• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    內(nèi)生真菌紫杉醇生物合成的研究現(xiàn)狀與展望

    2016-09-13 08:37:04趙凱宇璐金昱言馬學(xué)玲劉丹王曉華王歆
    生物工程學(xué)報(bào) 2016年8期
    關(guān)鍵詞:趙凱紅豆杉內(nèi)生

    趙凱,宇璐,金昱言,馬學(xué)玲,劉丹,王曉華,王歆

    1 黑龍江大學(xué) 生命科學(xué)學(xué)院微生物重點(diǎn)實(shí)驗(yàn)室,黑龍江 哈爾濱 1500802 哈爾濱醫(yī)科大學(xué)附屬第四醫(yī)院 神經(jīng)內(nèi)科,黑龍江 哈爾濱 150001

    綜 述

    內(nèi)生真菌紫杉醇生物合成的研究現(xiàn)狀與展望

    趙凱1,宇璐1,金昱言1,馬學(xué)玲2,劉丹1,王曉華1,王歆1

    1 黑龍江大學(xué) 生命科學(xué)學(xué)院微生物重點(diǎn)實(shí)驗(yàn)室,黑龍江 哈爾濱 150080
    2 哈爾濱醫(yī)科大學(xué)附屬第四醫(yī)院 神經(jīng)內(nèi)科,黑龍江 哈爾濱 150001

    趙凱, 宇璐, 金昱言, 等. 內(nèi)生真菌紫杉醇生物合成的研究現(xiàn)狀與展望. 生物工程學(xué)報(bào), 2016, 32(8): 1038-1051.

    Zhao K, Yu L, Jin YY, et al. Advances and prospects of taxol biosynthesis by endophytic fungi. Chin J Biotech, 2016, 32(8): 1038-1051.

    紫杉醇是重要的抗癌藥物之一,已經(jīng)證明其對多種癌癥具有顯著療效。目前,人們主要是從紅豆杉的樹皮中提取、分離和純化紫杉醇,但由于紅豆杉為生長緩慢、散生、瀕危的珍稀植物,且隨著紫杉醇臨床用途的不斷拓寬,市場需求的穩(wěn)定增長,單純依靠從紅豆杉樹皮中提取紫杉醇已經(jīng)無法滿足日益增長的市場需求。為了解決紫杉醇的藥源不足,科學(xué)家已把目光從紅豆杉樹分離提取紫杉醇轉(zhuǎn)向了其他替代方法,如化學(xué)全合成、半合成、組織培養(yǎng)與細(xì)胞培養(yǎng)、微生物發(fā)酵法生產(chǎn)紫杉醇等。因此,了解內(nèi)生真菌紫杉醇生物合成的分子基礎(chǔ)和遺傳調(diào)控機(jī)制,對解析內(nèi)生真菌紫杉醇生物合成機(jī)制、構(gòu)建高產(chǎn)紫杉醇基因工程菌株和早日實(shí)現(xiàn)內(nèi)生真菌紫杉醇工業(yè)化生產(chǎn)具有重要的科學(xué)意義和現(xiàn)實(shí)意義。結(jié)合本課題組多年來的科研工作,概述了紅豆杉細(xì)胞紫杉醇生物合成途徑、內(nèi)生真菌發(fā)酵生產(chǎn)紫杉醇的優(yōu)勢、產(chǎn)紫杉醇內(nèi)生菌的分離研究現(xiàn)狀和生物多樣性及紫杉醇生物合成相關(guān)基因的研究現(xiàn)狀。內(nèi)生真菌生物發(fā)酵合成紫杉醇是可以無限生產(chǎn)、大量獲取紫杉醇、解決紫杉醇藥源短缺問題的很有前景的方法之一。

    內(nèi)生真菌,紫杉醇,生物合成,相關(guān)基因

    Taxol is a diterpenoid w ith anticancer activities,and was first isolated from the bark of Taxus brevifolia Nutt by Wani et al[1]. It is a natural anti-cancer drug w ith high efficiency, low toxicity,and broad-spectrum, and has been w idely used for the treatment of many malignant cancers, such as metastatic breast cancer, advanced ovarian cancer,nonsmall-cell lung cancer and Kaposi's sarcoma[2-3]. Up to now, taxol is extracted, isolated and purified mostly from the bark of Taxus species. Taxus grows very slow, sparse, and thus becomes the rare tree species; in addition, studies have showed that the taxol content in the Taxus species is fairly low. Therefore, it is very difficult to solve the taxol source if depending solely on extraction from yew. Chem ical synthesis of taxol has been also attempted,which has many disadvantages, such as complex synthesis route, uncontrollable reaction conditions, higher costs, and these lim ited the method to be used only in laboratory. In sem i-synthesis pathway, the precursors such as Baccatin Ⅲ and 10-Deacetylbaccatin Ⅲ have also to be extracted from Taxus. Plant cell culture or plant callus induction can only produce taxol at low output w ith high cost. The discovery of taxol producing endophytic fungi is a step stone towards the exploration of taxol sources. Taxol production by endophytic fungi fermentation has many advantages,including high grow th rate, short grow th period,simple medium composition, the controllable culture conditions and low costs, which therefore become the preference of the researchers. This method has now become a very effective method for exploring the taxol sources.

    The use of endophytic fungi for biosynthesis of taxol by fermentation technique has yet on the lablevel, and there is still a gap towards industry-based level. The taxol yield from the taxol-producing stain is very low, and little has been known on the molecular biological basis of taxol synthesis, which contributed to its low output. Up to now, few reports on the taxol biosynthesis-related genes by endophytic fungi have been published. This promotes great difficulties and challenges for the use of modern biotechnology to modify the low-output strain genetically, therefore obtaining the high-output strain is necessary. In this view, the understanding of the molecular basis and genetically-regulating mechanisms of taxol biosynthesis by endophytic strain w ill make it possible to modulate the taxol biosynthesis by endophytic fungi at molecular level, elucidate the mechanisms of the taxol biosynthesis by endophytic fungi and construct high-output strain genetically. This may solve the sources of taxol and realize the production at industrial levels. This review stated the biosynthesis pathway of taxol by Taxus cells, the advantages of taxol production by endophytic fungi,the present advance of the isolation and biodiversities of taxol-producing endophytic fungi,and the taxol biosynthesis-related genes.

    1 The biosynthetic pathway of taxol

    The biosynthetic pathway of taxol from Taxus cells has been elucidated nowadays, while little is known about the taxol biosynthesis by endophytic fungi. The biosynthetic pathway of taxol from Taxus cells is generally divided into three stages, that is,the synthesis of isopentenylpyrophosphate (IPP), a kind of terpene precursor, taxol carbocycle skeleton Baccatin III synthesis and taxol side chain synthesis. 1.1 Synthesis of isopentenyl pyrophosphate (IPP)

    Rohmer indicated that the biosynthesis of terpenoid involved both the mevalonate (MVA) and non-MVA (MEP) pathways[4]. Eisenreich et al proved that the taxane was synthesized by MEP pathway[5]. Both the MVA and MEP pathways were related, although the former existed in cytoplasm,and the latter existed in plasm ids. IPP synthesized from these pathways is the precursor of the tricyclic diterpene in taxol biosynthesis.

    1.2Biosynthesis of Baccatin III

    IPP and its isomer dimethyl-propenepyrophosphoric acid (DMAPP) can form geranyl-pyrophosphoric acid (GPP) through condensation reaction. GPP may transform into FPP by adding one IPP. The FPP may condense w ith the third IPP to form geranylgeranyl diphosphate (GGPP). GGPP can be catalyzed by taxol-dienecyclase for cyclization into taxa-4 (5) (12)-diene,which is the backbone of taxol-tricyclic-diterpene. This is the speed-lim iting step in taxol synthesis. Baccatin III, which is the last diterpene intermediate in taxol biosynthesis pathway and also the direct precursor of taxol biosynthesis was obtained after hydroxylation at C1, C2, C5, C7, C9,C10and C13, the formation of epoxypropane circle at C4and C5,acylation at C2, C5, C10, ketone at C9[6-9].

    1.3Synthesis of taxol side chain

    The C13side chain of taxol is the key factor for ensuring the anticancer activities of taxol. The side chain structures have greater effects on the taxol synthesis speed than that of the backbone. Therefore,the study on the biosynthetic steps of side chains may be important for increasing taxol output. Phenylalanine is a key precursor for side chain synthesis. Under the catalysis of am inomutase,α-phenylalanine can transform into β-phenylalanine,which was then transformed into phenylisoserine after hydroxylation at C2site. The phenylisoserine is the precursor of taxol C13side chain. Phenylisoserine would then interact w ith taxol backbone to produce taxol[10].

