• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    大分子擁擠環(huán)境中脂肪酸影響磷脂囊泡相變的差示掃描量熱研究

    2016-09-09 09:35:48楊利軍朱甜甜汪慎之陳忠秀
    物理化學(xué)學(xué)報 2016年8期
    關(guān)鍵詞:工商大學(xué)大分子磷脂

    王 嬌 楊利軍 朱甜甜 汪慎之 陳忠秀

    (浙江工商大學(xué)食品與生物工程學(xué)院,杭州310018)

    ?

    大分子擁擠環(huán)境中脂肪酸影響磷脂囊泡相變的差示掃描量熱研究

    王嬌楊利軍*朱甜甜汪慎之陳忠秀*

    (浙江工商大學(xué)食品與生物工程學(xué)院,杭州310018)

    脂肪酸誘導(dǎo)的磷脂膜的熱力學(xué)行為對于認(rèn)識細(xì)胞內(nèi)復(fù)雜的機(jī)制有著重要意義,而前人在研究脂肪酸與磷脂膜相互作用時大都在稀溶液中進(jìn)行;擁擠環(huán)境下脂肪酸誘導(dǎo)磷脂膜的相變行為還未見報道。本文以二肉豆蔻酰磷脂酰膽堿(DMPC)構(gòu)建囊泡模型,采用差示掃描量熱法系統(tǒng)地研究了在不同濃度、不同分子量的聚乙二醇(PEG)擁擠環(huán)境中不同結(jié)構(gòu)的脂肪酸對DMPC磷脂囊泡相變的影響。研究結(jié)果表明,在擁擠環(huán)境中,PEG對純的磷脂囊泡相變的影響與大分子的分子量和濃度相關(guān)。對于脂肪酸/磷脂囊泡(FA/DMPC),PEG的存在對囊泡相變產(chǎn)生顯著影響。在所考察的分子量和濃度范圍內(nèi),PEG使FA/DMPC囊泡相變增加。短鏈飽和脂肪酸、不飽和脂肪酸原本使DPMC囊泡相變降低,但PEG縮小了降低幅度,甚至導(dǎo)致相變增加。進(jìn)一步的研究表明,在大多數(shù)情況下,PEG對FA/DMPC的相變具有協(xié)作增強(qiáng)效應(yīng),且其影響均與大分子的分子量和濃度相關(guān)。另外,隨著PEG濃度的升高,磷脂囊泡的協(xié)同單位數(shù)逐漸降低,表明擁擠環(huán)境會影響磷脂雙分子層的均一性,使協(xié)同發(fā)生相變的分子數(shù)降低。本文的研究表明,大分子擁擠環(huán)境能夠?qū)_動的磷脂雙分子層起到一定的修復(fù)作用,這一現(xiàn)象在生物膜相關(guān)領(lǐng)域不可忽視。

    大分子擁擠;磷脂囊泡;脂肪酸;相變;差示掃描量熱法

    www.whxb.pku.edu.cn

    1 Introduction

    Fatty acids(FAs)are abundant in biological membranes,mainly as components of phospholipids and cholesterol esters.On the other hand,FAs bind with high affinity to serum albumin as well as to cell membranes and are a key intermediate in lipid metabolism1.Transport of FAs into the cytosol of cells minimally involves adsorption to the plasma membrane,passage through the lipid bilayer,and desorption from the cytosolic face of the membrane2.Among the essential steps which must be understood for the potentially complexed mechanisms that occur in cells, illustrating the thermodynamics and the kinetics of the FAs,free or bound to phospholipids is of great importance because it modulates the lipid membrane behavior.As the lipid membrane may be essential for understanding a variety of membrane-mediated cellular functions altered by FA,extensive research has been undertaken to rationalize the molecular basis for phase transitions using model bilayer membrane3-5.Phospholipid vesicles are often used as models for biological membranes to study the bilayer properties and membrane-mediated processes6.Phase transition of 1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC)undergoes transition from gel phase(ordered and less fluid)to liquid crystalline phase(less ordered and fluid)according to the temperature, the hydration grade,the degree of packing,and the chemical environment.The permeability of liposomal membrane is found significantly enhanced at phase transition temperature(Tm)7.Incorporation of FA into liposomal membrane was found to affect the Tmand the membrane fluidity of biological tissues is highly influenced by the hydrocarbon chain length,the π-bond position and the isomeric configuration of FA8.

    It is well known that the molecular environment of biological systems is highly crowded because a significant fraction of the intracellular space is occupied by macromolecular species9.The concept of excluded volume and the theory of the effects of excluded volume on the equilibrium and rates of macromolecular reactions in fluid media containing high concentrations of macromolecules(crowded media)has been reviewed10.Among several macromolecules,polyethylene glycol(PEG)can promote phase separation to a greater extent than other inert polymers because of its spherical conformation,which makes it appropriate for mimicking physiological crowding11.Moreover,PEG has long been used to fuse cells,and much attention has been attracted to study the effect of PEG on the phase transition of phospholipids membrane.For example,PEG can enhance the lateral packing of phosphatidylcholine,decrease the surface potential of monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine(DPPC)and alter the Tm12.It was also found that the increase in main transition temperature of DPPC vesicles caused by PEG was concentrationdependent13.In addition,PEG appears to be excluded from the lipid bilayers,acting on phospholipids through changing water structure14.Several mechanisms have been suggested for the function of PEG on cell fusion.It is now accepted that the PEG influences aggregation of membranes not by surface absorption, cross-linking,solubilization but through volume exclusion and dehydration in areas of contact15.Therefore,the effect of macromolecular crowding may contribute to the phase transition of lipid bilayer and promote the cell fusion.

    During FA digestion,it is inevitable that it would interact with other compounds,such as polysaccharides,proteins and so on. These macromolecules create a crowed media,which would affect the interaction of FA with bilayer and the modulation of the lipid membrane.However,previous research on the interaction of fatty acid and lipid membrane or model vesicles was usually performed in diluted solution.To the best of our knowledge,no study has focused on the effects of an external crowding medium on the phase transition of the lipid membrane induced by fatty acid.In this paper,it is of special interest to study systematically the effect of PEG with varied molecular weight and concentration on the phase transition of DMPC mixed with FA.As differential scanning calorimetry(DSC)has become a standard technique for studying the thermally induced transition of phospholipid molecules from an ordered crystalline-like state at low temperature to a liquid crystalline-like state at higher temperature16,the present report is concerned with the interaction of fatty acid with DMPC in the presence of PEG using DSC technique.As the reported studies are not wide enough to fully understand the thermodynamics of FA-induced phase transition of lipid in crowded media,our work may enrich the overall thermodynamics and mechanism of interaction between fatty acid and model phospholipid membranes in macromolecular crowding.

    2 Materials and methods

    2.1Materials

    1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC;≥97%), octanoic acid(C8:0;≥98%),trans-2-octenoic acid(C8:1,trans; ≥98%),3-octenoic acid(C8:1;≥95%),decanoic acid(C10:0; ≥98%),cis-9-hexadecenoic acid(C16:1;≥98%),linoleic acid(C18:2;≥97%),γ-linolenic acid(C18:3;≥97%),and elaidic acid(C18:1,trans;≥95%)were bought from Tokyo Chemical Industry.Lauric acid(C12:0;≥99.5%),palmitic acid(C16:0;≥99%),stearic acid(C18:0;≥99%),oleic acid(C18:1;≥99%), PEG200,PEG400,PEG800,PEG2000,PEG6000,PEG10000,and PEG20000 were obtained from Aladdin Industrial Corporation. Phosphate buffered solution(PBS)was prepared by KH2PO4(≥99.5%),Na2HPO4(≥99%),NaCl(≥99.5%),and KCl(≥99.5%).Ethanol and chloroform were used inAR grade.All experiments were performed in deionized water.

