田萬強(qiáng),王 亮,田蘇輝,朱莉莉,李林強(qiáng),梅楚剛,昝林森
(1.楊凌職業(yè)技術(shù)學(xué)院 動(dòng)物工程分院,陜西楊凌 712100;2.陜西師范大學(xué) 食品工程與營(yíng)養(yǎng)科學(xué)學(xué)院,西安710119; 3.西安宏興乳業(yè)公司,陜西臨潼 710600;4.西北農(nóng)林科技大學(xué) 動(dòng)物科技學(xué)院,陜西楊凌 712100)
?
牛羊鮮乳冷藏過程中蛋白質(zhì)沉淀率比較及粒度分析
田萬強(qiáng)1,王亮2,田蘇輝3,朱莉莉2,李林強(qiáng)2,梅楚剛4,昝林森4
(1.楊凌職業(yè)技術(shù)學(xué)院 動(dòng)物工程分院,陜西楊凌712100;2.陜西師范大學(xué) 食品工程與營(yíng)養(yǎng)科學(xué)學(xué)院,西安710119; 3.西安宏興乳業(yè)公司,陜西臨潼710600;4.西北農(nóng)林科技大學(xué) 動(dòng)物科技學(xué)院,陜西楊凌712100)
旨在分析牛羊鮮乳冷藏過程中蛋白質(zhì)沉淀率變化及粒度大小。通過離心沉淀、原子力顯微鏡、激光粒度分析儀、SDS-PAGE 電泳分析牛羊鮮乳冷藏過程中蛋白質(zhì)沉淀率變化、鮮乳蛋白質(zhì)粒子形貌、粒徑分布范圍、酪蛋白組成。結(jié)果表明:羊乳蛋白質(zhì)沉淀率顯著高于牛乳;牛乳蛋白質(zhì)粒子數(shù)目(45 μL-1)、密度(1.8 μm-2)低于羊乳蛋白粒子數(shù)目(437 μL-1)、密度(17.48 μm-2);牛乳蛋白粒度大小主要集中在1 nm以下,羊乳蛋白粒度只有19.3%在1 nm以下,主要分布在1~1 000 nm,其中100 nm左右最多;牛羊乳酪蛋白主要有β酪蛋白和αs1酪蛋白2種,分子質(zhì)量分別為34 ku和26 ku左右。牛乳蛋白質(zhì)冷藏穩(wěn)定性顯著高于羊乳,羊乳蛋白質(zhì)顆粒直徑大于牛乳,牛羊乳蛋白質(zhì)粒子數(shù)目和大小是影響冷藏穩(wěn)定性差異的主要因素;原子力顯微鏡結(jié)合激光粒度儀是分析乳蛋白粒度大小的有效手段。
牛乳;羊乳;蛋白質(zhì);沉淀率;粒度
牛乳在冷藏和加工過程中會(huì)產(chǎn)生一定量的蛋白沉淀,即使經(jīng)過均質(zhì),熱處理后隨著貨架期延長(zhǎng)沉淀現(xiàn)象也較為明顯[1-4],羊乳則更為嚴(yán)重。影響乳穩(wěn)定性的因素有酸度[5-6]、酪蛋白組成[7-8]、乳清蛋白和酪蛋白的比例[9-10]、處理溫度[11-15]等,這些因素導(dǎo)致蛋白質(zhì)粒子凝聚,直徑增大,膠體結(jié)構(gòu)遭到破壞,布朗運(yùn)動(dòng)消失,產(chǎn)生沉淀。劉紅霞等[16]發(fā)現(xiàn)攪拌和均質(zhì)條件不同,牛羊乳粒度大小和穩(wěn)定性不同;李子超等[17]和Anema等[18-19]研究發(fā)現(xiàn)熱處理使牛乳的酪蛋白粒子直徑發(fā)生變化,產(chǎn)生沉淀,可見蛋白質(zhì)粒度大小是影響乳穩(wěn)定性的直接物理因素。牛羊乳蛋白質(zhì)沉淀率差異是由二者本身粒度大小差異所致,還是僅由外因所致,相關(guān)研究相對(duì)較少。有研究[20]報(bào)道牛乳酪蛋白平均粒徑大于羊乳,但難于解釋羊乳無論是冷藏還是熱處理后沉淀率高于牛乳的事實(shí)。因此,牛羊鮮乳蛋白質(zhì)粒度大小的差異及其對(duì)蛋白質(zhì)沉淀率的影響尚需進(jìn)一步研究。
