• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫基離子液體電解質(zhì)拓寬量子點(diǎn)敏化太陽能電池的應(yīng)用溫度范圍

    2016-09-05 13:03:58史繼富黃啟章萬青翠徐雪青李春生中國科學(xué)院廣州能源研究所中國科學(xué)院可再生能源與天然氣水合物重點(diǎn)實(shí)驗(yàn)室廣東省新能源和可再生能源重點(diǎn)實(shí)驗(yàn)室廣州50640中國科學(xué)院大學(xué)北京00049華北理工大學(xué)化工學(xué)院河北唐山06009
    物理化學(xué)學(xué)報(bào) 2016年4期
    關(guān)鍵詞:敏化中國科學(xué)院電解質(zhì)

    史繼富 黃啟章, 萬青翠 徐雪青,* 李春生 徐 剛,*(中國科學(xué)院廣州能源研究所,中國科學(xué)院可再生能源與天然氣水合物重點(diǎn)實(shí)驗(yàn)室,廣東省新能源和可再生能源重點(diǎn)實(shí)驗(yàn)室,廣州50640;中國科學(xué)院大學(xué),北京00049;華北理工大學(xué)化工學(xué)院,河北唐山06009)

    硫基離子液體電解質(zhì)拓寬量子點(diǎn)敏化太陽能電池的應(yīng)用溫度范圍

    史繼富1黃啟章1,2萬青翠1徐雪青1,*李春生3,*徐剛1,*
    (1中國科學(xué)院廣州能源研究所,中國科學(xué)院可再生能源與天然氣水合物重點(diǎn)實(shí)驗(yàn)室,廣東省新能源和可再生能源重點(diǎn)實(shí)驗(yàn)室,廣州510640;2中國科學(xué)院大學(xué),北京100049;3華北理工大學(xué)化工學(xué)院,河北唐山063009)

    制備了1-甲基-3-丙基咪唑硫離子液體電解質(zhì),并應(yīng)用在量子點(diǎn)敏化太陽能電池中。通過優(yōu)化S和Na2S的濃度,電解質(zhì)的電導(dǎo)率在25°C下達(dá)到了12.96 mS?cm-1。差示掃描量熱法分析表明離子液體電解質(zhì)的玻璃化轉(zhuǎn)變溫度為-85°C。采用該電解質(zhì)的量子點(diǎn)敏化太陽能電池在25°C下達(dá)到了3.03%的光電轉(zhuǎn)化效率(η),與采用水基電解質(zhì)的電池的效率3.34%接近。由于本文中的離子液體電解質(zhì)具有低玻璃化轉(zhuǎn)變溫度和不易揮發(fā)的優(yōu)點(diǎn),采用離子液體電解質(zhì)的量子點(diǎn)敏化太陽能電池在-20°C(η=2.32%)及80°C(η=1.90%)的溫度下表現(xiàn)出了比水基電解質(zhì)優(yōu)異的光電轉(zhuǎn)化性能。

    量子點(diǎn)敏化太陽能電池;離子液體電解質(zhì);1-甲基-3-丙基咪唑硫;應(yīng)用溫度;效率

    [Communication]

    www.whxb.pku.edu.cn

    1 Introduction

    Dye-sensitized solar cells(DSCs)with organic solvent-based electrolytes containing I3-/I-

    redox couples and ruthenium complex dye have been intensively studied over the past decade and regarded as an alternative to the conventional inorganic device due to their high efficiency(η,~13%)and lowcost1,2.Recently,narrowband gap inorganic quantum dots(QDs,such as CdSe,CdS,etc.) as next-generation sensitizers for DSCs have attracted more attention owing to their tunable band gaps3,higher extinction coefficient4,5.Moreover,the solar cells sensitized by quantum dots (quantum-dot-sensitized solar cells,QDSCs)have the possibility of utilizing hot electrons to produce multiple electron-hole pairs per photon6,and thus have a higher theoretical efficiency.For these QDSCs,the electrolyte plays an important role in the determination of the photovoltaic performance7,8.On one hand,it transfers the electrons to the oxidized QDs around the photoanode to make the QDs regeneration.On the other hand,the electrolyte accepts electrons around the photocathode to complete a cycle.At present,the most commonly used electrolyte in the QDSCs was the water-based polysulfide electrolyte7,9,in which the polysulfide redox couples served as high efficient charge carriers.However, the temperature range of this water-based polysulfide electrolyte used is too narrow to meet the requirement of practical application10.When the temperature is lower,this water-based electrolyte will be freezed,which not only hinders the transport of the charge carriers in the electrolyte but also makes the interfacial contact between the electrolyte and porous TiO2film become poor. However,when the temperature is higher,this water-based electrolyte may suffer from volatilization,leading to ineffective link between photoanode and photocathode.Thus,the freeze and volatilization of the water-based electrolyte will lead to serious decrease of the η of the QDSCs.Using the organic solvent to replace the water is considered to be an alternative choice11. Nevertheless,the organic solvent will be also evaporated at high temperature and the solubility of S and Na2S in organic solvent is too low to afford high photocurrent11.

    Ionic liquids(ILs)with 1,3-dialkylimidazolium cations and iodide anion have been successfully used in DSCs due to their favorable properties such as thermal stability,high ionic conductivity,and nonvolatility(negligible vapor pressure)12,13.For example,the DSCs with eutectic melts contained 1,3-dimethylimidazolium iodide,1-ethyl-3-methylimidazolium iodide,1-allyl-3-methylimidazolium iodide,and iodine yielded an η of 7.1%13. We also synthesized 1-ethyl-3-methylimidazolium isonicotinate electrolyte for DSCs with 4.3%efficiency recently14.However, these iodide-based IL electrolytes cannot be well applied to QDSCs because the presence of I3-/I-redox couples will cause serious photocorrosion of QDs,which promotes us to explore the new ILs-based electrolyte to substitute the water-based electrolyte for the QDSCs.Thus,in this paper,we synthesized the 1-methyl-3-propylimidazolium sulfide(MPIS)IL,and applied this IL to QDSCs.This MPIS-based IL electrolyte can be used in a wide temperature range and shows a high η.