    2.2Sample preparation

    The DMPC vesicles were prepared as follows17:required amount of DMPC was dissolved in chloroform.The solvent was then fully removed by vacuum using a rotary evaporator at 40°C, which is above the main phase transition temperature.PBS buffer at pH 7.4 was added to the film and then followed by sonication at a temperature above the main phase transition temperature to make liposome suspension.The vesicle suspension and PEG solution were prepared separately before mixed together.The concentration of DMPC in the vesicle suspension is 0.4 mmol·L-1and the concentration of PEG ranges from 0 to 0.30 g·mL-1.

    Stock solution of fatty acid was prepared by dissolving FA in alcohol and the concentration was 5 mmol·L-1.Required amount of FAwas added into vesicle suspension by micropipette and then mixed together using an incubator shaker.All the solution was prepared in PBS and the ionic strength was kept constant.Because the concentration of FA needed in mixture was 0.04 mmol·L-1, only little amount of alcohol existed in the samples.Control experiment was conducted and the results show that the effect of alcohol could be ignored.

    2.3Differential scanning calorimetry measurements

    Differential scanning calorimetry measurements were performed using a VP-DSC(MicroCal Inc.,Northampton,USA)in a temperature range of 1 to 40°C.Data analysis was done using the Microcal Origin 7.0 software provided by Microcal.The sample volume was 0.52 mL.The samples were kept at 1°C for 15 min before the scan was started.The DSC thermograms recorded the differential power which was required to maintain the sample and the reference at the same temperature.Reference thermograms were recorded under the same conditions by filling in the sample cell with buffer and the reference cell with water.All heating scans were recorded at a rate of 1.0°C·min-1.Calorimetric enthalpies were calculated by integrating the peak areas after manual baseline adjustment.Under the experimental conditions, the obtained thermal recordings were reproducible.

    3 Results and discussion

    3.1Phase transition of phospholipid vesicles mixed with PEG with different molecular weights

    Before investigating the details of how PEG affects the phase transition of FA/DMPC mixture vesicles,we studied the phase transition of DMPC vesicles alone in the crowded media.PEG of different molecular weight such as PEG200,PEG400,PEG800, PEG2000,PEG6000,PEG10000,and PEG20000 were selected. The concentration of PEG at certain molecular weight ranged from 0 to 0.30 g·mL-1in the mixture.The characteristic thermogram of DMPC consists of a small peak named pre-transition(Tp), which represents the transition of gel phase to rippled gel phase. The sharp peak named main phase transition temperauture(Tm) represents the transition of rippled gel phase to liquid crystalline phase18,19.The changes of the thermotropic properties allow evaluating the interactions of the added substance with the membranes.

    The DSC traces and the changes of phase transition temperature are shown in Fig.1 and Fig.2,respectively.At low concentration, PEG has little influence on the thermodynamic property of DMPC vesicle.With the concentration increases,Tmshifts to high temperature,indicating that both the pre-transition temperature and main transition temperature increased.The peak of main phase transition becomes lower and broader suggesting the van′t Hoff enthalpy(ΔHv)decreased.In addition,the intensity at the pretransition peak turns less with the increasing concentration of PEG.These results show that both Tpand Tmincrease with the increasing concentration of PEG regardless of the molecular weight.Similar results were also found in DPPC and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine(DPPE)vesicles in the presence of PEG by other researchers13,20.

    The pre-transition of DMPC is related to the formation of periodic ripples on the membrane surface which depends on the headgroup hydration.For the dehydrated lipid membranes,the pretransition did not occur21.It was also proposed that the pre-transition is linked with the melting process of acyl chain21,22.PEG bound water in aqueous solution23and PEG with low molecule weight bound less water than that with high molecule weight24. Fig.2 shows that the change of Tpreaches to 7°C whereas the maximum change of Tmis just 1.5°C,indicating that the PEG might have more influence on Tpthan Tmat the same concentration.The reason lies in that PEG could change the structure of water at membrane-water interface and dehydrate the DMPC headgroup,which leads to increased Tp.On the other hand,the free motion of the headgroups was limited because of the increased viscosity of the solution and/or the structuring effect of PEG on water24.Another mechanism is the so-called“osmoelastic coupling”proposed by Ito et al.25.In the case of external addition of high-molecular-weight PEG to the preformed neutral phospholipid bilayers,PEG is excluded from the region adjacent to the membranesurface.Anosmolytegradientbetweentheexclusionlayerand thebulkPEGsolutioncausesanosmoticallydrivenwateroutflow andtheshrinkageof the bilayers.Bartucci et al.26demonstrated that the effects that PEG on the neutral lipid bilayers came from both shrinkage and polymer-induced dehydration of the phospholipid polar head-groups,but the polymer-induced shrinkage should be the main reason.

    Fig.1 DSC thermograms of DMPC vesicles in the presence of PEG with different molecular weights

    Fig.2 also implies that the effect of the PEG on DMPC transition temperature(Tm)is both molecular-weight and concentration dependent.The more PEG added,the higher Tmwas reached.PEG with low molecular weight has low degree of polymerization and the length of hydrocarbon chain could match with DMPC molecule.The low-molecular-weight PEGs might be able to permeate into DMPC vesicles24through hydrophobic interaction,which increases the transition temperature.On the other hand,at the same mass concentration,PEG with lower molecular weight could generate high osmotic pressure,which promoted the increase of Tm.Fig.2(c,d)suggests that at equivalent molar concentration, PEG with high molecular weight results in larger value of ΔTm.According to the accepted idea that the effect of PEG on membrane vesicles mainly comes from the volume exclusion effect, which is related to the change of osmotic pressure,it is reasonable to deduce that the more crowded of the solution,the higher transition temperature of the vesicles.PEG with longer chain has high degree of polymerization,may provide a more crowed media. Therefore,the macromolecular crowding effect contributes to the dependence of both molecule weight and concentration of PEG.

    3.2Phase transition of phospholipid vesicles mixed with fatty acid in the presence of PEG

    3.2.1Effect of PEG on the phase transition of DMPC

    vesicles mixed with saturated fatty acid

    Phase transition of DMPC mixed with different saturated fatty acid such as octanoic acid(C8:0),decanoic acid(C10:0),lauric acid(C12:0),palmitic acid(C16:0)and stearic acid(C18:0)(FA/ DMPC vesicles)without PEG is shown in Fig.3.As the pretransition was not found for DMPC in the presence of FA,the following research was mainly concentrated on the main phase transition.When short-chain FA such as octanoic acid(C8:0), decanoic acid(C10:0),lauric acid(C12:0)was added,the curve′s continuity and pattern imply that the thermal behavior involved in all the solutions is similar.However,when long-chain FAsuch as palmitic acid(C16:0)or stearic acid(C18:0)was added into the suspension,a broadening Cp(specific heat capacity)profile is observed.The DSC peak shifts to higher temperature region and gradually collapses.The peak temperature(Tm)for the pure DMPC in the buffer is 23.7°C.FAat C8,C10,and C12 resulted in a slight decrease of Tm,whereas C16 and C18 shifted the Tmto 26.6 and 25.0°C,respectively.Herein the results are consistent with an earlier research in which the long-chain saturated fatty acids increased and broadened the gel-to-liquid crystalline phase transition,whereas fatty acids of C10 or fewer carbons and fatty acidderivatives results in lower and broadened phase transition,all the fatty acids being capable of eliminating the pretransition27,28.