1985年Binning 和 Quate發(fā)明原子力顯微鏡(AFM)[21],AFM 能在納米尺度水平測(cè)到物體的微觀結(jié)構(gòu)[22],并且可以呈現(xiàn)樣品表面的三維形貌[23],甚至可以在離子緩沖溶液中進(jìn)行成像[24],基于原子力顯微鏡的這些優(yōu)點(diǎn),本研究使用原子力顯微鏡表征牛羊乳蛋白質(zhì)粒子微觀形貌,并結(jié)合使用激光粒度分析儀測(cè)定牛羊鮮乳蛋白質(zhì)粒度大小,試圖更加全面反映牛羊乳蛋白粒子大小差異,以期揭示牛羊乳粒度對(duì)蛋白沉淀率的影響,為改善乳蛋白穩(wěn)定性提供理論基礎(chǔ)。
1.1材 料
牛羊乳采自西北農(nóng)林科技大學(xué)畜牧站荷斯坦牛和薩能奶山羊。
1.2主要試劑
蛋白Mark(SM 0671,F(xiàn)ermentas公司),干酪素(01-010,北京奧博星生物技術(shù)有限責(zé)任公司),三羥甲基氨基甲烷(Tris)、硝酸銀、丙烯酰胺、N,N-甲叉雙丙烯酰胺、十二烷基硫酸鈉(SDS)、N,N,N,N-四甲基乙二胺(TEMED)、甘氨酸、甘油、β-巰基乙醇、溴酚藍(lán)、鹽酸、氯化鈉、三氯乙酸、戊二醛、碳酸鈉、甲醛、檸檬酸、醋酸鈉、氫氧化鈉、醋酸、φ=95%乙醇、乙醚等均為分析純。
1.3主要儀器
臺(tái)式離心機(jī)(800 B,上海安亭科學(xué)儀器廠),原子力顯微鏡(Veeco Bruker,J探頭),激光粒度分析儀(MS 2000,英國(guó)馬爾文儀器公司),電泳系統(tǒng)(PowerPacTM Universal,美國(guó)Bio-rad伯樂),凝膠成像系統(tǒng)(Universal Hood II,XRS,美國(guó)Bio-rad)。
1.4方 法
1.4.1蛋白質(zhì)沉淀率的測(cè)定常溫牛羊乳樣2~4 ℃ 冷卻保存,每12 h取乳樣1次,采用400 g相對(duì)離心力離心15 min,傾出上液,稱量沉淀蛋白,每次平行測(cè)定3個(gè)樣,共測(cè)定5次,按下式計(jì)算蛋白沉淀百分率。
W=(m1/m)×100
式中W為100 g乳中蛋白沉淀百分率;m1為沉淀蛋白質(zhì)量,單位為g;m為樣液質(zhì)量,單位為g。
1.4.2蛋白質(zhì)粒子形貌觀察取10 mL乳樣400 g相對(duì)離心力離心15 min,除去上層脂肪,加入等體積乙醚,通過分液漏斗進(jìn)一步脫脂。取脫脂乳樣1 mL,稀釋25倍,超聲處理10 min,取1 μL樣液滴于云母片上,自然風(fēng)干,用Veeco Bruker原子力顯微鏡J探頭進(jìn)行形貌觀察。
1.4.3粒度測(cè)定各取50 mL牛羊乳,加入等體積乙醚,靜置10 min,1 200 g離心力離心15 min,傾去上層脂肪,用激光粒度分析儀測(cè)定粒度大小及其相應(yīng)體積分?jǐn)?shù)。
1.4.4酪蛋白組成的SDS-PAGE電泳分析取牛羊乳各30 mL,200 g相對(duì)離心力離心5 min,棄去上層脂肪;下層液體加入等體積0.2 mol·mL-1醋酸-醋酸鈉緩沖液(pH 4.6),搖勻后加熱至40 ℃,冷卻至室溫,放置5 min,200 g相對(duì)離心力離心5 min后傾出上層液體,沉淀物用蒸餾水洗滌,200 g相對(duì)離心力離心5 min,洗滌重復(fù)3次。所得沉淀物即為粗酪蛋白。將粗酪蛋白置于30 mLφ=95%乙醇中洗滌,200 g相對(duì)離心力離心5 min,洗滌重復(fù)2次,再用乙醚洗滌2次,抽濾,將所得沉淀物攤開在表面皿上,使乙醚完全揮發(fā),所得即為酪蛋白。
