邱 海 飛
(西京學(xué)院 機(jī)械工程學(xué)院,西安 710123)
?
復(fù)合材料制綜框力學(xué)性能參數(shù)化仿真研究
邱 海 飛
(西京學(xué)院 機(jī)械工程學(xué)院,西安 710123)
摘要:將碳平紋預(yù)浸料和單向碳纖維預(yù)浸料應(yīng)用于復(fù)合材料層壓板設(shè)計(jì),采用復(fù)合材料殼單元Shell181模擬綜框分層結(jié)構(gòu),建立了針對綜框的非對稱和對稱結(jié)構(gòu)層壓板設(shè)計(jì)方案。靜動(dòng)態(tài)特性分析表明,非對稱層壓板結(jié)構(gòu)綜框具有較佳的靜力剛度及動(dòng)力學(xué)性能。利用APDL語言開發(fā)了綜框的參數(shù)化建模程序,并以方向參數(shù)η和θ為變量,通過零階算法實(shí)現(xiàn)了纖維鋪層角度優(yōu)化設(shè)計(jì),結(jié)果將綜框第1階自振頻率提高了約4.6%,有利于綜框減振及織機(jī)車速提高。
關(guān)鍵詞:綜框;復(fù)合材料;層壓板;優(yōu)化;鋪層角度;力學(xué)性能;碳纖維
綜框?yàn)樾纬伤罂诘母咚龠\(yùn)動(dòng)部件,對于織機(jī)系統(tǒng)的振動(dòng)及噪聲會(huì)產(chǎn)生重要影響。隨著新型織機(jī)的高速高精化發(fā)展,對于綜框的性能要求也愈來愈高。以往綜框多以木質(zhì)、鐵質(zhì)及鋁合金材質(zhì)為主,隨著織機(jī)車速的提高,傳統(tǒng)綜框已不能滿足新型現(xiàn)代化織機(jī)的生產(chǎn)要求,取而代之的是由復(fù)合材料制成的新一代綜框[1]。復(fù)合材料具有質(zhì)量輕、強(qiáng)度高及耐熱性好等優(yōu)良特性。大量實(shí)踐表明,采用復(fù)合材料制成的新型綜框,能夠有效減小織造過程產(chǎn)生的振動(dòng)及噪聲[2],有利于織機(jī)系統(tǒng)的穩(wěn)定運(yùn)行、保證生產(chǎn)效率,對于綜框性能提升和技術(shù)改造具有重要的應(yīng)用價(jià)值。本文將復(fù)合材料應(yīng)用于綜框結(jié)構(gòu)設(shè)計(jì),研究綜框在不同層壓板結(jié)構(gòu)下的靜動(dòng)態(tài)特性,并實(shí)現(xiàn)纖維鋪層角度優(yōu)化,為新型綜框研發(fā)提供有效手段和技術(shù)支持。
層壓板是纖維增強(qiáng)復(fù)合材料的常見形式之一,是由一系列單向增強(qiáng)的纖維層鋪疊而成。一般情況下,每層纖維厚度約0.2 mm,鋪設(shè)方向和順序可根據(jù)材料性能自行設(shè)定[1]。如圖1所示,按照各單層板相對于中面(即距離層壓板上下表面相等的面)的排列位置,可將層壓板分為對稱層壓板、非對稱層壓板及夾芯層壓板三大類。制備層壓板時(shí)要求各層纖維平行鋪設(shè),并注入未固化的環(huán)氧樹脂或其他熱固性聚合物基體材料[3],將各層壓板交錯(cuò)黏合就形成了纖維增強(qiáng)復(fù)合材料。對于壁板、梁及肋件等層壓結(jié)構(gòu)多采用RTM成型工藝。
圖1 層壓板結(jié)構(gòu)Fig.1 Structure of the laminate
經(jīng)典層壓板理論以線彈性和小變形為基本假設(shè),采用宏觀力學(xué)方法研究各向異性、分層均勻及連續(xù)的層壓板剛度與強(qiáng)度[3]。根據(jù)層壓板面內(nèi)剛度假設(shè):層壓板只承受面內(nèi)力作用,且只引起面內(nèi)形變,不引起彎曲形變;層壓板為薄板結(jié)構(gòu),即板的厚度遠(yuǎn)遠(yuǎn)小于長度和寬度;層壓板各單層粘接牢固,具有相同的變形,且層壓板厚度方向上坐標(biāo)為z的任意點(diǎn)的應(yīng)變都等于中面應(yīng)變,如式(1)所示。
(1)
如圖2所示,Nx、Ny、Nxy為層壓板面內(nèi)力,即層壓板內(nèi)單位寬度上的內(nèi)力,量綱為Pa或N/m2。
