• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An experimental study on embankment failure induced by prolonged immersion in floodwater

    2016-09-07 07:31:39YulongLuoChengZhangMinNieMeiliZhanJinchangSheng
    Water Science and Engineering 2016年1期

    Yu-long Luo*,Cheng Zhang,Min Nie,Mei-li Zhan,Jin-chang Sheng

    College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China

    ?

    An experimental study on embankment failure induced by prolonged immersion in floodwater

    Yu-long Luo*,Cheng Zhang,Min Nie,Mei-li Zhan,Jin-chang Sheng

    College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China

    Available online 7 November 2015

    Abstract

    Prolonged immersion in floodwater is one of the main causes of embankment failure or dam breaks,although failure mechanisms have not been extensively studied.In this study,an embankment model was constructed to investigate the influence of prolonged immersion in floodwater on the failure of an embankment.The results indicate that:(1)the phreatic surface gradually rises and negative pore pressures gradually dissipate with the time of prolonged immersion in floodwater,and,finally,a stable and fully saturated state is reached;(2)observable cracks and a heave phenomenon are found near the downstream toe and in the top stratum of the foundation,which are attributed to the large uplift pressure on the interface between the top stratum and the pervious substratum,the tremendous impact effect induced by the rapid rise in water level,and the reduction of shear strength of heavy silt loam.The present study enhances our in-depth knowledge of the mechanisms of embankment failure induced by floodwater,and provides experimental data for validation of mathematical models of the embankment seepage failure.

    ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Embankment;Floodwater;Seepage failure;Prolonged immersion;Heave phenomenon

    1.Introduction

    Prolonged immersion in floodwater is one of the main causes of embankment failure or dam breaks in the flood season.For example,the 1998 great flood in the Yangtze River Basin,lasting from late June to early July(Zong and Chen, 2000),caused damage to about 9396 main embankments of the Yangtze River,and economic losses were estimated at over US$36 billion(Ye and Glantz,2005).The flood in New Orleans during Hurricane Katrina on August 29,2005 caused levees and floodwalls to fail at more than 50 locations.Of the 284 miles of federal levees and floodwalls-there are approximately 350 miles in total-169 miles were damaged (Andersen et al.,2007).As a result,the problem of embankment failure induced by floodwater is a very important and urgent problem that should be studied in depth.

    Generally,studies on seepage failure of the embankment have been mainly focused on two aspects:steady flow conditions and transient flow conditions.In examples of the former, Sellmeijer(1988)and Sellmeijer and Koenders(1991)developed an expression for the critical hydraulic head which should not be exceeded to avoid failure due to piping.Asaoka and Kodaka(1992)found that the critical hydraulic head difference in the medium-dense sand was more than three times as large as that in the loose sand.Ojha et al.(2003)presented a critical head model that provided a theoretical basis for Bligh's empirical model.Benmebarek et al.(2005)identified the conditions for seepage failure caused by boiling or heaving of the soil behind sheet piles.Fontana(2008)investigated critical hydraulic heads for the failure of hydraulic structures and assessed the coefficient of safety against heaving.Gregoretti et al.(2010)determined the minimum level of the upstream reservoir leading to the failure of landslide dams.Maknoonand Mahdi(2010)found that the upstream water head did not have an important influence on the suffusion on the interface between the core and filter layers.

    In examples of the latter,Ozkan(2003)and Ozkan et al. (2008)defined a sinusoidally varying boundary condition to simulate the changing water level,and studied the effects of transient flow and repetitive flood events.El Shamy and Aydin (2008)developed a three-dimensional fully coupled fluid particle model,which can simulate the process of seepage failure of hydraulic structures due to a rapid rise in upstream water level.Awal et al.(2011)pointed out that the failure modes of landslide dams depend on the rate of water level rise in the upstream reservoir and the strength of the dam body.The experiment carried out by Luo et al.(2013)indicated that suffusion failure in transient flow conditions with the long-term large hydraulic head in the flood season was more likely to happen and much more serious than it is in steady conditions.

    At present,seepage failure under transient flow conditions due to changes in the water level has not been analyzed in detail.Studies on steady flow are not consistent with actual conditions,because the typical flood conditions only act for a period of days to weeks,which may not be sufficient time to reach steady-state conditions.In studies on transient flow,the adverse influence of a rapid rise in water level has been considered,but the influence of prolonged immersion in floodwater on the seepage failure has not been extensively studied.Therefore,it is necessary to emphasize research on the mechanisms of the embankment failure induced by prolonged immersion in floodwater.

    In this study,an embankment model was designed to investigate the influence of prolonged immersion in floodwater on seepage failure of the embankment.The variation of pore pressure,the evolution of the phreatic surface,and the seepage failure mode were analyzed.