    2 Isolation of taxol-p roducing strains

    At present, great progress has been obtained in the synthesis of taxol and taxane-like compounds byfermentation using taxol and taxane-like compounds producing strain screened from yew endofungi. Stierle et al isolated Taxomyces andreanae, a taxol-producing endophytic fungus from T. brevifolia. From then on, the isolation and identification of taxol-producing endophytic fungi were carried out by many researchers. Up to now,more than 20 endophytic fungi genera have been found, which existed in many hosts, including yew,and non yew plants such as hazelnut, Wollemi and Torreya grandifolia indicating the biodiversity of taxol-producing fungi and their hosts (Table 1).

    Tab le 1 Taxol-p roducing endophytic fungi d iscovered

    續(xù)表1

    3 Advances on the taxol-biosynthesis related genes

    The study on the taxol biosynthesis pathway using Taxus cells has achieved great advances in recent years, and some of the genes encoding key enzymes have been isolated, identified and cloned (Table 2). However, there exist great differences in gene sequences encoding taxol biosynthesis between Taxus cells and endophytic fungi, which can be supported by the finding that candidate taxol biosynthetic genes from the taxol synthesizing in endophytic fungi were significantly different and had evolved independently from the host plants[53]. Up to now, few reports have been published on the isolation of taxol biosynthesis related genes from taxol-producing fungi.

    3.1Clone of taxol-biosynthesis related genes from Taxus cells

    3.1.1Taxane 14-β hyd roxylase gene

    The expression inhibition of Taxane 14-β hydroxylase gene may block the taxane pathway ofthe intermediate product to C14oxygen substitution[69]. Jennewein et al[59]cloned genes expressing Taxane 14-β hydroxylase from Taxus, and pointed out that as no substitution at C14site exists in taxol, 14-β hydroxylase can not remain in the target drug pathway, and may be related to the transduction pathway of Taxus cells. Li et al[70]inhibited Taxane 14-β hydroxylase gene expression in Taxus media effectively by using the RNAi technique, which provides theoretical basis for improving the yield of taxol.

    Tab le 2 Related enzymes of taxol biosynthesis from Taxus cells

    3.1.2Deacetyl Baccatin III-10β-O-acetyltransferase gene

    In the taxol biosynthesis pathway, Baccatin III was formed by catalyzing w ith deacetyl Baccatin III-10β-O-acetyl-transferase (DBAT). This gene was first cloned by Walker et al[62]. Cheng et al also cloned the DBAT gene from Taxus chinensis var. mairei[71].

    3.1.3Geranylgeranyl diphosphate synthase gene

    Geranylgeranyl diphosphate synthase (GGPPS)can catalyze to form Geranylgeranyl diphosphate (GGPP), which is the common precursor of diterpenes. GGPPS is the key enzyme for taxol biosynthesis. Hefner et al discovered the gene from T. canadensis, which contains 393 am ino acid residues. GGPPS can provide necessary jasmonic methyl ester, inducing T. canadensis to produce the precursors for taxol synthesis[65]. Yu et al cloned 6 full-length cDNA encoding the important taxol genes including GGPPS gene[72]. Lan et al cloned GGPPS gene from T. wallichiana[73]. Wang et al cloned full-length sequence of GGPPS gene, and proved the high homogeneity of the protein w ith other plant-derived GGPPS[74]. Our group has obtained GGPPS gene fragments from T. cuspidate,which is 371 bp, and the gene has 99 % homogeneity w ith that of GGPPS gene recorded in GenBank[72].

    3.1.4Taxadiene synthase gene

    Taxadiene synthase (TS) catalyze GGPP cyclization to form taxol-4(5),11(12)-diene, which is the backbone of taxol Tricyclic-diterpene. TS is the most important enzyme catalyzing taxol biosynthesis and the first oriental step of taxol biosynthesis,which aroused the investigator`s interest[76]. W ildung et al cloned the TS gene for the first timefrom T. brevifolia, which is 98 303 Da, containing 2 586 nucleotides-encoding ORF, and 862 am ino acid residues[77]. Liang et al cloned cDNA segments of TS gene from T. yunnanensis, w ith 98.42% identity to that reported by W ildung[78]. Xiao et al obtained the full length cDNA of TS gene from T. chinensis var. mairei[79].

    3.1.5Taxane 13α-hydroxylase gene

    Taxane 13α-hydroxylase, w ith typical features of P450, is the key enzyme in the downstream of taxol biosynthesis by Taxus cells, which catalyzes the hydroxylation of C13side chain from taxol diene-5α-itol to form taxol diene-5α,13α-diol[80]. This gene is 1 458 bp in length and has high identity w ith Taxane 10β-hydroxylase gene. The gene was firstly cloned and sequenced from Taxus cells by Jennewein et al[76]. Teng et al cloned Taxane 13α hydroxylase gene from T. cuspidate and constructed plant expression vector and transformed into tobacco[81]. Li et al[82]and Huang et al[80]cloned the gene from T. cuspidate. These studies provided molecular basis for production of taxol and its precursor using metabolic engineering.

    3.1.6Taxol diene-5α-itol-acety transferase gene

    Taxol diene-5α-itol-acetyl transferase (TAT) is composed of 439 am ino acid residues, w ith molecular weight of 50 kDa. A t pH 9.0, TAT has good affinity to taxol dienetol and acetyl CoA. TAT is acetic taxol-4(20),11(12)-diene-5α-ester w ith a very low output in Taxus cells. Therefore, the taxol synthesis efficiency can be greatly affected by this enzyme. Walker et al firstly cloned the gene, and determ ined its important role in taxol biosynthesis,which can be used as the goal of improving taxol output[63].

    3.1.74C-13 phenylpropanoidoyl CoA transferease gene

    4C-13 phenylpropanoidoyl CoA transferease (BAPT) can catalyze the formation of 3′-N-debenzoyl-taxol, which is the direct precursor of taxol biosynthesis from β-phenylalanoyl-CoA and Baccatin III. Further study should be performed to prove whether this is the lim iting step of taxol biosynthesis from yew. However, it is apparent that the enzyme used in this step is very important in taxol biosynthesis pathway. BAPT cDNA gene is 1 335 bp, encoding 445 am ino acid residues, which was first found and cloned from T. cuspidata by Walker et al[63], who also pointed out that the gene could increase taxol output, activities and watersolubility when transferred into suitable host. Han et al cloned the BAPT full-length cDNA gene of 1 456 bp from three different Taxus, and there was 97.4 % identity among these sequences[83].

    3.1.8Taxadiene 5α-hydroxylase gene

    Taxadiene 5α-hydroxylase is a multifunctional monooxygenase from m icrosome cytochrome P450. Jennewein et al clone the gene for the first time by screening cDNA library of Taxus[55].

    3.1.9Taxadiene 2α-hydroxylase gene

    Taxadiene 2α-hydroxylase gene is 1 488 bp length, encoding 495 am ino acids. As Taxadiene 2α-hydroxylase and Taxadiene 7β-hydroxylase can catalyze products from the other side to form the same products, it can be speculated that the taxolbiosynthesis may involve complicated net. Chau et al discovered and cloned the gene from Taxus[54].

    3.2Genes related to taxol-biosynthesis by endophytic fungi

    Although the study on taxol synthesis by endophytic fungi has acquired great progress, the work is still lim ited in laboratory. One reason is the low taxol output from the isolated taxol-producing endophytic fungi, making it difficult for industrial production. Therefore, the focus should be on how to increase the taxol output through endophytic fungi biosynthesis. Based on the documents reported,three ways may be used to increase the taxol output through endophytic fungi biosynthesis: firstly, the gene encoding rate-lim iting enzyme in taxol biosynthesis isolated from Taxus can be transferred into taxol-producing fungi to increase the expressionlevel of the key enzyme, and improve the taxol synthesis ability; secondly, optim ization of the fermentation culture using the metabolic engineering by filling several substances including carbon sources, nitrogen sources, precursors, inducer and the metabolic bypass inhibitors[84-85]. There are many reports using these measures on the taxol study from Taxus cells, while very few reports have been concerned w ith taxol biosynthesis by endophytic fungi fermentation. Our group has studied the factors that affect the biosynthesis of taxol from taxol-producing fungi, such as culture temperature, the initial pH of culture, the rotation speed, and dissolved oxygen, and then determ ined the optimal fermentation conditions. Our group has also studied the effects of adding different concentrations of carbon sources, nitrogen sources, precursors, inducers, the metabolic bypass inhibitors and their synergism on the metabolic regulation during the biosynthesis of taxol from taxol-producing fungi, and we have obtained the optimal medium composition[86]. Thirdly, the genes encoding key enzymes isolated from taxol-producing fungi may be induced into the m icrobes, and construct new taxol-high output engineered strain to produce taxol using other fungi, bacteria or even yeast. However, there is no report on the taxol biosynthesis-related genes from N. sylviforme. Our group has also constructed the differential expression cDNA subtracting library of taxol-high output engineered strain and starting strain w ith a low output of taxol, cDNA library of taxol synthesis period subsidizing non-synthesis period of taxol-producing strain, high ratio full-length cDNA library and its genetic transformed system w ith high efficiency, screened the mutants contributing taxol-output changes, isolated seven taxol synthesis related genes by N. sylviforme,which were genes encoding diterpene synthetase,diterpene-5α-hydroxylase, GGPP synthetase, taxane-10β-hydroxylase, diterpene-5α-itol-acetyl transferase,taxane-2α-hydroxylase, taxane-13α-hydroxylase,respectively. These works may provide new insight into constructing high-output taxol geneticengineering fungi by inducing the genes encoding the enzyme used for taxol biosynthesis by taxol-producing fungi through gene over-expression into m icrobes. And the study also provides a way for elucidating the taxol biosynthesis pathway by endophytic fungi and its biosynthesis mechanisms.

