陳鵬程, 陳析豐, 馬伯軍, 顧志敏
(浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,浙江金華 321004)
植物耐鹽性與鈉離子動(dòng)態(tài)平衡研究進(jìn)展*1
陳鵬程, 陳析豐, 馬伯軍, 顧志敏
(浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,浙江金華321004)
綜述了離子轉(zhuǎn)運(yùn)體系促進(jìn)植物Na+動(dòng)態(tài)平衡的分子機(jī)制,并對(duì)鹽生植物和淡土植物對(duì)鹽應(yīng)答反應(yīng)和運(yùn)輸中的基因功能進(jìn)行了比較.將鹽生植物中獨(dú)特的耐鹽轉(zhuǎn)運(yùn)蛋白基因和下游調(diào)控基因作為潛在的遺傳資源,可為進(jìn)一步的作物耐鹽遺傳改良服務(wù).
鹽耐受;Na+動(dòng)態(tài)平衡;AVP1;SOS1;HKT1
土壤和水中的鹽分嚴(yán)重限制了農(nóng)作物的產(chǎn)量,全球約830~950萬(wàn)hm2耕作土地受到鹽害影響.近年來(lái),隨著耐鹽基因和Na+運(yùn)輸?shù)鞍紫嚓P(guān)基因陸續(xù)被發(fā)現(xiàn),植物耐鹽機(jī)制和Na+穩(wěn)態(tài)的研究取得了突破性進(jìn)展.本文對(duì)近年來(lái)鹽生植物和淡土植物模型體系進(jìn)行了討論,希望能夠促進(jìn)人們對(duì)植物耐鹽機(jī)制的認(rèn)識(shí).
植物在鹽脅迫時(shí)主要受高滲影響,從而造成植物缺水和離子失衡(見(jiàn)圖1)[1-3],不利于植物正常代謝和生理功能的發(fā)揮,嚴(yán)重時(shí)能導(dǎo)致細(xì)胞死亡[4-5].植物在鹽脅迫下,缺水信號(hào)將快速地從根部傳遞到植物的其他部位,導(dǎo)致細(xì)胞內(nèi)滲透壓降低并阻礙細(xì)胞增大[6-8].
低滲透壓能誘導(dǎo)脫落酸(ABA)合成,并通過(guò)ABA信號(hào)途徑導(dǎo)致保衛(wèi)細(xì)胞去極化和降低氣孔開(kāi)度及傳導(dǎo)性[9-11].失水和離子毒害阻礙有氧代謝,導(dǎo)致活性氧積累量超出細(xì)胞通過(guò)解毒機(jī)制維持氧化還原平衡的能力[12-14].缺水將加速細(xì)胞衰老[15-17].
圖1 NaCl引起的失水及Na+和Cl-的毒害作用[8]
高濃度Na+具有毒害作用,它使細(xì)胞膜和一些蛋白質(zhì)不穩(wěn)定[18-19],在細(xì)胞生理活動(dòng)中能夠負(fù)調(diào)控細(xì)胞分裂和生長(zhǎng)、初級(jí)和次級(jí)代謝及礦質(zhì)營(yíng)養(yǎng)元素的動(dòng)態(tài)平衡[20-21].AKT1和AtHAK5是擬南芥根中2個(gè)主要的K+吸收蛋白,Na+能夠降低AKT1通道中的 K+流通量[22-23],并且抑制AtHAK5的表達(dá)[24-26].因此,即使在高親和力K+運(yùn)輸系統(tǒng)下,Na+也能和K+競(jìng)爭(zhēng)[22,27-28],使細(xì)胞內(nèi)的K+流失,從而導(dǎo)致Na+/K+失衡[16-17,22].
總體上,Na+持續(xù)地被植物從土壤溶液中運(yùn)輸?shù)礁獗砥ぜ?xì)胞,再經(jīng)根木質(zhì)部導(dǎo)管從根部向地上部分運(yùn)輸,最后到達(dá)葉片[16-18].細(xì)胞膜、轉(zhuǎn)運(yùn)蛋白和其他蛋白能抵抗或限制Na+吸收進(jìn)入細(xì)胞.盡管有這些抵抗Na+攝取的系統(tǒng)存在,但由于離子梯度差和蒸騰作用,仍會(huì)導(dǎo)致Na+在葉片積累(見(jiàn)圖2)[6,10,17].高鹽誘導(dǎo)的失水降低葉片細(xì)胞擴(kuò)增,由于細(xì)胞體積變小,最終導(dǎo)致葉片細(xì)胞中Na+濃度快速升高[16,18].
圖2 植物Na+穩(wěn)態(tài)依賴(lài)Na+從根木質(zhì)部導(dǎo)管和蒸騰流中外排實(shí)現(xiàn)[8]
淡土植物細(xì)胞和大部分鹽生植物細(xì)胞都具有很高的細(xì)胞生長(zhǎng)率臨界值,在低滲透壓下降低細(xì)胞可延長(zhǎng)能力從而限制細(xì)胞膨脹[9,29].鹽生植物能在高鹽濃度下呈現(xiàn)出鮮質(zhì)量和干質(zhì)量提高的現(xiàn)象,這將在缺水條件下加速植物生長(zhǎng)和使植物持續(xù)增重[16-18].