    Fig.2 Changes of pre-transition temperature(a,c)and main phase transition temperature(b,d)of DMPC vesicles with PEG

    Fig.4 depicts the DSC scans of DMPC vesicles mixed with saturated FAin the presence of PEG200,PEG2000 and PEG20000 at varied concentrations,respectively.It can be seen that the presence of PEG results in significant changes in the phase transition of FA/DMPC vesicles.The original decreased Tmof DMPC by octanoic acid is found increased in the presence of PEG200 or PEG2000 compared with that of DMPC in buffer without PEG.Actually,Tmof FA/DMPC vesicles increased in most of the covered concentration and molecular weight of PEG.

    Fig.3 DSC thermograms of DMPC vesicles mixed with fatty acids with different chain lengths

    To find the details of the change of Tm,ΔTmwas obtained by substring the transition temperature of pure DMPC in PBS buffer from the Tmshown in Fig.5.For PEG200(Fig.5(a)),increased concentration of PEG induces higher Tm.This concentration dependence is also observed for most FA/DMPC vesicles in PEG2000(Fig.5(b))and PEG20000(Fig.5(c)),which suggests that concentrated PEG enhanced the interaction of DMPC with saturated FA.Compared with FA/DMPC vesicles in diluted solution,the increased ΔTminduced by PEG indicates the collaboration of the macromolecular crowding during the phase transition process.It is noteworthy that PEG200 supports the increase of Tm, resulting in the gradual increase along with the increased concentration(Fig.5(d)).The matchable hydrocarbon chain of PEG200 with the phospholipid might facilitate the interaction, which strengthened the packing of bilayer.

    Comparing the results of the phase transition of DMPC vesicles in PEG with or without FAshown in Fig.5,we can see that for C8, C10,and C12,the increased Tmof FA/DMPC vesicles in PEG mainly came from the interaction of DMPC with PEG.However, for the long-chain FA,PEG200 helps strengthen of liquid crystalline phase of DMPC.This collaborative effect results were also found in the case of PEG2000 and PEG20000.

    3.2.2Effect of PEG on the phase transition of DMPC vesicles mixed with unsaturated fatty acid

    Fig.4 DSC thermograms of DMPC vesicles mixed with saturated FAin the presence of PEG200,PEG2000,and PEG20000 at varied concentrations

    As unsaturated FA usually lowers the phase transition temperature and affects the fluidity of the membrane,we extended our research to find the influence of PEG on the vesicles disrupted by unsaturated FA.DMPC vesicles mixed with unsaturated shortchain FA(Fig.6)and long-chain FA(Fig.7)in the presence of different molecular weight and concentration of PEG was subjected to DSC scans.Fig.8 lists the change of Tmof DMPC vesicles mixed with short-chain and long-chain unsaturated FAin the presence of PEG with varied molecular weight and concentration. For pure DMPC vesicles,unsaturated short-chain FA induces a little decrease of the phase transition,resulting in negative ΔTm. But in the presence of PEG200,the ΔTmturns positive,which means that PEG200 repaired the disturbed vesicles and shifted the phase transition to higher temperatures.More concentrated PEG200 causes a higher increase of ΔTm.This concentration dependence was also found for PEG2000.But PEG20000 seems to support the phase transition to occur at lower temperature, displaying more negative ΔTmwhen the concentration was 0.10 and 0.20 g·mL-1.Only at higher concentration(0.30 g·mL-1)of PEG20000,increased Tmis observed.

    Unlike the unsaturated short-chain FA,addition of the unsaturated long-chain FA to DMPC vesicles results in significant decrease of Tm(Fig.7)except when the elaidic acid was presented. The addition of PEG could not compensate the decreased Tmenough,which results in the left shift of most of the DSC thermographs.PEG200 could not repair the membrane-distorted vesicles before the concentration reached 0.20 g·mL-1.ForPEG2000 and PEG20000,the discrepancy of changed phase transition temperature became smaller at a higher concentration (0.30 g·mL-1).This implies that the unsaturated long-chain FA generates stronger disturbance than that of short-chain FA. Moreover,PEG could not afford enough repairing effect for the disturbed DMPC vesicles in the case of unsaturated long-chain FA.

    Fig.5 Variation of the differences of the main phase transition temperature(ΔTm)of DMPC vesicles mixed with saturated FAagainst the change of molecular weight and concentration of PEG

    It was reported that adding small amounts of saturated FAwith carbon number of 12-18 increased the Tmand trasnsition entrapy (ΔH)of dipalmitoylphosphatidylcholine(DPPC)multilamellar dispersions whereas saturated fatty acid with fewer carbons(<10) and unsaturated fatty acid lowered the Tmand ΔH29.In fact membrane fluidity is highly influenced by π-bond position and configuration in the long chain isomers of phyto-fatty acids. Filippelli et al.8found that onset of Tmof the membrane containing Z-vaccenic acid occurred at a lower temperature than that containing an equal amount of oleic acid.In Fig.8,only a little difference of ΔTmwas observed for trans-2-octenoic acid(C8:1, trans)and 3-octenoic acid(C8:1),whereas a big discrepancy of ΔTmwas found for elaidic acid(C18:1,trans)and oleic acid(C18: 1).These results suggest that the configuration of π-bond in longchain unsaturated FA influenced the membrane fluidity greatly. Values of Tmfor all the membranes that contained the oleic acid are lower than those containing elaidic acids.These results are in agreement with literature that the Tmof phospholipid vesicle that containing trans unsaturated FA is higher than that containing its cis isomers30,31.The mixtures of stearic,arachic,oleic,and linoleic acids with DMPC and distearylphosphatidylcholine have been studied by Ortiz and Gómez-Fernández32.Saturated fatty acids were found to partition preferentially into solid-like domains, while cis-unsaturated fatty acids partition preferentially into fluidlike domains.These effects have been considered to reflect principally the destructive influence of a Z-π bond on the packing of the hydrocarbon chains in the gel state,a less compact arrangement resulting in a lower Tm.The E configuration has a completely different effect on the fluidity of the phospholipid bilayer resulting in more rigidly packed in the membrane.Our results showed that PEG increases the Tmof the DMPC vesicles incorporated by either Z or E-isomers of long-chain unsaturated fatty acids,but could not reduce the differences.

    3.3Change of the heterogeneity of DMPC vesicles with or without FA in the presence of PEG

    In addition to identifying the temperatures when phase transitions occur and the enthalpy change associated with the transition,DSC thermograms also provide the width at half-height of the transition temperature(ΔT1/2).The shape of the peaks contains useful information on the system and the cooperative nature of the transition.The van′t Hoff enthalpy change(ΔHv)can be calculated from ΔT1/2based on the assumed simple two-state first-order model.For VP-DSC,ΔHvcan be obtained directly by fitting the data with a Non-2-state model(Both ΔH and ΔHvcan be found in the Supporting Information).The cooperative unit(CU),which was defined as the ratio of ΔHv/ΔH,reflects the degree of intermolecular cooperation between phospholipid molecules in a bi-layer33.CU gives valuable information on lipid organization, which represents the number of molecules going through the gelliquid crystalline phase transition simultaneously.A decrease of CU generally indicates that there is an increase in heterogeneity among lipid molecules in the bilayer membranes during the phase transition34.