    4 Prospective

    It is possible to construct genetic-engineering strain w ith high yield of taxol, w ith the deep understanding of the screening of the taxol-synthesis related genes from endophytic fungi and the analysis of their functions. Simultaneously, using the constructed genetic-engineering strain w ith high yield of taxol as starting strain, the metabolic pathway and its mechanisms of biosynthesis of the genetic-engineered strain w ith high yield of taxol would be elucidated through classic methods for metabolic study such as inducer addition, resting cell,isotope tracer, blocked mutant, and mRNA differential display, transcription sequencing and protein expression differential analysis technique. It is believed that taxol production in large scale by taxol-producing endophytic fungi fermentation must be a leading direction, which would solve the taxol shortage and reduce the cost. This technique would become the important pathway for taxol resources.

    On the other hand, w ith the developing of technology, many new research methods and ideas have been applied in the study of taxol production,such as high-throughput amplicon sequencing and ecological method[53, 87-89]. These results reveal that taxol biosynthetic pathway may differ between these m icrobes and Taxus, indicating that taxol biosynthesis in Taxus root endophytes may have evolved independently. These results also suggest that diversity of endophytes in Taxus is rich and the resident fungi w ithin a host plant interact w ith one another to stimulate taxol biosynthesis, eitherdirectly or through their metabolites and the endophyte secondary metabolism should be studied in the context of its native ecosystem.

    REFERENCES

    [1] Wani MC, Taylor HL, Wall ME, et al. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukem ic and antitumor agent from Taxus brevifolia. J Am Chem Soc, 1971,93(9): 2325-2327.

    [2] Sun L, Simmerling C, Ojima I. Recent advances in the study of the bioactive conformation of taxol. ChemM edChem, 2009, 4(5): 719-731.

    [3] M ekhail TM, M arkman M. Paclitaxel in cancer therapy. Expert Opin Pharmacother, 2002, 3(6): 755-766.

    [4] Rohmer M, Knani M, Simonin P, et al. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J, 1993, 295(pt 2): 517-524.

    [5] Eisenreich W, Menhard B, Hylands PJ, et al. Studies on the biosynthesis of taxol: the taxane carbon skeleton is not of mevalonoid origin. Proc Natl Acad Sci USA, 1996, 93(13): 6431-6436.

    [6] Kong JQ, Wang W, Zhu P, et al. Recent advances in the biosynthesis of taxol. Acta Pharm Sin,2007, 42(4): 358-365 (in Chinese).

    孔建強(qiáng), 王偉, 朱平, 等. 紫杉醇生物合成的研究進(jìn)展. 藥學(xué)學(xué)報(bào), 2007, 42(4): 358-365.

    [7] Xiong ZQ, Yang YY, Zhao N, et al. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC M icrobiol, 2013, 13: 71.

    [8] Lee YH, Lee YR, Kim KH, et al. Baccatin III, a synthetic precursor of taxol, enhances MHC-restricted antigen presentation in dendritic cells. Int Immunopharmacol, 2011, 11(8): 985-991.

    [9] Liu WH, Yao B, Zhu SQ, et al. Advances in studies on biosynthetic pathway of taxol precursor and its correlative biotechnology. Chin Tradit Herb Drugs, 2009, 40(8): 1327-1331 (in Chinese).

    劉萬宏, 姚波, 祝順琴, 等. 紫杉醇前體生物合成途徑及生物技術(shù)研究進(jìn)展. 中草藥, 2009,40(8): 1327-1331.

    [10] Jiang M, Stephanopoulos G, Pfeifer BA. Downstream reactions and engineering in the m icrobially reconstituted pathway for taxol. Appl M icrobiol Biotechnol, 2012, 94(4): 841-849.

    [11] Strobel G, Yang XS, Sears J, et al. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. M icrobiology, 1996,142(2): 435-440.

    [12] Venkatachalam R, Subban K, Paul M J. Taxol from Botryodiplodia theobromae (BT 115)-an endophytic fungus of Taxus baccata. J Biotechnol,2008, 136(S): S189-S190.

    [13] M irjalili MH, Farzaneh M, Bonfill M, et al. Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran. FEMS M icrobiol Lett, 2012,328(2): 122-129.

    [14] Zhou DP, Sun JQ, Yu HY, et al. Nodulisporium, a genus new to China. M ycosystema, 2001, 20(2): 148-149.

    [15] Ge QP, Ping WX, Ma X, et al. Identification of taxol-producing strain HU1353. J M icrobiol,2004, 24(3): 19-21 (in Chinese).

    葛菁萍, 平文祥, 馬璽, 等. 紫杉醇產(chǎn)生菌HU1353 的鑒定. 微生物學(xué)雜志, 2004, 24(5): 19-21.

    [16] Wang Y, Ma X, Ping WX, et al. A new species of Botrytis. J Fungal Res, 2006, 4(4): 62-64 (in Chinese).

    王穎, 馬璽, 平文祥, 等. 葡萄抱屬一新種菌物研究. 菌物研究, 2006, 4 (4): 62-64.

    [17] Zhao K, Sun LX, M a X, et al. Improved taxol production in Nodulisporium sylviforme derived from inactivated protoplast fusion. A fr J Biotechnol, 2011, 10(20): 4175-4182.

    [18] Zhao K, Zhao LF, Jin YY, et al. Isolation of a taxol-producing endophytic fungus and inhibitingeffect of the fungus metabolites on HeLa cell. M ycosystema, 2008, 27(5): 735-744 (in Chinese).

    趙凱, 趙立斐, 金媛媛, 等. 一株產(chǎn)紫杉醇內(nèi)生真菌的分離及其代謝產(chǎn)物抑制HeLa細(xì)胞生長作用. 菌物學(xué)報(bào), 2008, 27(5): 735-744.

    [19] Zhao K, Ping WX, Li Q, et al. Aspergillus niger var. taxi, a new species variant of taxol-producing fungus isolated from Taxus cuspidata in China. J Appl M icrobiol, 2009, 107(4): 1202-1207.

    [20] Kumaran RS, Hur BK. Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol Appl Biochem, 2009, 54(1): 21-30.

    [21] Chen YJ, Zhang Z, Wang Y, et al. Screening endophytic fungus to produce taxol from Taxus Yunnanensis. Biotechnology, 2003, 13(2): 10-11 (in Chinese).

    陳毅堅(jiān), 張灼, 王艷. 云南紅豆杉 (Taxus yunnanensis) 內(nèi)生真菌中產(chǎn)紫杉醇真菌的篩選.生物技術(shù), 2003, 13(2): 10-11.

    [22] Chen JH, Liu JJ, Zang GG, et al. Screening of taxol producing endophytic fungi and regulation of fermentation conditions. J Cent South Univ: Nat Sci, 2004, 35(1): 65-69 (in Chinese).

    陳建華, 劉佳佳, 臧鞏固, 等. 紫杉醇產(chǎn)生菌的篩選與發(fā)酵條件的控制. 中南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2004, 35(1): 65-69.

    [23] Zhang P, Liu B, Zhou PP, et al. Isolation and identification of a taxol-producing endophytic fungus YN6. Chin J Biochem M ol Biol, 2011,27(10): 961-967 (in Chinese).

    張鵬, 劉博, 周蓬蓬, 等. 一株產(chǎn)紫杉醇內(nèi)生真菌YN6 的分離及鑒定. 中國生物化學(xué)與分子生物學(xué)報(bào), 2011, 27(10): 961-967.

    [24] Jin R, Kang JC, Wen TC, et al. A study on optimal fermentation of an endophytic fungus producing taxol. M ycosystema, 2011, 30(2): 235-241 (in Chinese).

