口观看| 高潮久久久久久久久久久不卡| 日本黄色视频三级网站网址| 国产三级黄色录像| 亚洲精品国产一区二区精华液| 国产精品综合久久久久久久免费| 国产精品爽爽va在线观看网站| 美女扒开内裤让男人捅视频| 精品国产超薄肉色丝袜足j| 免费观看人在逋| 观看免费一级毛片| 日本五十路高清| 亚洲精华国产精华精| 日日摸夜夜添夜夜添小说| 久久人人精品亚洲av| 国模一区二区三区四区视频 | 国产激情欧美一区二区| 女人高潮潮喷娇喘18禁视频| av超薄肉色丝袜交足视频| 亚洲精品av麻豆狂野| 久久精品夜夜夜夜夜久久蜜豆 | 久久精品国产综合久久久| 午夜福利欧美成人| 久9热在线精品视频| 又黄又爽又免费观看的视频| 久久久久久久久久黄片| 首页视频小说图片口味搜索| 国产亚洲精品久久久久久毛片| 亚洲人成77777在线视频| √禁漫天堂资源中文www| 亚洲 国产 在线| 18美女黄网站色大片免费观看| 亚洲av中文字字幕乱码综合| 久久精品夜夜夜夜夜久久蜜豆 | 久久精品国产综合久久久| 18禁国产床啪视频网站| 99久久精品国产亚洲精品| 国产99白浆流出| 搡老妇女老女人老熟妇| 黄色a级毛片大全视频| 搡老岳熟女国产| 午夜影院日韩av| 亚洲国产精品成人综合色| 亚洲国产欧美网| 一进一出好大好爽视频| 又爽又黄无遮挡网站| 12—13女人毛片做爰片一| 岛国在线免费视频观看| 亚洲 欧美一区二区三区| 男女做爰动态图高潮gif福利片| 国内精品久久久久久久电影| 女同久久另类99精品国产91| 18禁美女被吸乳视频| 午夜精品一区二区三区免费看| 老司机靠b影院| 欧美成人性av电影在线观看| 真人做人爱边吃奶动态| 亚洲欧美日韩无卡精品| 亚洲人成电影免费在线| 欧美精品亚洲一区二区| 亚洲av电影在线进入| 久久午夜综合久久蜜桃| 搡老岳熟女国产| 亚洲成人久久爱视频| 国产精品1区2区在线观看.| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 久久欧美精品欧美久久欧美| 桃红色精品国产亚洲av| www日本在线高清视频| 麻豆国产97在线/欧美 | 777久久人妻少妇嫩草av网站| 一个人免费在线观看电影 | 99国产精品99久久久久| 日本 av在线| 女人被狂操c到高潮| 国产男靠女视频免费网站| 可以在线观看的亚洲视频| 日本撒尿小便嘘嘘汇集6| 亚洲第一欧美日韩一区二区三区| 亚洲精品在线美女| 1024视频免费在线观看| 亚洲专区国产一区二区| 欧美性猛交╳xxx乱大交人| 国产人伦9x9x在线观看| 美女午夜性视频免费| 女同久久另类99精品国产91| 老汉色av国产亚洲站长工具| 欧美大码av| 国产免费av片在线观看野外av| 亚洲男人的天堂狠狠| 亚洲自拍偷在线| 免费在线观看成人毛片| 国产精品综合久久久久久久免费| 久久午夜亚洲精品久久| 黑人巨大精品欧美一区二区mp4| 国产精品 国内视频| 女人爽到高潮嗷嗷叫在线视频| 九九热线精品视视频播放| 欧美最黄视频在线播放免费| 1024香蕉在线观看| 欧美成人免费av一区二区三区| 午夜免费成人在线视频| 成人av在线播放网站| 国产99白浆流出| 男插女下体视频免费在线播放| 又黄又爽又免费观看的视频| 免费看美女性在线毛片视频| 亚洲av片天天在线观看| 亚洲精品粉嫩美女一区| 国内精品久久久久精免费| 男女做爰动态图高潮gif福利片| 中出人妻视频一区二区| 成人三级黄色视频| 欧美丝袜亚洲另类 | 国产精品一区二区免费欧美| 国产高清激情床上av| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久,| 久久久精品国产亚洲av高清涩受| 老汉色∧v一级毛片| 午夜福利视频1000在线观看| 欧美成人午夜精品| 