    Fig.6 DSC thermograms of DMPC vesicles mixed with fatty acid with unsaturated short-chain fatty acid in the presence of different molecular weights and concentrations of PEG

    Fig.9 shows the change of CU of pure DMPC and that mixed with fatty acid with different chains,saturated or unsaturated in the presence of PEG.It can be seen that for pure DMPC vesicles,the presence of long-chain FAcauses greater change of CU than shortchain FA.The increase in heterogeneity of DMPC may come from more matchable chain length of long-chain FA with the phospholipid molecule.The unsaturation degree of FA influences greatly on the CU in the absence of PEG.The CU of stearic acid (C18:0),oleic acid(C18:1),linoleic acid(C18:2),γ-linolenic acid (C18:3),and elaidic acid(C18:1,trans)increases gradually, suggesting that the more double bonds,the more homogeneity generated in the binary fatty acid-phospholipid system.Moreover, configuration of the double bonds also affects the heterogeneity of the bilayers,which is in agreement of the observed change of Tm.

    Fig.7 DSC thermograms of DMPC vesicles mixed with fatty acid with unsaturated long-chain fatty acid in the presence of different molecular weights and concentrations of PEG

    In the presence of PEG,great changes of CU are found both in pure DMPC and for FA/DMPC vesicles.The CU of pure DMPC vesicles decreases when the concentration of PEG increases in most cases.For example,in the case of PEG200,The CU of DMPC vesicles first increases then decreases with the concentration increase.But for PEG2000 and PEG20000,the CU of DMPC vesicles decreases gradually with the concentration of macromolecules increases.In addition,the increase of the molecular weight also causes the decrease of CU of DMPC vesicles. Generally,the presence of PEG results in CU decreases of most FA/DMPC systems.These results indicate that fewer molecules were going through the gel-liquid crystalline phase transition simultaneously in a more complexes system.In most cases the enthalpy change of FA/DMPC/PEG is larger than that of FA/ DMPC.The presence of PEG200 and PEG2000 decreased the polymer mobility and resulted in an increase of ΔH.Accordingly, the increase in heterogeneity among polymer molecules in the vesicle membranes during the phase transition contributed to the decrease of CU.It is well accepted that the CU is a measure of the degree of intermolecular cooperation between phospholipid molecules in a bilayer.For a completely cooperative,first-order phase transition of an absolutely pure substance,this ratio should approach infinity,while for a completely non-cooperative process this ratio should approach unity33.FA may be incorporated into membranes and affect phospholipid fluidity and molecular packing.The present study addresses the role of PEG in membrane structure.The determined CU values can be useful in quantitating the degree of cooperativity of lipid phase transitions. The aggregation of FA/DMPC vesicles in the presence of PEG is in a manner consistent with a steric exclusion mechanism.In the crowed media,PEG promoted exchange of lipids between mul-tilameilar vesicles in the liquid-crystalline state.The decreased CU caused by PEG suggests that the crowded media contribute the heterogeneity of the bilayers and that less molecules have cooperatively participated in the phase transition process.

    Fig.8 Change of Tmof DMPC vesicles mixed with(A)short-chain and(B)long-chain unsaturated FAin the presence of PEG with varied molecular weight and concentration

    Fig.9 CU for DMPC and FA/DMPC vesicles in the presence of PEG with varied molecular weight and concentration

    We also studied the change of micropolarity and fluidity of FA/ DMPC in PEG200 using steady-state fluorescence technique(see Supporting Information).In general,the fluidity of membrane decreased in crowding environment.The short-chain saturated fatty acids made the fluidity increased slightly,but it was not enough to offset the effect of crowding environment.The fluidity of membrane increased in the presence of unsaturated fatty acids. But it cannot offset the effect of PEG.The fluidity of mixed membrane in crowding environment was lower than that of membrane in diluted solution.

    4 Conclusions

    The effect of PEG with varied molecular weights and different concentrations on the phase transition of DMPC mixed with free fatty acid was investigated systematically using DSC technique. Fatty acids were differently located in DMPC vesicles and underwent different types of modulation movements in the crowed media according to their hydrocarbon chain length and degree of unsaturation.The results showed that the effect of PEG on the phase transition of pure DMPC vesicles was both molecular weight and concentration dependent.The presence of PEG results in significant changes in the phase transition of FA/DMPC vesicles.Tmof FA/DMPC vesicles increased in PEG at most of the covered concentration and molecular weight.The original decreased Tmof DMPC by some FA was found increased in the presence of PEG and the enhancement was concentration-dependent,suggesting a collaborative effect of the molecular crowding existed,especially for PEG200.The matchable hydrocarbon chain of PEG200 with the phospholipid may facilitate the interaction which strengthened the packing of bilayer,resulting in a higher transition temperature.For short-chain fatty acid,the increased Tmof FA/DMPC vesicles in PEG mainly come from the interaction of DMPC with PEG.Unsaturated long-chain FA generated stronger disturbance than that of short-chain FA,resulting in significant decreased of Tm.PEG could not offset the disturbed DMPC vesicles mixed with long-chain unsaturated FA in which the Tmof most FA/DMPC vesicles are still smaller than that of pure DMPC vesicles.Moreover,The presence of PEG results in decreased CU for most of DMPC and FA/DMPC vesicles,suggesting that the crowded media contribute the heterogeneity of the bilayers and that fewer molecules have cooperatively participated in the phase transition process.The class of long chain polyunsaturated fatty acids is believed to be incorporated into membranes and provide some specific function.Our work suggested that the crowded media may repair the disturbed membrane which should not be neglected.To fully understand of the mechanism behind the interaction of fatty acid and phospholipid membranes in macromolecular crowding,further work will be required to elucidate the details about the solid-like or fluidlike domains that different fatty acids preferentially partitioned into and the overall dynamics and thermodynamics involved.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    References

    (1)Glatz,J.F.C.;Luiken,J.J.F.P.Prostag.Leukotr.Ess.2015,92, 57.doi:10.1016/j.plefa.2014.02.007

    (2)Zhang,F.;Kamp,F.;Hamilton,J.A.Biochemistry 1996,35, 16055.doi:10.1021/bi961685b

    (3)Wu,F.G.;Jia,Q.;Wu,R.G.;Yu,Z.W.J.Phys.Chem.B 2011, 115,8559.doi:10.1021/jp200733y

    (4)Wu,F.G.;Sun,H.Y.;Zhou,Y.;Wu,R.G.;Yu,Z.W.RSC Adv. 2014,4,51171.doi:10.1039/C4RA09158B

    (5)Wu,F.G.;Sun,H.Y.;Zhou,Y.;Deng,G.;Yu,Z.W.RSC Adv. 2015,5,726.doi:10.1039/C4RA07569B

    (6)Wu,R.G.;Chen,L.;Yu,Z.W.Acta Phys.-Chim.Sin.2012,28, 2008.[鄔瑞光,陳琳,尉志武.物理化學(xué)學(xué)報,2012,28, 2008.]doi:10.3866/PKU.WHXB201205171

    (7)Chen,J.;Cheng,D.;Li,J.;Wang,Y.;Guo,J.;Chen,Z.;Cai,B.; Yang,T.Drug Dev.Ind.Pharm.2013,39,197.doi:10.3109/ 03639045.2012.668912