    2.Embankment failure experiment

    2.1.Embankment model

    The experiment was carried out in a glass-sided flume with a length of 3.75 m,a width of 0.5 m,and a height of 0.8 m. Water was fed into the flume through an attached upstream water tank and a glass plate with holes,used to prevent turbulence and produce a uniform flow.A schematic diagram of the embankment model is shown in Fig.1.The embankment model was composed of 13 compaction layers with a height of each layer of 0.05 m(CLN1 to CLN13),of which CLN1 was constructed with sand,and CLN2 to CLN13 were constructed with heavy silt loam.The two types of soil are widely used for levee construction in China.The initial upstream and downstream slopes of the embankment were 1:1.3 and 1:1.2, respectively.Twenty pore pressure transducers were embedded at the preset positions to monitor the pore pressure over the whole process of the experiment.Table 1 shows the coordinates of all pore pressure transducers.

    Fig.2 depicts the grain size distributions of heavy silt loam and sand.The optimal water content,maximum dry density,and permeability of the heavy silt loam were 30%,1.43 g/cm3,and 1.04×10-6cm/s,respectively,according to the normal laboratory experiments.The optimal water content,maximum dry density,and permeability of the sand were 12.36%,1.5 g/cm3, and 1.35×10-4cm/s,respectively.Table 2 shows the soil-water characteristic relationships of the heavy silt loam and sand.

    2.2.Experimental process

    The experiment mainly contained the following six stages:

    (1)Material preparation and compaction:A certain amount of material was mixed with sufficient water,and then,with the optimal water content,the mixture was compacted layer by layer.Heavy silt loam mud was smeared on the side wall of the flume before compaction to avoid seepage on the interface between the model and the side wall.

    (2)Embedment of pore pressure transducers,as shown in Fig.3:The transducers were embedded in the holes,and heavy silt loam mud was poured to ensure close contact between the transducers and the surrounding soil.Then,a certain amount of soil was added into the holes and compacted again.Because the scale of the transducers was very small in the context of the entire embankment model,the influence of transducers on the failure process was ignored.

    Fig.1.Schematic diagram of embankment model(units:m).

    (3)Discharge of air from the catheters of pore pressure transducers:Air entrapped in the catheters will influence the sensitivity of pore pressure transducers,so air discharge issignificant.Distilled water was gradually injected into the catheters using an injector,and then the catheters were sealed when they were filled with water.Air discharge was conducted repeatedly,because the air in the unsaturated zone gradually entered the catheters throughout the process of the experiment.

    Table 1 Coordinates of pore pressure transducers.

    Fig.2.Grain size distributions of heavy silt loam and sand.

    (4)Calibration of the pore pressure transducers and monitoring of the initial seepage field in the embankment:The pore pressure transducers were calibrated by comparing the data from the pore pressure transducer with those of piezometric tubes.

    (5)Rapid rise in the upstream water level:There was no water at the upstream and downstream of the embankments at first,and then the upstream water level rapidly rose to 0.65 m in 2 h.

    Table 2 Soil-water characteristic relationship.

    (6)Keeping the upstream high water level constant to simulate the prolonged duration of floodwater:The upstream water level was kept constant at 0.65 m until clear seepage failure appeared,and the pore pressure was recorded using the pore pressure transducers and data acquisition system.

    3.Results and discussion

    3.1.Variation of pore pressure

    Fig.4 shows the variation of pore pressure in stage 5 (time<2 h)and stage 6(time≥2 h),where the negative pore pressure is referred to as matric suction.It can be seen from Fig.4 that the variation of pore pressure is closely related to the position and time.The pore pressures rapidly increased during the period from 1 h to 6 h at transducers 2 and 3 next to the upstream boundary with an elevation of 0.35 m.The pore pressure at transducer 9 rapidly increased during the period from 0 to 2 h,which is mainly attributed to the rapid rise in the upstream water level.Sudden increases in the pore pressures at transducers 4,8,and 14,which are mainly influenced by the seepage velocity in heavy silt loam and the prolonged duration of the high water level,were found at t=10 h.

    3.2.Evolution of phreatic surface

    Fig.5 shows the initial pore pressure head distribution before stage 5.The initial saturated zone is at the bottom of the embankment and the ratio of the area of the saturated zone to the total cross-sectional area(Rst)is only 5.84%.Themaximum value of negative pore pressure head is about -0.44 m,at the upstream crest.

    Fig.3.Embedment of pore pressure transducers.

    Fig.4.Variations of pore pressure in embankment model.

    Fig.5.Distribution of initial pore pressure head before stage 5(units:m).

    The evolution of the phreatic surface(zero pore pressure head)in stage 6 is depicted in Fig.6.It can be seen that the distribution of the pore pressure head in the embankment in stage 6 is very different from the way it is before stage 5.The phreatic surface and the elevation of the overflow point rose,and the matric suction decreased gradually with the time of prolonged immersion in floodwater.Fig.7 shows the variation of the area of the saturated zone in the embankment at different times.At t=2 h,the upstream zone of the embankment was saturated,the corresponding value of Rstwas30.2%,as shown in Fig.7,and the maximum value of matric suction was located at the downstream crest.Att=5h,Rstreached46.9%.Att=20h, the phreatic surface near the downstream toe rose rapidly,the overflow point was located at the downstream toe,and Rstincreased to 68.1%.At t=50 h,the elevation of the overflow point was 0.26m,and Rstwas84.7%.Att=120h,the elevation of the overflow point reached 0.38 m,exceeding one half of the height of the embankment.The pore pressure heads in the embankment were all positive and a stable and fully saturated state was reached at t=240 h.It can be seen that Rstincreased rapidly from 5.8%to 68.1%during the first 20-h period.It should be pointed out that the evolution velocity of the area of the saturated zone is related to the permeability and compressibility of the heavy silt loam.