    2 Experimental

    2.1Cell fabrication

    2.1.1MPIS-based IL electrolytes

    All reagents used were of analytical grade.The preparation process of the MPIS-based IL electrolytes is shown in Fig.1.1-Methyl-3-propylimidazolium hydroxide(MPIOH)was first synthesized using anion exchange resin(201×7,supplied by the resin company of Nankai university)from 1-methyl-3-propylimidazolium bromide(Qianhui Company of Guangzhou)14.And then the MPIOH aqueous solution was reacted with hydrogen sulfide gas until pH=12 to obtain the MPIS aqueous solution.The above MPIS solution was evaporated to dryness under reduced pressure at 70°C and further dried in vacuum for 2 days at 80°C. Characterization:1H NMR(600 MHz,DMSO):δ 0.84(t,J=7.4 Hz,3H),1.81(m,J=7.3 Hz,2H),3.90(s,3H),4.17(t,J=7.11 Hz,2H),7.72(d,J=1.8 Hz,1H),7.77(d,J=1.8 Hz,1H),9.92 (s,1H);13C NMR(150 MHz,DMSO):δ 138.75,123.97,122.21, 50.43,35.98,23.68,10.67.Addition of the sulfur and Na2S into the MPIS obtained the ILs electrolytes.

    2.1.2Photocathodes

    The TiO2electrode configuration was a compact layer of TiO2, a transparent layer(with thickness of 8 mm and average particle size of 20 nm,Degussa AG of Germany),and a scattering layer (with thickness of 4 mm and average particle size of 300-400 nm). These electrodes were sintered at 450°C for 30 min.The mesoporous TiO2electrodes were in situ sensitized by CdSe QDs grown by successive ionic layer adsorption and reaction(SILAR)9.The Se2-precursor solution(0.03 mol?L-1Se2-in ethanol)was first prepared according to the method developed by the group of Gr?tzel15.For CdSe growth,the electrodes were successively immersed in two different solutions for 1 min each:one consisting of 0.03 mol?L-1Cd(NO3)2dissolved in ethanol,another of 0.03 mol?L-1Se2-precursor ethanol solution.The above sensitizationprocess was carriedoutinthegloveboxunderN2atmosphere.After sensitization,the samples were further coated with ZnS by twice dippingalternatelyinto0.1mol?L-1Zn(CH3COO)2and0.1mol?L-1Na2Ssolutionsfor1min/dip.ThepreparationofCu2Sphotocathodes was followed the optimal procedure of our previous report16.The Cu2S photocathodes were prepared by immersing brass in HCl solutionat70°Cfor45minandsubsequentlydroppingwater-based polysulfideelectrolyteontothemfor10s,resultinginporousCu2S electrodes.Thewater-basedpolysulfideelectrolyteiscomposedof 1mol?L-1S,1mol?L-1Na2S,and0.1mol?L-1NaOHinultrapure water,whichisacommonlyusedformulaforelectrolyteofQDSCs9.

    2.1.3Assembling of QDSC

    Fig.1 Preparation process of the MPIS-based ILelectrolyte

    The QDSC was made by sandwiching the electrolyte between the prepared photoanode and photocathode.The two electrodes were separated by a Surlyn film hot-melt ring and sealed by heating.The photovoltaic measurements employed a class 3A solar simulator.The power of the simulated light was calibrated to be 100 mW?cm-2by using a standard Si solar cell.The area of the cells was 0.21 cm2.

    2.2Instruments and measurements

    1H and13C NMR spectra were carried out on Bruker AVANCE 600 MHz spectrometer(Bruker Company of Switzerland),using TMS as internal standard and DMSO as solvent.The thermograms were carried out with a NETZSCH DSC 204 analyzer(Netzsch Company of Germany)under N2atmosphere at a heating rate of 20°C?min-1.

    The conductivity and its temperature dependence of the electrolyte were determined by impedance measurements PARSTAT 2273 Advanced Electrochemical System(Princeton Applied Research).The electrolyte was sandwiched between two mirrorfinished stainless steel electrodes using a Teflon ring spacer in a constant volume cylindrical cell and was sealed with paraffin in the glove box.The sealed cell was maintained at various constant temperatures for at least 1 h prior to each measurement.The conductivity was calculated from the bulk resistance Rb.The cell constant was determined by calibration before and after measurement with 0.1 mol?L-1KCl aqueous solution.Impedance experiments were performed on a computer-controlled Autolab Electrochemical System in the frequency range from 100 kHz to 100 mHz with an amplitude of 10 mV.

    3 Result and discussion

    3.1Effect of composition on the conductivity of MPIS-based IL electrolyte

    The MPIS-based IL electrolyte was optimized by adjusting the concentrations of S and Na2S.First,the sulfur was added to MPIS to form the polysulfide redox couples.The relation between the sulfur concentration and the conductivity(σ)is shown in Fig.2(a). The ionic conductivity first increases and then decreases as the sulfur concentration increases,achieving the maximum value of 5.34 mS?cm-1at the sulfur concentration of 1.5 mol?L-1.The first increase of the conductivity is due to the formation of polysulfide chains,which makes the electrical conduction become easier.This phenomenon can be explained by a mechanism of electrical conduction in polysulfide chains via a Grotthus relay-type mechanism,where a net transport of charge is achieved by electron exchange reaction without any net transport of mass17.While, when the concentration of sulfur is beyond 1.5 mol?L-1,the conductivity decreases probably because the surplus sulfur reduces the efficiency of carrier transferring17.So,the concentration of sulfur is fixed at 1.5 mol?L-1.

    Fig.2 Influence of(a)S and(b)Na2S concentrations on the conductivity of the MPIS-based ILelectrolytes

    In order to further improve the conductivity of the MPIS-based IL electrolyte system(with 1.5 mol?L-1sulfur),Na2S was added. The presence of Na2S can increase the number of charge carriers. Fig.2(b)presents the variation of ionic conductivity as a function of the concentration of Na2S.As expected,the conductivity is gradually improved as the Na2S content increases.An exciting ionic conductivity of 12.96 mS?cm-1is achieved at the Na2S concentration of 2 mol?L-1,which is about 2.4-fold higher than that without Na2S.This value is also higher than the conductivity of pyrrolidinium sulfide ionic liquids electrolyte(5.34 mS?cm-1), mainly attributing to the imidazolium cation that we employed with better conjugation for the alleviation of the electronstatic interaction between cations and anions as well as fluenter ion transport18.When the concentration of Na2S is more than 2 mol?L-1,the conductivity decreases,which may result from the aggregates or microcrystallites from excessive Na2S blocking the transferring of carriers.The similar phenomenon was also observed in the polyiodide electrolyte system used in DSCs17.Thus,the optimal electrolyte is composed of 1.5 mol?L-1sulfur and 2 mol?L-1Na2S in MPIS.