一些鹽生植物進(jìn)化出獨(dú)特的適應(yīng)高鹽環(huán)境的生理機(jī)制[17,30-31].為了耐受鹽損害,鹽生植物能夠調(diào)節(jié)細(xì)胞內(nèi)的Na+穩(wěn)態(tài),從而使細(xì)胞質(zhì)中離子毒害的影響降低到最小.另外,鹽生植物還能通過(guò)調(diào)節(jié)滲透壓控制細(xì)胞內(nèi)的Na+卸載進(jìn)入根木質(zhì)部,這樣能降低通過(guò)蒸騰作用運(yùn)輸來(lái)的Na+源頭濃度和限制苗中代謝活躍細(xì)胞中 Na+的積累(見(jiàn)圖2)[18,32-33].
鹽生植物和淡土植物的許多重要生理代謝在鹽脅迫早期對(duì)Na+和Cl-同樣敏感[16-17,34].淡土植物和鹽生植物的膜轉(zhuǎn)運(yùn)系統(tǒng)能使Na+和Cl-跨越細(xì)胞膜,流入液泡或者胞內(nèi)體隔離起來(lái),從而調(diào)節(jié)細(xì)胞質(zhì)的Na+和Cl-平衡,這樣能夠降低細(xì)胞質(zhì)內(nèi)離子的毒害作用(見(jiàn)圖3).液泡內(nèi)離子積累也能促進(jìn)滲透調(diào)節(jié),它是促進(jìn)細(xì)胞增大的必要條件[2].在液泡和細(xì)胞器內(nèi)能夠積累許多兼容性的滲透溶質(zhì),而這能夠調(diào)節(jié)各細(xì)胞器間的滲透壓并維持其平衡[13,35].大量證據(jù)證明,淡土植物和鹽生植物在離子隔離和滲透調(diào)節(jié)方面具有相似的運(yùn)輸?shù)鞍缀蜐B透溶質(zhì)合成機(jī)制.
細(xì)胞膜、液泡膜和胞內(nèi)體膜的H+電勢(shì)差主要應(yīng)答 Na+的跨膜運(yùn)輸[36-38].這些細(xì)胞膜 H+-ATPase(腺苷三磷酸酶)在細(xì)胞溶質(zhì)中具有催化和調(diào)節(jié)活性,利用來(lái)源于ATP水解的能量將H+定向泵出質(zhì)外體,從而形成膜內(nèi)外的 H+梯度[38-40].這種 H+-ATPase泵能夠酸化質(zhì)外體(pH 5.5),使其維持相對(duì)于細(xì)胞質(zhì)(pH 7.2)大約相差1.5~2.0 pH單位,這就是內(nèi)質(zhì)體膜內(nèi)外電勢(shì)差為-120~-150 mV的原因[2,33].質(zhì)膜內(nèi)部負(fù)的電勢(shì)和非原生質(zhì)體的高Na+濃度形成一種熱力學(xué)勢(shì)能差,它決定Na+以被動(dòng)方式進(jìn)入質(zhì)膜和以主動(dòng)方式流出質(zhì)膜[2,41-42].
圖3 高Na+濃度下轉(zhuǎn)運(yùn)蛋白對(duì)細(xì)胞內(nèi)Na+穩(wěn)態(tài)的促進(jìn)[8]
Na+單方向的細(xì)胞內(nèi)流可能需要不同的轉(zhuǎn)運(yùn)系統(tǒng)參與,例如非選擇性陽(yáng)離子通道(NSCC)家族成員、HAK和AKT1(蛋白激酶),它們參與高親和性K+攝取、低親和性陽(yáng)離子轉(zhuǎn)運(yùn)蛋白、陽(yáng)離子和Cl-共轉(zhuǎn)運(yùn)蛋白和高親和K+轉(zhuǎn)運(yùn)蛋白[43-44].盡管有學(xué)者指出NSCCs和HKT1轉(zhuǎn)運(yùn)蛋白是主要的參與者[44],但是這些通道和轉(zhuǎn)運(yùn)蛋白對(duì)Na+攝取的具體功能目前仍然不清楚.HKT1蛋白呈現(xiàn)特異性地高效選擇鈉離子的能力,而HKT2蛋白選擇鉀離子的能力比選擇鈉離子的能力大些或者無(wú)差別選擇[45-46].
Na+向外流出細(xì)胞膜歸因于SOS1 Na+/H+反轉(zhuǎn)運(yùn)蛋白,它屬于哺乳動(dòng)物NHE和細(xì)菌NhaP Na+/H+反轉(zhuǎn)運(yùn)蛋白家族[40,44,47].SOS1介導(dǎo)的逆向轉(zhuǎn)運(yùn)將Na+通過(guò)細(xì)胞膜排出細(xì)胞外(見(jiàn)圖3). SOS1在根和苗中都發(fā)揮作用,目前還沒(méi)有證據(jù)證明在擬南芥中有其他細(xì)胞膜Na+/H+反轉(zhuǎn)運(yùn)蛋白存在,意味著SOS1在大多數(shù)細(xì)胞中都發(fā)揮作用.
