• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Noether Symmetries and Their Inverse Problems of Nonholonomic Systems with Fractional Derivatives

    2016-08-30 00:49:54FUJingliFULiping
    北京大學學報(自然科學版) 2016年4期
    關鍵詞:出版日期國家自然科學基金算例

    FU Jingli, FU Liping

    Institute of Mat(yī)hematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018;? E-mail: sqfujingli@163.com

    ?

    Noether Symmetries and Their Inverse Problems of Nonholonomic Systems with Fractional Derivatives

    FU Jingli?, FU Liping

    Institute of Mat(yī)hematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018;? E-mail: sqfujingli@163.com

    Noether symmetries and their inverse problems of the nonholonomic systems with the fractional derivatives are studied. Based on the quasi-invariance of fractional Hamilton action under the infinitesimal transformations without the time and the general transcoordinates of time-reparametrization, the fractional Noether theorems are established for the nonholonomic constraint systems. Further, the fractional Noether inverse problems are firstly presented for the nonholonomic systems. An example is designed to illustrate the applications of the results.

    fractional derivative; nonholonomic system; Noether symmetry; Noether inverse problem

    北京大學學報(自然科學版)第52卷第4期2016年7月

    Acta Scientiarum Naturalium Universitatis Pekinensis, Vol. 52, No. 4 (July 2016)

    Fractional calculus is the emerging mathematical field dealing with the generalization of the derivatives and integrals to arbitrary real order. It was born in 1965 and from then on considered as the branches of mathematical and theoretical with no applications for many years. But, during the last two decades, it has been applied to many areas such as mathematics,economics, biology, engineering and physics[1-5]. Besides, it has played a significant role in quantum mechanics, long-range dissipation, electromagnetic theory, chaotic dynamics, and signal processing[6-11]. However, one can find its importance in the fractional of variations theory and optimal control. Riewe[12-13]studied a version of the Euler-Lagrange equations of conservative and nonconservative systems with fractional derivatives. Agrawal[14-15]obtained the Euler-Lagrange equations for fractional variational problems by using the fractional derivatives of Riemann-Liouville sense and Caputo sense. Then,El-Nabulsi[16-18], Ricardo et al.[19]and Teodor et al.[20]also made lots of contributions to the fractional variational problems.

    The concepts of symmetry and conservation law are fundamental notions in physics and mathema-tics[21]. Symmetries are the invariance of the dynamical systems under the infinitesimal transformations, and hold the same object when applying the transformations. They are described mathematically by infinitesimal parameter group of transformations. The concept of symmetries of mechanical systems can be used to integrate the equations of motion and establish the invariance of the systems. They have played an important role in mathematics, physics,optimal control, engineering[22-30]. Conservation law of systems can be used to reduce to the dimension of the equations of motion and simplifying the resolution of the problems[31-32]. In the last few years, Fu et al.[33-35], Zhang[36], and Li[37]made many important results symmetries and conserved quantities of nonholonomic systems. Zhou et al.[38]studied the Noether symmetry theories of the fractional Hamiltonian systems. Frederico et al.[39], Zhang[40-41], and Agrawal[42]also present the problems of Noether symmetry of fractional systems.

    We all know that the fractional nonholonomic constraints restrict the stations of fractional systems,and the fractional nonholonomic systems are more generalize dynamical systems, which have attracted much attention. Sun et al.[43]gave the fractional first-order and second-order extensions form of Lie group transformation, and the corresponding Lie symmetries of fractional nonholonomic systems were discussed. Zhang et al.[44]studied Noether symmetries of fractional mechanico-electrical systems. Recently,F(xiàn)u et al.[45]presented Lie symmetries and their inverse problems of fractional nonholonomic systems. However, applying fractional calculus to fractional nonholonomic systems and obtaining Noether inverse problem of nonholonomic systems have not been studied.

    In this paper, we study the Noether symmetries and their inverse problems of nonholonomic systems with the fractional derivatives. Firstly, we establish the fractional derivatives equations of nonholonomic systems. Then, the Noether theorems and the corresponding conserved quantities are given by using the infinitesimal transformations without time and the general transformations of time-reparametrization. Finally, we study fractional Noether inverse problems.

    1 Definitions and Properties of Riemann-Liouville Fractional Derivatives

    In this section, we briefly recall some basic definitions and properties of left and right Riemann-Liouville fractional derivatives[40-41].

    Definition 1Letfbe a continuous and integrable function in the interval [a, b]. The left Riemann-Liouville fractional derivatives (LRLFD)and the right Riemann-Liouville fractional derivatives (RRLFDare defined as

    where α is the order of the derivatives such that n-1≤α<n, n∈N, and Γ is the Euler gamma function. If α is an integer, these derivatives are defined in the usual sense, i.e.

    Theorem 1Let f and g be two continuous functions defined on the interval [a, b]. Then for all t∈ [a, b], the following properties hold:for m >0,

    for m ≥ n ≥ 0,

    for m > 0,

    From Agrawal[14], the Euler-Lagrange equations of conservative systems with the fractional variational problems as

    where L is a Lagrangian. When α = β =1, we haveand the Eq. (6) is reduce to

    the standard Euler-Lagrange equations.