圖2 層壓板面內(nèi)力分布Fig.2 Scattergram of internal force in the laminate
(2)
(3)
(4)
根據(jù)各向同性單層板本構(gòu)關(guān)系,考慮式(1)~式(4),可求得面內(nèi)力和面內(nèi)應(yīng)變的關(guān)系,如式(5)所示。其中,αij為層壓板面內(nèi)剛度系數(shù),由剛度系數(shù)αij構(gòu)成的矩陣稱為剛度矩陣[α],且有αij=αji。對式(5)作逆變換即可求出層壓板面內(nèi)應(yīng)變與面內(nèi)應(yīng)力的關(guān)系式,同時(shí)可求得層壓板面內(nèi)柔度系數(shù)λij與柔度矩陣[λ]=[α]-1。
(5)
2.1邊界條件
對綜框結(jié)構(gòu)進(jìn)行必要簡化,忽略綜絲夾、穿綜桿及綜絲等零部件,如圖3所示在下橫梁底端設(shè)置兩個(gè)固定鉸支點(diǎn),距離側(cè)檔內(nèi)側(cè)210 mm。綜框運(yùn)動(dòng)過程中會(huì)受到經(jīng)紗張力作用,為了便于計(jì)算與分析,將紗線張力等效至下橫梁,通過均布載荷q近似代替綜框受到的經(jīng)紗張力。
圖3 等效邊界條件簡圖Fig.3 Sketch of the equivalent boundary conditions
以中平布純棉織物為依據(jù),紗線線密度為28 tex,則作用于綜框的最大集中載荷Fmax如下式所示,
(6)
式中:ρf為織物經(jīng)密,251.5根/10 cm;Pmax為單根紗線在垂直方向的最大張力值,約為0.075 N[4]。
由式(6)計(jì)算得Fmax=433.84 N,則均布載荷q=Fmax/2.3=188.63 N/m。
2.2層壓板結(jié)構(gòu)設(shè)計(jì)
鋪層纖維的種類、層厚、鋪設(shè)方向及積分點(diǎn)數(shù)等均會(huì)影響復(fù)合材料層壓板的性能[5]。采用碳平紋預(yù)浸料和單向碳纖維預(yù)浸料設(shè)計(jì)綜框?qū)訅喊澹涿芏确謩e為1 452 kg/m3和1 560 kg/m3,材料力學(xué)性能見表1[2]。根據(jù)層壓板鋪層設(shè)計(jì)工藝,一般多選用0°、45°、-45°和90°四種鋪層角,且連續(xù)相同的鋪層盡量不超過2層。設(shè)計(jì)2種層壓板結(jié)構(gòu)鋪層方案,即如圖4所示非對稱鋪層和對稱鋪層:非對稱層壓板纖維鋪設(shè)方向?yàn)閇0/45/-45/90],對稱層壓板纖維鋪設(shè)方向設(shè)為[0/45/-45/902/-45/45/0]。
表1 材料屬性
圖4 綜框?qū)訅喊逶O(shè)計(jì)方案Fig.4 Design scheme of the laminate for heald frame
利用APDL語言編寫綜框(230 cm幅寬)的參數(shù)化建模程序,采用4節(jié)點(diǎn)24自由度單元Shell181模擬綜框?qū)訅喊褰Y(jié)構(gòu)。Shell181是典型的復(fù)合材料仿真單元,其模擬狀態(tài)與計(jì)算結(jié)果均能有效接近實(shí)際情況,具有較高的仿真精度及等效性,故常被用于分析薄至中等厚度的殼結(jié)構(gòu),并可模擬分層的復(fù)合殼及夾層結(jié)構(gòu)。綜框?qū)訅喊褰Y(jié)構(gòu)和有限元建模數(shù)據(jù)見表2。在參數(shù)化基礎(chǔ)上計(jì)算和建立綜框有限元模型,如圖5所示,對橫梁、導(dǎo)板及側(cè)檔的接觸位置進(jìn)行網(wǎng)格細(xì)化與局部控制,在下橫梁支點(diǎn)處設(shè)置節(jié)點(diǎn)位移約束,將x與y方向位移設(shè)置為0,并在下橫梁上端施加均布載荷q。
表2 層壓板建模數(shù)據(jù)
圖5 基于參數(shù)化的綜框有限元模型Fig.5 Parametric finite element model of heald frame