外界施加Ca2+能夠減少Na+向內(nèi)流動(dòng),從而促進(jìn)和維持Na+和K+平衡[41,48-49].Ca2+激活高親和性的 K+吸收蛋白,從而促進(jìn)植物對(duì) K+吸收[47,49].同時(shí),外界施加 Ca2+還能夠激活 CBL/ CIPK途徑,磷酸化AKT1并且高親和性攝取K+,從而降低Na+攝入量[50].細(xì)胞質(zhì)內(nèi)的Ca2+可能通過(guò)NSCCs抑制Na+向內(nèi)流(見(jiàn)圖3).
細(xì)胞內(nèi)存在2種質(zhì)子泵:V-ATPase和AVP1 H+焦磷酸酶(PPase)(見(jiàn)圖3),它們的作用底物分別為ATP和焦磷酸(PPi)[36-37,51].這些質(zhì)子泵能夠利用ATP和PPi水解產(chǎn)生的能量轉(zhuǎn)運(yùn)H+泵出液泡膜,維持約1.5~2.0 pH梯度(液泡膜內(nèi)腔的pH較低),從而使細(xì)胞質(zhì)溶膠與內(nèi)腔的膜電勢(shì)維持在0~-40 mV(見(jiàn)圖3).通過(guò)膜的電勢(shì)差決定Na+流入或者流出液泡內(nèi)腔是主動(dòng)運(yùn)輸還是被動(dòng)運(yùn)輸[32,40].V-ATPase的激活可能促進(jìn)Na+隔離進(jìn)質(zhì)內(nèi)體來(lái)降低細(xì)胞質(zhì)中的離子濃度[36,52-53].
生理學(xué)的證據(jù)表明,Na+/H+反轉(zhuǎn)運(yùn)蛋白參與Na+向內(nèi)流進(jìn)液泡或者質(zhì)內(nèi)體(見(jiàn)圖3).其中NHX反轉(zhuǎn)運(yùn)蛋白是一類(lèi)陽(yáng)離子/H+轉(zhuǎn)運(yùn)蛋白(見(jiàn)圖3),它能促進(jìn)和維持細(xì)胞內(nèi)Na+,Na+/K+和pH內(nèi)穩(wěn)態(tài)[44,52,54],并通過(guò)調(diào)控液泡K+的積累來(lái)增強(qiáng)NaCl的耐受能力[24,52].
土壤溶液中的Na+向根細(xì)胞流動(dòng)主要是梯度壓力差推動(dòng)的(見(jiàn)圖2)[6,55].Na+由土壤溶液向根木質(zhì)部運(yùn)輸過(guò)程需要經(jīng)歷共質(zhì)體途徑、非原生質(zhì)體或者橫跨細(xì)胞膜途徑到內(nèi)皮層.內(nèi)皮層是一個(gè)疏水性的屏障,它包含凱氏帶,能夠限制非原生質(zhì)體的物質(zhì)進(jìn)出[6,43,56].軟木質(zhì)是一種蠟狀物質(zhì),它是質(zhì)外體途徑的一個(gè)疏水性屏障[31],但是它可能屬于內(nèi)皮層[5,9,33].
轉(zhuǎn)運(yùn)系統(tǒng)限制了非原生質(zhì)體Na+流入木質(zhì)部導(dǎo)管,從而減少Na+運(yùn)輸?shù)街参锏厣喜糠郑ㄒ?jiàn)圖2(a))[18].Na+從根細(xì)胞外排到質(zhì)外體[18,33,57],歸因于 SOS1 Na+/H+反轉(zhuǎn)運(yùn)蛋白(見(jiàn)圖2 (a))[43,47,58].鹽芥屬擬南芥的鹽耐能力,與組成型的和鹽誘導(dǎo)的脅迫適應(yīng)性基因表達(dá)相關(guān),例如SOS1[59-61].T.salsuginea SOS1 RNAi抑制SOS1的表達(dá),降低了它對(duì)NaCl的耐受能力.通過(guò)測(cè)定發(fā)現(xiàn),T.salsuginea SOS1 RNAi株系增加了植物根中Na+的攝入,Na+由地下部分向地上部分運(yùn)輸,所以地上部分(主要為葉片)Na+含量很高[52,62-63].T.salsuginea的根中呈現(xiàn)高水平的非滲透壓依賴(lài)的NSCC K+/Na+選擇性活性,這可能降低Na+的內(nèi)流[64].鹽生植物Suaedamaritima明顯沒(méi)有根特異性NSCC基因或者陽(yáng)離子轉(zhuǎn)運(yùn)蛋白,這樣就會(huì)加速Na+吸收[35].
植物能夠通過(guò)促進(jìn)液泡隔離作用減少游離Na+進(jìn)入內(nèi)胚層細(xì)胞,使Na+在根外表皮和內(nèi)皮層細(xì)胞積累(見(jiàn)圖2(a)).在小麥根中,Na+濃度在表皮和亞表皮最高,在皮層細(xì)胞和內(nèi)皮細(xì)胞由外層向內(nèi)層逐漸降低[18].這些結(jié)果顯示,根的外皮和內(nèi)皮層細(xì)胞在Na+從土壤溶液到木質(zhì)部運(yùn)輸途徑中起著阻泄作用[18].NHX類(lèi)Na+/H+反轉(zhuǎn)運(yùn)蛋白可能在Na+向液泡或者胞內(nèi)體的隔離過(guò)程中起著重要作用(見(jiàn)圖2(a))[52,65].