    2 The Equations of Motion of Nonholonomic Systems with Fractional Derivatives

    In this section, we introduce the equations of motion and the Hamilton action of fractional nonholonomic systems[38]. At first, we consider the constrained mechanical system which configuration are determined by n generalized coordinates

    and the motions of system are subjected to the μ ideal bilateral nonholonomic constraints of Appell-Chetaev type we suppose that these constraints are independent each other, therefore the restrictive conditions of virtual displacement which decide on these constrains as follows:

    Hence, the equations of motion of nonholonomic systems with fractional derivatives are given by whereLis the Lagrange function of the given systems, the Lagrangianis determined by n generalize coordinateskqand assumed to be afunction with respect to all its arguments. The parameterλis the Lagrange constraint multiplier, andis the non-potential generalized force.

    When we assume that the fractional system is nonsingular, before calculus the derivatives function(7) and (9), we can get function, therefore the Eq. (9) can be written as

    where Λkis the nonholonomic constraint forces which determined by paramete, that is

    We say that the extremum problem of the faction integral function (12) is the fractional Hamilton action of the nonholonmic systems

    with the commutative relations,

    and the boundary conditions,

    where δ is the isochronous variation operator. The quasi-invariance problem of function (12) is called variational problem of fractional nonhonholonomic systems. When α = β =1, the problem is reduced to the classical Hamilton action variational problem ofnonholonomic systems.

    3 Noether Theorem of Nonholonomic Systems with Fractional Derivatives

    In this section, we give the definition and the necessary conditions of the quasi-invariance of Hamilton action (12) under the infinitesimal group of transformations. We adopt the infinitesimal transformations contain without the time variable and the general transformations of time-reparametrization. Then we obtain the factional Noether theorems without transformation of the time and the general with transformation of time-reparametrization respectively.

    Definition 2(invariance without transforming the time). For a fractional nonholonomic system, we call that the formula (12) is quasi-invariant under the one-group of infinitesimal transformations

    if and only if,

    Theorem 2(Necessary condition of quasiinvariant). For a fractional nonholonomic system, if the function (12) is quasi-invariant under ε parameter infinitesimal group of transformations (14), then they must satisfy the following conditions,

    ProofBy hypothesis, we know that the conditions (15) are true of the arbitrary subinterval,taking the derivative of the condition(15) with respect to ε, substituting ε = 0. From the definitions and properties of the fractional derivatives,we get

    Eq. (17) is equivalent to Eq. (16).

    In order to obtain the fractional conserved quantity of nonholonomic systems, we introduce the following definition[33].

    Definition 3Given two functions f and g of class C1in the interval [a, b], we define the following operator:

    when α =1, operatortαDis reduced to

    Definition 4(Fractional conserved quantity). For a fractional nonholonomic system, the function

    is a fractional conserved quantity if and only it can be written as where rN∈, and the pair I1iand I2i(i=1, …, r) must satisfy one of the following conditions:

    or

    under the fractional Euler-Lagrange Eq. (6).

    Theorem 3(Noether theorem without transformation of time). For a fractional nonholonomic system, if the Hamilton action satisfies the Definition 2 andkξsatisfies the necessary conditions (16), then the system possesses the fractional conserved quantity as follows:

    ProofWe consider the fractional derivatives Eq. (10) of the nonholonomic systems:

    Substituting Eq. (21) into the necessary conditions of quasi-invariance (16), we obtain

    Definition 5(Invariance of Eq. (12)). For a fractional nonholonomic system, we say that Eq. (12)is quasi-invariant under aεparameter infinitesimal group of transformations

    if and only if

    Theorem 4(Noether theorem). For a fractional nonholonomic system, if Eq. (12) satisfies Definition 5 under the one-parameter group of infinitesimal transformations (23) and conditions (24), then the system holds the fractional conserved quantity as:

    ProofIntroducing a one-to-one Lipschitzian transformation with respect to the independent variable t,

    where . Under the definitions offractional Riemann-Liouville, we get

    We can also obtain the following equality:

    When0λ=, we have

    Then we obtain

    We know that if the functional (12) satisfies the quasi-invariant condition (24) under the sense of Definition 5, then Eq. (27) satisfies the quasi-invariant condition (15) under the sense of Definition 2. Finally using Theorem 3, we obtain the following fractional conserved quantity:

    where

    and

    4 Noether Inverse Problems of Nonholonomic Systems with Fractional Derivatives

    In this section, we study the inverse problems of dynamics for the nonholonomic systems with fractional derivatives. By using Noether theory the generators and the gauge functions of the infinitesimal transformations corresponding to the known conserved quantities are deduced simultaneously.

    Firstly, we suppose that nonholonomic system is nonsingular and the fractional conserved quantity is

    Let the fractional differential operatoract on Eq.(28), we obtain

    and using the same method, from the fractional differential operatoratDβ, we have

    (8) and expanding of the result, we get

    Using the similar multiplierwe can also expand the following formula:

    Further, we use Eq. (37) minus (35), separate out the items of containingand make its coefficient be equal to zero, we get

    Using the same method, Eq. (38) minus (36), separating out the items of containing, and making its coefficient be equal to zero, we get

    By hypothesis, we know the nonsingular of the given fractional nonholonomic system, from Eq. (39) and(40) , we obtain

    where

    Finally, in order to obtain the infinitesimal generation functionξand the gauge functions, let the function (34) be equal to the conserve quantity (Eq.(25)) determined by Theorem 4, we have

    Eqs. (41) and (42) reduce to the generation functions of infinitesimal transformations.