取酪蛋白1 mg溶于1 mL樣品緩沖液中,沸水加熱5 min。配制12%分離膠加入凝膠板中,凝固40 min,加入3%濃縮膠,凝固40 min,在加樣孔中加入樣品10 μL,80 V恒壓 40 min,然后100 V恒壓2.5 h后停止電泳;φ=20%三氯乙酸浸泡凝膠板8 h,150 mL去離子水充分洗滌凝膠板20 min,重復(fù)洗滌3次;φ=1% 戊二醛溶液150 mL避光浸泡凝膠板6 h,去離子水洗滌10 min,重復(fù)洗滌3次;氨銀染液100 mL避光染色20 min;去離子水150 mL洗滌凝膠表面2次,每次1 min。加入顯色液至顯色清晰后棄去顯色液,去離子水洗滌2次,每次1 min,加入終止顯色液終止顯色。
1.5數(shù)據(jù)處理
運(yùn)用 SPSS19.0 軟件進(jìn)行數(shù)據(jù)處理,方差顯著性分析采用LSD法,結(jié)果以“平均數(shù)±標(biāo)準(zhǔn)差”表示。
2.1牛羊乳蛋白質(zhì)沉淀率
圖1表明,牛乳在2~4 ℃冷藏過程中蛋白質(zhì)發(fā)生沉淀,但在60 h內(nèi)無顯著增加(P>0.05 );羊乳則在24 h后沉淀率顯著增加(P<0.05),且冷藏過程中蛋白質(zhì)沉淀率顯著高于牛乳(P<0.05)。張小苗[25]認(rèn)為羊乳膠體穩(wěn)定性低于牛乳,另有研究[4,26-27]表明羊乳的熱穩(wěn)定性低于牛乳。結(jié)果提示羊乳穩(wěn)定性遠(yuǎn)低于牛乳。
圖1 牛羊乳冷藏過程中沉淀率動(dòng)態(tài)變化
2.2牛羊乳蛋白質(zhì)粒子形貌的原子力顯微鏡觀察
從圖2、3蛋白質(zhì)粒子形貌分析可知,牛乳蛋白粒子數(shù)目(45 μL-1)、密度(1.8 μm-2)明顯低于羊乳蛋白粒子數(shù)目(437 μL-1)、密度(17.48 μm-2);牛乳蛋白質(zhì)顆粒平均直徑(100.106 nm)大于羊乳(80.407 nm),羊乳中雖然存在一定數(shù)量直徑較大的蛋白顆粒(圖3),但是,牛乳的蛋白質(zhì)粒子數(shù)目遠(yuǎn)遠(yuǎn)少于羊乳蛋白質(zhì)粒子數(shù)目,所以這可能影響2種乳蛋白質(zhì)顆粒的平均直徑大小,總體表現(xiàn)為牛乳大于羊乳,這也與Fava等[28]、Jenness[29]和李子超等[20]報(bào)道羊乳蛋白質(zhì)粒子平均直徑比牛乳小的結(jié)果一致。但是羊乳冷藏穩(wěn)定性為什么低于牛乳的事實(shí),看來難于用乳蛋白質(zhì)顆粒平均直徑大小解釋,原因可能還需進(jìn)一步探究。由圖2、3剖面分析結(jié)果可見:羊乳蛋白質(zhì)粒子表面起伏程度較大(-5 nm~+5 nm),牛乳蛋白質(zhì)粒子表面起伏程度則相對(duì)較小(-4 nm~+4 nm),表明羊乳蛋白質(zhì)顆粒大小分布范圍較大,存在較大直徑蛋白顆粒,結(jié)果提示牛羊乳蛋白粒子直徑平均值不能真實(shí)反映牛羊乳蛋白質(zhì)粒子大小差異,蛋白質(zhì)顆粒數(shù)目和其大小應(yīng)該是共同影響牛羊乳穩(wěn)定性差異的主要因素。
圖2 牛乳蛋白質(zhì)粒子形貌(左)及其剖面圖(右)
2.3牛羊乳蛋白質(zhì)粒度