    3.2Effect of temperature on the conductivity of the electrolytes

    Fig.3(a)displays the temperature dependence of conductivity of the MPIS-based IL electrolyte.Even at-20°C,the MPIS-based IL electrolyte still exhibits moderate conductivity of 1.46 mS?cm-1and the conductivity increases with temperature because the transportation of charge carriers becomes faster at higher temperature.For example,the conductivity is up to 60.59 mS?cm-1at 80°C.The data in Fig.3(a)can be fitted well byArrhenius equation(Eq.(1)):where A is a constant,Eais the activation energy,kBis the Boltzmann constant,and T is the absolute temperature.The activation energy of the optimal MPIS-based IL electrolyte is calculated to be 27.46 kJ?mol-1,which is similar to the values reported for IL system(20-54 kJ?mol-1)19,20.

    Surprisingly,for the water-based polysulfide electrolyte the increase of conductivity versus temperature doesn′t display a simple linear relationship but two step temperature dependence (Fig.3(b)).In the first step(I,from 35 to 80°C),the Eais 6.95 kJ?mol-1,and in the second step(II,from-20 to 30°C),the Eadramatically increases to 51.95 kJ?mol-1,which is about 2-fold higher than that of MPIS-based IL electrolyte.Such a high value indicates inferior ionic conduction21.

    The different changing trend of the two electrolytes in Fig.3 can be explained by differential scanning calorimetry.Fig.4(a)is the thermogram of the optimal MPIS-based IL electrolyte.The glass transition temperature of this electrolyte is around-85°C and no other phase transition signals can be observed with further increasing the temperature,as shown in Fig.4(a).That′s why the data in Fig.2(a)can be fitted well by Arrhenius equation from-20 to 80°C.This differential scanning calorimetry result also indicates the possibility that the optimal MPIS-based IL electrolyte can be used at lower temperature.Moreover IL has negligible vapor pressure,which can avoid the volatilization of electrolyte at higher temperature.Thus,this MPIS-based IL electrolyte can be used in a wide temperature range.Fig.4(b)is the thermogram of waterbased polysulfide electrolyte.The water-based polysulfide electrolyte displays a melting temperature(Tm)of-2°C.When the temperature is lower than-2°C,this water-based polysulfide electrolyte will be freezed,which will prevent the transport of the charge carriers in the electrolyte.In fact,the conductivity of this water-based polysulfide electrolyte begins to decrease rapidly when the temperature is lower than 30°C as shown in Fig.2(b).

    Fig.3 Temperature dependence of the conductivity of the(a)MPIS-based ILelectrolyte and(b)waterbased polysulfide electrolyte

    Fig.4 Differential scanning calorimetry thermograms of (a)MPIS-based ILelectrolyte and(b)water-based polysulfide electrolyte

    The photocurrent density-voltage curves for the cells with MPIS-based IL electrolyte(cell A)and water-based polysulfide electrolyte(cell B)are presented in Fig.5 and the data are summarized in Table 1.We have prepared 5 cells for each cell,and every cell is measured at least 2 times.The photocurrent densityvoltage curves selected in this paper are the representative curves. For cellAmeasured at 25°C,the open-circuit voltage(Voc),shortcircuit photocurrent density(Jsc),fill factor(FF)are 0.525 V,17.9 mA?cm-2,and 0.322,yielding a high η of 3.03%,which is comparable to the efficiency of QDSC with water-based polysulfide electrolyte(cell B,η=3.34%)prepared and measured under the same condition(Fig.5 and Table 1).The slight lower efficiency of cellAhas relation to the lower Jscas shown in Fig.5 (a)and Table 1,which is mainly caused by the lower conductivity of the MPIS-based IL electrolyte compared with that of waterbased polysulfide electrolyte.

    As mentioned above,the MPIS-based ILelectrolyte can be used in a wide temperature range due to its outstanding thermal properties.The photocurrent density-voltage curves of cell Aand cell B measured at-20 and 80°C are shown in Fig.5(b,c)and the data are also summarized in Table 1.For example,the conversion efficiency of cell Ais 2.32%at-20°C,which is higher than that of cell B(1.50%)at the same temperature.The lower η of cell B is mainly caused by the decreased Jsc(see Table 1).The freeze of water-based polysulfide electrolyte at this temperature hinders the transport of the charge carriers in the electrolyte and makes the interfacial contact between the electrolyte and porous TiO2film become poor,thus decreasing the Jscof cell B.

    When the temperature is increased,for example at 80°C,theVocof both cell A and cell B are obviously decreased due to the serious back reaction at higher temperature.However,the Vocof cell Ais still 113 mV higher than that of cell B probably because of the interaction between the 1-methyl-3-propylimidazolium cations and the TiO2film.This interaction perhaps has influence on the recombination,QDs regeneration,and electron transport in the titania film as observed in dye-sensitized solar cells22.The dark current curves in Fig.6 measured at 80°C indicate MPIS-based IL electrolyte can inhibit the recombination between the electrons in TiO2film and the polysulfide ions in the electrolyte.We further measured the electrochemical impedance spectra(EIS)of cell A and cell B at 80°C under moderate potential of-0.40 V(close to the Vocof cell A)23,24.The calculated electron lifetime of cell Aand cell B are 5.2×10-3and 1.3×10-3s,respectively.This result proves that the interaction between the 1-methyl-3-propylimidazolium cations and the TiO2film can restrain the recombination25, which is in accordance with the dark current results in Fig.6.At 80°C,the Jscof cell B is decreased to 4.59 mA?cm-2mainly because of the volatilization of water.The volatilization of water leads to the ineffective link between photoanode and photocathode,thus limiting the transport of polysulfide ions in the cell.As a result,the η of cell B is sharply reduced to 0.347%.On the contrary,the MPIS-based IL electrolyte is non-volatile and its conductivity is increased at higher temperature.The above two factors together lead to an improved Jscof cellA(Jsc=18.7 mA?cm-2),making cell A maintain a satisfactory η of 1.90%even at 80°C.Fig.5(d)shows the normalized η of the two cells measured at different temperatures.