    5 Example

    We consider the kinetic energy and potential energy of the system respectively as follows:

    the nonholonomic constraint as:

    Now we study its Noether symmetry and its inverse problems.

    1) The Lagrangian of the nonhonolomic system is as follows: the fractional Hamilton action can be written as

    which is quasi-invariant under Definition 5. For the problem (46), we can conclude the following solutions from the condition (24): Eqs. (47) and (48) corresponding to Noether symmetries of the fractional Hamilton action (46). For the fractional Noether Theorem 4, the fractional conserved quantities as follows (25),

    2) Noether inverse problems.

    We suppose that

    is the fractional conserve quantity of the nonholonomic system, and the fractional Lagrangian is Eq. (45). Then by using Eqs. (41) and (42), the generators and the gauge functions of the infinitesimal transformations corresponding to the known conserved quantities are deduced simultaneously, we get

    the solution can be written as

    When G is given by

    G=bq1, (54)

    we get

    When G is given by,

    we get

    6 Conclusion

    In this paper, we use the Riemann-Liouville fractional derivatives to obtain the fractional Noethertheorem and the fractional Noether inverse theorem of nonholonomic systems under the infinitesimal transformations. We find that the dynamic symmetry inverse problems of multiple values are the inherent characteristics, and how to choose the appropriate equations in practice need further research.

    References

    [1] Hilfer R. Applications of fractional calculus in physics. River Edge: World Scientific, 2000: 87-171

    [2] Magin R L. Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl,2010, 59(5): 1586-1593

    [3] Zhang Y. A finite difference method for fractional partial differential equation. Appl Math Comput,2009, 215: 524-529

    [4] Rabei E M, Nawafleh K I, Hijjawi R S, et al. The Hmilton formulism with fractional derivatives. J Math Anal Appl, 2007, 327(2): 891-897

    [5] West B J, Bologna M, Grigolini P. Physics of fractal operators. New York: Springer, 2003

    [6] Vasily E T. Fractional diffusion equations for open quantum system. Nonlinear Dyn, 2013, 71: 663-670

    [7] Zaslavsky G M. Chaos, fractional kinetics, and anomalous transport. Phys Rep, 2002, 371: 461-580

    [8] Ortigueira M D. Fractional calculus for scientists and engineers. Netherlands: Springer, 2011

    [9] Vasily E, Tarasov. Electrodynamics of fractal distributions of charges and fields. Fractional Dynamic,Nonlinear Phys Sic. Netherlands: Springer, 2010,89-113

    [10] Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chao Solitons Fractals, 1996, 7: 1461-1477

    [11] Mainardi F. The fundamental soloutions for the fractional diffusion-wave equation. Appl Math Lett,1996, 9: 23-28

    [12] Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys Rev E, 1996, 53(2): 1890-1899

    [13] Riewe F. Mechanics with fractional derivatives. Phys Rev E, 1997, 55(3): 3581-3592

    [14] Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems. J Math Anal Appl, 2002, 272: 368-379

    [15] Agrawal O P. Generalized Euler-Lagrange equations and transersality conditions for FVPs in terms of the Caputo derivative. J Vib Control, 2007, 13: 1217-1237

    [16] El-Nabulsi R A. Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β). Math Methods Appl Sci, 2007, 30: 1931-1939

    [17] El-Nabulsi R A. Fractional variational problems from extended exponentially fractional integral. Appl Math Comput, 2011, 217: 9492-9496

    [18] El-Nabulsi R A. Fractional action like variational problems in holonomic, nonholonomic and semiholonomic constrained and dissipative dynamical systems. Chao Solitons Fractals, 2009, 42: 52-61

    [19] Ricardo A, Torres D F M. Calculus of variations with fractional derivatives and fractional integrals. Appl Math Lett, 2009, 22: 1816-1820

    [20] Teodor M. Atanackovic, Sanja K, et al. Varintional problems with fractional derivatives: invariance conditions and Noether's theorem. Nonlinear Anal,2008, 71: 1504-1517

    [21] Bluman G W, Kumei S. Symmetries and differential equations. Berlin: Springer, 1989

    [22] Torres D F M. On the Noether theorem for optimal control.Eur J Control, 2002, 8: 56-63

    [23] Frederico G S F, Torres D F M. Factional optimal control in the sense of Caputo and the fractional Noether's theorem. Int Math Forum, 2008, 3: 479-493[24] Zhang Y. Symmetry of Hamiltonian and conserved quantity for a system of generalized classical mechanics. Chin Phys B, 2011, 20: 034502

    [25] Mei F X. Advances in the symmetries and conserved quantities of classical constrained systems. Adv Mech,2009, 39(1): 37-43

    [26] Wang L L, Fu J L. Non-Noether symmetries of Hamiltonian systems with conformable fractional derivatives. Chinese Physics B, 2016, 25(1): 014501