Na+從木質(zhì)部導(dǎo)管向外排和卸載作用限制蒸騰流中Na+的濃度(見(jiàn)圖2)[12,18,63].中柱鞘細(xì)胞和木質(zhì)部薄壁細(xì)胞能夠積累Na+,減少Na+運(yùn)輸?shù)侥举|(zhì)部導(dǎo)管中[12,18].共質(zhì)體途徑中的Na+通過(guò)主動(dòng)或者被動(dòng)運(yùn)輸卸載到木質(zhì)部導(dǎo)管,前者需要SOS1的參與[12,18,44].HKT1轉(zhuǎn)運(yùn)蛋白在決定Na+從導(dǎo)管卸載到中柱鞘細(xì)胞的過(guò)程中起著重要作用(見(jiàn)圖2(a))[43,45,66].另外,有研究表明HKT1還能將地上部分(主要為葉片)的Na+轉(zhuǎn)運(yùn)回根部[67].在淡土植物根中柱鞘特異性表達(dá)的HKT1能夠減少木質(zhì)部導(dǎo)管和苗中Na+的積累,從而增強(qiáng)植物NaCl耐受能力(見(jiàn)圖2)[43,63].此外,根外皮和表皮細(xì)胞積累更高濃度的Na+,表明HKT1活性可能促進(jìn)Na+從中柱鞘細(xì)胞轉(zhuǎn)運(yùn)回中柱鞘外細(xì)胞.
Na+由根向地上部分運(yùn)輸主要是由木質(zhì)部導(dǎo)管蒸騰壓梯度產(chǎn)生的張力推動(dòng)的(見(jiàn)圖2 (b))[6,68-69].盡管非氣孔蒸騰也能促成植物的水流失[7,10],但是蒸騰流主要由氣孔開(kāi)度決定[6,68].因此,通過(guò)調(diào)控氣孔開(kāi)度和氣孔開(kāi)度密度,能夠減輕蒸騰作用,從而減小Na+由根向地上部分轉(zhuǎn)移的速率[18,43,70].另外,限制Na+由根向地上部分轉(zhuǎn)移,能限制或者減小葉細(xì)胞吸收Na+的速率(見(jiàn)圖2(b))[43,50,71].曾經(jīng)有研究者提出,一些鹽生植物通過(guò)細(xì)胞內(nèi)的感受機(jī)制,通過(guò)降低蒸騰作用,可減少鹽脅迫下苗中Na+積累[41,62,66].然而,降低蒸騰作用可能產(chǎn)生不利的后果,例如降低碳同化能力、營(yíng)養(yǎng)元素的吸收和蒸發(fā)作用下葉片的冷卻(見(jiàn)圖2)[11,16,70].C3植物還能通過(guò)水孔蛋白的水力傳導(dǎo)率減小Na+的轉(zhuǎn)移速率,應(yīng)對(duì)由于高鹽引起的高滲脅迫[70,72-73].
植物在含鹽的環(huán)境中通過(guò)滲透調(diào)節(jié)作用積累大量的鹽離子,因此這些離子不能從葉片細(xì)胞中完全排除.然而,Na+吸收和轉(zhuǎn)移到葉片將導(dǎo)致葉片細(xì)胞體積減小,從而增加細(xì)胞質(zhì)中Na+的濃度.與淡土植物相比,很多耐鹽的鹽生植物葉片具有非常高的Na+濃度[5,17,74],表明這些鹽生植物具有較大的Na+穩(wěn)態(tài)能力.
近年來(lái),通過(guò)轉(zhuǎn)錄物組和蛋白質(zhì)組分析鑒定了許多參與耐鹽信號(hào)轉(zhuǎn)導(dǎo)途徑的基因或蛋白[42,75-76].其中,對(duì)SOS系統(tǒng)調(diào)控 Na+動(dòng)態(tài)平衡的研究已經(jīng)非常清晰[29](見(jiàn)圖2).NaCl誘導(dǎo)的細(xì)胞質(zhì)內(nèi)Ca2+濃度升高,能夠被鈣調(diào)磷酸酶B蛋白和類(lèi)神經(jīng)元的Ca2+感受器蛋白SOS3(CBL4)識(shí)別,這是一種能夠在EF手型Ca2+結(jié)合位點(diǎn)發(fā)生?;饔玫牡鞍祝?4,60,77].Ca2+激活的SOS3能夠與SOS2(CIPK24)自我抑制結(jié)構(gòu)域互作,SOS2是SnRK家族成員之一[24,60,77].SOS3與 SOS2的自我抑制結(jié)構(gòu)域結(jié)合,激活SOS2激酶活性并且促進(jìn)SOS2-SOS3復(fù)合物定位到細(xì)胞膜上[24,50,78]. SOS2隨后與細(xì)胞膜上的 Na+/H+反轉(zhuǎn)運(yùn)蛋白SOS1互作,它能磷酸化SOS1并使之激活,從而使Na+從細(xì)胞質(zhì)流出到質(zhì)外體[24,47,78].研究表明,SOS途徑調(diào)控植物耐鹽信號(hào)轉(zhuǎn)導(dǎo)途徑的分子機(jī)制在植物中是高度保守的[58,79].