    Fig.5 Comparison of photocurrent density-voltage curves(a-c)and η(d)of cellAand cell B at different temperatures

    Table 1 Detailed photovoltaic performance parameters of Voc,Jsc,FF,and η measured at different temperatures

    Fig.6 Dark current density curves of cellAand cell B measured at 80°C

    4 Conclusions

    In summary,sulfur-based ionic liquid 1-methyl-3-propylimidazolium sulfide is prepared and applied in the QDSC for the firsttime.By optimizing the contents of S and Na2S,considerable conductivity of 12.96 mS?cm-1is achieved.This optimal MPIS-based IL electrolyte has outstanding thermal properties of low glass transition temperature and nonvolatility,which make it can be used in a wide temperature range.The QDSC assembled with this MPIS-based IL electrolyte displays a high η of 3.03%at 25°C,which is comparable to the efficiency of QDSC with waterbased polysulfide electrolyte(η=3.34%).Due to the favorable thermal properties of this MPIS-based IL electrolyte,the QDSC can maintain satisfactory η value even at-20 and 80°C,which is obviously superior to the cell with water-based polysulfide electrolyte.This type of IL electrolyte is beneficial to promote the practical application of QDSCs.

    References

    (1)Mathew,S.;Yella,A.;Gao,P.;Humphry-Baker,R.;Curchod, B.F.;Ashari-Astani,N.;Tavernelli,I.;Rothlisberger,U.; Nazeeruddin,M.K.;Gr?tzel,M.Nat.Chem.2014,6(3),242. doi:10.1038/nchem.1861

    (2)Moia,D.;Leijtens,T.;Noel,N.;Snaith,H.J.;Nelson,J.; Barnes,P.R.F.Adv.Mater.2015,27(39),5889.doi:10.1002/ adma.201501919

    (3)Tian,J.;Lv,L.;Fei,C.;Wang,Y.;Liu,X.;Cao,G.J.Mater. Chem.A 2014,2(46),19653.doi:10.1039/C4TA04534C

    (4)Wang,S.M.;Dong,W.W.;Fang,X.D.;Deng,Z.H.;Shao,J. Z.;Hu,L.H.;Zhu,J.Acta Phys.-Chim.Sin.2014,30(5),873.

    [王時(shí)茂,董偉偉,方曉東,鄧贊紅,邵景珍,胡林華,朱俊.物理化學(xué)學(xué)報(bào),2014,30(5),873.]doi:10.3866/PKU. WHXB201403042

    (5)Du,J.;Meng,X.;Zhao,K.;Li,Y.;Zhong,X.J.Mater.Chem. A 2015,3(33),17091.doi:10.1039/C5TA04758G

    (6)Bai,S.L.;Lu,W.H.;Li,D.Q.;Li,X.N.;Fang,Y.Y.;Lin,Y. Acta Phys.-Chim.Sin.2014,30(6),1107.

    [白守禮,陸文虎,李殿卿,李曉寧,方艷艷,林原.物理化學(xué)學(xué)報(bào),2014,30(6), 1107.]doi:10.3866/PKU.WHXB201404111

    (7)Wei,H.Y.;Wang,G.S.;Wu,H.J.;Luo,Y.H.;Li,D.M.; Meng,Q.B.Acta Phys.-Chim.Sin.2016,32(1),201.

    [衛(wèi)會(huì)云,王國帥,吳會(huì)覺,羅艷紅,李冬梅,孟慶波.物理化學(xué)學(xué)報(bào),2016,32(1),201.]doi:10.3866/PKU.WHXB201512031

    (8)Feng,W.L.;Li,Y.;Du,J.;Wang,W.;Zhong,X.H.J.Mater. Chem.A 2016,4(4),1461-1468.doi:10.1039/C5TA08209A

    (9)Sung,S.D.;Lim,I.;Kang,P.;Lee,C.;Lee,W.I.Chem. Commun.2013,49(54),6054.doi:10.1039/c3cc40754c

    (10)Wang,Q.Y.;Chen,C.;Liu,W.;Gao,S.M.;Yang,X.C. J.Nanopart.Res.2016,18(1).doi:10.1007/s11051-015-3314-9

    (11)Lee,Y.L.;Chang,C.H.J.Power Sources 2008,185(1),584. doi:10.1016/j.jpowsour.2008.07.014

    (12)Wang,P.;Zakeeruddin,S.M.;Moser,J.E.;Nazeeruddin,M. K.;Sekiguchi,T.;Gr?tzel,M.Nat.Mat.2003,2(6),402.doi: 10.1038/nmat904

    (13)Bai,Y.;Cao,Y.;Zhang,J.;Wang,M.;Li,R.;Wang,P.; Zakeeruddin,S.M.;Gr?tzel,M.Nat.Mat.2008,7(8),626. doi:10.1038/nmat2224

    (14)Wang,H.;Xu,X.Q.;Shi,J.F.;Xu,G.Acta Phys.-Chim.Sin. 2013,29(3),525.

    [王海,徐雪青,史繼富,徐剛.物理化學(xué)學(xué)報(bào),2013,29(3),525.]doi:10.3866/PKU. WHXB201301091

    (15)Lee,H.;Wang,M.;Chen,P.;Gamelin,D.R.;Zakeeruddin,S. M.;Gr?tzel,M.;Nazeeruddin,M.K.Nano Lett.2009,9(12), 4221.doi:10.1021/nl902438d

    (16)Shi,J.F.;Fan,Y.;Xu,X.Q.;Xu,G.;Chen,L.H.Acta Phys.-Chim.Sin.2012,28(4),857.

    [史繼富,樊燁,徐雪青,徐剛,陳麗華.物理化學(xué)學(xué)報(bào),2012,28(4),857.] doi:10.3866/PKU.WHXB201202204

    (17)Wu,J.;Hao,S.;Lan,Z.;Lin,J.;Huang,M.;Huang,Y.;Li,P.; Yin,S.;Sato,T.J.Am.Chem.Soc.2008,130(35),11568. doi:10.1021/ja802158q

    (18)Jovanovski,V.;González-Pedro,V.;Giménez,S.;Azaceta,E.; Caba?ero,G.N.;Grande,H.;Tena-Zaera,R.;Mora-Seró,I. N.;Bisquert,J.J.Am.Chem.Soc.2011,133(50),20156.doi: 10.1021/ja2096865

    (19)Abbott,A.P.;Boothby,D.;Capper,G.;Davies,D.L.;Rasheed, R.K.J.Am.Chem.Soc.2004,126(29),9142.doi:10.1021/ ja048266j

    (20)Zhou,Z.B.;Matsumoto,H.;Tatsumi,K.ChemPhysChem 2005,6(7),1324.doi:10.1002/cphc.200500094