    [27] Zhou S, Fu H, Fu J L. Symmetry theories of Hamiltonian systems with fractional derivatives. Sci Chin G: Phys Mech Astron, 2011, 54: 1847-1853

    [28] Fu J L, Chen L Q, Chen B Y. Noether-type theorem for discrete nonconservative dynamical systems with nonregualar lattices.Sci Chin G: Phys Mech Astron,2010, 53: 545-554

    [29] Fu J L, Chen L Q. Non-Nother symmetries andconserved quantities of nonconservative dynamical systems. Phys Lett A, 2003, 317: 255-259

    [30] Frederico G S F, Torres D F M. Fractional Noether's theorem in the Riesz-Caputo sense. Appl Math Comput, 2010, 217: 1023-1033

    [31] Frederico G S F, Torres D F M. Fractional conservation laws in optimal control theory. Nonlinear Dyn, 2008, 53(3): 215-222

    [32] Frederico G S F, Torres D F M. Fractional Noether's theorem with classical and Riemann-Liouville derivatives. IEEE Conference on Decision and control,2012: 6885-6890

    [33] Cai P P, Fu J L, Guo Y X. Noether symmetries of the nonconservative and nonholonomic systems on time scales. Sci Chin G: Phys Mech Astron, 2013, 56: 1017-1028

    [34] Fu J L, Chen L Q, Chen B Y. Noether-type theorem for discrete nonconservative dynamical systems with nonregular lattices. Sci Chin G: Phys Mech Astron,2010, 53: 545-554

    [35] Zhou S, Fu J L, Liu Y S. Lagrange equations of nonholonomic systems with fractional derivative. Chin Phys B, 2010, 19: 120301

    [36] Zhang Y. Symmetry of Hamioton of a nonholonomic mechanical system. Sci Chin G: Phys Mech Astron,2010, 40: 1130-1137

    [37] Li Z P. Noether theorem and its inverse theorem in canonical formalism for nonholonomic nonconservative singular system. Chin Sci Bull, 1993, 38(13): 1143-1144

    [38] Zhou S, Fu J L. Symmetry theories of Hamiltonian systems with fractional derivatives. Sci China, Phys Mech Astron, 2011, 54: 1847-1853

    [39] Frederico G S F, Torres D F M. Fractional Noether's theorem in the Riesz-Caputo sense. Appl Math Comput, 2010 (3): 1023-1033

    [40] Zhang Y. Fractional differential equations of motion in terms of combined Riemann-Liouville derivatives. Chin Phys B, 2012, 21(8): 084502

    [41] Zhang Y. Conformal invariance and Noether symmetry, Lie symmetry of holonomic mechanical systems in event space. Chin Phys B, 2009, 18: 4636-4642

    [42] Agrawal O P. Fractional variational calculus and the transversality conditions. J Phys A: Math Gen, 39(33): 10375-10384

    [43] Sun Y, Chen B Y, Fu J L. Lie symmetry theorem of fractional nonholonomic systems. Chin Phys B, 2014,23(11): 110201

    [44] Zhang S H, Chen B Y, Fu J L. Hamilton formalism and Noether symmetry for mechanic-electrical systems with fractional derivatives. Chin Phys B,2012, 21(10): 100202

    [45] Fu J L, Fu L P, Chen B Y, et al. Lie symmetries and theirinverse problems of nonholonomic Hamilton systems with fractional derivatives. Phys Lett A,2016, 380: 15-21

    分數(shù)階非完整系統(tǒng)的Noether對稱性及其逆問題

    傅景禮?付麗萍

    浙江理工大學數(shù)學物理研究所, 杭州 310018; ? E-mail: sqfujingli@163.com

    研究分數(shù)階非完整系統(tǒng)的Noether對稱性及其逆問題。基于分數(shù)階非完整系統(tǒng)的Hamilton作用量關于廣義坐標以及時間在無限小變換下的不變性, 提出系統(tǒng)的 Noether 定理, 并首次提出分數(shù)階非完整動力學系統(tǒng)的逆問題。最后給出一個算例, 以說明結果的應用。

    分數(shù)階導數(shù); 非完整系統(tǒng); Noether對稱性; Noether逆問題

    O320

    10.13209/j.0479-8023.2016.074

    2015-10-16;