中国美女看黄片| 又紧又爽又黄一区二区| 国产精品久久久久久人妻精品电影| 亚洲va日本ⅴa欧美va伊人久久| 国产精品爽爽va在线观看网站| 亚洲中文日韩欧美视频| 国产一区二区激情短视频| 真人做人爱边吃奶动态| 亚洲精品国产精品久久久不卡| 夜夜躁狠狠躁天天躁| 99热只有精品国产| 两个人看的免费小视频| 亚洲激情在线av| 天堂影院成人在线观看| 在线观看舔阴道视频| 欧美精品亚洲一区二区| 男女视频在线观看网站免费 | 欧美成人性av电影在线观看| 国产精品亚洲美女久久久| 精品国产乱码久久久久久男人| 亚洲一区二区三区不卡视频| 久久久精品欧美日韩精品| 中文字幕高清在线视频| 91成年电影在线观看| 免费一级毛片在线播放高清视频| 老汉色av国产亚洲站长工具| 91老司机精品| 美女黄网站色视频| 国产人伦9x9x在线观看| 免费电影在线观看免费观看| 制服人妻中文乱码| 久久中文看片网| 成人18禁在线播放| 日韩欧美一区二区三区在线观看| 亚洲欧洲精品一区二区精品久久久| 色综合亚洲欧美另类图片| 色尼玛亚洲综合影院| 国产欧美日韩一区二区三| 午夜久久久久精精品| 18禁国产床啪视频网站| 久久国产精品人妻蜜桃| 美女高潮喷水抽搐中文字幕| 亚洲在线自拍视频| 十八禁网站免费在线| 人妻丰满熟妇av一区二区三区| 99久久精品国产亚洲精品| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| 在线观看免费午夜福利视频| 欧美+亚洲+日韩+国产| aaaaa片日本免费| 午夜福利18| 又爽又黄无遮挡网站| 五月伊人婷婷丁香| 亚洲avbb在线观看| 久久精品国产亚洲av香蕉五月| 国产片内射在线| 99热只有精品国产| xxx96com| 男女做爰动态图高潮gif福利片| 亚洲男人的天堂狠狠| 亚洲美女视频黄频| √禁漫天堂资源中文www| 国产蜜桃级精品一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲av成人av| 久久久久久久久中文| 国产精品爽爽va在线观看网站| 看黄色毛片网站| 免费观看人在逋| 精品福利观看| 在线观看免费日韩欧美大片| 我的老师免费观看完整版| 久久这里只有精品19| 成人三级黄色视频| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产清高在天天线| 精品久久久久久成人av| 国产男靠女视频免费网站| 久久这里只有精品19| 亚洲美女黄片视频| 亚洲人与动物交配视频| 精品一区二区三区视频在线观看免费| 亚洲色图 男人天堂 中文字幕| 国产精品综合久久久久久久免费| 中文字幕精品亚洲无线码一区| 日本免费一区二区三区高清不卡| 精品无人区乱码1区二区| 欧美av亚洲av综合av国产av| 亚洲男人的天堂狠狠| 免费在线观看完整版高清| 久久 成人 亚洲| 我要搜黄色片| 欧美精品亚洲一区二区| 日韩大码丰满熟妇| 999久久久国产精品视频| 成人国语在线视频| 日本 av在线| 国内精品久久久久精免费| 90打野战视频偷拍视频| 两性午夜刺激爽爽歪歪视频在线观看 | 俄罗斯特黄特色一大片| 少妇熟女aⅴ在线视频| 久久久久九九精品影院| 欧美一区二区精品小视频在线| 桃色一区二区三区在线观看| 男女下面进入的视频免费午夜| xxx96com| 国产精品日韩av在线免费观看| 欧美绝顶高潮抽搐喷水| 久久精品91无色码中文字幕| 我的老师免费观看完整版| 欧美色欧美亚洲另类二区| 午夜福利欧美成人| 天堂影院成人在线观看| 色综合站精品国产| 搞女人的毛片| 最近最新免费中文字幕在线| 老司机靠b影院| 国产成人欧美在线观看| 国产精品久久久久久精品电影| 窝窝影院91人妻| 国产伦人伦偷精品视频|