    (21)Shi,J.;Chen,J.;Li,Y.;Zhu,Y.;Xu,G.;Xu,J.J.Power Sources 2015,282,51.doi:10.1016/j.jpowsour.2015.02.022

    (22)Hagfeldt,A.;Boschloo,G.;Sun,L.;Kloo,L.;Pettersson,H. Chem.Rev.2010,110(11),6595.doi:10.1021/cr900356p

    (23)Huo,Z.P.;Tao,L.;Wang,S.M.;Wei,J.F.;Zhu,J.;Dong,W. W.;Liu,F.;Chen,S.H.;Zhang,B.;Dai,S.Y.J.Power Sources 2015,284,582.doi:10.1016/j.jpowsour.2015.03.049

    (24)Farooq,W.A.;Fatehmulla,A.;Aslam,M.;Atif,M.;Ali,S.M.; Yakuphanoglu,F.;Yahia,I.S.J.Nanoelectron.Optoe.2014,9 (5),671.doi:10.1166/jno.2014.1653

    (25)Chen,J.;Lei,W.;Deng,W.Q.Nanoscale 2011,3(2),674.doi: 10.1039/C0NR00591F

    Sulfide-Based Ionic Liquid Electrolyte Widening the Application Temperature Range of Quantum-Dot-Sensitized Solar Cells

    SHI Ji-Fu1HUANG Qi-Zhang1,2WAN Qing-Cui1XU Xue-Qing1,*LI Chun-Sheng3,*XU Gang1,*
    (1Guangzhou Institute of Energy Conversion,Key Laboratory of Renewable Energy and Gas Hydrate,Guangdong Key Laboratory of New and Renewable Energy Research and Development,Chinese Academy of Sciences,Guangzhou 510640,P.R.China;2University of Chinese Academy of Sciences,Beijing 100049,P.R.China;3College of Chemical Engineering,North China University of Science and Technology,Tangshan 063009,Hebei Province,P.R.China)

    We report the preparation and application of a 1-methyl-3-propylimidazolium sulfide-based ionic liquid electrolyte for quantum-dot-sensitized solar cells.By optimizing the concentrations of S and Na2S,a considerable conductivity of 12.96 mS?cm-1is achieved at 25°C.Differential scanning calorimetry indicates that the glass transition temperature of the electrolyte is-85°C.The quantum-dot-sensitized solar cell assembled with this ionic liquid electrolyte displays a high energy conversion efficiency(η)of 3.03%at 25°C, which is comparable to the efficiency of quantum-dot-sensitized solar cells using a water-based polysulfide electrolyte(η=3.34%).Due to the favorable thermal properties of this ionic liquid electrolyte(lower glass transition temperature and nonvolatility at higher temperatures),the quantum-dot-sensitized solar cell maintains satisfactory η even at-20°C(η=2.32%)and 80°C(η=1.90%),which is superior to the cell using the water-based polysulfide electrolyte.

    January 22,2016;Revised:February 25,2016;Published on Web:February 26,2016.*Corresponding authors.XU Gang,Email:xugang@ms.giec.ac.cn.XU Xue-Qing,Email:xuxq@ms.giec.ac.cn;Tel:+86-20-87057592. LI Chun-Sheng,Email:lichsheng@163.com. The project was supported by the National Natural Science Foundation of China(21103194,51506205),Science and Technology Planning Project of Guangdong Province,China(2014A010106018,2013A011401011),Guangdong-Hong Kong Joint Innovation Project of Guangdong Province,China (2014B050505015),Special Support Program of Guangdong Province,China(2014TQ01N610),Director Innovation Foundation of Guangzhou Institute of Energy Conversion,China(y307p81001),and Solar PhotothermalAdvanced Materials Engineering Research Center Construction Project of Guangdong Province,China(2014B090904071).

    Quantum-dot-sensitized solar cell;Ionic liquid electrolyte;1-Methyl-3-propylimidazolium sulfide;Application temperature;Efficiency

    O646

    10.3866/PKU.WHXB201602262

    國家自然科學(xué)基金(21103194,51506205),廣東省科技計(jì)劃(2014A010106018,2013A011401011),粵港合作項(xiàng)目(2014B050505015),廣東省特支計(jì)劃(2014TQ01N610),中國科學(xué)院廣州能源研究所所長創(chuàng)新基金(y307p81001)及廣東省太陽能光熱先端材料工程技術(shù)研究中心建設(shè)項(xiàng)目(2014B090904071)資助