    2016-02-22; 網(wǎng)絡出版日期: 2016-07-12

    國家自然科學基金(11272287, 11472247)資助

    猜你喜歡
    出版日期國家自然科學基金算例
    常見基金項目的英文名稱(一)
    我校喜獲五項2018年度國家自然科學基金項目立項
    2017 年新項目
    本報調(diào)整出版日期
    國家自然科學基金項目簡介
    基于振蕩能量的低頻振蕩分析與振蕩源定位(二)振蕩源定位方法與算例
    互補問題算例分析
    本報端午期間調(diào)整出版日期
    本報清明期間調(diào)整出版日期
    基于CYMDIST的配電網(wǎng)運行優(yōu)化技術及算例分析
    国产成人精品久久久久久| 亚洲国产最新在线播放| 精品人妻熟女av久视频| av在线老鸭窝| 国产黄片美女视频| 国产三级在线视频| 狂野欧美激情性xxxx在线观看| 一级毛片我不卡| 中文字幕制服av| 在线播放无遮挡| 黄色日韩在线| 免费观看a级毛片全部| 亚洲欧洲日产国产| 狂野欧美白嫩少妇大欣赏| 亚洲在线观看片| 亚洲成人av在线免费| 哪个播放器可以免费观看大片| 激情五月婷婷亚洲| 秋霞在线观看毛片| 国产伦理片在线播放av一区| 哪个播放器可以免费观看大片| av在线天堂中文字幕| 国产美女午夜福利| 秋霞伦理黄片| 亚洲精品亚洲一区二区| 久久久精品欧美日韩精品| 国产淫片久久久久久久久| 最近最新中文字幕大全电影3| 99久久九九国产精品国产免费| 精品不卡国产一区二区三区| 毛片女人毛片| 国产视频首页在线观看| 黄片wwwwww| 亚洲精品自拍成人| 日韩欧美 国产精品| 亚洲精品亚洲一区二区| 91午夜精品亚洲一区二区三区| 午夜福利高清视频| 少妇的逼好多水| 禁无遮挡网站| 亚洲三级黄色毛片| 亚洲av日韩在线播放| 一级毛片 在线播放| 最后的刺客免费高清国语| 欧美高清性xxxxhd video| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| 国产亚洲午夜精品一区二区久久 | av国产久精品久网站免费入址| 蜜桃久久精品国产亚洲av| 岛国毛片在线播放| 我的女老师完整版在线观看| 大片免费播放器 马上看| 成人二区视频| 国产亚洲一区二区精品| 在线播放无遮挡| 亚洲精品日韩在线中文字幕| 舔av片在线| 男人爽女人下面视频在线观看| 久久草成人影院| 亚洲,欧美,日韩| 99热这里只有是精品50| 岛国毛片在线播放| freevideosex欧美| 婷婷色综合大香蕉| 久久国产乱子免费精品| 日韩人妻高清精品专区| 国产精品一区二区三区四区免费观看| 国产白丝娇喘喷水9色精品| 九九在线视频观看精品| 自拍偷自拍亚洲精品老妇| 狂野欧美激情性xxxx在线观看| 午夜激情福利司机影院| 精品少妇黑人巨大在线播放| 久久久久精品久久久久真实原创| 69av精品久久久久久| 亚洲av电影不卡..在线观看| 黄色配什么色好看| 美女黄网站色视频| 男人和女人高潮做爰伦理| 精品久久久噜噜| 国产高潮美女av| 高清av免费在线| 精品一区二区三区视频在线| 精品一区二区三区人妻视频| 高清午夜精品一区二区三区| 熟女电影av网| 久久热精品热| 看非洲黑人一级黄片| 日韩三级伦理在线观看| 国产亚洲最大av| 国产高清有码在线观看视频| 最后的刺客免费高清国语| 麻豆精品久久久久久蜜桃| videos熟女内射| 青春草视频在线免费观看| 亚洲,欧美,日韩| 人妻夜夜爽99麻豆av| 深夜a级毛片| 麻豆国产97在线/欧美| 嫩草影院精品99| 亚洲经典国产精华液单| 欧美最新免费一区二区三区| 成人亚洲精品一区在线观看 | 亚洲自偷自拍三级| 三级毛片av免费| 免费av观看视频| 国产亚洲5aaaaa淫片| 18禁在线播放成人免费| av线在线观看网站| 精品一区二区三区人妻视频| 精品一区在线观看国产| 免费看av在线观看网站| 亚洲电影在线观看av| 丰满人妻一区二区三区视频av| 性色avwww在线观看| 国产综合懂色| 神马国产精品三级电影在线观看| 91在线精品国自产拍蜜月| 中文字幕亚洲精品专区| 亚洲欧美精品自产自拍| 免费看美女性在线毛片视频| 天堂影院成人在线观看| 午夜福利在线在线| 国产精品久久久久久av不卡| 美女被艹到高潮喷水动态| 男的添女的下面高潮视频| 久久久精品欧美日韩精品| 国产单亲对白刺激| 人体艺术视频欧美日本| 亚洲精品国产成人久久av| 国产精品伦人一区二区| 