• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical and magnetic properties of CeO2 nanoparticles synthesized by a hydrothermal method in acid environment

    2016-08-05 00:34:01MENGFanmingLIHuijieHEGuangyuanGAOXinLIUDaorui

    MENG Fanming, LI Huijie, HE Guangyuan, GAO Xin, LIU Daorui

    (School of Physics and Materials Science, Anhui University, Hefei 230601, China)

    ?

    Optical and magnetic properties of CeO2nanoparticles synthesized by a hydrothermal method in acid environment

    MENG Fanming, LI Huijie, HE Guangyuan, GAO Xin, LIU Daorui

    (School of Physics and Materials Science, Anhui University, Hefei 230601, China)

    Abstract:CeO2 nanoparticles were successfully synthesized by a hydrothermal method using CeCl3·7H2O as cerium source, NH3·H2O as mineralizer and HCl as acidic regulator. The crystal phase, morphology, optical and magnetic properties of the as-synthesized CeO2 nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis spectrophotometer (UV-Vis), photoluminescence spectrometer (PL), Raman spectrometer (Raman) and vibrating sample magnetometer (VSM). It was found that the as-synthesized CeO2 nanoparticles had a fluorite structure, and there were defects and vacancies. The lattice parameter calculated from XRD spectra was slightly higher than bulk CeO2, and the lattice parameter decreased with the increase of pH value. The morphology of all samples was spherical. The direct band gaps estimated from the UV-Vis absorption spectra were smaller than that of bulk CeO2, and the band gaps increased with the increase of pH value. The sample synthesized at pH=2 exhibited room temperature ferromagnetism (RTFM), which was likely associated with the existence of Ce3+and oxygen vacancy.

    Keywords:CeO2; nanoparticles; acid environment; optical properties; magnetic properties

    0Introduction

    The scale of nanoparticle is generally between 1 and 100 nm, which belongs to the transition area between the atom clusters and macro object. From the macro and micro view, the system is neither typical microscopic system nor a typical macro system. So nanometer materials have a series of peculiar properties, such as quantum size effect, small size effect, surface and interface effect as well as the macroscopic quantum tunneling effect. All of these effects make nanometer materials present many peculiar physical and chemical properties[1]. So nanomaterials are considered an important class of advanced materials. As one of the most reactive rare earth metal oxides[2], cerium oxide nanostructures have wide applications such as high-temperature ceramics[3], catalysts[4], fuel cells[5], silicon-on-insulator structures, barrier layers[6-7]or promoter for automotive exhaust gas conversion reaction[8]due to their special optical properties, high thermal stability, electrical conductivity and diffusivity, and the ability to store and release oxygen[9], which depends on Ce3+-Ce4+redox cycles and the oxygen vacancies that make the more efficient for storing oxygen[10]. As a consequence, much effort had been made in preparing CeO2by different methods and in different conditions during the past decades. But the properties of the samples can be greatly influenced by particle size and synthesis method[11]. Therefore finding a suitable method for productive of high quality nano-CeO2is still the most important task. In this paper, the spherical nano-CeO2was success-fully synthesized by a hydrothermal method without any surfactant in the acidic condition and the effect of the pH value on the magnetic and optical properties of nano-CeO2was investigated by measuring VSM, XRD, SEM, UV-Vis, PL and Raman.

    1Experimental procedure

    1.1Materials synthesis

    All the reagents were of analytical grade purity and used without further purification. Typically, 1.490 32 g of cerium chloride (CeCl3·7H2O) and 6 mL of aqueous ammonia (NH3·H2O) were dissolved in 60 mL of deionized water, respectively. The aqueous ammonia was added gradually to the CeCl3aqueous solution to form lavender colorless precipitation. After continuous stirring for 3 h, hydrochloric acid (HCl) was added dropwise to the CeCl3solution to control its pH value to 2, 4 and 6. After further stirred for 3 minutes, the mixed solution was transferred into a 50 mL Teflon-lined autoclave and heated at 200 ℃ for 12 h. After the autoclave was cooled to room temperature naturally, fresh precipitates were washed with deionized water and ethanol for three times, and then dried at 80 ℃ overnight and the straw yellow powder was obtained.