3.1靜力學(xué)分析
綜框在靜態(tài)載荷作用下的變形如圖6所示,非對稱鋪層主要是綜框整體的扭轉(zhuǎn)變形,最大形變量約3.23 mm,出現(xiàn)在側(cè)導(dǎo)板上端部位置,另外在下橫梁與側(cè)檔交叉接觸區(qū)域也存在較大變形;對稱鋪層主要表現(xiàn)為下橫梁彎曲變形,中導(dǎo)板兩側(cè)附近形變量最大,約0.051 mm。非對稱鋪層與對稱鋪層的最大應(yīng)力值分別為1.02 MPa和1.08 MPa,主要集中在Node180和Node58節(jié)點(diǎn)處,即圖7所示的下橫梁下端邊沿位置的三角形區(qū)域,應(yīng)力值由該三角形區(qū)域向外擴(kuò)散依次減小。根據(jù)有限元靜力學(xué)分析結(jié)果,以非對稱鋪層層壓板設(shè)計(jì)的綜框具有較強(qiáng)的抗變形能力和靜態(tài)承載能力,即在相同靜態(tài)載荷作用下,非對稱鋪層綜框的剛度與強(qiáng)度要優(yōu)于對稱鋪層。
圖6 靜力變形圖解Fig.6 Static deformation diagrams
圖7 最大應(yīng)力分布云Fig.7 Distribution chart of the maximum stress
3.2自振頻率及振型
根據(jù)振動(dòng)理論,結(jié)構(gòu)的自由振動(dòng)方程如下,
(7)
其中[M]為質(zhì)量矩陣,[C]為阻尼矩陣,[K]為剛度矩陣,{u}為節(jié)點(diǎn)位移向量。自由模態(tài)分析時(shí)可忽略阻尼影響,通過線性變換實(shí)現(xiàn)式(7)的靜力解耦與慣性解耦,即將無阻尼自由振動(dòng)方程從物理坐標(biāo)轉(zhuǎn)化至相互獨(dú)立的模態(tài)坐標(biāo),并獲得如下所示頻率方程,
(8)
其中λ為系統(tǒng)特征值[6],求解式(8)即可計(jì)算出結(jié)構(gòu)的模態(tài)頻率及振型。
采用Block Lanczos法提取綜框在無約束狀態(tài)下的前3階模態(tài)頻率與振型結(jié)果見表3。由表3可知,兩種不同鋪層綜框的低階模態(tài)頻率較為接近,其中非對稱層壓板綜框的第1階模態(tài)頻率(基頻)為41.986 Hz,略大于對稱層壓板綜框的41.128 Hz,說明非對稱鋪層綜框具有相對較強(qiáng)的抗振能力。由振型圖解可知,兩種層壓板結(jié)構(gòu)綜框的第2階、第3階振動(dòng)模式相似,均表現(xiàn)為扭轉(zhuǎn)振動(dòng)和彎曲振動(dòng);不同的是,兩種鋪層方案的第1階振動(dòng)模式正好相反,即非對稱鋪層綜框主要為上下橫梁的外側(cè)彎曲振動(dòng),而對稱鋪層綜框則主要為上下橫梁的內(nèi)側(cè)彎曲振動(dòng)。
表3 不同層壓板結(jié)構(gòu)下的綜框模態(tài)特性
對非對稱層壓板纖維鋪層角度進(jìn)行優(yōu)化,復(fù)合材料初始纖維鋪層方向?yàn)閇0/45/-45/90],保持水平方向(0°)和垂直方向(90°)的纖維鋪設(shè)方向不變,以變量η、θ分別表示45°及-45°的角度變化,若按照逆時(shí)針方向確定鋪層角度,則-45°應(yīng)轉(zhuǎn)化為315°,如圖8所示。設(shè)計(jì)變量η和θ的取值范圍定義為:η∈(15°,75°);θ∈(285°,345°)。
圖8 層壓板纖維鋪層角度Fig.8 Layer angles of the laminate fiber
為了降低綜框在織造過程中的振動(dòng)與噪聲,要求綜框具有較強(qiáng)的剛度及抗振能力,故應(yīng)盡量提高綜框的自振頻率。根據(jù)振動(dòng)理論,基頻f0是衡量結(jié)構(gòu)動(dòng)力學(xué)特性的重要參數(shù),故在優(yōu)化層壓板結(jié)構(gòu)時(shí)要求綜框第1階模態(tài)頻率盡量最大,即以提高基頻f0為優(yōu)化設(shè)計(jì)目標(biāo)。由動(dòng)力學(xué)計(jì)算結(jié)果可知,非對稱層壓板結(jié)構(gòu)綜框的基頻f0=41.986 Hz,故定義優(yōu)化目標(biāo)函數(shù)如下,