    靳瑞, 康冀川, 文庭池, 等. 一株產(chǎn)紫杉醇內(nèi)生真菌液體發(fā)酵工藝的優(yōu)化. 菌物學(xué)報(bào), 2011,30(2): 235-241.

    [25] Geng Z, Liu KH, Zhao YX, et al. Isolation, identification of an endophytic taxol-producing fungus obtained from Taxus Chinensis. M icrobiol China, 2010, 37(2): 199-203 (in Chinese).

    耿直, 劉開輝, 趙赟鑫, 等. 一株產(chǎn)紫杉醇中國紅豆杉內(nèi)生真菌的分離和鑒定. 微生物學(xué)通報(bào),2010, 37(2): 199-203.

    [26] Li Q, Ji GS, Zhu J, et al. Isolation and identification of a strain BJ-11 which can produce taxol using cellulose. J Jiangsu Univ Sci Tech: Nat Sci Ed, 2012, 26(6): 611-614 (in Chinese).

    李強(qiáng), 季更生, 朱婧, 等. 一株利用纖維素產(chǎn)紫杉醇菌株 BJ-11的分離鑒定. 江蘇科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2012, 6: 611-614.

    [27] Liu KH, Ding XW, Deng BW, et al. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind M icrobiol Biotechnol, 2009, 36(9): 1171-1177.

    [28] Wang JF, Li GL, Lu HY, et al. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS M icrobiol Lett, 2000,193(2): 249-253.

    [29] Chen SJ, Liu JJ, Gong HX, et al. Identification and antibacterial activity of secondary metabolites from Taxus endophytic fungus. Chin J Biotech,2009, 25(3): 368-374 (in Chinese).

    陳淑娟, 劉佳佳, 龔漢祥, 等. 紅豆杉內(nèi)生真菌次生代謝物的分離鑒定及其抗菌活性分析. 生物工程學(xué)報(bào), 2009, 25(3): 368-374.

    [30] Yu Y, Hu CH. Separation and identification of a new Taxus chinensis var. mairei endophytic fungus (Bionectria sp.) and the activity of its metabolites. J Southwest Univ: Nat Sci Ed, 2007, 29(6): 131-135 (in Chinese).

    余艷, 胡昌華. 南方紅豆杉內(nèi)生真菌 Bionectria sp.的分離、鑒定及代謝產(chǎn)物活性研究. 西南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2007, 29(6): 131-135.

    [31] Lu LY, Qin Z, Xu JK, et al. Production of taxol by an endophytic fungus isolated from Taxus chinensis var. Mairei. Chin Med Biotechnol, 2010, 5(3): 202-207 (in Chinese).

    盧陸洋, 秦竹, 徐金庫, 等. 一株產(chǎn)紫杉醇內(nèi)生真菌的分離及其代謝產(chǎn)物的研究. 中國醫(yī)藥生物技術(shù), 2010, 5(3): 202-207.

    [32] Ai HX, Feng YK, Zhu CY, et al. Isolation and identification of a taxol-producing endophytic fungus LNUF014. J M icrobiol, 2010, 30(4): 58-62 (in Chinese).

    艾海新, 馮玉康, 朱春玉, 等.1株產(chǎn)紫杉醇內(nèi)生真菌LNUF014的鑒定及產(chǎn)物檢測. 微生物學(xué)雜志, 2010, 30(4): 58-62.

    [33] Hu K, Tan F, Tang KX, et al. Isolation and screening of endophytic fungi synthesizing taxol from Taxus chinensis var. mairei. J Southwest China Normal Univ: Nat Sci, 2006, 31(1): 134-137 (in Chinese).

    胡凱, 談鋒, 唐克軒, 等. 南方紅豆杉中產(chǎn)紫杉醇內(nèi)生真菌的分離和篩選西南師范大學(xué)學(xué)報(bào):自然科學(xué)版, 2006, 31(1): 134-137.

    [34] Tian RP, Yang Q, Zhou GL, et al. Taxonom ic study on a taxol producing fungus isolated from bark of Taxus chinensis var. mairei. J Wuhan Bot Res, 2006, 24(6): 541-545 (in Chinese).

    田仁鵬, 楊橋, 周國玲, 等. 一株產(chǎn)紫杉醇的南方紅豆杉內(nèi)生真菌的分離及分類研究. 武漢植物學(xué)研究, 2006, 24(6): 541-545.

    [35] Cheng L, Ma QM, Tao GJ, Tao WY, Wang RM,Yang J, Guo XL. Systematic identification of a paclitaxel-producing endofungus. Ind M icrobiol,2007, 37(4): 23-30 (in Chinese).

    程龍, 馬奇明, 陶冠軍, 等. 一株產(chǎn)紫杉醇的絲狀真菌的系統(tǒng)分類鑒定. 工業(yè)微生物, 2007,37(4): 23-30.

    [36] Li JL. Studies on the taxol-producing of Taxus endophytic fungus. Harbin: Northeast Agricultural University, 2006: 17-20 (in Chinese).

    李嘉琳. 產(chǎn)紫杉醇的紅豆杉內(nèi)生真菌研究. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2006.

    [37] Zhang P, Zhou PP, Yu LJ. An endophytic taxol-producing fungus from Taxus x media,Aspergillus candidus MD3. FEMS M icrobiol Lett,2009, 293(2): 155-159.

    [38] Zhang P, Zhou PP, Yu LJ. An endophytic taxol-producing fungus from Taxus media,Cladosporium cladosporioides MD2. Curr M icrobiol, 2009, 59(3): 227-232.

    [39] Li TQ, Zhang ZJ, Zhang P, et al. Isolation and identification of a taxol-producing endophytic fungus identified from Taxus media. Agric Sci Technol, 2010, 11(5): 38-40, 68.

    [40] M iao LY, Zhang P, Liu B, et al. Isolation and identification of a taxol-producing endophytic fungus Z58. Chin J Biochem Mol Biol, 2012,28(12): 1141-1146 (in Chinese).

    苗莉云, 張鵬, 劉博, 等. 產(chǎn)紫杉醇內(nèi)生真菌Z58 的分離和鑒定. 中國生物化學(xué)與分子生物學(xué)報(bào), 2012, 28(12): 1141-1146.

    [41] Zhang P, Liu B, Xu M, et al. Isolation and identification of a taxol-producing endophytic fungus O60B1. Hubei Agric Sci, 2012, 51(23): 5315-5317, 5323 (in Chinese).

    張鵬, 劉博, 徐曼, 等. 產(chǎn)紫杉醇內(nèi)生真菌O60B1的分離及鑒定. 湖北農(nóng)業(yè)科學(xué), 2012,51(23): 5315-5312.

    [42] Dai WL, Tao WY. Prelim inary study on fermentation conditions of taxol-producing endophytic fungus. Chem Ind Eng Prog, 2008,27(6): 883-886, 891 (in Chinese).

    代文亮, 陶文沂. 一株紫杉醇產(chǎn)生菌發(fā)酵條件的初步研究. 化工進(jìn)展, 2008, 27(6): 883-891.

    [43] Li JY, Strobel G, Sidhu R, et al. Endophytic taxol-producing fungi from bald cypress,Taxodium distichum. M icrobiology, 1996, 142(8): 2223-2236.

    [44] Sun DF, Ran XQ, Wang JF. Isolation and identification of a taxol-producing endophytic fungus from Podocarpus. Acta M icrobiol Sin,2008, 48(5): 589-595 (in Chinese).

    孫端方, 冉雪琴, 王嘉福. 一株產(chǎn)紫杉醇羅漢松內(nèi)生真菌的分離和鑒定. 微生物學(xué)報(bào), 2008,48(5): 589-595.

    [45] Gangadevi V, M uthumary J. A novel endophytic taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Appl Biochem Biotechnol, 2009, 158(3): 675-684.

    [46] Kumaran RS, Muthumary J, Hur BK. Taxol fromPhyllosticta citricarpa, a leaf spot fungus of the angiosperm Citrus medica. J Biosci Bioeng, 2008,106(1): 103-106.

    [47] Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science, 1993,260(5105): 214-216.

    [48] Gangadevi V, Muthumary J. Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol Appl Biochem, 2009, 52(1): 9-15.

    [49] Kumaran RS, Muthumary J, Hur BK. Isolation and identification of an anticancer drug, taxol from Phyllosticta tabernaemontanae, a leaf spot fungus of an angiosperm, Wrightia tinctoria. J M icrobiol, 2009, 47(1): 40-49.

    [50] Kumaran RS, Choi YK, Lee S, et al. Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. A fr J Biotechnol, 2012, 11(4): 950-960.

    [51] Garyali S, Kumar A, Reddy MS. Taxol production by an endophytic fungus, Fusarium redolens,isolated from Himalayan yew. J M icrobiol Biotechnol, 2013, 23(10): 1372-1380.