    猜你喜歡
    敏化中國科學(xué)院電解質(zhì)
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計(jì)量學(xué)分析
    Sn摻雜石榴石型Li7La3Zr2O12固態(tài)電解質(zhì)的制備
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    電解質(zhì)溶液高考熱點(diǎn)直擊
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    耦聯(lián)劑輔助吸附法制備CuInS2量子點(diǎn)敏化太陽電池
    5種天然染料敏化太陽電池的性能研究
    中文字幕免费在线视频6| 伦理电影大哥的女人| 国产白丝娇喘喷水9色精品| 两性午夜刺激爽爽歪歪视频在线观看| 黄色一级大片看看| 怎么达到女性高潮| 午夜久久久久精精品| 十八禁国产超污无遮挡网站| 赤兔流量卡办理| 99精品在免费线老司机午夜| 一个人看视频在线观看www免费| 黄色一级大片看看| 男女做爰动态图高潮gif福利片| 国产精品女同一区二区软件 | 18禁裸乳无遮挡免费网站照片| 久久久久国内视频| 成年免费大片在线观看| 亚洲天堂国产精品一区在线| 国产av一区在线观看免费| 男女那种视频在线观看| 特级一级黄色大片| 三级国产精品欧美在线观看| 3wmmmm亚洲av在线观看| 搡女人真爽免费视频火全软件 | 免费搜索国产男女视频| 狠狠狠狠99中文字幕| 亚洲五月天丁香| 一本一本综合久久| 在线看三级毛片| 中文字幕免费在线视频6| 国产色婷婷99| 天天一区二区日本电影三级| 悠悠久久av| 村上凉子中文字幕在线| 高清日韩中文字幕在线| 精品久久国产蜜桃| 给我免费播放毛片高清在线观看| 精品久久久久久久末码| 少妇人妻精品综合一区二区 | 国产黄色小视频在线观看| 一个人观看的视频www高清免费观看| 国产精品伦人一区二区| 欧美+日韩+精品| 91午夜精品亚洲一区二区三区 | 午夜福利视频1000在线观看| 99热这里只有是精品50| 免费在线观看影片大全网站| 精品久久国产蜜桃| 一级黄片播放器| 天堂av国产一区二区熟女人妻| 757午夜福利合集在线观看| 成人欧美大片| 少妇高潮的动态图| 国产爱豆传媒在线观看| 搡老岳熟女国产| 亚洲激情在线av| 久久久久久久午夜电影| 禁无遮挡网站| 成人欧美大片| 国内精品美女久久久久久| 亚洲欧美日韩无卡精品| 亚洲av日韩精品久久久久久密| 搡老妇女老女人老熟妇| 最近在线观看免费完整版| 午夜激情福利司机影院| 在线播放国产精品三级| 9191精品国产免费久久| 国产黄片美女视频| 亚洲成人精品中文字幕电影| 婷婷亚洲欧美| 黄色日韩在线| 日本与韩国留学比较| 一进一出好大好爽视频| 国产一区二区在线av高清观看| 波多野结衣高清作品| 亚洲av成人av| 欧美性猛交黑人性爽| 中国美女看黄片| 国产精品美女特级片免费视频播放器| 黄色丝袜av网址大全| 99久久精品一区二区三区| 国产伦一二天堂av在线观看| 欧美一区二区精品小视频在线| 国产一区二区在线观看日韩| 国产成人福利小说| 亚洲欧美清纯卡通| 人妻久久中文字幕网| 脱女人内裤的视频| 丁香六月欧美| 夜夜看夜夜爽夜夜摸| 亚洲自拍偷在线| 欧美黄色片欧美黄色片| 亚洲精品影视一区二区三区av| 一级黄片播放器| 国产色爽女视频免费观看| netflix在线观看网站| 免费av不卡在线播放| av天堂在线播放| 国产精品,欧美在线| 色综合站精品国产| 嫁个100分男人电影在线观看| 麻豆av噜噜一区二区三区| 中文在线观看免费www的网站| 99久久99久久久精品蜜桃| 变态另类成人亚洲欧美熟女| 欧美在线黄色| 欧美黑人巨大hd| 精品久久久久久久久久久久久| 欧美激情国产日韩精品一区| 欧美+亚洲+日韩+国产| 88av欧美| 性插视频无遮挡在线免费观看| 国产麻豆成人av免费视频| 又爽又黄a免费视频| 特级一级黄色大片| 国产野战对白在线观看| 听说在线观看完整版免费高清| 亚洲成av人片免费观看| 久久久久久久久久成人| 白带黄色成豆腐渣| 亚洲自拍偷在线| 欧美日韩中文字幕国产精品一区二区三区| 一本久久中文字幕| 亚洲av不卡在线观看| 淫妇啪啪啪对白视频| 亚洲欧美日韩东京热| 嫩草影视91久久| 美女高潮喷水抽搐中文字幕| 久久九九热精品免费| 欧美国产日韩亚洲一区| 小说图片视频综合网站| 国产私拍福利视频在线观看| 最后的刺客免费高清国语| 蜜桃亚洲精品一区二区三区| 国产精品不卡视频一区二区 | 舔av片在线| 日韩高清综合在线| 亚洲av不卡在线观看| 首页视频小说图片口味搜索| 午夜激情欧美在线| 久久国产乱子免费精品| 最近最新中文字幕大全电影3| 色尼玛亚洲综合影院| 无人区码免费观看不卡| 在现免费观看毛片| 成年人黄色毛片网站| 好男人在线观看高清免费视频| 亚洲av免费高清在线观看| 久9热在线精品视频| 在现免费观看毛片| 免费在线观看亚洲国产| 99久久精品国产亚洲精品| 成年免费大片在线观看| 亚洲美女搞黄在线观看 | 成熟少妇高潮喷水视频| 亚洲久久久久久中文字幕| 看十八女毛片水多多多| 国内精品美女久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 欧美乱妇无乱码| 91在线观看av| 免费电影在线观看免费观看| 国产亚洲欧美98| 黄色日韩在线| 俄罗斯特黄特色一大片| 成人美女网站在线观看视频| 色噜噜av男人的天堂激情| 给我免费播放毛片高清在线观看| 少妇熟女aⅴ在线视频| 香蕉av资源在线| 精品熟女少妇八av免费久了| 国产黄片美女视频| 黄色视频,在线免费观看| 99热这里只有精品一区| 嫩草影视91久久| 免费人成视频x8x8入口观看| 午夜日韩欧美国产| 色噜噜av男人的天堂激情| 男人和女人高潮做爰伦理| 午夜日韩欧美国产| 男女床上黄色一级片免费看| 中出人妻视频一区二区| 亚洲 欧美 日韩 在线 免费| 性色av乱码一区二区三区2| 直男gayav资源| 国内少妇人妻偷人精品xxx网站| 观看美女的网站| av黄色大香蕉| 免费看a级黄色片| 