(9)
其中f0(η,θ)為設(shè)計(jì)變量η和θ的函數(shù),f0i為基頻的第i次優(yōu)化計(jì)算值。由于ANSYS系統(tǒng)以目標(biāo)變量最小化為優(yōu)化原則,故定義差值關(guān)系式δ(η,θ)=65-f0(η,θ),即執(zhí)行優(yōu)化計(jì)算時(shí)要求δ(η,θ)為最小。
采用零階算法執(zhí)行優(yōu)化過程,通過變量η、θ的采樣組合產(chǎn)生不同的纖維鋪層方向,由此實(shí)現(xiàn)多個(gè)優(yōu)化序列下的目標(biāo)函數(shù)f0(η,θ)迭代計(jì)算。由圖9和表4可知,優(yōu)化后的變量η、θ值增大至74.87°、344.74°,比初始值分別提高了66.38%和9.44%,說明纖維鋪層角度發(fā)生明顯變化。將θ值換算為銳角形式,則優(yōu)化后的非對稱層壓板鋪層角度為[0/74.87/-15.26/90]。當(dāng)執(zhí)行第9次優(yōu)化序列時(shí),目標(biāo)函數(shù)f0(η,θ)達(dá)到最大值,對比可知,優(yōu)化后的基頻f0為43.9171 Hz,比優(yōu)化前增大了約4.6%。可見,優(yōu)化后的綜框抗振性能得到進(jìn)一步增強(qiáng),符合優(yōu)化設(shè)計(jì)初衷。
圖9 優(yōu)化設(shè)計(jì)過程曲線Fig.9 Process curves of optimization design
優(yōu)化變量優(yōu)化前優(yōu)化后變化率/%η/(°)45.0074.8766.38 θ/(°)315.00 344.74 9.44f0/Hz41.9943.924.60
復(fù)合材料綜框是未來新型綜框的主要發(fā)展方向。通過將碳纖維復(fù)合材料應(yīng)用于綜框設(shè)計(jì),明確了層壓板結(jié)構(gòu)的力學(xué)特性、鋪層原理及實(shí)現(xiàn)方法。根據(jù)兩種鋪層方案研究結(jié)果可知,非對稱鋪層結(jié)構(gòu)具有較佳的靜動(dòng)態(tài)特性。另外,通過纖維鋪層角度優(yōu)化,使綜框基頻增大了約4.6%,進(jìn)一步提高了復(fù)合材料綜框的自振頻率,有效降低了織機(jī)系統(tǒng)的振動(dòng)和噪聲,為新型綜框的研制及性能改進(jìn)提供了重要依據(jù)。
參考文獻(xiàn):
[1]邱海飛,王益軒,吳松林.新型碳纖維復(fù)合材料綜框的鋪層設(shè)計(jì)與動(dòng)力學(xué)特性研究[J].科學(xué)技術(shù)與工程,2014,14(7):168-172.
QIU Haifei, WANG Yixuan, WU Songlin.Layering design and dynamic characteristics study for heald frame maded by new type composite of carbon-fibre[J].Science Technology and Engineering,2014,14(7):168-172.
[2]霍福磊.綜框用混雜夾芯結(jié)構(gòu)復(fù)合材料的設(shè)計(jì)與制備[D].天津:天津工業(yè)大學(xué),2012:8-15.
HUO Fulei.Design and Peparation for Composite Material in Mixed Sandwich Structure Used for Heald Frame [D].Tianjin:Tianjin Polytechnic University,2012:8-15.
[3]張以河.復(fù)合材料學(xué)[M].北京:化學(xué)工業(yè)出版社,2011:58-61.