    [52] Yang YF, Zhao HN, Barrero RA, et al. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom ics, 2014, 15(1): 69.

    [53] Zhang Q, Liu HW, Sun GL, et al. Baseline survey of root-associated m icrobes of Taxus chinensis (Pilger) Rehd. PLoS ONE, 2015, 10(3): e0123026.

    [54] Chau M, Croteau R. M olecular cloning and characterization of a cytochrome P450 taxoid 2α-hydroxylase involved in Taxol biosynthesis. A rch Biochem Biophys, 2004, 427(1): 48-57.

    [55] Jennewein S, Long RM, W illiams RM, et al. Cytochrome p450 Taxadiene 5α-hydroxylase, a mechanistically unusual monooxygenas catalyzing the first oxygenation step of Taxol biosynthesis. Chem Biol, 2004, 11(3): 379-387.

    [56] Jennewein S, Rithner CD, W illiams RM, et al. Taxol biosynthesis: taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA, 2001, 98(24): 13595-13600.

    [57] Chau M, Jennewein S, Walker K, et al. Taxol biosynthesis: molecular cloning and characterization of a cytochrome P450 taxoid 7β-hydroxylase. Chem Biol, 2004, 11(5): 663-672.

    [58] Schoendorf A, Rithner CD, W illiams RM, et al. Molecular cloning of a cytochrome P450 taxane10β-hydroxylase cDNA from Taxus and functional expression in yeast. Proc Natl Acad Sci USA, 2001, 98(4): 1501-1506.

    [59] Jennewein S, Rithner CD, W illiams RM, et al. Taxoid metabolism: taxoid 14β-hydroxylase is a cytochrome P450-dependent monooxygenase. Arch Biochem Biophys, 2003, 413(2): 262-270.

    [60] Walker K, Schoendorf A, Croteau R. Molecular cloning of a taxa-4(20), 11(12)-dien-5α-ol-O-acetyl transferase cDNA from Taxus and functionalexpression in Escherichia coli. A rch Biochem Biophysics, 2000, 374(2): 371-380.

    [61] Jennewein S, W ildung MR, Chau M, et al. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci USA,2004, 101(24): 9149-9154.

    [62] Walker K, Croteau R. Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proc Natl Acad Sci USA, 2000,97(2): 583-587.

    [63] Walker K, Fujisaki S, Long R, et al. Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in Taxol biosynthesis. Proc Natl Acad Sci USA, 2002, 99(20): 12715-12720.

    [64] Walker K, Long R, Croteau R. The final acylation step in Taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus.Proc Natl Acad Sci USA, 2002, 99(14): 9166-9171.

    [65] Hefner J, Ketchum REB, Croteau R. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for Taxol production. Arch Biochem Biophys, 1998, 360(1): 62-74.

    [66] W alker K, Croteau R. Taxol biosynthesis: molecular cloning of a benzoyl-CoA: taxane 2α-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli. Proc Natl Acad Sci USA, 2000, 97(25): 13591-13596.

    [67] Dai YL, Qin QL, Dai DL, et al. Isolation and characterization of a novel cDNA encoding methyl jasmonate-responsive transcription factor TcAP2 from Taxus cuspidata. Biotechnol Lett,2009, 31(11): 1801-1809.

    [68] Liao ZH, Tan QM, Chai YR, et al. Cloning and characterisation of the gene encoding HMG-CoA reductase from Taxus media and its functional identification in yeast. Funct Plant Biol, 2004,31(1): 73-81.

    [69] Nims E, Dubois CP, Roberts SC, et al. Expression pro fi ling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab Eng, 2006, 8(5): 385-394.

    [70] Li FL. Studies on regulation of the gene expression of taxoid 13α-, 14β-hydroxylase and analysis of protein profile in Taxus sp. cells treated w ith methyl jasmonate [D]. Beijing: Chinese Academy of M edical Science and Peking Uion M edical College, 2009 (in Chinese).

    李鳳嵐. 紅豆杉紫杉烷13α-,14β-羥基化酶基因調(diào)控及茉莉酸甲酯誘導(dǎo)下的蛋白表達(dá) [D]. 北京:中國協(xié)和醫(yī)學(xué)院, 2009.

    [71] Cheng SJ, Huang SJ, Guo LQ, et al. Cloning and sequence analysis of 10-deacetylbaccatin-10-O-acetyl transferase gene from Taxus chinensis var. mairei. Biotechnol Bull, 2011, (1): 107-112 (in Chinese).

    程抒劼, 黃仕杰, 郭麗瓊, 等. 南方紅豆杉 10-去乙酰巴卡亭Ⅲ -10-乙酰轉(zhuǎn)移酶基因的克隆與生物信息學(xué)分析. 生物技術(shù)訊, 2011, 22(22): 107-110.

    [72] Yu XL. Molecular cloning of genes coding enzymes in the upstream biosynthesis pathway of taxol [D]. Tianjin: Tianjin University, 2004 (in Chinese).

    于湘莉. 紫杉醇生物合成上游途徑中重要酶基因克隆 [D]. 天津: 天津大學(xué), 2004.

    [73] Lan XZ, Sun M. Cloning and characterization of the geranylgeranyl diphosphate synthase gene in Taxus walliciana. J Southwest Agri Univ: Nat Sci,2006, 28(4): 537-543 (in Chinese).

    蘭小中, 孫敏. 紅豆杉香葉基香葉基焦磷酸合成酶基因克隆分析. 西南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2006,28(4): 537-43.

    [74] Wang YC. Genetic transformation of Taxol-producing endophytic fungi and molecular cloning of genes involved in Taxol biosynthesis pathway[D]. Shanghai: Shanghai Jiao Tong University, 2007 (in Chinese).

    汪業(yè)春. 產(chǎn)紫杉醇內(nèi)生真菌的遺傳轉(zhuǎn)化及紫杉醇合成途徑相關(guān)基因的克隆[D]. 上海: 上海交通大學(xué), 2007.

    [75] Wang X, Xiao Y, Liu D, et al. Cloning the cDNA fragment of GGPPS gene from Taxus cuspidata. J Natl Sci Heilongjiang Univ, 2012, 29(4): 536-540 (in Chinese).

    王歆, 肖野, 劉丹. 東北紅豆杉細(xì)胞 GGPPS基因cDNA的克隆. 黑龍江大學(xué)學(xué)報(bào), 2012, 29(4): 536-540.

    [76] Chow SY, W illiams HJ, Pennington JD, et al. Studies on taxadiene synthase: interception of the cyclization cascade at the verticillene stage and rearrangement to phomactatriene. Tetrahedron,2007, 63(27): 6204-6209.

    [77] W ildung MR, Croteau R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the comm itted step of taxol biosynthesis. J Biol Chem, 1996, 271(16): 9201-9204.

    [78] Liang SY, He LG, Zheng XQ. Cloning,sequencing and plant vector construction of a taxadiene synthase gene of Taxus yunnanensis. Life Sci Res, 2005, 9(1): 24-28.

    [79] Xiao Y, Zhao D, W ang G. cDNA cloning of taxadiene synthase functioning in Taxol biosynthesis. Sci Agri Sin, 2006, 39(10): 2138-2146 (in Chinese).

    肖穎, 趙冬, 王剛. 紫杉醇合成途徑中紫杉烯合成酶 cDNA 的克隆. 中國農(nóng)業(yè)科學(xué), 2006,39(10): 2138-2146.

    [80] Huang SJ, Cheng SJ, Guo XY, Xin YH, et al. Cloning and sequence analysis of taxane 13α-hydroxylase gene from Taxus chinensis var. mairei. Biotechnology, 2010, 20(6): 10-14 (in Chinese).

    黃仕杰, 程抒劼, 郭心悅, 等. 南方紅豆杉紫杉烷 13α-羥化酶基因的克隆及序列分析. 生物技術(shù), 2010, 20(6): 10-14.

    [81] Teng W J. Study on cloning, expression and regualtion of taxane 13α-hydroxylase from Taxus. Beijing: Chinese Academy of Forestry, 2008 (in Chinese).

    滕文靜. 紅豆杉紫杉烷 13a-羥基化酶基因的克隆及表達(dá)調(diào)控的研究. 北京: 中國林業(yè)科學(xué)研究院, 2008.

    [82] Li FL, Qiu DY, Ma XJ, et al. Suppression of taxoid 14β-hydroxylase gene expression in Taxus x media via RNA interference. China Biotechnol, 2009,29(5): 55-60 (in Chinese).

    李鳳嵐, 邱德有, 馬小軍. 利用 RNAi抑制曼地亞紅豆杉細(xì)胞紫杉烷 14β-羥基化酶基因的表達(dá).中國生物工程雜志, 2009, 29(5): 55-60.