成人无遮挡网站| 日韩有码中文字幕| 亚洲国产精品合色在线| 亚洲av成人av| 又爽又黄无遮挡网站| 一级黄色大片毛片| 国内毛片毛片毛片毛片毛片| 国产综合懂色| 国产真实伦视频高清在线观看 | 婷婷丁香在线五月| 此物有八面人人有两片| 桃红色精品国产亚洲av| 午夜日韩欧美国产| 日韩中字成人| 狂野欧美白嫩少妇大欣赏| 伊人久久精品亚洲午夜| 久久久久久国产a免费观看| 特大巨黑吊av在线直播| 日本黄大片高清| 国内毛片毛片毛片毛片毛片| 国产精品野战在线观看| 欧美bdsm另类| 国产精品美女特级片免费视频播放器| 国产亚洲精品久久久久久毛片| 亚洲无线在线观看| 国产色爽女视频免费观看| 亚洲乱码一区二区免费版| 18禁裸乳无遮挡免费网站照片| 91在线观看av| 国产国拍精品亚洲av在线观看| 欧美成人免费av一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 听说在线观看完整版免费高清| 又爽又黄a免费视频| 国产av在哪里看| 最后的刺客免费高清国语| 亚洲无线观看免费| 亚洲内射少妇av| 老司机福利观看| ponron亚洲| 亚洲精华国产精华精| 亚洲午夜理论影院| 国产成人福利小说| 99热这里只有是精品50| 色综合亚洲欧美另类图片| 少妇人妻精品综合一区二区 | 狠狠狠狠99中文字幕| 99热精品在线国产| 国产精品一及| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻视频免费看| 亚洲最大成人手机在线| 精品不卡国产一区二区三区| 亚洲国产精品成人综合色| 国产伦精品一区二区三区四那| 久久婷婷人人爽人人干人人爱| 亚洲欧美激情综合另类| 精品人妻偷拍中文字幕| 免费观看的影片在线观看| 内射极品少妇av片p| 五月玫瑰六月丁香| 国产综合懂色| 99久久精品热视频| 特大巨黑吊av在线直播| 国产午夜精品久久久久久一区二区三区 | 永久网站在线| 久久久久国内视频| 精品福利观看| 精品免费久久久久久久清纯| 国产亚洲精品综合一区在线观看| 色吧在线观看| 免费黄网站久久成人精品 | 99热这里只有精品一区| 亚洲精品日韩av片在线观看| 很黄的视频免费| 日韩中文字幕欧美一区二区| 亚洲av熟女| 国产av麻豆久久久久久久| 男女做爰动态图高潮gif福利片| 99久久精品国产亚洲精品| 不卡一级毛片| 午夜老司机福利剧场| 亚洲,欧美,日韩| 国产一区二区在线av高清观看| 高清在线国产一区| 国产不卡一卡二| 午夜激情欧美在线| 久久热精品热| 亚洲av免费高清在线观看| 国产黄片美女视频| 免费人成视频x8x8入口观看| 在线十欧美十亚洲十日本专区| АⅤ资源中文在线天堂| 久久精品国产亚洲av天美| 国产三级在线视频| 欧美色欧美亚洲另类二区| 永久网站在线| 毛片女人毛片| 亚洲 欧美 日韩 在线 免费| 99riav亚洲国产免费| 少妇的逼水好多| 日韩欧美三级三区| 国产av一区在线观看免费| 无遮挡黄片免费观看| 一进一出抽搐动态| 人妻夜夜爽99麻豆av| 免费搜索国产男女视频| 国产成人a区在线观看| 在线观看免费视频日本深夜| 精品一区二区免费观看| 久久久国产成人免费| 小蜜桃在线观看免费完整版高清| 日韩免费av在线播放| 免费高清视频大片| 久久性视频一级片| 啦啦啦观看免费观看视频高清| 欧美+亚洲+日韩+国产| 俺也久久电影网| 天天一区二区日本电影三级| 国产精品精品国产色婷婷| 国产精品野战在线观看| 国产一区二区激情短视频| 国产aⅴ精品一区二区三区波| www日本黄色视频网| x7x7x7水蜜桃| av天堂在线播放| 可以在线观看的亚洲视频| 欧美日韩瑟瑟在线播放| 日本免费a在线| 午夜免费男女啪啪视频观看 | 男人舔女人下体高潮全视频| 一卡2卡三卡四卡精品乱码亚洲| 久久人人精品亚洲av| 国产美女午夜福利| 国内少妇人妻偷人精品xxx网站| 久久九九热精品免费| 精品不卡国产一区二区三区| 在线观看午夜福利视频| av天堂中文字幕网| 最后的刺客免费高清国语| 精品福利观看| 久久午夜福利片| 欧美不卡视频在线免费观看| 老鸭窝网址在线观看| 亚洲国产精品合色在线| 免费人成视频x8x8入口观看| h日本视频在线播放| 欧美zozozo另类| 欧美乱色亚洲激情| 国产精品女同一区二区软件 | 国产野战对白在线观看| 久久精品国产99精品国产亚洲性色| 日韩精品青青久久久久久| 日韩亚洲欧美综合| 国产精品一区二区性色av| 久久久久九九精品影院| 全区人妻精品视频| 亚洲欧美清纯卡通| 国产一级毛片七仙女欲春2| 色精品久久人妻99蜜桃| 亚洲专区国产一区二区| 午夜福利在线观看吧| 亚洲av二区三区四区| av视频在线观看入口| 国产一区二区三区视频了| 一个人免费在线观看电影| 9191精品国产免费久久| 我要搜黄色片| 亚洲成av人片在线播放无| 国产亚洲欧美在线一区二区| 午夜免费男女啪啪视频观看 | 欧美黑人欧美精品刺激| 精品国内亚洲2022精品成人| 欧美日韩中文字幕国产精品一区二区三区| 午夜日韩欧美国产| 我要搜黄色片| 国产精品国产高清国产av| av视频在线观看入口| 欧美精品啪啪一区二区三区| 极品教师在线免费播放| 内射极品少妇av片p| 制服丝袜大香蕉在线| 91九色精品人成在线观看| 国产精品精品国产色婷婷| 91在线观看av| 国产伦人伦偷精品视频| 欧美精品啪啪一区二区三区| 天天躁日日操中文字幕| 麻豆成人av在线观看| 最近最新免费中文字幕在线| 一级黄色大片毛片| 欧美成狂野欧美在线观看| 亚洲 欧美 日韩 在线 免费| 久久久国产成人免费| 一进一出抽搐gif免费好疼| 在现免费观看毛片| 好男人电影高清在线观看| 99在线视频只有这里精品首页| 757午夜福利合集在线观看| 亚洲最大成人av| 中文字幕高清在线视频| 国产一区二区在线观看日韩| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美国产在线观看| 亚洲成人精品中文字幕电影| 真人一进一出gif抽搐免费| 窝窝影院91人妻| 又粗又爽又猛毛片免费看| 丰满乱子伦码专区| 精品午夜福利视频在线观看一区| 三级男女做爰猛烈吃奶摸视频| 最近视频中文字幕2019在线8| 