    (8)Filippelli,L.;Rossi,C.O.;Uccella,N.A.Colloids Surf.B: Biointerfaces 2011,82,13.doi:10.1016/j.colsurfb.2010.07.052

    (9)Ellis,R.J.;Minton,A.P.Nature 2003,425,27.doi:10.1038/ 425027a

    (10)Hall,D.;Minton,A.P.Biochim.Biophys.Acta-Proteins Proteom 2003,1649,127.doi:10.1016/S1570-9639(03)00167-5

    (11)Hassan,M.M.;Martin,A.D.;Thordarson,P.J.Mater.Chem.B 2015,3,9269.doi:10.1039/C5TB02139A

    (12)Maggio,B.;Lucy,J.A.Febs Lett.1978,94,301.doi:10.1016/ 0014-5793(78)80962-4

    (13)Tilcock,C.P.S.;Fisher,D.Biochim.Biophys.Acta-Biomembranes 1979,557,53.doi:10.1016/0005-2736(79) 90089-0

    (14)Arnold,K.;Zschoernig,O.;Barthel,D.;Herold,W.Biochim. Biophys.Acta-Biomembranes 1990,1022,303.doi:10.1016/ 0005-2736(90)90278-V

    (15)Lentz,B.R.Eur.Biophys.J.2007,36,315.doi:10.1007/ s00249-006-0097-z

    (16)Luo,J.J.;Wu,F.G.;Yu,J.S.;Wang,R.;Yu,Z.W.J.Phys. Chem.B 2011,115,8901.doi:10.1021/jp200296v

    (17)Maulucci,G.;De Spirito,M.;Arcovito,G.;Boffi,F.;Castellano, A.C.;Briganti,G.Biophys.J.2005,88,3545.doi:10.1529/ biophysj.104.048876

    (18)Needham,D.;Evans,E.Biochemistry 1988,27,8261. doi:10.1021/bi00421a041

    (19)Mabrey,S.;Sturtevant,J.M.Proc.Natl.Acad.Sci.U.S.A. 1976,73,3862.doi:10.1073/pnas.73.11.3862

    (20)Yamazaki,M.;Ohshika,M.;Kashiwagi,N.;Asano,T.Biophys. Chem.1992,43,29.doi:10.1016/0301-4622(92)80039-8

    (21)Heimburg,T.Biophys.J.2000,78,1154.doi:10.1016/S0006-3495(00)76673-2

    (22)Riske,K.A.;Barroso,R.P.;Vequi-Suplicy,C.C.;Germano,R.;Henriques,V.B.;Lamy,M.T.Biochim.Biophys.Acta-Biomembranes 2009,1788,954.doi:10.1016/j. bbamem.2009.01.007

    (23)Blow,A.M.J.;Botham,G.M.;Fisher,D.;Goodall,A.H.; Tilcock,C.P.S.;Lucy,J.A.Febs Lett.1978,94,305. doi:10.1016/0014-5793(78)80963-6

    (24)Tilcock,C.P.S.;Fisher,D.Biochim.Biophys.Acta-Biomembranes 1982,688,645.doi:10.1016/0005-2736(82) 90375-3

    (25)Ito,T.;Yamazaki,M.;Ohnishi,S.Biochemistry 1989,28,5626. doi:10.1021/bi00439a043

    (26)Bartucci,R.;Montesano,G.;Sportelli,L.Colloids Surf.A: Physicochem.Eng.Asp.1996,115,63.doi:10.1016/0927-7757 (96)03665-5

    (27)Eliasz,A.W.;Chapman,D.;Ewing,D.F.Biochim.Biophys. Acta-Biomembranes 1976,448,220.doi:10.1016/0005-2736 (76)90238-8

    (28)Schullery,S.E.;Seder,T.A.;Weinstein,D.A.;Bryant,D.A. Biochemistry 1981,20,6818.doi:10.1021/bi00527a012

    (29)Kantor,H.L.;Mabrey,S.;Prestegard,J.H.;Sturtevant,J.M. Biochim.Biophys.Acta-Biomembranes 1977,466,402. doi:10.1016/0005-2736(77)90333-9

    (30)Roach,C.;Feller,S.E.;Ward,J.A.;Shaikh,S.R.;Zerouga,M.; Stillwell,W.Biochemistry 2004,43,6344.doi:10.1021/ bi049917r

    (31)Koynova,R.;Caffrey,M.Biochim.Biophys.Acta-Rev. Biomembranes 1998,1376,91.doi:10.1016/S0304-4157(98) 00006-9

    (32)Ortiz,A.;Gómez-Fernández,J.C.Chem.Phys.Lipids 1987,45, 75.doi:10.1016/0009-3084(87)90041-7

    (33)Rn,M.E.Chem.Phys.Lipids 1982,30,229.doi:10.1016/0009-3084(82)90053-6

    (34)Barenholz,Y.;Bombelli,C.;Bonicelli,M.G.;di Profio,P.; Giansanti,L.;Mancini,G.;Pascale,F.J.Colloid Interface Sci. 2011,356,46.doi:10.1016/j.jcis.2010.11.062

    Phase Transition of Phospholipid Vesicles Induced by Fatty Acids in Macromolecular Crowding:a Differential Scanning Calorimetry Study

    WANG JiaoYANG Li-Jun*ZHU Tian-TianWANG Shen-ZhiCHEN Zhong-Xiu*
    (College of Food&Biology Engineering,Zhejiang Gongshang University,Hangzhou 310018,Zhejiang Province,P.R.China)

    Investigation of the thermodynamics of fatty acid(FA)modulation of lipid membrane behavior is important to understand the mechanisms that occur in cells.Previous research of the interaction between FAs and lipid membranes has been performed in dilute solution,and no study has focused on the effect of an external crowding medium on the phase transition of the lipid membrane induced by FAs.In this paper,the effect of various molecular weights and concentrations of polyethylene glycol(PEG)on the phase transition of 1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC)vesicles mixed with FA was systematically investigated by differential scanning calorimetry(DSC).The results show that the effect of PEG on the phase transition of pure DMPC vesicles is both molecular weight and concentration dependent.The presence of PEG significantly changes the phase transition of FA/DMPC vesicles.Phase transition temperature(Tm)of FA/DMPC vesicles increased in PEG for most of the considered concentrations and molecular weights.The original Tmof DMPC induced by short-chain saturated FAor unsaturated FAincreased in the presence of PEG.Further investigation revealed that in most cases a collaborative effect of molecular crowding existed and the effect of PEG on Tmwas both molecular weight and concentration dependent.Moreover,the cooperative unit(CU)of pure DMPC vesicles and most FA/DMPC systems decreased with increasing PEG concentration,indicating that the crowded medium contributes to the heterogeneity of the bilayers and that fewer molecules cooperatively participate in the phase transition.The results suggest that crowded media might repair disturbed membranes,which should not be ignored in the FA-modulating membrane related area.

    Macromolecular crowding;Phospholipid vesicle;Fatty acid;Phase transition;Differential scanning calorimetry

    February 29,2016;Revised:May 3,2016;Published on Web:May 3,2016.

    O648

    10.3866/PKU.WHXB201605033

    *Corresponding authors.CHEN Zhong-Xiu,Email:zhxchen@mail.zjgsu.edu.cn;Tel:+86-11-28008980.