    Fig.6.Distribution of pore pressure head at different times in stage 6(units:m).

    Fig.7.Relationship between Rstand t.

    3.3.Seepage failure mode

    Fig.8 shows the seepage failure mode at the downstream face of the embankment at t=50 h and t=240 h.At t=50 h, some tiny cracks were found on the downstream face,and a little muddy water appeared on the top stratum(CLN2).At t=240 h,some long and deep cracks formed an approximate circle slip surface,and much muddy water was entrapped on the top stratum.

    Fig.9 depicts the seepage failure mode in the downstream foundation of the embankment.At t=50 h,a lot of layered and tiny cracks appeared near the downstream toe,which may be attributed to the increase in the uplift pressure on the interface between the top stratum(CLN2)and the pervious substratum(CLN1).At t=240 h,a heave phenomenon was found near the downstream toe and in the top stratum,and interconnected cracks appeared in the heave region,as depicted in Fig.9(b).

    Fig.8.Seepage failure mode at downstream face of embankment (top view).

    3.4.Discussion

    The seepage failure of the embankment in this study may be attributed to the following factors:

    (1)Large uplift pressures on the interface between the top stratum and pervious substratum:On the one hand,prolonged immersion in floodwater results in large pore pressures in the foundation.On the other hand,a large difference in permeability between the top stratum and pervious substratum gives rise to a large uplift pressure on their interface.If the uplift pressure on the interface is greater than the submerged weight of the top stratum,the excess pressure may cause heaving of the top stratum and result in concentrated flow failure.

    For the embankment model in this study,the permeability of the top stratum and pervious substratum were 1.04×10-6cm/s and 1.35×10-4cm/s,and the corresponding ratio of the permeability was 1/127,so the water head difference was mainly undertaken by the top stratum. Simultaneously,the uplift pressure head on the interface between the two stratums reached 0.27 m at t=240 h,and the corresponding uplift pressure exceeded the submerged weight of the top stratum.As a result,heave failure appeared.

    (2)Tremendous impact effect induced by the rapid rise in water level:Luo et al.(2013)pointed out that the tremendous impact effect would increase the erosion power of seepage flow,partially destroy the structure of the soil skeleton,andsignificantly decrease the ability of the embankment to resist seepage failure.

    Fig.9.Seepage failure mode in downstream foundation of embankment(front view).

    For the embankment model in this study,the speed of the rise in the upstream water level reached 0.275 m/h,which was very fast for an actual project,so the induced impact effect was tremendous,and it was disadvantageous to seepage stability of the embankment.

    (3)Reduction of shear strength:There are two factors influencing the shear strength:matric suction and prolonged immersion in floodwater.The shear strength decreases with the decrease in the matric suction;the prolonged immersion will cause soil particles to be fatter and softer,loosen the cementation of the soil particles,and then decrease the shear strength.

    In this study,the matric suction gradually dissipated as the phreatic surface rose.In addition,the 10-d immersion also greatly weakened the shear strength of the heavy silt loam.

    The ability of the embankment to resist seepage failure weakened owing to the above factors,and,finally,embankment failure appeared.

    4.Conclusions

    An embankment model was constructed to investigate the mechanism of the embankment failure induced by prolonged immersion in floodwater.Some conclusions can be drawn:

    (1)The embankment failure occurring in the flood season is mainly attributed to the rapid rise in water level and the prolonged immersion in high water.The former induces a tremendous impact effect,which significantly decreases the resisting forces against seepage failure.The prolonged immersion leads to large uplift pressures at the bottom of the top stratum and the reduction of shear strength.

    (2)The phreatic surface gradually rises and the negative pore pressures in the embankment gradually dissipate with the time of prolonged immersion in floodwater.Finally,a stable and fully saturated state is reached at t=240 h.

    (3)The seepage failure mode in this study is observable cracks and a heave phenomenon near the downstream toe and in the top stratum.The uplift pressure head on the interface between the top stratum and pervious substratum reaches 0.27 m at t=240 h and the corresponding uplift pressure exceeds the submerged weight of the top stratum, which causes the heave phenomenon of the top stratum and results in concentrated flow along the cracks.

    These results enhance our in-depth knowledge of the mechanisms of embankment failure induced by floodwater, and provide new experimental data for validation of mathematical models of the embankment seepage failure.

    It should be pointed out that the experimental results are related to the compaction of the embankment,materials used for construction of the embankment,experimental procedures, etc.These factors will be studied in the future.In addition, new numerical models should be developed to make some comparisons between numerical and experimental results.