由圖4可知,牛乳蛋白粒度大小主要集中在1 nm以下。由圖5可知,羊乳蛋白粒度只有19.3%在1 nm以下,主要分布在1~1 000 nm,其中100 nm左右最多,結(jié)果表明,羊乳蛋白顆粒直徑差異較大,存在較大數(shù)量大顆粒蛋白質(zhì)粒子,這與原子力顯微鏡分析結(jié)果一致。表明牛羊乳蛋白粒徑大小是影響其冷藏穩(wěn)定性差異的主要因素之一。
2.4牛羊乳酪蛋白SDS-PAGE
由圖6可知,牛羊乳酪蛋白主要有β-酪蛋白和αs1酪蛋白,這與Bramanti等[30]、Crudden等[31]和Veloso等[32]的研究結(jié)果一致,依據(jù)標(biāo)準(zhǔn)蛋白Marker,β酪蛋白和αs1酪蛋白分子質(zhì)量分別為34 ku和26 ku左右,這與郭軍等[33]、趙麗麗[34]報(bào)道羊乳的β酪蛋白分子質(zhì)量大于αs1酪蛋白結(jié)果類似。表明酪蛋白分子質(zhì)量不是影響牛羊乳冷藏穩(wěn)定性差異的主要原因,牛羊乳酪蛋白結(jié)構(gòu)差異可能是影響兩者穩(wěn)定性差異的基礎(chǔ)性因素。
圖4 牛乳蛋白粒度大小
圖5 羊乳蛋白粒度大小分布
圖中條帶1~2分別為鮮牛羊乳酪蛋白,條帶3為干酪素標(biāo)品Band 1 and 2 are caseins from cow milk and goat milk respectively,and band 3 is the standard casein
圖6牛羊乳酪蛋白SDS-PAGE
Fig.6SDS-PAGE of caseins in cow and goat milk
牛乳的冷藏穩(wěn)定性顯著高于羊乳;牛乳蛋白質(zhì)粒子數(shù)目和密度均低于羊乳;牛乳蛋白粒度大小主要集中在1 nm以下,羊乳蛋白粒度主要分布在1~1 000 nm。羊乳蛋白質(zhì)顆粒直徑大于牛乳,蛋白質(zhì)粒子數(shù)目和大小是影響牛羊乳冷藏穩(wěn)定性差異的主要因素;原子力顯微鏡結(jié)合激光粒度儀是分析乳蛋白質(zhì)粒度大小的有效手段。
Reference:
[1]ANEMA S G,LI Y M.Reassociation of dissociated caseins upon acidification of heated pH-adjusted skim milk [J].FoodChemistry,2015,174:339-347.
[2]CROWLEY S V,MEGEMONT M,GAZI N,etal.Heat stability of reconstituted milk protein concentrate powders[J].InternationalDairyJournal,2014,37(2):104-110.
[3]MORGAN F,JACQUET F,MICAULT S,etal.Study on the compositional factors involved in the variable sensitivity of caprine milk to high-temperature processing[J].InternationalDairyJournal,2000,10(1/2):113-117.
[4]RAYNAL-LJUTOVAC K,PARK Y W,GAUCHERON F,etal.Heat stability and enzymatic modifications of goat and sheep milk [J].SmallRuminantResearch,2007,68(1):207-220.