    [83] Han L, Hu YL, Zhu JB, et al. Cloning and analysis of BAPT gene from three different Taxus. J Shihezi Univ: Nat Sci, 2008, 26(5): 562-565 (in Chinese).

    韓麗, 胡鳶雷, 祝建波. 三種紅豆杉BAPT 基因的克隆及序列分析. 石河子大學(xué)學(xué)報(bào): 自然科學(xué)版, 2008, 26(5): 562-565.

    [84] Zhao K, Ping WX, Zhou DP. Recent advance and prospect on taxol production by endophytic fungus fermentation-a review. Acta M icrobiol Sin,2008, 48(3): 403-407 (in Chinese).

    趙凱, 平文祥, 周東坡. 內(nèi)生真菌發(fā)酵生產(chǎn)紫杉醇的研究現(xiàn)狀與展望. 微生物學(xué)報(bào), 2008, 48(3): 403-407.

    [85] Zhao K, Sun LX, Wang X, et al. Screening of high taxol producing fungi by mutagenesis and construction of subtracted cDNA library by suppression subtracted hybridization for differentially expressed genes. Acta M icrobiol Sin,2011, 51(7): 923-933 (in Chinese).

    趙凱, 孫立新, 王旋, 等. 高產(chǎn)紫杉醇菌株的誘變選育及其差異表達(dá)基因消減 cDNA文庫的構(gòu)建. 微生物學(xué)報(bào), 51(7): 923-933.

    [86] Zhao K, Zhou DP, Wang W. Effects of medium components on taxol production of Nodulisporium sylviforme. J Fungal Res, 2003, 1(1): 24-27 (in Chinese).

    趙凱, 周東坡, 王偉. 培養(yǎng)基組成對樹狀多節(jié)孢(Nodulisporium sylviforme) 紫杉醇產(chǎn)量的影響.菌物研究, 2003, 1 (1): 24-27.

    [87] Soliman SSM, Raizada MN. Interactions between co-habitating fungi elicit synthesis of taxol from an endophytic fungus in host Taxus plants. Front M icrobiol, 2013, 4: 1-14.

    [88] Kusari S, Singh S, Jayabaskaran C. Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol, 2014, 32(6): 297-303.

    [89] Kusari S, Singh S, Jayabaskaran C. Rethinking production of Taxol?(paclitaxel) using endophyte biotechnology. Trends Biotechnol, 2014, 32(6): 304-311.

    (本文責(zé)編 陳宏宇)

    December 9, 2015; Accepted: January 19, 2016

    Xin Wang. Tel: +86-451-86608586; Fax: +86-451-86609016; E-mail: tianronghaise@126.com

    Advances and prospects of taxol biosynthesis by endophytic fungi

    Kai Zhao1, Lu Yu1, Yuyan Jin1, Xueling M a2, Dan Liu1, Xiaohua Wang1, and Xin Wang1

    1 Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, Heilongjiang, China
    2 Department of Neurosurgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China

    Taxol is one of the most important chemotherapeutic drugs against cancer. Taxol has been mainly extracted from the bark of yew s for a long time. However, methods for the extraction of taxol from the bark of Taxus species were inefficient and environmentally costly. As a result of the high ecological toll exacted on trees w ith the potential for Pacific yew extinction, investigators began to look for other methods of taxol production. Recently, increasing efforts have been made to develop alternative means of taxol production, such as using complete chem ical synthesis, sem i-synthesis, Taxus spp. plant cell culture and m icrobe fermentation. Using m icrobe fermentation in the production of taxol would be a very prospective method for obtaining a large amount of taxol. Therefore, it is necessary to understand the molecular basis and genetic regulation mechanisms of taxol biosynthesis by endophytic fungi, which may be helpful to construct the genetic engineering strain w ith high taxol output. In this paper, the taxol biosynthesis pathway from Taxus cells and the advantages of taxol biosynthesis by endophytic fungi were discussed. The study on the isolation and biodiversity of taxol-producing endophytic fungi and the taxol biosynthesis related genes are also discussed.

    endophytic fungi, taxol, biosynthesis, related genes

    Supported by: National Natural Science Foundation of China (No. 31270130), Program for New Century Excellent Talents in University (No. NCET-12-0707), Technological Innovation Talent of Special Funds for Outstanding Subject Leaders in Harbin (No. 2014RFXXJ081).

    國家自然科學(xué)基金 (No. 31270130),教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃 (No. NCET-12-0707),哈爾濱市科技創(chuàng)新人才研究專項(xiàng)資金(優(yōu)秀學(xué)科帶頭人) 項(xiàng)目 (No. 2014RFXXJ081) 資助。

    網(wǎng)絡(luò)出版時(shí)間:2016-03-17 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.1998.Q.20160317.1020.002.html