    References

    Andersen,C.F.,Battjes,J.A.,Daniel,D.E.,Edge Jr.,B.,Espey,W., Gilbert,R.B.,Jackson,T.L.,Kennedy,D.,Mileti,D.S.,Mitchell,J.K., et al.,2007.The New Orleans Hurricane Protection System:What Went Wrong and Why?American Society of Civil Engineers,Reston.

    Asaoka,A.,Kodaka,T.,1992.Seepage failure experiments and their analyses of loose and medium dense sands.Soils Found.32(3),117-129.http:// dx.doi.org/10.3208/sandf1972.32.3_117.

    Awal,R.,Nakagawa,H.,Fujita,M.,Kawaike,K.,Baba,Y.,Zhang,H.,2011. Study on piping failure of nature dam.Annuals of Disas.Prev.Res.Inst., Kyoto Univ.(54B),539-546.http://dx.doi.org/10.2208/jscejhe.67.I_157. Benmebarek,N.,Benmebarek,S.,Kastner,R.,2005.Numerical studies of seepage failure of sand within a cofferdam.Comput.Geotech.32(4), 264-273.http://dx.doi.org/10.1016/j.compgeo.2005.03.001.

    El Shamy,U.,Aydin,F.,2008.Multiscale modeling of flood-induced piping in river levees.J.Geotech.Geoenviron.Eng.134(9),1385-1398.http:// dx.doi.org/10.1061/(ASCE)1090-0241(2008)134:9(1385).

    Fontana,N.,2008.Experimental analysis of heaving phenomena in sandy soils.J.Hydraul.Eng.134(6),794-799.http://dx.doi.org/10.1061/(ASCE) 0733-9429(2008)134:6(794).

    Gregoretti,C.,Maltauro,A.,Lanzoni,S.,2010.Laboratory experiments on the failure of coarse homogeneous sediment natural dams on a sloping bed.J. Hydraul.Eng.136(11),868-879.http://dx.doi.org/10.1061/(ASCE) HY.1943-7900.0000259.

    Luo,Y.L.,Qiao,L.,Liu,X.X.,Zhan,M.L.,Sheng,J.C.,2013.Hydro-mechanical experiments on suffusion under long-term large hydraulic heads. Nat.Hazards 65(3),1361-1377.http://dx.doi.org/10.1007/s11069-012-0415-y.

    Maknoon,M.,Mahdi,T.F.,2010.Experimental investigation into embankment external suffusion.Nat.Hazards 54(3),749-763.http://dx.doi.org/ 10.1007/s11069-010-9501-1.

    Ojha,C.S.P.,Singh,V.P.,Adrian,D.D.,2003.Determination of critical head in soil piping.J.Hydraul.Eng.129(7),511-518.http://dx.doi.org/10.1061/ (ASCE)0733-9429(2003)129:7(511).

    Ozkan,S.,2003.Analytical Study on Flood Induced Seepage Under River Levees.Ph.D.Dissertation.Louisiana State University,Baton Rouge.

    Ozkan,S.,Adrian,D.D.,Sills,G.L.,Singh,V.P.,2008.Transient head development due to flood induced seepage under levees.J.Geotech. Geoenviron.Eng.134(6),781-789.http://dx.doi.org/10.1061/(ASCE) 1090-0241(2008)134:6(781).

    Sellmeijer,J.B.,1988.On the Mechanism of Piping Under Impervious Structures.Delft University of Technology,Delft.

    Sellmeijer,J.B.,Koenders,M.A.,1991.A mathematical model for piping. Appl.Math.Model.15(11-12),646-651.http://dx.doi.org/10.1016/ S0307-904X(09)81011-1.

    Ye,Q.,Glantz,M.H.,2005.The 1998 Yangtze Floods:The use of short-term forecasts in the context of seasonal to interannual water resource management.Mitig.Adapt.Strateg.Glob.Change 10(11),159-182.http:// dx.doi.org/10.1007/s11027-005-7838-7.

    Zong,Y.Q.,Chen,X.Q.,2000.The 1998 flood on the Yangtze,China.Nat. Hazards 22(2),164-184.http://dx.doi.org/10.1023/A:1008119805106.

    12 April 2014;accepted 23 July 2014

    This work was supported by the National Natural Science Foundation of China(Grant No.51009053),the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.3014-SYS1401),and the Program for Excellent Innovative Talents of Hohai University.

    *Corresponding author.

    E-mail address:lyl8766@hhu.edu.cn(Yu-long Luo).

    Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2015.11.001

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    99久久精品热视频| 我的女老师完整版在线观看| 日日撸夜夜添| 亚洲,欧美,日韩| 超碰97精品在线观看| 欧美性感艳星| 婷婷色综合大香蕉| 日韩在线高清观看一区二区三区| kizo精华| 久久精品国产99精品国产亚洲性色| 舔av片在线| 亚州av有码| 免费av毛片视频| 国产成人午夜福利电影在线观看| 韩国av在线不卡| 亚洲av熟女| 美女黄网站色视频| 天天一区二区日本电影三级| 成人综合一区亚洲| 建设人人有责人人尽责人人享有的 | 十八禁国产超污无遮挡网站| 亚洲欧美一区二区三区国产| 国产精品日韩av在线免费观看| 色噜噜av男人的天堂激情| 色网站视频免费| 美女高潮的动态| 嫩草影院入口| 天堂√8在线中文| 波多野结衣高清无吗| av在线亚洲专区| 18禁动态无遮挡网站| 91久久精品国产一区二区成人| 国产一区二区三区av在线| 亚洲成av人片在线播放无| 免费黄色在线免费观看| or卡值多少钱| 搡女人真爽免费视频火全软件| 成年版毛片免费区| 国产一区有黄有色的免费视频 | 亚洲欧美日韩无卡精品| 国产精品99久久久久久久久| 成人美女网站在线观看视频| 桃色一区二区三区在线观看| 久久韩国三级中文字幕| 国产精品日韩av在线免费观看| 亚洲精品日韩av片在线观看| 亚洲精品aⅴ在线观看| 中文资源天堂在线| 亚洲不卡免费看| 国产精品美女特级片免费视频播放器| 一级二级三级毛片免费看| 中文精品一卡2卡3卡4更新| 亚洲成人中文字幕在线播放| 国内少妇人妻偷人精品xxx网站| 久久久久国产网址| 国产精品麻豆人妻色哟哟久久 | 日韩高清综合在线| 综合色av麻豆| 日韩制服骚丝袜av| 午夜福利在线在线| 成人亚洲欧美一区二区av| 久久久欧美国产精品| 观看免费一级毛片| av线在线观看网站| 99热6这里只有精品| 国产精品久久视频播放| 国产精品三级大全| 亚洲伊人久久精品综合 | 国产一区二区在线观看日韩| 日本免费在线观看一区| 国产又色又爽无遮挡免| 午夜福利成人在线免费观看| 在线免费十八禁| 天天躁日日操中文字幕| 丰满乱子伦码专区| 亚洲精品色激情综合| 亚洲av男天堂| 免费观看在线日韩| 看免费成人av毛片| 天天一区二区日本电影三级| 免费av观看视频| 啦啦啦观看免费观看视频高清| 直男gayav资源| 国产一级毛片在线| 精品人妻熟女av久视频| 亚洲va在线va天堂va国产| 日本爱情动作片www.在线观看| 色综合站精品国产| 亚洲国产欧美在线一区| 久久久久久久久大av| eeuss影院久久| av在线观看视频网站免费| 日本黄大片高清| 国产高清不卡午夜福利| 女人久久www免费人成看片 | 国产一区二区在线av高清观看| 97超视频在线观看视频| 我要看日韩黄色一级片| 我要搜黄色片| 久久久久久国产a免费观看| 免费电影在线观看免费观看| 日韩精品有码人妻一区| 亚洲乱码一区二区免费版| 亚洲欧美精品自产自拍| 人体艺术视频欧美日本| av福利片在线观看| 岛国毛片在线播放| 看十八女毛片水多多多| 欧美人与善性xxx| 中国美白少妇内射xxxbb| 国产成人精品一,二区| 日韩精品青青久久久久久| 久久久久久九九精品二区国产| av在线蜜桃| 国产熟女欧美一区二区| 国内精品一区二区在线观看| 可以在线观看毛片的网站| 夜夜爽夜夜爽视频| 国产精品麻豆人妻色哟哟久久 | 简卡轻食公司| 一个人观看的视频www高清免费观看| 欧美zozozo另类| 岛国在线免费视频观看| 欧美性猛交黑人性爽| 国产成人福利小说| 亚洲精品色激情综合| 七月丁香在线播放| 少妇丰满av| 少妇人妻一区二区三区视频| 日本色播在线视频| 亚洲自拍偷在线| 亚洲精品,欧美精品| 人人妻人人澡欧美一区二区| 亚洲精品日韩在线中文字幕| 午夜日本视频在线| 亚洲精品久久久久久婷婷小说 | 亚洲欧美成人综合另类久久久 | 一级黄片播放器| 国产精品美女特级片免费视频播放器| 免费黄色在线免费观看| 韩国高清视频一区二区三区| 国产亚洲一区二区精品| 久久精品国产亚洲网站| 在线免费观看不下载黄p国产| 欧美3d第一页| 如何舔出高潮| 级片在线观看| 国产日韩欧美在线精品| 国产探花在线观看一区二区| 看片在线看免费视频| 国产精品不卡视频一区二区| 