SCABP8(CBL10)是SOS3(CBL)家族的一員,它在苗中發(fā)揮著作用[24,80].SCABP8依賴(lài)的SOS途徑激活SOS1使Na+外流,從而調(diào)節(jié)苗中細(xì)胞內(nèi)的Na+積累(見(jiàn)圖2(a))[24,80].SCABP8磷酸化SOS2,它能夠穩(wěn)定SCABP8-SOS2復(fù)合物,并且將其定位到細(xì)胞膜,從而增強(qiáng)SOS1反轉(zhuǎn)運(yùn)蛋白的活性[24].因此,在根中主要由SOS3與SOS2互作,在苗中主要由SCABP8與SOS2互作,它們共同將這些復(fù)合物招募到細(xì)胞膜上來(lái)激活SOS1的活性,調(diào)整 Na+的動(dòng)態(tài)平衡和增強(qiáng)其耐鹽能力[78,80].
ABI2能與SOS2互作,從而抑制SOS3結(jié)合SOS2及SOS2激酶的活性[24,81].ABI2與SOS2的互作可能代表一個(gè)細(xì)胞內(nèi)NaCl和ABA信號(hào)轉(zhuǎn)導(dǎo)的交點(diǎn)[24,50].NaCl誘導(dǎo)的磷脂酶D(PLD)能夠激活受誘導(dǎo)的磷脂酸的合成,這將激活MAPK6,從而磷酸化不同下游靶蛋白,其中包括SOS1[8,82]. Pldα1和 mpk6及 sos1功能的缺失導(dǎo)致植物對(duì)NaCl敏感[81].
SOS途徑通過(guò)調(diào)控V型ATPase和NHX反轉(zhuǎn)運(yùn)蛋白活性促進(jìn)液泡的Na+隔離(見(jiàn)圖3).sos2-2能夠顯著降低液泡膜微囊的 Na+/H+交換活性[47].這種交換活性對(duì)阿米洛利和NHX1抗體敏感,這就證明SOS2能夠調(diào)控NHX Na+/H+反轉(zhuǎn)運(yùn)蛋白的活性.此外,SOS2結(jié)合V-ATPase的B1 和B2亞基,sos2-2降低液泡膜 ATPase的活性[83].遺傳學(xué)證據(jù)表明,SOS1正調(diào)控AVP1的活性,促進(jìn)液泡 Na+積累和增強(qiáng)耐鹽能力[79]. SCABP8(CBL10)-SOS2復(fù)合物能夠定位到液泡膜,說(shuō)明SCABP8(CBL10)-SOS2可能參與了促進(jìn)Na+在液泡中的隔離[11,24].
最近的研究表明,SOS途徑在適應(yīng)鹽脅迫環(huán)境過(guò)程中調(diào)控根系形態(tài)的重建[7,49,84].在中等濃度NaCl條件下,SOS途徑通過(guò)調(diào)控植物激素的由上往下運(yùn)輸來(lái)影響側(cè)根的形成[85].此外,鹽害條件下SOS途徑在維持Na+穩(wěn)態(tài)和根向地性方面起著重要的作用[86].
綜合數(shù)十年鹽生植物的生理研究、最近的基因組測(cè)序、鹽生植物和淡土植物的鹽反應(yīng)分子遺傳數(shù)據(jù),研究者分析了Na+及其他離子的轉(zhuǎn)運(yùn)蛋白和逆境信號(hào)途徑,發(fā)現(xiàn)這些離子轉(zhuǎn)運(yùn)因子和逆境信號(hào)途徑對(duì)于細(xì)胞內(nèi)外的離子動(dòng)態(tài)平衡和耐鹽性是十分必要的.
通過(guò)對(duì)擬南芥及其耐鹽近緣種、水稻、小麥的HKT1的研究,建立了鹽生植物和淡土植物的基本耐鹽保護(hù)機(jī)制.鹽生植物未來(lái)的研究將會(huì)發(fā)現(xiàn)新的耐鹽等位基因和位點(diǎn).這些遺傳因子包括轉(zhuǎn)運(yùn)蛋白、調(diào)節(jié)細(xì)胞內(nèi)(包括根莖)外鈉鉀動(dòng)態(tài)平衡的基因.另外,鹽生植物在高鹽引起的低水勢(shì)條件下能進(jìn)行最理想的細(xì)胞伸長(zhǎng)和干物質(zhì)積累,而這些能力都是淡土植物中不存在的,因此是獨(dú)特而重要的遺傳資源.在今后的農(nóng)業(yè)生產(chǎn)中,將利用前人研究的這些蛋白和基因等遺傳資源進(jìn)行農(nóng)作物耐鹽性的遺傳改良,提高農(nóng)作物的產(chǎn)量和品質(zhì).
[1]Lexer C,Welch M E,Durphy JL,etal.Natural selection for salt tolerance quantitative trait loci(QTLs)in wild sunflower hybrids:Implications for the origin of Helianthus paradoxus,a diploid hybrid species[J].Molecular Ecology,2003,12(5):1225-1235.
[2]Hasegawa PM,Bressan R A,Zhu JK,etal.Plant cellular andmolecular responses to high salinity[J].Annual Review of Plant Biology,2000,51(1):463-499.
[3]Flowers T J,Galal H K,Bromham L.Evolution of halophytes:Multiple origins of salt tolerance in land plants[J].Functional Plant Biology,2010,37(7):604-612.