国产免费福利视频在线观看| 深爱激情五月婷婷| av黄色大香蕉| 国产极品天堂在线| 天美传媒精品一区二区| 男女那种视频在线观看| 欧美日韩在线观看h| 国产免费视频播放在线视频 | 色综合站精品国产| 女人被狂操c到高潮| 看免费成人av毛片| 天堂√8在线中文| 简卡轻食公司| 九草在线视频观看| 国产av不卡久久| 韩国高清视频一区二区三区| 亚洲av二区三区四区| 亚洲自偷自拍三级| 国产69精品久久久久777片| 欧美激情久久久久久爽电影| 亚洲熟妇中文字幕五十中出| 国产精品蜜桃在线观看| av在线蜜桃| 日韩强制内射视频| 亚洲av在线观看美女高潮| 天堂中文最新版在线下载 | or卡值多少钱| 午夜精品国产一区二区电影 | 国产精品综合久久久久久久免费| 偷拍熟女少妇极品色| 亚洲av不卡在线观看| 99视频精品全部免费 在线| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品电影小说 | 只有这里有精品99| 最近视频中文字幕2019在线8| 亚洲精品乱码久久久久久按摩| 中文字幕人妻熟人妻熟丝袜美| 乱码一卡2卡4卡精品| 99久久精品一区二区三区| 国产又色又爽无遮挡免| 岛国毛片在线播放| .国产精品久久| 欧美精品一区二区大全| 日韩人妻高清精品专区| 少妇被粗大猛烈的视频| 亚洲av男天堂| 91久久精品国产一区二区三区| 大片免费播放器 马上看| 夜夜爽夜夜爽视频| 黄片wwwwww| 久久久久九九精品影院| 亚洲性久久影院| 亚洲国产精品专区欧美| 国产精品一二三区在线看| 中文字幕av在线有码专区| 日日摸夜夜添夜夜爱| 午夜福利在线在线| 三级经典国产精品| 欧美成人精品欧美一级黄| 插阴视频在线观看视频| 国产片特级美女逼逼视频| 欧美日韩国产mv在线观看视频 | 午夜福利成人在线免费观看| 尤物成人国产欧美一区二区三区| videos熟女内射| 少妇的逼水好多| 蜜桃亚洲精品一区二区三区| 欧美成人一区二区免费高清观看| 最近手机中文字幕大全| 人妻少妇偷人精品九色| 久久久久久久久久久丰满| av在线亚洲专区| 亚洲欧美一区二区三区黑人 | 中文资源天堂在线| 熟女电影av网| 91aial.com中文字幕在线观看| 男人舔女人下体高潮全视频| 久久人人爽人人爽人人片va| 国产av国产精品国产| 国产淫片久久久久久久久| 女的被弄到高潮叫床怎么办| 啦啦啦韩国在线观看视频| 欧美+日韩+精品| 亚洲电影在线观看av| 国产 一区精品| 久久久久久久久久黄片| 一夜夜www| 久久国内精品自在自线图片| 一级av片app| 久久精品熟女亚洲av麻豆精品 | 亚洲av国产av综合av卡| 99久久精品热视频| 18禁在线播放成人免费| 久久国内精品自在自线图片| 久久草成人影院| 成人欧美大片| 欧美激情久久久久久爽电影| 91午夜精品亚洲一区二区三区| 美女国产视频在线观看| 一级二级三级毛片免费看| 亚洲高清免费不卡视频| 久久精品国产亚洲网站| 国产成人精品一,二区| 黄色一级大片看看| 3wmmmm亚洲av在线观看| 日韩强制内射视频| 性色avwww在线观看| 亚洲一区高清亚洲精品| 精品人妻一区二区三区麻豆| 97超碰精品成人国产| 大陆偷拍与自拍| 蜜臀久久99精品久久宅男| 国产精品一及| 国产综合精华液| 国产精品久久久久久精品电影小说 | 真实男女啪啪啪动态图| 欧美区成人在线视频| 亚洲av中文av极速乱| 国产欧美另类精品又又久久亚洲欧美| 91久久精品国产一区二区成人| 午夜激情欧美在线| 成人综合一区亚洲| 国产午夜福利久久久久久| 最近最新中文字幕免费大全7| 久久综合国产亚洲精品| 亚洲va在线va天堂va国产| 国产亚洲一区二区精品| 中文在线观看免费www的网站| 欧美日本视频| h日本视频在线播放| 日韩av在线免费看完整版不卡| 亚洲美女视频黄频| 97在线视频观看| 午夜福利在线观看吧| 人妻系列 视频| 乱码一卡2卡4卡精品| 免费大片黄手机在线观看| 看非洲黑人一级黄片| 欧美成人a在线观看| 国产极品天堂在线| 国产国拍精品亚洲av在线观看| 我要看日韩黄色一级片| 女人被狂操c到高潮| 三级男女做爰猛烈吃奶摸视频| 亚洲av福利一区| 日韩欧美精品免费久久| 十八禁国产超污无遮挡网站| 亚洲精品aⅴ在线观看| 18禁在线播放成人免费| 精品久久久久久久久久久久久| 肉色欧美久久久久久久蜜桃 | 婷婷六月久久综合丁香| 免费观看av网站的网址| 汤姆久久久久久久影院中文字幕 | 亚洲国产成人一精品久久久| 成人亚洲精品一区在线观看 | 免费在线观看成人毛片| 日韩,欧美,国产一区二区三区| 免费观看a级毛片全部| 搡老妇女老女人老熟妇| 久久精品熟女亚洲av麻豆精品 | 精品一区在线观看国产| 久久久久性生活片| 亚洲天堂国产精品一区在线| 国产三级在线视频| 久久99热这里只频精品6学生| 蜜桃亚洲精品一区二区三区| 欧美人与善性xxx| 亚洲精品色激情综合| 午夜免费激情av| 午夜免费男女啪啪视频观看| 久久精品夜夜夜夜夜久久蜜豆| 婷婷色综合www| 一级毛片aaaaaa免费看小| 亚洲第一区二区三区不卡| 亚洲aⅴ乱码一区二区在线播放| 婷婷色综合www| 国产亚洲精品av在线| 成人毛片60女人毛片免费| 中国国产av一级| 亚洲精品国产av蜜桃| 免费观看av网站的网址| 激情 狠狠 欧美| 久久精品国产亚洲av天美| 日韩人妻高清精品专区| 久久精品久久精品一区二区三区| 亚洲精品日本国产第一区| 国产伦一二天堂av在线观看| 精品国产三级普通话版| 国语对白做爰xxxⅹ性视频网站| 国产激情偷乱视频一区二区| 日韩欧美精品v在线| 亚洲国产最新在线播放| 一级毛片aaaaaa免费看小| 久久精品人妻少妇| 欧美zozozo另类| 九九爱精品视频在线观看| 免费观看在线日韩| 久久这里只有精品中国| 午夜老司机福利剧场| 亚洲av电影不卡..在线观看| 搞女人的毛片| 男女啪啪激烈高潮av片| 免费看美女性在线毛片视频| 精品久久久久久成人av| 精品熟女少妇av免费看| 七月丁香在线播放| 国产片特级美女逼逼视频| 91精品一卡2卡3卡4卡| 少妇丰满av| 少妇人妻精品综合一区二区| 你懂的网址亚洲精品在线观看| 日韩欧美精品v在线| 性插视频无遮挡在线免费观看| 免费黄网站久久成人精品| 人体艺术视频欧美日本| 亚洲内射少妇av| 干丝袜人妻中文字幕| av.在线天堂| 91在线精品国自产拍蜜月| 联通29元200g的流量卡| 国产真实伦视频高清在线观看| 国语对白做爰xxxⅹ性视频网站| av在线亚洲专区| 日韩不卡一区二区三区视频在线| 99久久精品国产国产毛片| 午夜视频国产福利| 2022亚洲国产成人精品| 日韩av在线大香蕉| 国产淫语在线视频| 日韩av在线免费看完整版不卡| 国产精品久久视频播放| 中文字幕av在线有码专区| 亚洲国产精品sss在线观看| 欧美zozozo另类| 十八禁国产超污无遮挡网站| 蜜臀久久99精品久久宅男| 精品久久久久久久末码| 久久久精品免费免费高清| 久久久久久伊人网av| 久久久久精品性色| 在线播放无遮挡| 欧美日韩精品成人综合77777| 嫩草影院入口| 波多野结衣巨乳人妻| 亚洲熟女精品中文字幕| 夫妻午夜视频| 高清毛片免费看| 黄色一级大片看看| 亚洲av成人精品一二三区| 五月天丁香电影| av福利片在线观看| 嫩草影院新地址| 可以在线观看毛片的网站| 亚洲精品视频女| 91久久精品国产一区二区成人| 午夜精品一区二区三区免费看| 午夜福利高清视频| 能在线免费看毛片的网站| 日本熟妇午夜| 国产亚洲午夜精品一区二区久久 | 校园人妻丝袜中文字幕| 久久精品熟女亚洲av麻豆精品 | 91久久精品国产一区二区成人| 欧美日本视频| 亚洲精品乱久久久久久| 熟妇人妻不卡中文字幕| 亚洲精品自拍成人| 日本一二三区视频观看| 欧美日本视频| 床上黄色一级片| 99久久人妻综合| 在线观看av片永久免费下载| 两个人视频免费观看高清| 丝袜喷水一区| 美女大奶头视频| 亚洲va在线va天堂va国产| 国产毛片a区久久久久| 午夜激情久久久久久久| 蜜桃久久精品国产亚洲av| 人妻夜夜爽99麻豆av| 午夜福利视频精品| 中文资源天堂在线| 国国产精品蜜臀av免费| 国产精品久久久久久久久免| 三级国产精品欧美在线观看| 欧美性感艳星| 亚洲天堂国产精品一区在线| av国产免费在线观看| 亚洲高清免费不卡视频| 99久久精品一区二区三区| 七月丁香在线播放| 超碰97精品在线观看| 国产免费一级a男人的天堂| 成人漫画全彩无遮挡| 最近最新中文字幕大全电影3| 亚洲精品久久久久久婷婷小说| 亚洲国产最新在线播放| 搞女人的毛片| 综合色av麻豆| 国产乱人偷精品视频| 亚洲av中文av极速乱| 在线 av 中文字幕| 看免费成人av毛片| 麻豆国产97在线/欧美| 老女人水多毛片| 国产黄频视频在线观看| 亚洲欧美清纯卡通| 看十八女毛片水多多多| 日日摸夜夜添夜夜爱| 人妻一区二区av| 久久精品综合一区二区三区| 日日啪夜夜爽| 国产真实伦视频高清在线观看| 日本欧美国产在线视频| 99久久九九国产精品国产免费| 中国国产av一级| 