    YANG Li-Jun,Email:spxy21019@126.com.

    The project was supported by the Zhejiang Provincial Top Key Discipline of Food Science and Biotechnology for Financial Support, China(JYTSP20141012).

    浙江省食品科學(xué)與生物技術(shù)“重中之重”基金(JYTSP20141012)資助項目

    ?Editorial office ofActa Physico-Chimica Sinica

    [Article]

    猜你喜歡
    工商大學(xué)大分子磷脂
    重慶工商大學(xué)作品欣賞
    大眾文藝(2024年2期)2024-02-18 11:41:00
    重慶工商大學(xué)學(xué)科簡介
    重慶工商大學(xué)
    大黃酸磷脂復(fù)合物及其固體分散體的制備和體內(nèi)藥動學(xué)研究
    中成藥(2019年12期)2020-01-04 02:02:24
    重慶工商大學(xué)
    柚皮素磷脂復(fù)合物的制備和表征
    中成藥(2018年7期)2018-08-04 06:04:18
    辣椒堿磷脂復(fù)合凝膠的制備及其藥動學(xué)行為
    中成藥(2017年12期)2018-01-19 02:06:31
    白楊素磷脂復(fù)合物的制備及其藥動學(xué)行為
    中成藥(2017年5期)2017-06-13 13:01:12
    半柔性大分子鏈穿越微孔行為的研究
    微流控超快混合器及生物大分子折疊動力學(xué)應(yīng)用研究進(jìn)展
    女人被狂操c到高潮| 男人狂女人下面高潮的视频| 国产成人福利小说| 午夜a级毛片| 尤物成人国产欧美一区二区三区| 免费观看a级毛片全部| 九九爱精品视频在线观看| 久久99热这里只有精品18| 日日摸夜夜添夜夜添av毛片| 韩国av在线不卡| 国产黄片视频在线免费观看| 亚洲综合色惰| 日本午夜av视频| 欧美日本亚洲视频在线播放| 国产免费男女视频| 欧美高清性xxxxhd video| 国产淫片久久久久久久久| АⅤ资源中文在线天堂| 国产精品一区二区在线观看99 | 亚洲国产精品sss在线观看| 热99在线观看视频| 又爽又黄a免费视频| 亚洲性久久影院| 国产精品人妻久久久影院| 精品不卡国产一区二区三区| 天堂影院成人在线观看| 男人的好看免费观看在线视频| 久久99热这里只有精品18| 国产av在哪里看| 亚洲国产精品成人久久小说| 我的老师免费观看完整版| 久久精品夜色国产| 亚洲精品成人久久久久久| av线在线观看网站| 精品久久国产蜜桃| 岛国毛片在线播放| 最近2019中文字幕mv第一页| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲三级黄色毛片| 午夜老司机福利剧场| 国产av不卡久久| 国产淫语在线视频| 国产成年人精品一区二区| 身体一侧抽搐| 高清午夜精品一区二区三区| 国产色婷婷99| 99久久人妻综合| 久久人人爽人人片av| 久久精品国产亚洲网站| 最后的刺客免费高清国语| 免费看美女性在线毛片视频| av免费在线看不卡| 变态另类丝袜制服| 亚洲伊人久久精品综合 | 国产精品久久久久久久电影| 午夜福利成人在线免费观看| av在线天堂中文字幕| 在线观看66精品国产| 国产v大片淫在线免费观看| 亚洲av一区综合| 亚洲欧美精品专区久久| 亚洲性久久影院| 热99re8久久精品国产| 欧美性猛交╳xxx乱大交人| 精品国产一区二区三区久久久樱花 | 99久久精品一区二区三区| 国产片特级美女逼逼视频| 国产成人91sexporn| 亚洲国产高清在线一区二区三| 国产伦精品一区二区三区四那| 午夜精品国产一区二区电影 | 欧美潮喷喷水| 国产免费视频播放在线视频 | 男女视频在线观看网站免费| 久久久久久久午夜电影| 欧美日韩一区二区视频在线观看视频在线 | 内射极品少妇av片p| 中文字幕亚洲精品专区| 久久韩国三级中文字幕| 欧美一区二区精品小视频在线| 亚洲人成网站在线播| 日韩大片免费观看网站 | 一边摸一边抽搐一进一小说| 国产乱人视频| av线在线观看网站| 床上黄色一级片| 22中文网久久字幕| 国产成人freesex在线| 99热这里只有是精品50| 亚洲av免费高清在线观看| 噜噜噜噜噜久久久久久91| 亚洲av中文字字幕乱码综合| 狂野欧美激情性xxxx在线观看| 婷婷色麻豆天堂久久 | 精品人妻熟女av久视频| 日本色播在线视频| 色5月婷婷丁香| 国产v大片淫在线免费观看| 乱人视频在线观看| 边亲边吃奶的免费视频| 看片在线看免费视频| 性插视频无遮挡在线免费观看| 国产伦精品一区二区三区视频9| 中文字幕av在线有码专区| 午夜福利视频1000在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产探花极品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 青青草视频在线视频观看| av天堂中文字幕网| 国产日韩欧美在线精品| 内地一区二区视频在线| 精品免费久久久久久久清纯| 日韩欧美三级三区| 国产三级在线视频| 精品一区二区三区人妻视频| 日韩国内少妇激情av| 别揉我奶头 嗯啊视频| 欧美丝袜亚洲另类| 亚洲精品国产成人久久av| 久久精品91蜜桃| 国产精品久久久久久久久免| 国产一区亚洲一区在线观看| 色综合色国产| 久久精品国产99精品国产亚洲性色| 深爱激情五月婷婷| 少妇高潮的动态图| 精品99又大又爽又粗少妇毛片| 国产高清有码在线观看视频| 国产黄a三级三级三级人| 91aial.com中文字幕在线观看| 毛片一级片免费看久久久久| 有码 亚洲区| 1000部很黄的大片| 国产中年淑女户外野战色| 亚洲欧美成人综合另类久久久 | 日韩一区二区视频免费看| 2021少妇久久久久久久久久久| 国产亚洲午夜精品一区二区久久 | 日韩欧美精品v在线| 久久久久久久亚洲中文字幕| 亚洲av不卡在线观看| 中文乱码字字幕精品一区二区三区 | 色5月婷婷丁香| 99久久成人亚洲精品观看| 久久久久网色| 好男人视频免费观看在线| 午夜亚洲福利在线播放| 五月玫瑰六月丁香| 麻豆久久精品国产亚洲av| 成年版毛片免费区| 欧美激情国产日韩精品一区| 午夜精品国产一区二区电影 | 老司机影院毛片| 91精品一卡2卡3卡4卡| 久久久精品大字幕| 99久久人妻综合| 99热全是精品| 亚洲欧美中文字幕日韩二区| 69人妻影院| 亚洲真实伦在线观看| 国产淫语在线视频| 午夜福利视频1000在线观看| 最近最新中文字幕免费大全7| h日本视频在线播放| 直男gayav资源| 一区二区三区免费毛片| 噜噜噜噜噜久久久久久91| 日韩精品有码人妻一区| 国产午夜福利久久久久久| 国产精品一区二区三区四区免费观看| 免费av观看视频| 老女人水多毛片| 非洲黑人性xxxx精品又粗又长| 卡戴珊不雅视频在线播放| 国内少妇人妻偷人精品xxx网站| 中文在线观看免费www的网站| av在线天堂中文字幕| 九九在线视频观看精品| 联通29元200g的流量卡| 18禁裸乳无遮挡免费网站照片| 久久久精品94久久精品| 亚洲欧美成人综合另类久久久 | 国产精品av视频在线免费观看| .