亚洲性久久影院| av在线亚洲专区| 黄色配什么色好看| 国产精品一区二区在线观看99 | 亚洲不卡免费看| 最近最新中文字幕大全电影3| 啦啦啦观看免费观看视频高清| 精品久久久久久久人妻蜜臀av| 亚洲欧美成人精品一区二区| 97超碰精品成人国产| 免费看光身美女| 日本-黄色视频高清免费观看| 人妻夜夜爽99麻豆av| 国产精品综合久久久久久久免费| 边亲边吃奶的免费视频| 中文字幕av成人在线电影| 日韩av不卡免费在线播放| 两个人的视频大全免费| 亚洲精品aⅴ在线观看| 久久热精品热| 国产一区二区三区av在线| 男人舔女人下体高潮全视频| 精品一区二区免费观看| 久久婷婷人人爽人人干人人爱| 亚洲国产精品sss在线观看| 久久久久精品久久久久真实原创| 少妇丰满av| 国产成人免费观看mmmm| 久久久久久久久久黄片| 亚洲av福利一区| 成人特级av手机在线观看| АⅤ资源中文在线天堂| 亚洲国产欧洲综合997久久,| 九色成人免费人妻av| 亚洲av成人av| 淫秽高清视频在线观看| 免费看美女性在线毛片视频| 99国产精品一区二区蜜桃av| 天天躁日日操中文字幕| 毛片女人毛片| 国产黄色视频一区二区在线观看 | 99国产精品一区二区蜜桃av| www.色视频.com| 中文精品一卡2卡3卡4更新| 我的女老师完整版在线观看| 99久久成人亚洲精品观看| 十八禁国产超污无遮挡网站| av在线播放精品| 久久久精品94久久精品| 免费大片18禁| 成人无遮挡网站| 亚洲欧美中文字幕日韩二区| 另类精品久久| 激情五月婷婷亚洲| 国产麻豆69| 99热国产这里只有精品6| 在线观看三级黄色| 两个人看的免费小视频| 观看美女的网站| 免费观看无遮挡的男女| 亚洲综合精品二区| 97人妻天天添夜夜摸| 丝袜在线中文字幕| 国产在线一区二区三区精| 在线观看免费视频网站a站| 久久久久久久久久成人| 老司机影院毛片| 母亲3免费完整高清在线观看 | 女的被弄到高潮叫床怎么办| 十八禁高潮呻吟视频| 男人添女人高潮全过程视频| 久久av网站| 国产av码专区亚洲av| 波多野结衣一区麻豆| 99久久中文字幕三级久久日本| 国产精品欧美亚洲77777| 美女xxoo啪啪120秒动态图| 好男人视频免费观看在线| 一二三四在线观看免费中文在 | 18禁国产床啪视频网站| 国产男女超爽视频在线观看| 日韩一本色道免费dvd| 精品国产一区二区久久| 日韩av免费高清视频| 午夜免费鲁丝| 日韩欧美精品免费久久| 国产精品国产三级国产专区5o| 免费黄网站久久成人精品| 成人午夜精彩视频在线观看| 女人久久www免费人成看片| 永久免费av网站大全| 亚洲天堂av无毛| 亚洲成国产人片在线观看| xxxhd国产人妻xxx| 免费日韩欧美在线观看| 国产精品免费大片| 九色成人免费人妻av| 欧美日韩视频高清一区二区三区二| 成人无遮挡网站| 秋霞在线观看毛片| 97在线人人人人妻| 久久毛片免费看一区二区三区| 伊人久久国产一区二区| 两个人免费观看高清视频| 久久av网站| 韩国精品一区二区三区 | 永久免费av网站大全| 欧美亚洲 丝袜 人妻 在线| 女人精品久久久久毛片| 激情五月婷婷亚洲| 99久久综合免费| 日韩 亚洲 欧美在线| 亚洲精品一区蜜桃| 午夜视频国产福利| 香蕉丝袜av| 两性夫妻黄色片 | 国产 一区精品| 大片电影免费在线观看免费| 国产免费视频播放在线视频| 男人爽女人下面视频在线观看| 九九爱精品视频在线观看| 国产av精品麻豆| 亚洲色图 男人天堂 中文字幕 | 91在线精品国自产拍蜜月| 热99国产精品久久久久久7| 九九爱精品视频在线观看| 欧美+日韩+精品| 日韩av在线免费看完整版不卡| 国产精品国产三级国产av玫瑰| 久久97久久精品| 麻豆精品久久久久久蜜桃| 国产又爽黄色视频| 黄色配什么色好看| 国产黄色免费在线视频| 一级片'在线观看视频| 男男h啪啪无遮挡| 免费黄色在线免费观看| 欧美xxⅹ黑人| 国产女主播在线喷水免费视频网站| 亚洲国产精品专区欧美| 亚洲成人手机| 在线观看www视频免费| 新久久久久国产一级毛片| 另类亚洲欧美激情| 国产福利在线免费观看视频| 日本wwww免费看| 色视频在线一区二区三区| 少妇 在线观看| 在线观看人妻少妇| 看免费成人av毛片| 只有这里有精品99| 在线观看三级黄色| 91精品伊人久久大香线蕉| 激情视频va一区二区三区| 91成人精品电影| 欧美成人午夜精品| 丝袜喷水一区| 亚洲精品美女久久av网站| 亚洲精品自拍成人| 五月玫瑰六月丁香| 国产免费一区二区三区四区乱码| 飞空精品影院首页| 蜜桃在线观看..