ZHANG Yihe.Composite Materials [M].Beijing:Chemical Industry Press,2011:58-61.
[4]邱海飛,王益軒.基于虛擬樣機(jī)技術(shù)的經(jīng)紗張力仿真與分析[J].紡織學(xué)報(bào),2011,32(1):119-123.
QIU Haifei, WANG Yixuan.Simulation and analysis of warp tension based on virtual prototyping[J].Journal of Textile Research,2011,32(1):119-123.
[5]譚志勇,閔昌萬,龍麗平.先進(jìn)復(fù)合材料的結(jié)構(gòu)動(dòng)力學(xué)設(shè)計(jì)與分析技術(shù)探討[J].強(qiáng)度與環(huán)境,2011,38(3):24-28.
TAN Zhiyong, MIN Changwan, LONG Liping.The technology of dynamics design and analysis for the structure of advanced composite material[J].Structure & Environment Engineering,2011,38(3):24-28.
[6]邱海飛,王益軒,劉欣.綜框模態(tài)頻率優(yōu)化設(shè)計(jì)[J].機(jī)械設(shè)計(jì),2012,29(5):35-38.
QIU Haifei, WANG Yixuan, LIU Xin.Optimal design for frequency of heald frame[J].Journal of Machine Design,2012,29(5):35-38.
[7]陸綜源.織造經(jīng)紗張力淺論[J].紡織器材,2015,42(1):64-66.
LU Zongyuan.My tension view on warp tension[J].Textile Accessories,2015,42(1):64-66.
[8]房超,陳寧,徐茗娟.綜框材料和結(jié)構(gòu)的專利技術(shù)綜述[J].輕紡工業(yè)與技術(shù),2015(2):23-25.
FANG Chao, CHEN Ning, XU Mingjuan.Technical review of the patent for heald frame’s material and structure[J].Light and Textile Industry and Technology,2015(2):23-25.
[9]趙梅,王益軒,路超,等.三維正交織機(jī)雙向開口機(jī)構(gòu)設(shè)計(jì)[J].產(chǎn)業(yè)用紡織品,2015(2):29-34.
ZHAO Mei, WANG Yixuan, LU Chao, et al.Design of the dual-direction shedding mechanism of three-dimensional orthogonal loom[J].Technical Textiles,2015(2):29-34.
[10]楊彩云,李嘉祿.復(fù)合材料用3D角聯(lián)鎖結(jié)構(gòu)預(yù)制件的結(jié)構(gòu)設(shè)計(jì)及新型織造技術(shù)[J].東華大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,31(5):53-58.
YANG Caiyun, LI Jialu.The strucural design and new weaving technique of 3D angle-interlock preforms for compo sites[J].Journal of Donghua University(Natural Science),2005,31(5):53-58.
DOI:10.3969/j.issn.1001-7003.2016.04.007
收稿日期:2015-10-14; 修回日期:2016-03-14
基金項(xiàng)目:陜西省教育廳科研計(jì)劃資助項(xiàng)目(15JK2177);西京學(xué)院科研基金項(xiàng)目(XJ150216)
作者簡介:邱海飛(1983—),男,講師,碩士,主要從事機(jī)械系統(tǒng)動(dòng)態(tài)設(shè)計(jì)、虛擬樣機(jī)技術(shù)的研究。
中圖分類號(hào):TS101.91
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1001-7003(2016)04-0035-06引用頁碼:041107
Parametric simulation research on mechanical property of heald frame made by composites
QIU Haifei
(College of Mechanical Engineering, Xijing University, Xi’an 710123, China)
Abstract:In this paper, carbon plain pre-soak material and unidirectional carbon fiber pre-soak material were applied to the design of composite laminate.Layer structure of heald frame was simulated by composite element Shell181, and then design scheme of asymmetrical and symmetrical laminate for the heald frame were set up.The analysis results of static-dynamic characteristics shows that heald frame with asymmetrical laminate has good static stiffness and dynamic properties.Parametric modeling program of the heald frame is developed through APDL Language, and optimization design of the fiber layer angles is carried out based on zero-order method where orientation parameters are η and design variables are θ, which increased the natural frequency of the first layer in heald frame by 4.6%, thus making it favorable for vibration attenuation of heald frame and speed up of the loom.
Key words:heald frame; composite; laminate; optimization; layer angle; mechanical property; carbon fiber