[4]Debat V,David P.Mapping phenotypes:Canalization,plasticity and developmental stability[J].Trends in Ecology&Evolution,2001,16(10):555-561.
[5]Mittler R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405-410.
[6]Taji T,SekiM,Satou M,et al.Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray[J].Plant Physiology,2004,135(3):1697-1709.
[7]Matthews M A,Van Volkenburgh E,Boyer JS.Acclimation of leaf growth to low water potentials in sunflower[J].Plant Cell&Environment,1984,7(3):199-206.
[8]Hasegawa PM.Sodium(Na+)homeostasis and salt tolerance of plants[J].Environmental and Experimental Botany,2013,92(8):19-31.
[9]Schroeder J I,Allen G J,Hugouvieux V,et al.Guard cell signal transduction[J].Annual Review of Plant Biology,2001,52(1):627-658.
[10]Yoo C Y,Pence H E,Hasegawa PM,etal.Regulation of transpiration to improve crop water use[J].Critical Reviews in Plant Science,2009,28(6):410-431.
[11]Kim T H,B?hmer M,Hu H,et al.Guard cell signal transduction network:Advances in understanding abscisic acid,CO2,and Ca2+signaling [J].Annual Review of Plant Biology,2010,61(4):561-591.
[12]Greenway H,Munns R.Mechanisms of salt tolerance in nonhalophytes[J].Annual Review of Plant Physiology,1980,31(1):149-190.
[13]Flowers T J,Colmer T D.Salinity tolerance in halophytes[J].New Phytologist,2008,179(4):945-963.
[14]Mittler R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7(9):405-410.
[15]Rivero R M,Kojima M,Gepstein A,et al.Delayed leaf senescence induces extreme drought tolerance in a flowering plant[J].Proc Natl Acad Sci USA,2007,104(49):19631-19636.
[16]Flowers T J,Troke P F,Yeo A R.Themechanism of salt tolerance in halophytes[J].Annual Review of Plant Physiology,1977,28(1):89-121.
[17]Greenway H,Munns R.Mechanisms of salt tolerance in nonhalophytes[J].Annual Review of Plant Physiology,1980,31(1):149-190.
[18]Munns R,Tester M.Mechanisms of salinity tolerance[J].Annu Rev Plant Biol,2008,59:651-681.
[19]Xu G,Magen H,Tarchitzky J,et al.Advances in chloride nutrition of plants[J].Advances in Agronomy,1999,68:97-150.
[20]White P J,Broadley M R.Chloride in soils and its uptake and movementwithin the plant:A review[J].Annals of Botany,2001,88(6):967-988.
[21]Teakle N L,Tyerman SD.Mechanisms of Cl-transport contributing to salt tolerance[J].Plant Cell&Environment,2010,33(4):566-589.
[22]Alemán F,Nieves-Cordones M,Martínez V,et al.Root K+acquisition in plants:The Arabidopsis thaliana model[J].Plant and Cell Physiology,2011,52(9):1603-1612.
[23]Qi Z,Spalding E P.Protection of plasmamembrane K+transport by the salt overly sensitive1 Na+-H+antiporter during salinity stress[J]. Plant Physiology,2004,136(1):2548-2555.
[24]Pardo JM,Rubio F.Na+and K+transporters in plant signaling[M]//Transporters and Pumps in Plant Signaling.Berlin:Springer,2011:65-98.
[25]Peleg Z,Apse M P,Blumwald E.Engineering salinity and water-stress tolerance in crop plants:Getting closer to the field[J].Adv Bot Res,2011,57:405-443.
[26]Nieves-Cordones M,Miller A J,Alemán F,etal.A putative role for the plasmamembrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5[J].PlantMolecular Biology,2008,68(6):521-532.
[27]Epstein E.The essential role of calcium in selective cation transport by plant cells[J].Plant Physiology,1961,36(4):437-444.
[28]Epstein E,Rains DW,Elzam OE.Resolution of dualmechanismsof potassium absorption by barley roots[J].Proc Natl Acad SciUSA,1963,49(5):684-692.
[29]Binzel M L,Hess F D,Bressan R A,et al.Intracellular compartmentation of ions in salt adapted tobacco cells[J].Plant Physiology,1988,86 (2):607-614.
[30]Bohnert H J,Nelson D E,Jensen R G.Adaptations to environmental stresses[J].Plant Cell,1995,7(7):1099-1111.
[31]Shabala SN,Mackay A S.Ion transport in halophytes[J].Advances in Botanical Research,2011,57:151-187.
[32]Niu X,Bressan R A,Hasegawa PM,et al.Ion homeostasis in NaCl stress environments[J].Plant Physiology,1995,109(3):735-742.
[33]Cuin T A,Bose J,Stefano G,et al.Assessing the role of root plasma membrane and tonoplast Na+/H+exchangers in salinity tolerance in wheat:In planta quantificationmethods[J].Plant Cell&Environment,2011,34(6):947-961.
[34]Greenway H,Osmond C B.Salt responses of enzymes from species differing in salt tolerance[J].Plant Physiology,1972,49(2):256-259.
[35]Wang Suomin,Zhang Jinlin,F(xiàn)lowers T J.Low-affinity Na+uptake in the halophyte Suaeda maritima[J].Plant Physiology,2007,145(2):559-571.