[5]趙正濤,李全陽,趙紅玲,等.酪蛋白在不同pH值下特性的研究[J].乳業(yè)科學(xué)與技術(shù),2009,134(1):26-29.
ZHAO ZH T,LI Q Y,ZHAO H L,etal.Research on the characteristic of caseins at different pH[J].JournalofDairyScienceandTechnology,2009,134(1):26-29(in Chinese with English abstract).
[6]喬 星,張富新,烏 素,等.羊奶熱穩(wěn)定因素的研究[J].農(nóng)產(chǎn)品加工(學(xué)刊),2012,268(1):46-48.
QIAO X,ZHANG F X,WU S,etal.Heat stability factors of goat’s milk[J].AcademicPeriodicalofFarmProductsProcessing,2012,268(1):46-48(in Chinese with English abstract).
[7]TZIBOULA A.Casein diversity in caprine milk and its relation to technological properties:heat stability [J].InternationalJournalofDairyTechnology,1997,50(4):134-138.
[8]HORNE D S,MUIR D D.Alcohol and heat stability of milk protein[J].JournalofDairyScience,1990,73(12):3613-3626.
[9]MORGAN F,MICAULT S,FAUQUANT J.Combined effect of whey protein and αS1-casein genotype on the heat stability of goat milk [J].InternationalJournalofDairyTechnology,2001,54(2):64-68.
[10]LAURENCE D,FANNY G.Formation and properties of the whey protein/κ-casein complexes in heated skim milk-a review[J].DairyScienceTechnology,2009,89(1):3-29.
[11]HARJINDER S.Heat stability of milk[J].InternationalJournalofDairyTechnology,2004,57(2/3):111-119.
[12]周潔瑾,張列兵,梁建芬.加熱及貯藏對(duì)牛乳脂肪及蛋白聚集影響的研究[J].食品科技,2010,35(5):72-76.
ZHOU J J,ZHANG L B,LIANG J F.Effect of heating and storage on aggregation of fat globule and protein in milk[J].FoodScienceandTechnology,2010,35(5):72-76(in Chinese with English abstract).
[13]HEILIG A,CELIK A ,HINRICHS J.Suitability of Dahlem Cashmere goat milk towards pasteurisation,ultrapasteurisation and UHT-heating with regard to sensory properties and storage stability[J].SmallRuminantResearch,2008,78(1/3):152-161.
[14]ELFAGM A A,WHEELOCK J V.Heat interactions between α-lactalbumin,β-lactoglobulin and casein in bovine milk[J].JournalofDairyScience,1978,61(2):159-163.
[15]HAQUE Z K,JOHN E.Interaction between heated κ-casein and β-lactoglobulin:Predominance of hydrophobic interactions in the initial stages of complex formation [J].JournalofDairyResearch,1988,55(1):67-80.
[16]劉紅霞,賈少婷,桂仕林,等.攪拌和均質(zhì)對(duì)牛乳穩(wěn)定性的影響[J].中國(guó)乳品工業(yè),2009,37(9):58-61.
LIU H X,JIA SH T,GUI SH L,etal.Studies on the stability influence of agitating and homogenization of milk[J].DairyIndustry,2009,37(9):58-61(in Chinese with English abstract).
[17]李子超,徐明芳,向明霞,等.巴氏殺菌與超高溫滅菌牛乳酪蛋白結(jié)構(gòu)差異性的研究[J].華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,34(2):192-196.
LI Z CH,XU M F,XIANG M X,etal.Research on the structural differences of the casein from milk by pasteurization and ultrahigh temperature sterilization[J].JournalofSouthChinaAgricuituralUniversity,2013,34(2):192-196(in Chinese with English abstract).
[18]ANEMA S G,LI Y.Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk[J].JournalofAgriculturalandFoodChemistry,2003,51(6):1640-1646.
[19]ANEMA S G,LOWE E K,LEE S K.Effect of pH at heating on the acid induced aggregation of casein micelles in reconstituted skim milk [J].LebensmittelWissenschaftundTechnologie,2004,37(7):779-787.