精品国内亚洲2022精品成人| eeuss影院久久| 麻豆精品久久久久久蜜桃| 亚洲av日韩在线播放| 一区二区三区免费毛片| 欧美精品一区二区大全| 成人鲁丝片一二三区免费| 91av网一区二区| 日本三级黄在线观看| 黄色欧美视频在线观看| 五月伊人婷婷丁香| 三级国产精品片| 身体一侧抽搐| 婷婷色综合www| 免费大片黄手机在线观看| 91久久精品国产一区二区三区| 成年av动漫网址| 蜜臀久久99精品久久宅男| 成人av在线播放网站| 永久网站在线| 一级毛片我不卡| 国产高清不卡午夜福利| 大片免费播放器 马上看| 精品99又大又爽又粗少妇毛片| 日韩精品青青久久久久久| 人妻少妇偷人精品九色| 亚洲av日韩在线播放| 毛片女人毛片| 亚洲电影在线观看av| 亚洲人与动物交配视频| 哪个播放器可以免费观看大片| av黄色大香蕉| 有码 亚洲区| 熟妇人妻久久中文字幕3abv| 好男人视频免费观看在线| 永久免费av网站大全| 成人鲁丝片一二三区免费| 精品一区二区免费观看| 午夜视频国产福利| 色播亚洲综合网| 亚洲欧美精品自产自拍| 亚洲一区高清亚洲精品| www.色视频.com| 大又大粗又爽又黄少妇毛片口| 麻豆国产97在线/欧美| 伊人久久精品亚洲午夜| 国内精品宾馆在线| 黄片无遮挡物在线观看| 99久久人妻综合| 精品久久国产蜜桃| 大香蕉久久网| 精品欧美国产一区二区三| av播播在线观看一区| 精品人妻一区二区三区麻豆| 淫秽高清视频在线观看| 国产精品一区二区在线观看99 | 午夜精品一区二区三区免费看| 深爱激情五月婷婷| 熟女电影av网| 99热这里只有是精品在线观看| 久久99热这里只有精品18| 亚洲三级黄色毛片| 偷拍熟女少妇极品色| 欧美日韩综合久久久久久| 亚洲欧美中文字幕日韩二区| 97人妻精品一区二区三区麻豆| av在线老鸭窝| 乱人视频在线观看| 99视频精品全部免费 在线| 一级黄片播放器| 久久99热这里只有精品18| 久久久精品免费免费高清| 91久久精品国产一区二区成人| 午夜福利网站1000一区二区三区| 欧美成人精品欧美一级黄| 亚洲自偷自拍三级| 亚洲在久久综合| 男插女下体视频免费在线播放| 国产av在哪里看| 天堂影院成人在线观看| 成人漫画全彩无遮挡| 99视频精品全部免费 在线| 久久久久性生活片| 99久久中文字幕三级久久日本| 91精品一卡2卡3卡4卡| 日韩欧美精品免费久久| 亚洲真实伦在线观看| 亚洲不卡免费看| 一级毛片电影观看| 亚洲成色77777| 三级毛片av免费| 精品久久久久久电影网| 97超碰精品成人国产| 天天躁日日操中文字幕| 午夜福利网站1000一区二区三区| 亚洲国产成人一精品久久久| 床上黄色一级片| 亚洲色图av天堂| 简卡轻食公司| 亚洲美女视频黄频| 亚洲精华国产精华液的使用体验| videossex国产| 国产av在哪里看| av在线老鸭窝| 最近中文字幕高清免费大全6| 我的老师免费观看完整版| 亚洲国产成人一精品久久久| 国产精品三级大全| 欧美最新免费一区二区三区| 国产精品国产三级国产专区5o| 国产成人免费观看mmmm| 亚洲,欧美,日韩| 午夜精品在线福利| 亚洲精品日韩av片在线观看| 日韩电影二区| 性插视频无遮挡在线免费观看| 男人舔奶头视频| 久久久久久久久久久丰满| 嫩草影院精品99| 肉色欧美久久久久久久蜜桃 | 亚洲在久久综合| 久久久久网色| 久久这里只有精品中国| 91精品一卡2卡3卡4卡| 日本一二三区视频观看| 日本午夜av视频| 99久久精品一区二区三区| 国产精品久久视频播放| 人人妻人人澡欧美一区二区| 亚洲在线观看片| 丝袜美腿在线中文| 亚洲精品日韩在线中文字幕| 国产 一区 欧美 日韩| 最近中文字幕高清免费大全6| 国产精品综合久久久久久久免费| 国产精品久久久久久久久免| 色哟哟·www| 色网站视频免费| 成年免费大片在线观看| 国产成人精品婷婷| 国产精品.久久久| 日韩一区二区三区影片| 日韩大片免费观看网站| 人妻制服诱惑在线中文字幕| 能在线免费观看的黄片| 国产精品av视频在线免费观看| 午夜免费男女啪啪视频观看| 亚洲欧美清纯卡通| 黄片wwwwww| 久久精品熟女亚洲av麻豆精品 | 搞女人的毛片| 能在线免费观看的黄片| 国产成人免费观看mmmm| 伊人久久精品亚洲午夜| 简卡轻食公司| 国产精品一及| 看免费成人av毛片| 久久人人爽人人片av| 五月玫瑰六月丁香| h日本视频在线播放| 国产乱来视频区| 在线免费观看的www视频| 黄色一级大片看看| 三级国产精品片| 一边亲一边摸免费视频|