| 人成视频在线观看免费观看| 一本色道久久久久久精品综合| 国产1区2区3区精品| 欧美日韩亚洲高清精品| a级片在线免费高清观看视频| 成年美女黄网站色视频大全免费| 国产 一区精品| 国产精品欧美亚洲77777| 久久国内精品自在自线图片| 丝瓜视频免费看黄片| 久久鲁丝午夜福利片| 91国产中文字幕| 久久久久人妻精品一区果冻| 最近手机中文字幕大全| 久久精品国产a三级三级三级| 国产在线视频一区二区| 最新的欧美精品一区二区| 一级片'在线观看视频| 一本久久精品| 久久精品国产鲁丝片午夜精品| 国产一区二区三区综合在线观看 | 精品第一国产精品| 97人妻天天添夜夜摸| 久久久a久久爽久久v久久| 老司机影院毛片| 哪个播放器可以免费观看大片| 人人澡人人妻人| 国产日韩欧美视频二区| 午夜影院在线不卡| 国产av码专区亚洲av| 亚洲av男天堂| 大香蕉97超碰在线| 久久久a久久爽久久v久久| 熟女电影av网| 少妇人妻 视频| 91在线精品国自产拍蜜月| 久久人人爽人人片av| 亚洲人成网站在线观看播放| 精品福利永久在线观看| 精品久久蜜臀av无| 亚洲综合精品二区| 亚洲av在线观看美女高潮| 精品人妻熟女毛片av久久网站| 视频在线观看一区二区三区| www.熟女人妻精品国产 | 亚洲经典国产精华液单| av福利片在线| 亚洲精品久久午夜乱码| 丝袜在线中文字幕| 久久久久久久久久成人| 日本午夜av视频| 亚洲,一卡二卡三卡| 国产精品久久久久久精品古装| 欧美变态另类bdsm刘玥| 视频在线观看一区二区三区| 国产片内射在线| a级毛色黄片| 99re6热这里在线精品视频| 波多野结衣一区麻豆| 久久精品久久精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 国产一区二区三区综合在线观看 | 少妇人妻精品综合一区二区| 免费在线观看完整版高清| av播播在线观看一区| 青青草视频在线视频观看| 丝袜在线中文字幕| 精品酒店卫生间| 日韩不卡一区二区三区视频在线| 亚洲高清免费不卡视频| 少妇被粗大的猛进出69影院 | 2018国产大陆天天弄谢| 午夜福利影视在线免费观看| 免费黄频网站在线观看国产| 精品熟女少妇av免费看| 国产精品免费大片| www日本在线高清视频| 日韩电影二区| 久久久亚洲精品成人影院| 国产片内射在线| 亚洲欧美一区二区三区国产| 久久亚洲国产成人精品v| 欧美日韩视频精品一区| 精品少妇内射三级| 久久久久久久亚洲中文字幕| 亚洲国产精品一区二区三区在线| 高清av免费在线| 久久人人爽人人片av| 欧美人与善性xxx| 18禁国产床啪视频网站| 久久99精品国语久久久| 中文字幕av电影在线播放| 男女午夜视频在线观看 | 99九九在线精品视频| 少妇精品久久久久久久| 美女大奶头黄色视频| 97在线视频观看| 久久久精品区二区三区| 国产一区二区激情短视频 | 日日爽夜夜爽网站| 美国免费a级毛片| 亚洲欧美一区二区三区国产| av女优亚洲男人天堂| 国产乱来视频区| 亚洲国产欧美日韩在线播放| 久久亚洲国产成人精品v| 国产精品国产三级专区第一集| av国产精品久久久久影院| 老熟女久久久| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 在线观看一区二区三区激情| 国产黄色免费在线视频| 午夜福利视频精品| 夜夜爽夜夜爽视频| 久久99蜜桃精品久久| 国语对白做爰xxxⅹ性视频网站| 另类亚洲欧美激情| 少妇被粗大猛烈的视频| 少妇猛男粗大的猛烈进出视频| 精品亚洲成国产av| 久久人人爽人人片av| 国产av一区二区精品久久| 国产熟女午夜一区二区三区| 国精品久久久久久国模美| av在线app专区| 亚洲精品日韩在线中文字幕| 亚洲成人手机| 久久这里有精品视频免费| 欧美人与性动交α欧美精品济南到 | 十八禁高潮呻吟视频| 国产永久视频网站| 天美传媒精品一区二区| 国产又爽黄色视频| 日韩中字成人| 曰老女人黄片| 岛国毛片在线播放| 久久人人爽人人爽人人片va| 亚洲国产欧美日韩在线播放| 人成视频在线观看免费观看| 久久99热这里只频精品6学生| av黄色大香蕉| 亚洲精品aⅴ在线观看| 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av天美| 最近最新中文字幕大全免费视频 | 亚洲国产av新网站| 大香蕉97超碰在线| 国产精品人妻久久久久久| 色哟哟·www| 