[20]李子超,王麗娜,李昀鍇,等.3種乳源酪蛋白粒徑及膠束結(jié)構(gòu)的差異性[J].食品科學(xué),2012,33(5):58-61.
LI Z CH,WANG L N,LI Y K,etal.Differences in particle size and structure of casein micelle from different milk sources[J].FoodScience,2012,33(5):58-61(in Chinese with English abstract).
[21]陳天星.利用原子力顯微鏡對(duì)近壁面受限液體性質(zhì)的研究[D].北京:清華大學(xué),2011.
CHEN T X.Study on properties of the confined liquids at solid surface with AFM[D].Beijing:Qinghua University,2011(in Chinese with English abstract).
[22]桑青.新型多掃描器原子力顯微鏡技術(shù)及系統(tǒng)[D].杭州:浙江大學(xué),2013.
SANG Q.A new multi-scanner Atomic Force Microscope(AFM) technology and system[D].Hangzhou:Zhejiang University,2013(in Chinese with English abstract).
[23]徐井華,李 強(qiáng).原子力顯微鏡的工作原理及其應(yīng)用[J].通化師范學(xué)院學(xué)報(bào)(自然科學(xué)),2013,34(1):22-24.
XU J H,LI Q.Working principle of atomic force microscopy and its application[J].JournalofTonghuaNormalUniversity(NaturalScience),2013,34(1):22-24(in Chinese).
[24]王芳芳,黃 峰.高速及高分辨率原子力顯微鏡用于研究Trichoderma reesei纖維素酶在結(jié)晶纖維素上的行為[J].林產(chǎn)化學(xué)與工業(yè),2014,34(3):130-134.
WANG F F,HUANG F.The action of Trichoderma reesei cellulases on crystalline cellulose with high speed and high resolution Atomic Force Microscopy[J].ChemistryandIndustryofForestProducts,2014,34(3):130-134(in Chinese with English abstract).
[25]張小苗.牛乳和羊乳理化特性比較和摻假檢測(cè)研究[D].西安:陜西科技大學(xué),2012.
ZHANG X M.Physichemical properities of goat and cow milk and adulteration detection of cow milk in goat milk[D].Xi’an:Shaanxi University of Science and Technology,2012(in Chinese with English abstract).
[26]BOUHALLAB S,LECONTE N,GRAET Y L,etal.Heat-induced coagulation of goat milk:modification of the environment of the casein micelles by membrane processes[J].DairyScienceandTechnology,2002,82(6):673-681.
[27]周強(qiáng).羊乳理化特性及其膠體穩(wěn)定性研究[D].西安:陜西師范大學(xué),2007.
ZHOU Q.Study physicochemical properities and colloid stability of goat milk[D].Xi’an:Shaanxi Normal University,2007(in Chinese with English abstract).
[28]FAVA L W,SERPA P B S,KüLKAMP-GUERREIRO I C,etal.Evaluation of viscosity and particle size distribution of fresh,chilled and frozen milk of Lacaune ewes[J].SmallRuminantResearch,2013,113(1):247-250.
[29]JENNESS R.Composition and characteristics of goat milk:review 1968-1979 [J].JournalofDairyScience,1980,63(10):1605-1630.
[30]BRAMANTI E,SORTINO C,ONOR M,etal.Separation and determination of denatured αs1-,αs2-,β- andκ- caseins by hydrophobic interaction chromatography in cows’,ewes’ and goats’ milk,milk mixtures and cheeses[J].JournalofChromatography,2003,994(1/2):59-74.
[31]CRUDDEN A,AFOUFA-BASTIEN D,FOX P F,etal.Effect of hydrolysis of casein by plasmin on the heat stability of milk[J].InternationalDairyJournal,2005,15(10):1017-1025.
[32]VELOSO A C A,TEIXEIRA N,FERREIRA I M P L V O.Separation and quantification of the major casein fractions by reverse-phase high-performance liquid chromatography and urea-polyacrylamide gel electrophoresis:Detection of milk adulterations[J].JournalofChromatographyA,2002,967(2):209-218.