    猜你喜歡
    趙凱紅豆杉內(nèi)生
    為什么紅豆杉的果子不能吃?
    A Characterization of the Anisotropic Besov and Triebel-Lizorkin Spaces
    Magnetic probe diagnostics of nonlinear standing waves and bulk ohmic electron power absorption in capacitive discharges
    Calderón-Zygmund Operators and Commutators on Morrey-Herz Spaces with Non-Homogeneous Metric Measure
    植物內(nèi)生菌在植物病害中的生物防治
    內(nèi)生微生物和其在作物管理中的潛在應(yīng)用
    “黨建+”激活鄉(xiāng)村發(fā)展內(nèi)生動(dòng)力
    Fractional Integral Operators with Variable Kernels Associate to Variable Exponents
    授人以漁 激活脫貧內(nèi)生動(dòng)力
    紅豆杉
    西江月(2018年5期)2018-06-08 05:47:42
    午夜福利乱码中文字幕| 欧美精品av麻豆av| 女人爽到高潮嗷嗷叫在线视频| 女性被躁到高潮视频| 久久久久久久国产电影| 成人午夜精彩视频在线观看| 国产精品.久久久| 欧美日韩亚洲综合一区二区三区_| 色精品久久人妻99蜜桃| 亚洲国产av新网站| 搡老乐熟女国产| 大片免费播放器 马上看| av女优亚洲男人天堂| 日韩中文字幕欧美一区二区 | 晚上一个人看的免费电影| 伊人久久大香线蕉亚洲五| 欧美人与善性xxx| 男女之事视频高清在线观看 | 国产极品天堂在线| 十分钟在线观看高清视频www| 搡老乐熟女国产| av电影中文网址| 亚洲欧美激情在线| 考比视频在线观看| 欧美xxⅹ黑人| 日本一区二区免费在线视频| 亚洲av电影在线观看一区二区三区| 丰满迷人的少妇在线观看| 亚洲欧美成人综合另类久久久| 操出白浆在线播放| 最近最新中文字幕免费大全7| 日日摸夜夜添夜夜爱| 超碰97精品在线观看| 美女中出高潮动态图| 国产在线免费精品| 免费人妻精品一区二区三区视频| 国产一区二区 视频在线| 超碰成人久久| 亚洲伊人色综图| 久热这里只有精品99| 男女之事视频高清在线观看 | 国产一区二区激情短视频 | 国产成人一区二区在线| 免费女性裸体啪啪无遮挡网站| 亚洲精品久久久久久婷婷小说| 一区二区av电影网| 女人爽到高潮嗷嗷叫在线视频| 老汉色∧v一级毛片| 青春草视频在线免费观看| 九草在线视频观看| 大香蕉久久成人网| 美女扒开内裤让男人捅视频| 久久人人爽人人片av| 精品亚洲成国产av| 久久精品人人爽人人爽视色| 观看av在线不卡| 在线观看国产h片| 国语对白做爰xxxⅹ性视频网站| 国产成人欧美| 高清视频免费观看一区二区| 超色免费av| 亚洲欧洲精品一区二区精品久久久 | 精品国产一区二区久久| 黄色毛片三级朝国网站| 热re99久久精品国产66热6| 尾随美女入室| 亚洲av国产av综合av卡| 亚洲国产中文字幕在线视频| 老司机亚洲免费影院| 国产精品麻豆人妻色哟哟久久| 啦啦啦 在线观看视频| 亚洲av国产av综合av卡| 亚洲精品国产色婷婷电影| 校园人妻丝袜中文字幕| 999久久久国产精品视频| 亚洲精华国产精华液的使用体验| 男女边摸边吃奶| 国产成人欧美在线观看 | 天天躁日日躁夜夜躁夜夜| 午夜激情av网站| 日韩 亚洲 欧美在线| 熟妇人妻不卡中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久久久久免费av| 日本vs欧美在线观看视频| 人人妻人人添人人爽欧美一区卜| 欧美激情极品国产一区二区三区| 成人手机av| 久久久国产一区二区| 午夜日韩欧美国产| 欧美精品高潮呻吟av久久| 女性生殖器流出的白浆| 免费观看a级毛片全部| 男女国产视频网站| 在线 av 中文字幕| 精品一品国产午夜福利视频| 中文天堂在线官网| av网站在线播放免费| 国产老妇伦熟女老妇高清| 乱人伦中国视频| 国产精品二区激情视频| 日韩av在线免费看完整版不卡| 亚洲免费av在线视频| 女人爽到高潮嗷嗷叫在线视频| 在线亚洲精品国产二区图片欧美| 亚洲国产日韩一区二区| 欧美日韩福利视频一区二区| 两个人看的免费小视频| 韩国精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 少妇人妻 视频| 黑人欧美特级aaaaaa片| www.自偷自拍.com| 大陆偷拍与自拍| 少妇被粗大猛烈的视频| 久久午夜综合久久蜜桃| 自线自在国产av| 欧美激情极品国产一区二区三区| 又大又黄又爽视频免费| 91精品国产国语对白视频| 久久精品国产a三级三级三级| 免费在线观看完整版高清| 国产精品国产三级专区第一集| 最近最新中文字幕免费大全7| 男人爽女人下面视频在线观看| 国产成人系列免费观看| 美女脱内裤让男人舔精品视频| 少妇人妻 视频| 9色porny在线观看| 男女午夜视频在线观看| 国产av精品麻豆| 一区二区av电影网| 一级毛片我不卡| 晚上一个人看的免费电影| 午夜福利免费观看在线| 99久久精品国产亚洲精品| 卡戴珊不雅视频在线播放| 午夜精品国产一区二区电影| 久久久国产精品麻豆| 最近最新中文字幕免费大全7| 咕卡用的链子| 99久久人妻综合| 日韩熟女老妇一区二区性免费视频| 街头女战士在线观看网站| av在线播放精品| 欧美 日韩 精品 国产| 久久精品国产亚洲av涩爱| 国产精品无大码| 人人妻人人添人人爽欧美一区卜| 亚洲综合精品二区| 亚洲男人天堂网一区| 久久久久精品久久久久真实原创| 最近手机中文字幕大全| 波多野结衣av一区二区av| 欧美精品人与动牲交sv欧美| 一本—道久久a久久精品蜜桃钙片| 午夜91福利影院| 久久精品国产a三级三级三级| 欧美日本中文国产一区发布| 成人三级做爰电影| 亚洲精品第二区| 国产午夜精品一二区理论片| 麻豆av在线久日| 一区二区三区四区激情视频| 久久久国产欧美日韩av| 精品福利永久在线观看| 久久 成人 亚洲| 久久久久久久国产电影| 黄频高清免费视频| 精品少妇久久久久久888优播| 日韩 亚洲 欧美在线| 国产午夜精品一二区理论片| 免费高清在线观看视频在线观看| 啦啦啦中文免费视频观看日本| 精品人妻一区二区三区麻豆| 电影成人av| 久久久精品94久久精品| 久久久国产欧美日韩av| 久久天躁狠狠躁夜夜2o2o | 美女大奶头黄色视频| 丰满迷人的少妇在线观看| 亚洲精品国产区一区二| 叶爱在线成人免费视频播放| 最近最新中文字幕免费大全7| 水蜜桃什么品种好| 久久天堂一区二区三区四区| 亚洲欧洲国产日韩| 亚洲一区中文字幕在线| 午夜福利在线免费观看网站| 久久久久国产一级毛片高清牌| 日日摸夜夜添夜夜爱| 日韩电影二区| 69精品国产乱码久久久| 亚洲国产最新在线播放| 一本一本久久a久久精品综合妖精| 黄频高清免费视频| 少妇人妻 视频| 高清欧美精品videossex| 1024香蕉在线观看| 一区二区av电影网| 水蜜桃什么品种好| 国产免费现黄频在线看| 美女扒开内裤让男人捅视频| 婷婷成人精品国产| 日韩人妻精品一区2区三区| 成人影院久久| 999久久久国产精品视频| 中文天堂在线官网| 国精品久久久久久国模美| 久久人人97超碰香蕉20202| 亚洲精品aⅴ在线观看| 成人影院久久| 伊人久久国产一区二区| 欧美精品人与动牲交sv欧美| 啦啦啦视频在线资源免费观看| 99久久人妻综合| 国产精品一区二区在线观看99| 成年女人毛片免费观看观看9 | 久久人人爽av亚洲精品天堂| 国产深夜福利视频在线观看| 亚洲国产欧美一区二区综合| av一本久久久久| 女人高潮潮喷娇喘18禁视频| 高清黄色对白视频在线免费看| 夫妻午夜视频| 亚洲专区中文字幕在线 | 免费黄色在线免费观看| 亚洲精品美女久久av网站| 自拍欧美九色日韩亚洲蝌蚪91| 97人妻天天添夜夜摸| 亚洲精品久久成人aⅴ小说| 黄片无遮挡物在线观看| 国产成人免费无遮挡视频| 欧美变态另类bdsm刘玥| 一区在线观看完整版| 久久精品国产综合久久久| 国产精品麻豆人妻色哟哟久久| 国产黄频视频在线观看| 一本久久精品| 午夜福利,免费看| 亚洲国产欧美在线一区| 日韩一区二区三区影片| 亚洲人成77777在线视频| 极品人妻少妇av视频| 久久人人爽人人片av| 黄色一级大片看看| 国产激情久久老熟女| 欧美成人午夜精品| 51午夜福利影视在线观看| 国产精品三级大全| 婷婷色av中文字幕| 国产伦人伦偷精品视频| 看免费av毛片| 国产日韩欧美亚洲二区| 欧美日韩成人在线一区二区| 国产片特级美女逼逼视频| 欧美老熟妇乱子伦牲交| 成人国语在线视频| 欧美日韩亚洲高清精品| 久久99一区二区三区| 精品第一国产精品| 青春草国产在线视频| 久久久久久久久久久免费av| av网站在线播放免费| 不卡av一区二区三区| 啦啦啦 在线观看视频| 少妇的丰满在线观看| 成年人午夜在线观看视频| 看十八女毛片水多多多| 丰满乱子伦码专区| 男女午夜视频在线观看| 国产欧美日韩综合在线一区二区| 国产 精品1| 午夜福利,免费看| 国产精品免费大片| 国产在线一区二区三区精| 亚洲av日韩在线播放| 精品卡一卡二卡四卡免费| 成年动漫av网址| 在线观看免费日韩欧美大片| 最近2019中文字幕mv第一页| 99精国产麻豆久久婷婷| av天堂久久9| 久久国产精品男人的天堂亚洲| 亚洲精品视频女| 国产成人免费无遮挡视频| 国产野战对白在线观看| 大香蕉久久成人网| 老司机影院成人| 欧美老熟妇乱子伦牲交| 美女扒开内裤让男人捅视频| 成年av动漫网址| 满18在线观看网站| 我要看黄色一级片免费的| a级片在线免费高清观看视频| 最黄视频免费看| av在线app专区| 只有这里有精品99| 9热在线视频观看99| 人人妻人人澡人人爽人人夜夜| 亚洲伊人久久精品综合| 亚洲av综合色区一区| 国产男女超爽视频在线观看| www.