国产精品久久| 免费人成在线观看视频色| 麻豆乱淫一区二区| 99久国产av精品国产电影| 亚洲国产欧洲综合997久久,| 小说图片视频综合网站| 国产亚洲精品av在线| 99在线视频只有这里精品首页| 美女cb高潮喷水在线观看| 欧美成人a在线观看| 91aial.com中文字幕在线观看| 久久久久免费精品人妻一区二区| 99热这里只有是精品在线观看| 最近中文字幕高清免费大全6| 一级二级三级毛片免费看| 婷婷色综合大香蕉| 亚洲av日韩在线播放| 国产老妇女一区| 亚洲在久久综合| 色5月婷婷丁香| 十八禁国产超污无遮挡网站| 精品人妻一区二区三区麻豆| 日本黄大片高清| 国产成人a区在线观看| 男人和女人高潮做爰伦理| 一边亲一边摸免费视频| 国产精品无大码| 欧美日韩一区二区视频在线观看视频在线 | 亚洲人成网站高清观看| 亚洲一区高清亚洲精品| 麻豆av噜噜一区二区三区| 乱系列少妇在线播放| 久久久久网色| 日韩欧美精品免费久久| 精品久久久久久久末码| 一级毛片电影观看 | 国产极品精品免费视频能看的| 内射极品少妇av片p| 最近2019中文字幕mv第一页| 99九九线精品视频在线观看视频| 亚洲电影在线观看av| 91精品一卡2卡3卡4卡| 午夜精品一区二区三区免费看| 1024手机看黄色片| 女人十人毛片免费观看3o分钟| 淫秽高清视频在线观看| 最近最新中文字幕免费大全7| 男人舔女人下体高潮全视频| 久久99精品国语久久久| 一区二区三区高清视频在线| 国产成人一区二区在线| 亚洲av中文字字幕乱码综合| 三级国产精品片| 中文乱码字字幕精品一区二区三区 | 一区二区三区四区激情视频| 欧美一区二区国产精品久久精品| 成年女人永久免费观看视频| 精品久久久久久久久亚洲| av在线亚洲专区| 高清毛片免费看| 老司机福利观看| 亚洲久久久久久中文字幕| 国产美女午夜福利| 乱系列少妇在线播放| 少妇人妻精品综合一区二区| 国产麻豆成人av免费视频| 国产片特级美女逼逼视频| 水蜜桃什么品种好| 99久国产av精品国产电影| 一本一本综合久久| 最近2019中文字幕mv第一页| 国产一区二区在线av高清观看| www日本黄色视频网| 免费看a级黄色片| 国产精品野战在线观看| 蜜桃亚洲精品一区二区三区| 免费看av在线观看网站| 日韩高清综合在线| 亚洲av一区综合| 青春草亚洲视频在线观看| 少妇裸体淫交视频免费看高清| 狂野欧美激情性xxxx在线观看| 亚洲av免费在线观看| 欧美精品国产亚洲| 免费电影在线观看免费观看| 九色成人免费人妻av| 国国产精品蜜臀av免费| 亚洲av男天堂| 亚洲综合色惰| 精华霜和精华液先用哪个| 亚洲成色77777| 高清视频免费观看一区二区 | av天堂中文字幕网| 亚洲无线观看免费| 国产欧美日韩精品一区二区| 国产综合懂色| 久久精品国产亚洲av天美| 精品久久久久久成人av| 老司机福利观看| 亚洲av不卡在线观看| 日韩欧美精品免费久久| 男女视频在线观看网站免费| 午夜福利网站1000一区二区三区| 国产淫语在线视频| 日韩视频在线欧美| 免费观看的影片在线观看| 精品99又大又爽又粗少妇毛片| 免费看美女性在线毛片视频| 日产精品乱码卡一卡2卡三| 全区人妻精品视频| 亚洲第一区二区三区不卡| 亚洲精品aⅴ在线观看| 纵有疾风起免费观看全集完整版 | 18+在线观看网站| 亚洲,欧美,日韩| 一个人看视频在线观看www免费| .国产精品久久| 永久网站在线| 国产毛片a区久久久久| 亚洲天堂国产精品一区在线| 久久久久久久久中文| 欧美日本视频| 99视频精品全部免费 在线| 亚洲欧美成人精品一区二区| 国产 一区 欧美 日韩| 女人被狂操c到高潮| 韩国av在线不卡| 午夜老司机福利剧场| 日日摸夜夜添夜夜添av毛片| 特大巨黑吊av在线直播| 午夜激情欧美在线| 欧美成人免费av一区二区三区| 最近的中文字幕免费完整| 国产精品熟女久久久久浪| 一边摸一边抽搐一进一小说| 麻豆成人午夜福利视频| 国产免费又黄又爽又色| 日本-黄色视频高清免费观看| 亚州av有码| 亚洲av一区综合| 九九爱精品视频在线观看| av.在线天堂| 国产成人福利小说| 国产高清有码在线观看视频| 国产老妇伦熟女老妇高清| 99久久人妻综合| 亚洲成色77777| 美女被艹到高潮喷水动态| 国产日韩欧美在线精品| 欧美一级a爱片免费观看看| 大又大粗又爽又黄少妇毛片口| 亚洲人成网站高清观看| 黄色欧美视频在线观看| 少妇的逼水好多| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一区二区三区四区免费观看| 你懂的网址亚洲精品在线观看 | 九草在线视频观看| 色综合色国产| 成年女人看的毛片在线观看| 亚洲精品日韩在线中文字幕| 久久久亚洲精品成人影院| 亚洲国产精品sss在线观看| 国产成人免费观看mmmm| 美女xxoo啪啪120秒动态图| 日日摸夜夜添夜夜爱| 美女内射精品一级片tv| 国产老妇伦熟女老妇高清| 日韩av在线大香蕉| 亚洲欧美日韩卡通动漫| 一二三四中文在线观看免费高清| 毛片一级片免费看久久久久| 日日摸夜夜添夜夜爱| 亚洲五月天丁香| 国产人妻一区二区三区在| 精品99又大又爽又粗少妇毛片| 秋霞伦理黄片| 亚洲av二区三区四区| 三级国产精品欧美在线观看| 免费观看a级毛片全部| 九色成人免费人妻av| 好男人视频免费观看在线| 91精品伊人久久大香线蕉| 少妇熟女欧美另类| 久久精品国产亚洲网站| 蜜桃久久精品国产亚洲av| 亚洲图色成人| 最近最新中文字幕大全电影3| 内地一区二区视频在线| 又爽又黄a免费视频| 久久久久国产网址| 国产精品.