[33]郭軍,張和平,楊月欣.免疫乳的研究與開發(fā)利用[J].食品科學(xué),2003,24(9):152-156.
GUO J,ZHANG H P,YANG Y X.Research and development of immune milk[J].FoodScience,2003,24(9):152-156(in Chinese with English abstract).
[34]趙麗麗.羊乳熱穩(wěn)定性及凝膠特性的研究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2014.
ZHAO L L.Study on thermal stability and gel properties of goat milk[D].Beijing:Chinese Academy of Agricultural Sciences,2014(in Chinese with English abstract).
Corresponding authorLI Linqiang,male,Ph.D,associate professor.Research area: animal products and functional food.E-mail:lilinq@snnu.edu.cn
(責(zé)任編輯:顧玉蘭Responsible editor:GU Yulan)
Comparison of Protein Sedimentation Rate and Particles Size of Milk from Cow and Goat during Cold Storage
TIAN Wanqiang1,WANG Liang2,TIAN Suhui3,ZHU Lili2,LI Linqiang2,MEI Chugang4and ZAN Linsen4
(1.Animal Engineering Department,Yangling Vocational and Technical College,Yangling Shaanxi712100,China;2.College of Food Engineering and Nutritional Science,Shaanxi Normal University,Xi’an710119,China;3.Xi’an Hongxing Dairy Company,Lintong Shaanxi710600,China; 4.College of Animal Science and Technology,Northwest A&F University,Yangling Shaanxi712100,China )
In this paper,protein sedimentation rate changes of milk from cow and goat during cold storage and their particles size were explored.Particle morphology,particle size distribution,casein composition of protein from fresh milk of cow and goat were analyzed by centrifugal sedimentation,atomic force microscope,laser particle size analyzer,and SDS-PAGE electrophoresis,respectively.The results showed that the sedimentation rate of goat milk protein was significantly higher than that of cow milk.The count of cow milk protein particles (45 μL-1),and density (1.8 μm-2) were lower than those (437 μL-1and 17.48 μm-2respectively) of goat milk.Goat milk protein particle size was mainly in less than 1 nm range,however,the same size was only 19.3% in cow milk,and mainly distributed in 1-1 000 nm range,and focused on 100 nm.Beta casein and alpha s1- casein were two main kinds of casein in cow and goat milk,with molecular weight of 34 ku and 26 ku respectively.Storage stability of cow milk protein was significantly higher than that of goat.Cow milk protein particles diameter was larger than that of goat milk,and the milk protein particles count and their sizes were the main factors on milk protein cold storage stability.Atomic force microscopy combined with laser particle size analyzer is an effective method to analyze the particle size of milk protein.
Cow milk; Goat milk; Protein; Sedimentation rate; Particles size
2015-09-11Returned2015-10-13
Shaanxi Science and Technology Development Project (No.2014K13-20,2011K01-09); National Science and Technology Support Program (No.2012BAD12B07); Natural Science Foundation of Shaanxi Province (No.2007C127).
TIAN Wanqiang,male,Ph.D,associate professor.Research area: livestock breeding and production process and quality control of livestock products.E-mail:twqiang2003@163.com
2015-09-11
2015-10-13
陜西省科學(xué)技術(shù)發(fā)展計(jì)劃(2014K13-20,2011K01-09);國(guó)家科技支撐計(jì)劃(2012BAD12B07);陜西省自然科學(xué)基金(2007C127)。
田萬強(qiáng),男,博士,副教授,研究方向?yàn)榧倚筮z傳育種及畜產(chǎn)品生產(chǎn)加工與質(zhì)量控制。E-mail:twqiang2003@163.com
李林強(qiáng),男,博士,副教授,研究方向?yàn)樾螽a(chǎn)品及功能食品。E-mail: lilinq@snnu.edu.cn
TS252.2
A
1004-1389(2016)08-1144-06
網(wǎng)絡(luò)出版日期:2016-07-14
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1220.S.20160714.1103.010.html