精华液| 飞空精品影院首页| 国产极品天堂在线| 在现免费观看毛片| 女人久久www免费人成看片| 亚洲国产精品一区三区| 国产亚洲av片在线观看秒播厂| 亚洲av国产av综合av卡| 亚洲欧美清纯卡通| 国产av码专区亚洲av| 精品第一国产精品| 午夜免费观看性视频| 一区二区av电影网| 亚洲精品中文字幕在线视频| 只有这里有精品99| 最近2019中文字幕mv第一页| 肉色欧美久久久久久久蜜桃| 亚洲成人手机| a级片在线免费高清观看视频| 国产欧美日韩综合在线一区二区| 2021少妇久久久久久久久久久| 色94色欧美一区二区| 久久久精品94久久精品| 一级爰片在线观看| 99热网站在线观看| 在线亚洲精品国产二区图片欧美| a级毛片在线看网站| 老司机影院成人| 国产在线免费精品| 搡老乐熟女国产| 国产精品久久久人人做人人爽| 日本一区二区免费在线视频| 精品国产超薄肉色丝袜足j| 亚洲激情五月婷婷啪啪| 老司机亚洲免费影院| 十八禁网站网址无遮挡| 久久久久久久久免费视频了| 两个人免费观看高清视频| 少妇被粗大猛烈的视频| 在线亚洲精品国产二区图片欧美| 91aial.com中文字幕在线观看| 2021少妇久久久久久久久久久| 免费高清在线观看日韩| 啦啦啦中文免费视频观看日本| 在线观看免费视频网站a站| 一本色道久久久久久精品综合| 老司机靠b影院| 母亲3免费完整高清在线观看| 观看美女的网站| h视频一区二区三区| 日韩制服骚丝袜av| 女的被弄到高潮叫床怎么办| 欧美日韩一级在线毛片| 热re99久久精品国产66热6| 大话2 男鬼变身卡| 啦啦啦中文免费视频观看日本| 老汉色av国产亚洲站长工具| www.熟女人妻精品国产| 国产日韩欧美在线精品| 色综合欧美亚洲国产小说| 亚洲图色成人| 久久99精品国语久久久| 亚洲成人手机| 日本黄色日本黄色录像| 观看美女的网站| 久热这里只有精品99| 亚洲av福利一区| 国产日韩欧美亚洲二区| 午夜老司机福利片| 麻豆精品久久久久久蜜桃| 欧美亚洲 丝袜 人妻 在线| 亚洲四区av| 亚洲精品美女久久av网站| 亚洲色图综合在线观看| 一本一本久久a久久精品综合妖精| 最近最新中文字幕免费大全7| 中文字幕制服av| 99国产综合亚洲精品| 国产男女内射视频| 亚洲第一av免费看| 51午夜福利影视在线观看| 两个人看的免费小视频| 亚洲精品美女久久av网站| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线| 日韩精品有码人妻一区| 建设人人有责人人尽责人人享有的| 国产男女超爽视频在线观看| 一本大道久久a久久精品| 国产在线免费精品| 亚洲 欧美一区二区三区| 欧美日本中文国产一区发布| 一级,二级,三级黄色视频| 国产片特级美女逼逼视频| 国产av码专区亚洲av| 久久 成人 亚洲| 亚洲第一青青草原| 精品第一国产精品| 宅男免费午夜| 日韩大片免费观看网站| 人人妻,人人澡人人爽秒播 | 美女午夜性视频免费| 别揉我奶头~嗯~啊~动态视频 | 日本爱情动作片www.在线观看| 亚洲精品久久成人aⅴ小说| 国产亚洲午夜精品一区二区久久| 久久狼人影院| 一级毛片 在线播放| 99久久人妻综合| 中文字幕人妻熟女乱码| 国产精品嫩草影院av在线观看| 久久99一区二区三区| 国语对白做爰xxxⅹ性视频网站| 黄色视频不卡| 嫩草影院入口| 国产精品.久久久| 天堂8中文在线网| 日韩,欧美,国产一区二区三区| 成人影院久久| 亚洲精华国产精华液的使用体验| 色视频在线一区二区三区| 亚洲第一青青草原| 伦理电影免费视频| 在线精品无人区一区二区三| 精品一区二区三区av网在线观看 | 热re99久久精品国产66热6| 国产精品av久久久久免费| 高清欧美精品videossex| 美女高潮到喷水免费观看| 99热网站在线观看| 日韩一区二区视频免费看| 一本—道久久a久久精品蜜桃钙片| 久久狼人影院| 国产成人91sexporn| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人看| 18禁动态无遮挡网站| 国产成人精品无人区| netflix在线观看网站| 狠狠婷婷综合久久久久久88av| 午夜日韩欧美国产| 亚洲精品美女久久av网站| 国产99久久九九免费精品| 日本猛色少妇xxxxx猛交久久| 国产亚洲av片在线观看秒播厂| 日韩一卡2卡3卡4卡2021年| 欧美 日韩 精品 国产| a级毛片在线看网站| 最近的中文字幕免费完整| 男的添女的下面高潮视频| 色视频在线一区二区三区| 午夜福利在线免费观看网站| 最近的中文字幕免费完整| 日本av免费视频播放| 中文字幕制服av| 欧美人与性动交α欧美精品济南到| 成年av动漫网址| 国产国语露脸激情在线看| 国产乱来视频区| 亚洲精品久久久久久婷婷小说| 一级黄片播放器| 亚洲精品,欧美精品| 热re99久久精品国产66热6| 国产精品成人在线| 欧美日韩亚洲高清精品| 久久这里只有精品19| 国产精品蜜桃在线观看| bbb黄色大片| 99久久人妻综合| 极品人妻少妇av视频| avwww免费| www.精华液| 成人午夜精彩视频在线观看| 国产成人av激情在线播放| 一本一本久久a久久精品综合妖精| 免费av中文字幕在线| 深夜精品福利| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美日韩另类电影网站| 国产一区二区三区av在线| 国产无遮挡羞羞视频在线观看| 又大又黄又爽视频免费| 国产淫语在线视频| 成人漫画全彩无遮挡| 国产成人精品在线电影| 热99国产精品久久久久久7| 亚洲av中文av极速乱| 在线亚洲精品国产二区图片欧美| 国产麻豆69| h视频一区二区三区| 日本av手机在线免费观看| 天天添夜夜摸| 亚洲欧美一区二区三区国产| 久久精品久久久久久噜噜老黄| 欧美av亚洲av综合av国产av | 欧美人与善性xxx| 欧美日韩国产mv在线观看视频| 国产伦理片在线播放av一区| 精品久久久精品久久久| 男女免费视频国产| 黄色 视频免费看| 婷婷色综合大香蕉| 亚洲美女搞黄在线观看| 夫妻午夜视频| 午夜福利,免费看| 久久青草综合色| 欧美日韩一区二区视频在线观看视频在线| www日本在线高清视频| 欧美xxⅹ黑人| 韩国av在线不卡| 这个男人来自地球电影免费观看 | 一级片免费观看大全| 不卡av一区二区三区| 在线看a的网站| 另类精品久久| 久久久久精品久久久久真实原创| 精品一区二区三卡| 日日撸夜夜添| 91成人精品电影| 亚洲国产精品一区三区| 欧美日本中文国产一区发布| 王馨瑶露胸无遮挡在线观看| 一级片免费观看大全| 青春草国产在线视频| 日韩大码丰满熟妇| 亚洲精品一区蜜桃| 精品午夜福利在线看| 秋霞伦理黄片| 久久午夜综合久久蜜桃| 亚洲国产日韩一区二区| 国产片特级美女逼逼视频| 麻豆av在线久日| 久久久久国产精品人妻一区二区| 国产欧美日韩综合在线一区二区| 男女午夜视频在线观看| 国产人伦9x9x在线观看| 国产伦理片在线播放av一区| 两个人看的免费小视频| 黄片小视频在线播放| 亚洲色图综合在线观看| 交换朋友夫妻互换小说| 韩国高清视频一区二区三区| 亚洲国产欧美一区二区综合| 亚洲图色成人| 色综合欧美亚洲国产小说| 久久鲁丝午夜福利片| 久久精品国产综合久久久| 视频在线观看一区二区三区| 欧美 日韩 精品 国产| 日韩制服骚丝袜av| 熟女av电影| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看| av卡一久久| 制服丝袜香蕉在线| 亚洲精品国产av蜜桃| 日韩一卡2卡3卡4卡2021年| 国产成人午夜福利电影在线观看| 国产成人免费无遮挡视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久精品古装| 国产国语露脸激情在线看| 国产精品国产av在线观看| 久久青草综合色| 永久免费av网站大全| 免费看av在线观看网站| 欧美日韩视频精品一区| 免费少妇av软件| 伦理电影免费视频| 你懂的网址亚洲精品在线观看| 最近2019中文字幕mv第一页| 亚洲av男天堂| 国产av一区二区精品久久| 久久韩国三级中文字幕| 欧美在线一区亚洲| 久久久久久人妻| 中文精品一卡2卡3卡4更新| 久久天堂一区二区三区四区| 一本大道久久a久久精品| 国产黄色免费在线视频| av在线app专区| www.精华液| av有码第一页| 女性被躁到高潮视频| 欧美激情高清一区二区三区 | 成年美女黄网站色视频大全免费| 亚洲欧美一区二区三区久久| 精品酒店卫生间| 精品久久久精品久久久| 叶爱在线成人免费视频播放| 国产免费福利视频在线观看| 黄色毛片三级朝国网站| 老熟女久久久| 欧美日韩福利视频一区二区| 性色av一级| 亚洲精品视频女| a级毛片黄视频| 国产精品偷伦视频观看了| 麻豆精品久久久久久蜜桃| 亚洲一区二区三区欧美精品| 亚洲自偷自拍图片 自拍| 在线天堂最新版资源| 免费黄色在线免费观看| 国产成人精品在线电影| 高清不卡的av网站| 久久鲁丝午夜福利片| 亚洲精品国产一区二区精华液| 国产成人欧美| 欧美日韩福利视频一区二区| 飞空精品影院首页| 国产精品国产三级专区第一集| 久久精品久久久久久久性|