久久久| 欧美区成人在线视频| 国产精品综合久久久久久久免费| 久久久久久九九精品二区国产| 黄片wwwwww| 亚洲欧洲日产国产| 国产成人a∨麻豆精品| 亚洲欧美一区二区三区国产| av线在线观看网站| 中文资源天堂在线| 精品国产一区二区三区久久久樱花 | 乱码一卡2卡4卡精品| 中文在线观看免费www的网站| 一级毛片aaaaaa免费看小| 精品少妇黑人巨大在线播放 | 国产av码专区亚洲av| 大话2 男鬼变身卡| 午夜a级毛片| 久久久精品94久久精品| 国产高清有码在线观看视频| 亚洲最大成人手机在线| 亚洲av不卡在线观看| 可以在线观看毛片的网站| 国产伦理片在线播放av一区| 国产精品1区2区在线观看.| 2022亚洲国产成人精品| 久久久久久伊人网av| 日本欧美国产在线视频| a级一级毛片免费在线观看| 日韩一本色道免费dvd| 亚洲怡红院男人天堂| 国产高清国产精品国产三级 | 九色成人免费人妻av| 国产精品一区www在线观看| 国产乱人偷精品视频| 国产av码专区亚洲av| 免费av毛片视频| 国产精品精品国产色婷婷| 国产成人aa在线观看| av在线亚洲专区| 久久久久精品久久久久真实原创| 校园人妻丝袜中文字幕| 久久久久网色| 成年av动漫网址| 日韩在线高清观看一区二区三区| 大话2 男鬼变身卡| 国产伦精品一区二区三区视频9| 欧美zozozo另类| 亚洲欧美中文字幕日韩二区| 久热久热在线精品观看| 成人美女网站在线观看视频| 免费无遮挡裸体视频| 欧美日韩精品成人综合77777| 国产视频首页在线观看| 久久久久网色| 色尼玛亚洲综合影院| 看片在线看免费视频| av在线蜜桃| 偷拍熟女少妇极品色| 中文字幕人妻熟人妻熟丝袜美| 国产老妇女一区| 人妻夜夜爽99麻豆av| 亚洲熟妇中文字幕五十中出| 午夜爱爱视频在线播放| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品sss在线观看| 国产黄片视频在线免费观看| 国产午夜精品一二区理论片| 中文字幕av成人在线电影| 69av精品久久久久久| 久久久精品大字幕| 在线观看一区二区三区| 秋霞在线观看毛片| 国内精品美女久久久久久| 欧美性猛交╳xxx乱大交人| av线在线观看网站| 日韩av在线免费看完整版不卡| av视频在线观看入口| 天堂影院成人在线观看| 亚洲精品,欧美精品| 毛片一级片免费看久久久久| 天堂av国产一区二区熟女人妻| 日本午夜av视频| 国内精品宾馆在线| 国产午夜精品论理片| 亚洲综合色惰| 亚洲人与动物交配视频| 日本熟妇午夜| 国产成人精品婷婷| 久热久热在线精品观看| 国产午夜福利久久久久久| 国产精品女同一区二区软件| 精品久久久久久久久久久久久| 国产爱豆传媒在线观看| 一个人观看的视频www高清免费观看| 联通29元200g的流量卡| 欧美bdsm另类| 亚洲欧美中文字幕日韩二区| 国产精品一区二区三区四区免费观看| 淫秽高清视频在线观看| 直男gayav资源| 深夜a级毛片| 久久久色成人| 欧美不卡视频在线免费观看| 我要看日韩黄色一级片| 老女人水多毛片| 亚洲欧美精品专区久久| 国产精品熟女久久久久浪| 国产探花极品一区二区| 亚洲精品乱久久久久久| 免费看日本二区| 欧美一区二区精品小视频在线| 一个人观看的视频www高清免费观看| 午夜视频国产福利| 国产成人91sexporn| 成人鲁丝片一二三区免费| 大话2 男鬼变身卡| 99国产精品一区二区蜜桃av| 看片在线看免费视频| 亚洲av成人精品一二三区| 少妇人妻精品综合一区二区| 国产精品乱码一区二三区的特点| 久久久久久久久久黄片| 国产v大片淫在线免费观看| 在线观看av片永久免费下载| 一个人观看的视频www高清免费观看| 久久久欧美国产精品| 免费不卡的大黄色大毛片视频在线观看 | 高清午夜精品一区二区三区| 日本av手机在线免费观看| 国产欧美日韩精品一区二区| 日韩制服骚丝袜av| 欧美3d第一页| 亚洲精品自拍成人| 欧美zozozo另类| av在线亚洲专区| 有码 亚洲区| av黄色大香蕉| 色综合亚洲欧美另类图片| 少妇人妻精品综合一区二区| 国产白丝娇喘喷水9色精品| 一夜夜www| 免费黄网站久久成人精品| 亚洲电影在线观看av| 免费大片18禁| 一级爰片在线观看| 久久精品久久久久久噜噜老黄 | 三级男女做爰猛烈吃奶摸视频| 青青草视频在线视频观看| 国产综合懂色| 日本wwww免费看| 欧美高清性xxxxhd video| av在线观看视频网站免费| 亚洲国产色片| 成年版毛片免费区| 91在线精品国自产拍蜜月| 亚洲天堂国产精品一区在线| 久久99精品国语久久久| 日本欧美国产在线视频| 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 亚洲在线自拍视频| 午夜a级毛片| 一级av片app| 国产av在哪里看| 亚洲国产精品成人久久小说| 99视频精品全部免费 在线| 日日摸夜夜添夜夜爱| 欧美激情国产日韩精品一区| 精品久久久久久成人av| 日产精品乱码卡一卡2卡三| 久久人人爽人人片av| 纵有疾风起免费观看全集完整版 | 日韩av不卡免费在线播放| 一边摸一边抽搐一进一小说| 在线播放无遮挡| 久久久久久国产a免费观看| 亚洲在线自拍视频| 国产成人免费观看mmmm| 国产精品久久久久久久久免| 日韩欧美精品v在线| 久久人人爽人人片av| 22中文网久久字幕| 国产亚洲av嫩草精品影院| 国产高清不卡午夜福利| 亚洲国产精品成人综合色| 搞女人的毛片| 美女xxoo啪啪120秒动态图| 久久久久久久久中文| 亚洲欧洲日产国产| 亚洲三级黄色毛片| 国产高清视频在线观看网站| 老女人水多毛片| 七月丁香在线播放| 久久精品国产鲁丝片午夜精品| 国产一区二区在线观看日韩| 嘟嘟电影网在线观看| 亚洲成人精品中文字幕电影| 国产视频内射| 亚洲真实伦在线观看| 国产视频内射| 国产精品国产三级专区第一集| 午夜爱爱视频在线播放| 精品人妻偷拍中文字幕| 国产人妻一区二区三区在| 日韩欧美 国产精品| 成人性生交大片免费视频hd| ponron亚洲| 午夜爱爱视频在线播放| 男女啪啪激烈高潮av片| 最近2019中文字幕mv第一页| 22中文网久久字幕| 国产成人aa在线观看| 国产精品综合久久久久久久免费| 99在线视频只有这里精品首页| 黄色一级大片看看| 午夜亚洲福利在线播放| 久久精品国产亚洲av涩爱| 超碰av人人做人人爽久久| 国产成人一区二区在线| 免费观看人在逋| 久久久久久久久久成人| 国产视频首页在线观看| 一级毛片aaaaaa免费看小| 国产成人福利小说| 97超碰精品成人国产| 国国产精品蜜臀av免费| 日韩视频在线欧美| 床上黄色一级片| 欧美变态另类bdsm刘玥| 乱人视频在线观看| 国产成人一区二区在线| 久久精品久久精品一区二区三区| 久久久久国产网址| 99久久无色码亚洲精品果冻| 99久久九九国产精品国产免费| 国产成人a∨麻豆精品| 在线观看66精品国产| 日本一二三区视频观看| 亚洲中文字幕一区二区三区有码在线看|