[36]Schumacher K,Krebs M.The V-ATPase:small cargo,large effects[J].Current Opinion in Plant Biology,2010,13(6):724-730.
[37]Gaxiola R A,Palmgren M G,Schumacher K.Plant proton pumps[J].FEBS Letters,2007,581(12):2204-2214.
[38]Duby G,Boutry M.The plant plasmamembrane proton pump ATPase:A highly regulated P-type ATPasewithmultiple physiological roles[J]. Pflügers Archiv:European Journal of Physiology,2009,457(3):645-655.
[39]Piette A S,Derua R,Waelkens E,etal.A phosphorylation in the C-terminal auto-inhibitory domain of the plant plasmamembrane H+-ATPase activates the enzyme with no requirement for regulatory 14-3-3 proteins[J].Journal of Biological Chemistry,2011,286(21):18474-18482.
[40]Blumwald E,Aharon G S,Apse M P.Sodium transport in plant cells[J].Biochimica et Biophysica Acta(BBA):Biomembranes,2000,1465 (1/2):140-151.
[41]Epstein E.Mineral nutrition of plants:Principles and perspectives[M].London:John Wiley and Sons Inc,1972.
[42]Zhang Jinlin,F(xiàn)lowers T J,Wang Suomin.Mechanisms of sodium uptake by roots of higher plants[J].Plant and Soil,2010,326(1):45-60.
[43]Plett D,Moller I.Na+transport in glycophytic plants:whatwe know and would like to know[J].Plant Cell&Environment,2010,33(4):612-626.
[44]Kronzucker H J,Britto D T.Sodium transport in plants:a critical review[J].New Phytologist,2011,189(1):54-81.
[45]Hauser F,Horie T.A conserved primary salt tolerancemechanismmediated by HKT transporters:Amechanism for sodium exclusion andmaintenance of high K+/Na+ratio in leaves during salinity stress[J].Plant Cell&Environment,2010,33(4):552-565.
[46]Mian A,Oomen R J,Isayenkov S,etal.Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance[J]. Plant Journal,2011,68(3):468-479.
[47]Qiu Quansheng,Guo Yan,Dietrich M A,et al.Regulation of SOS1,a plasmamembrane Na+/H+exchanger in Arabidopsis thaliana,by SOS2 and SOS3[J].Proc Natl Acad Sci USA,2002,99(12):8436-8441.
[48]Cramer G R,Lynch J,L?chli A,et al.Influx of Na+,K+,and Ca2+into roots of salt-stressed cotton seedlings effects of supplemental Ca2+[J].Plant Physiology,1987,83(3):510-516.
[49]Rengel Z.The role of calcium in salt toxicity[J].Plant Cell&Environment,1992,15(6):625-632.
[50]Lin Huixin,Yang Yongqing,Quan Ruidang,etal.Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis[J].Plant Cell,2009,21(5):1607-1619.
[51]Pasapula V,Shen G,Kuppu S,etal.Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene(AVP1)in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions[J].Plant Biotechnology Journal,2011,9(1):88-99.
[52]Bassil E,Ohto M,Esumi T,et al.The Arabidopsis intracellular Na+/H+antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development[J].Plant Cell,2011,23(1):224-239.
[53]Krebs M,Beyhl D,G?rlich E,et al.Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation[J].Proc Natl Acad Sci USA,2010,107(7):3251-3256.
[54]Leidi E O,Barragán V,Rubio L,et al.The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato[J]. Plant Journal,2010,61(3):495-506.
[55]Brady N C.The nature and properties of soils[M].New York:Macmillan Publishing Company,1996.
[56]Baxter I,Brazelton JN,Yu D,etal.A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1[J].PLoSGenetics,2010,6(11):e1001193.
[57]Tester M,Langridge P.Breeding technologies to increase crop production in a changingworld[J].Science,2010,327(5967):818-822.
[58]Oh D H,Dassanayake M,Bohnert H J,et al.Life at the extreme:Lessons from the genome[J].Genome Biol,2012,13(3):241.
[59]Dassanayake M,Oh D H,Haas JS,et al.The genome of the extremophile crucifer Thellungiella parvula[J].Nat Genet,2011,43(9):913-918.
[60]Gong Qingqiu,Li Pinghua,Ma Shisong,et al.Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana[J].Plant Journal,2005,44(5):826-839.
[61]Dassanayake M,Oh D,Hong H,et al.Transcription strength and halophytic lifestyle[J].Trends in Plant Science,2011,16(1):1-3.
[62]Edelist C,Raffoux X,F(xiàn)alque M,et al.Differential expression of candidate salt-tolerance genes in the halophyte Helianthus paradoxus and its glycophyte progenitors H.annuus and H.petiolaris(Asteraceae)[J].American Journal of Botany,2009,96(10):1830-1838.
[63]Plett D,Safwat G,Gilliham M,et al.Improved salinity tolerance of rice through cell type-specific expression of AtHKT1[J].PLoSOne,2010,5(9):e12571.
[64]Amtmann A.Learning from evolution:Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants[J].Molecular Plant,2009,2(1):3-12.
[65]Olías R,Eljakaoui Z,Li Jun,etal.The plasmamembrane Na+/H+antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+between plant organs[J].Plant Cell&Environment,2009,32(7):904-916.