最近手机中文字幕大全| 精品一品国产午夜福利视频| 这个男人来自地球电影免费观看 | 亚洲少妇的诱惑av| 日韩av不卡免费在线播放| 最后的刺客免费高清国语| 日韩欧美一区视频在线观看| 国产熟女午夜一区二区三区| 国产精品熟女久久久久浪| 尾随美女入室| 视频区图区小说| 热99国产精品久久久久久7| 国产毛片在线视频| 久久久久视频综合| 激情视频va一区二区三区| 欧美xxⅹ黑人| 校园人妻丝袜中文字幕| av在线app专区| 男女啪啪激烈高潮av片| 日日摸夜夜添夜夜爱| 久久狼人影院| 久久99蜜桃精品久久| 中文乱码字字幕精品一区二区三区| 欧美激情国产日韩精品一区| 国产男人的电影天堂91| 成年av动漫网址| 美女大奶头黄色视频| 美女国产高潮福利片在线看| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 国产精品久久久久久久久免| 九九在线视频观看精品| 欧美另类一区| 国产精品久久久久久久久免| 熟女电影av网| 国产综合精华液| 精品国产一区二区三区四区第35| 如日韩欧美国产精品一区二区三区| 欧美国产精品va在线观看不卡| 国产成人精品福利久久| 啦啦啦在线观看免费高清www| 在线亚洲精品国产二区图片欧美| 男女啪啪激烈高潮av片| 性色avwww在线观看| 久久鲁丝午夜福利片| 亚洲精品国产色婷婷电影| 91成人精品电影| 波多野结衣一区麻豆| 曰老女人黄片| 久久精品国产亚洲av涩爱| 内地一区二区视频在线| 男的添女的下面高潮视频| 18禁在线无遮挡免费观看视频| 日韩在线高清观看一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 蜜桃国产av成人99| 国产福利在线免费观看视频| 美女福利国产在线| 18禁国产床啪视频网站| 日韩中文字幕视频在线看片| 免费黄网站久久成人精品| 亚洲国产精品一区二区三区在线| 午夜福利视频精品| 久久亚洲国产成人精品v| 亚洲av福利一区| 九九爱精品视频在线观看| 制服诱惑二区| 亚洲五月色婷婷综合| 亚洲 欧美一区二区三区| 成人午夜精彩视频在线观看| 七月丁香在线播放| 三上悠亚av全集在线观看| 国产黄色免费在线视频| 五月天丁香电影| 波野结衣二区三区在线| 午夜免费鲁丝| 国产成人午夜福利电影在线观看| 国产欧美另类精品又又久久亚洲欧美| 在线亚洲精品国产二区图片欧美| 最新的欧美精品一区二区| 水蜜桃什么品种好| 成年美女黄网站色视频大全免费| 男男h啪啪无遮挡| 亚洲久久久国产精品| 伦理电影免费视频| 免费人成在线观看视频色| 成人国语在线视频| 在线亚洲精品国产二区图片欧美| 亚洲精品,欧美精品| 国产精品99久久99久久久不卡 | 欧美日韩视频高清一区二区三区二| 两个人免费观看高清视频| 国产亚洲欧美精品永久| 国产在线一区二区三区精| 精品国产乱码久久久久久小说| 国产精品国产三级国产专区5o| av网站免费在线观看视频| 9热在线视频观看99| 狠狠婷婷综合久久久久久88av| av国产久精品久网站免费入址| 国产一区二区激情短视频 | 国产精品人妻久久久久久| 日韩三级伦理在线观看| 高清毛片免费看| 欧美日韩精品成人综合77777| 超碰97精品在线观看| 亚洲av中文av极速乱| 丝袜脚勾引网站| 全区人妻精品视频| 午夜福利视频精品| 亚洲精品美女久久av网站| 两个人看的免费小视频| 另类亚洲欧美激情| 国产国语露脸激情在线看| 国产片特级美女逼逼视频| 亚洲性久久影院| 我的女老师完整版在线观看| 侵犯人妻中文字幕一二三四区| 久久精品人人爽人人爽视色| 日韩av免费高清视频| 国产一级毛片在线| 国产精品久久久久久久电影| 成人影院久久| 日日啪夜夜爽| 亚洲av中文av极速乱| 久久午夜福利片| 免费看不卡的av| 国产麻豆69| a级毛色黄片| 日本-黄色视频高清免费观看| 在线观看美女被高潮喷水网站| 欧美精品高潮呻吟av久久| 如日韩欧美国产精品一区二区三区| 欧美 亚洲 国产 日韩一| 精品人妻熟女毛片av久久网站| 亚洲国产欧美在线一区| 国产精品久久久久久久久免| 国产黄色免费在线视频| 天堂俺去俺来也www色官网| 成人手机av| 欧美成人精品欧美一级黄| 免费播放大片免费观看视频在线观看| 三上悠亚av全集在线观看| 久久这里只有精品19| 午夜影院在线不卡| 亚洲内射少妇av| 免费人成在线观看视频色| 男女边吃奶边做爰视频| 热99久久久久精品小说推荐| 又粗又硬又长又爽又黄的视频| 亚洲丝袜综合中文字幕|