亚洲人成网站高清观看| 亚洲精品成人久久久久久| 国产人妻一区二区三区在| 变态另类成人亚洲欧美熟女| 欧美一区二区亚洲| 啦啦啦观看免费观看视频高清| 久久精品夜夜夜夜夜久久蜜豆| 老司机午夜十八禁免费视频| 亚洲中文字幕日韩| 日本免费a在线| av专区在线播放| 久久久成人免费电影| 国产亚洲欧美98| 欧美一区二区精品小视频在线| 国产成人影院久久av| 天天一区二区日本电影三级| 国产精品爽爽va在线观看网站| 观看免费一级毛片| 最新中文字幕久久久久| 久久国产精品人妻蜜桃| 九色成人免费人妻av| 午夜日韩欧美国产| 岛国在线免费视频观看| 在线天堂最新版资源| 99在线视频只有这里精品首页| 亚洲 国产 在线| 一级黄片播放器| 亚洲国产精品999在线| 蜜桃久久精品国产亚洲av| 国产免费av片在线观看野外av| 真实男女啪啪啪动态图| 亚洲精品粉嫩美女一区| 国产精品不卡视频一区二区 | 亚洲成人免费电影在线观看| 熟女人妻精品中文字幕| 亚洲国产精品999在线| 亚洲美女搞黄在线观看 | 一区福利在线观看| 国产综合懂色| 欧美性猛交黑人性爽| 欧美乱色亚洲激情| 国模一区二区三区四区视频| 身体一侧抽搐| 一进一出抽搐动态| 欧美性感艳星| 国产精品亚洲美女久久久| 欧美日韩乱码在线| 又紧又爽又黄一区二区| 麻豆国产av国片精品| 成人国产一区最新在线观看| 老司机福利观看| 国产91精品成人一区二区三区| 淫妇啪啪啪对白视频| 欧美性猛交黑人性爽| 久久精品国产亚洲av涩爱 | 亚洲成人久久性| 国产成人av教育| 久久人人精品亚洲av| 成熟少妇高潮喷水视频| 国产成年人精品一区二区| 成人欧美大片| 最近中文字幕高清免费大全6 | 午夜福利高清视频| 首页视频小说图片口味搜索| 免费av毛片视频| 日日夜夜操网爽| 深爱激情五月婷婷| 麻豆成人av在线观看| 99精品久久久久人妻精品| 国产av在哪里看| 欧美极品一区二区三区四区| 日本精品一区二区三区蜜桃| 亚洲无线观看免费| 欧美成人一区二区免费高清观看| 国内少妇人妻偷人精品xxx网站| 女人被狂操c到高潮| 热99在线观看视频| 国内精品久久久久精免费| av在线天堂中文字幕| 日韩精品中文字幕看吧| 真人一进一出gif抽搐免费| 2021天堂中文幕一二区在线观| 成熟少妇高潮喷水视频| 亚洲熟妇中文字幕五十中出| 欧美+日韩+精品| 一边摸一边抽搐一进一小说| 国内少妇人妻偷人精品xxx网站| 一级av片app| 日韩欧美一区二区三区在线观看| 天堂av国产一区二区熟女人妻| 最近中文字幕高清免费大全6 | 99国产极品粉嫩在线观看| 成人亚洲精品av一区二区| 国产精品久久久久久精品电影| 中文字幕久久专区| 嫩草影院新地址| 亚洲 欧美 日韩 在线 免费| 两人在一起打扑克的视频| 久久99热这里只有精品18| 美女被艹到高潮喷水动态| 亚洲av一区综合| 国产视频一区二区在线看| 热99re8久久精品国产| av国产免费在线观看| 国产又黄又爽又无遮挡在线| 听说在线观看完整版免费高清| 国产精品1区2区在线观看.| 精品欧美国产一区二区三| 免费看a级黄色片| 99久久成人亚洲精品观看| 精品久久久久久久久av| 天天一区二区日本电影三级| 精品欧美国产一区二区三| 日本与韩国留学比较| 一本精品99久久精品77| 90打野战视频偷拍视频| 看十八女毛片水多多多| bbb黄色大片| www日本黄色视频网| 欧美一级a爱片免费观看看| 少妇裸体淫交视频免费看高清| 一级黄色大片毛片| 亚洲欧美激情综合另类| 香蕉av资源在线| 91在线观看av| 18禁裸乳无遮挡免费网站照片| 欧美又色又爽又黄视频| 精品久久久久久久久久久久久| 午夜福利免费观看在线| 在线观看66精品国产| 国产中年淑女户外野战色| 九九久久精品国产亚洲av麻豆| 国产在线男女| 一区二区三区免费毛片| 精品人妻1区二区| 日韩欧美国产在线观看| 美女xxoo啪啪120秒动态图 | 桃色一区二区三区在线观看| 久久中文看片网| 在线播放无遮挡| 国产成人影院久久av| 欧美日本亚洲视频在线播放| 中文字幕人妻熟人妻熟丝袜美| 丰满乱子伦码专区| 日本成人三级电影网站| 国产精品爽爽va在线观看网站| 国产精品98久久久久久宅男小说| 中文字幕精品亚洲无线码一区| 精品一区二区免费观看| 国产精品不卡视频一区二区 | 亚洲第一区二区三区不卡| 性欧美人与动物交配| 精品乱码久久久久久99久播| 中文资源天堂在线| 毛片女人毛片| eeuss影院久久| 99热这里只有是精品50| 欧美成人性av电影在线观看| 久久久久久九九精品二区国产| 色av中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 免费av不卡在线播放| 日本撒尿小便嘘嘘汇集6| 久久中文看片网| 欧美绝顶高潮抽搐喷水| 国产真实乱freesex| 色噜噜av男人的天堂激情| 精品久久久久久久人妻蜜臀av| 一区二区三区免费毛片| 国产野战对白在线观看| 国内精品久久久久精免费| 女人十人毛片免费观看3o分钟| 日韩人妻高清精品专区| 国产在视频线在精品| 制服丝袜大香蕉在线| 1000部很黄的大片| 校园春色视频在线观看| 国产精品日韩av在线免费观看| 亚洲av二区三区四区| 99久久精品国产亚洲精品| 男女床上黄色一级片免费看| 欧美乱色亚洲激情| 成人性生交大片免费视频hd| 精品一区二区免费观看| 成人永久免费在线观看视频| 久久久国产成人免费| 亚洲成人中文字幕在线播放| 日日夜夜操网爽| 18美女黄网站色大片免费观看| 精品人妻1区二区| 国产成人啪精品午夜网站| 精品久久国产蜜桃| 女同久久另类99精品国产91| 国产亚洲欧美98| 少妇的逼好多水| 在线a可以看的网站| 国产成人欧美在线观看| 哪里可以看免费的av片| 网址你懂的国产日韩在线| 国产美女午夜福利| 国产精品久久久久久精品电影| 熟妇人妻久久中文字幕3abv| 夜夜爽天天搞| 1000部很黄的大片| 黄色丝袜av网址大全| 天美传媒精品一区二区| ponron亚洲| 国产又黄又爽又无遮挡在线| av视频在线观看入口| 久久欧美精品欧美久久欧美| 最近最新中文字幕大全电影3| 亚洲av熟女| 国产av在哪里看| 免费人成在线观看视频色|