[66]Munns R,James R A,Xu B,etal.Wheatgrain yield on saline soils is improved by an ancestral Na+transporter gene[J].Nature Biotechnology,2012,30(4):360-364.
[67]Berthomieu P,Conéjéro G,Nublat A,etal.Functional analysis of AtHKT1 in Arabidopsis shows that Na+recirculation by the phloem is crucial for salt tolerance[J].EMBO Journal,2003,22(9):2004-2014.
[68]Jaffe M J,Takahashi H,Biro R L.A peamutant for the study of hydrotropism in roots[J].Science,1985,230(4724):445-447.
[69]Boyko A,Kovalchuk I.Genome instability and epigeneticmodification-heritable responses to environmentalstress[J].CurrentOpinion in Plant Biology,2011,14(3):260-266.
[70]Casson SA,Hetherington A M.Environmental regulation of stomatal development[J].CurrentOpinion in Plant Biology,2010,13(1):90-95.
[71]Christmann A,Weiler EW,Steudle E,et al.A hydraulic signal in root-to-shoot signalling of water shortage[J].Plant Journal,2007,52(1):167-174.
[72]Horie T,Hauser F,Schroeder JI.HKT transporter-mediated salinity resistancemechanisms in Arabidopsis andmonocot crop plants[J].Trends in Plant Science,2009,14(12):660-668.
[73]Ayadi M,Cavez D,Miled N,et al.Identification and characterization of two plasmamembrane aquaporins in durum wheat(Triticum turgidum L.subsp.durum)and their role in abiotic stress tolerance[J].Plant Physiology and Biochemistry,2011,49(9):1029-1039.
[74]Rus A,Baxter I,Muthukumar B,etal.Naturalvariantsof AtHKT1 enhance Na+accumulation in twowild populationsof Arabidopsis[J].PLoS Genetics,2006,2(12):e210.
[75]Golldack D,Lüking I,Yang O.Plant tolerance to droughtand salinity:Stress regulating transcription factors and their functional significance in the cellular transcriptional network[J].Plant Cell Reports,2011,30(8):1383-1391.
[76]Pérez-Alfocea F,Ghanem M E,Gómez-Cadenas A,etal.Omics of root-to-shoot signaling under salt stressand water deficit[J].Omics:A Journal of Integrative Biology,2011,15(12):893-901.
[77]Tracy F E,Gilliham M,Dodd A N,etal.NaCl-induced changes in cytosolic free Ca2+in Arabidopsis thaliana are heterogeneous and modified by external ionic composition[J].Plant Cell&Environment,2008,31(8):1063-1073.
[78]Quintero F J,Martinez-Atienza J,Villalta I,et al.Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1(SOS1)by phosphorylation of an auto-inhibitory C-terminal domain[J].Proc Natl Acad Sci USA,2011,108(6):2611-2616.
[79]Undurraga SF,SantosM P,Paez-Valencia J,etal.Arabidopsis sodium dependentand independent phenotypes triggered by H+-PPase up-regulation are SOS1 dependent[J].Plant Science,2012,183(2):96-105.
[80]Quan R,Lin H,Mendoza I,et al.SCABP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J].Plant Cell,2007,19(4):1415-1431.
[81]Roy S J,Tucker E J,Tester M.Genetic analysis of abiotic stress tolerance in crops[J].Current Opinion in Plant Biology,2011,14(3):232-239.
[82]Cheng Ninghui,Pittman JK,Zhu Jiankang,et al.The protein kinase SOS2 activates the Arabidopsis H+/Ca2+antiporter CAX1 to integrate calcium transport and salt tolerance[J].Journal of Biological Chemistry,2004,279(4):2922-2926.
[83]Batelli G,Verslues P E,Agius F,et al.SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity[J].Molecular and Cellular Biology,2007,27(22):7781-7790.
[84]Sunkar R,Chinnusamy V,Zhu J,etal.SmallRNAsasbig players in plantabiotic stress responsesand nutrient deprivation[J].Trends in Plant Science,2007,12(7):301-309.
[85]Zhao Yankun,Wang Tao,Zhang Wensheng,et al.SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis[J].New Phytologist,2011,189(4):1122-1134.
[86]Mirouze M,Paszkowski J.Epigenetic contribution to stress adaptation in plants[J].Current Opinion in Plant Biology,2011,14(3):267-274.
(責(zé)任編輯薛榮)
Na+homeostasis and salt tolerance of plants
CHEN Pengcheng, CHEN Xifeng, MA Bojun, GU Zhimin
(College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua 321004,China)
Itwas summarized ion transport systems that facilitated plant Na+homeostasis.Halophyte and glycophyte salinity responses and transport determinant function were compared and contrasted.The potential of halophytes as genetic resources for unique alleles or loci of transport protein genes,transcriptional and posttranscriptional regulation of transport protein function were discussed in the context of crop salt tolerance.
salt tolerance;Na+homeostasis;AVP1;SOS1;HKT1
Q945.78
A
1001-5051(2016)02-0207-08
10.16218/j.issn.1001-5051.2016.02.014
*收文日期:2015-05-06;2015-10-15
浙江省自然科學(xué)基金資助項(xiàng)目(LY12C06001)
陳鵬程(1987-),男,湖南衡陽(yáng)人,碩士研究生.研究方向:植物分子遺傳學(xué).