    1.2Characterizations

    The crystal phases of the products were analyzed by X-ray diffractometer(XD-3)with CuKαradiation (λ=0.150 46 nm). The morphology and size were characterized by scanning electron microscope(S-4800). The Raman spectra was recorded by a Raman spectrometer system (inVia-Reflex) using a laser with 532 nm excitation at room temperature. The UV-Vis absorption spectroscopy (U-4100) was measured by ultraviolet-visible-near-infrared spectrophotometer. Room temperature photoluminescence spectra (F-4500) were measured by a fluorescence spectrophotometer using excitation light of 340 nm. The M-H curves were measured at room temperature by vibrating sample magnetometer (PPMS, ECII(9T)).

    2Results and discussion

    2.1Size and morphology analysis

    Fig.1 shows the XRD patterns of CeO2samples synthesized at different pH values. It can be seen that all diffraction peaks in these patterns can be perfectly indexed to the face-centered cubic structure of ceria (JCPDS Card #34-1002) with space group Fm3m (225). The obtained CeO2samples are pure phase products, no obvious peaks corresponding to other cerium oxides were observed in the powder patterns, indicating that pure CeO2is synthesized. The lattice parameter calculated from XRD spectra with Jade 5 software is about 0.542 6, 0.542 3, 0.541 6 nm for the samples with pH value is 2, 4 and 6, which indicate that the lattice parameter decreases with the increase of pH value. Compared with the lattice parameter of bulk CeO2(0.541 1 nm)[12], these are slightly higher. The potential reason for the observed lattice expansion is the presence of oxygen vacancies in the crystal lattice of nanocrystalline CeO2, which generally possesses high redox capabilities could create larger Ce3+ions for charge compensation (Ce3+and Ce4+have their respective ionic radii of 0.103 4 and 0.092 nm)[13].

    Fig.1 XRD patterns for CeO2 nanoparticles synthesized at pH=2, 4, 6

    More details about the size and morphology of the as-obtained CeO2nanocrystals synthesized at different pH value were investigated by SEM. As represented in Fig.2, the morphology of samples are all spherical nanocrystals, this should mean that the pH value have little effect on the morphology of ceria nanoparticles under acid condition. It can be seen that CeO2nanoparticles of 12—15, 8—12 and 4—8 nm in diameter were synthesized when the pH value is 2, 4 and 6. Obviously, the diameter decreases with the increase of pH value. Compared with the lattice constants calculated from the XRD patterns we can conclude that the size of the nanoparticles synthesized under acid condition increase with the increase of lattice parameter.

    Fig.2 SEM images for CeO2 nanoparticles synthesized at pH=2 (a), 4 (b), 6 (c)

    2.2Optical properties

    The UV-Vis absorption spectra of CeO2samples are shown in Fig.3a. All of them illustrate strong absorption bands in the UV region. Generally, the absorption of ceria in the UV region originated from the charge-transfer transition is much stronger than the 4f1-5d1transition from the Ce3+species in the mixed valence ceria system[14]. So the absorption of ceria in the UV region mainly originates from the charge-transfer transition between the O2-(2p) and Ce4+(4f) orbit in CeO2[15].

    The relation between absorption coefficient and band gap (Eg) can be written as (αhv)n∝hv-Eg, whereαis the absorption coefficient,Egis the band gap for direct transitions, andnis 2 for a direct transition[16]. The plots of (αhν)2vs. photon energy of CeO2nanoparticles are shown in Fig.3b. As a result, the band gap energy of the samples prepared at the pH value of 2, 4 and 6 are 2.97, 3.02 and 3.04 eV, respectively. Obviously,Egis increase with the increase of pH. And these values are smaller than that of the bulk CeO2(3.19 eV)[17-18].

    Fig.3    UV-Vis absorption spectra(a) and plots (b) of (ahv)2 as function of energy of    CeO2 nanoparticles synthesized at pH=2, 4, 6

    Fig.4 PL spectra of CeO2 nanoparticles synthesized at pH=2 (a), 4 (b), 6 (c)

    Photoluminescence (PL) study can discern the defect-related transition with the location and intensity of some bands related to the oxygen-vacancy density[19]. Fig.4 shows the PL spectra of CeO2nanoparticles synthesized at different pH values, and seven emission peaks located at 373, 450, 468, 482, 493, 565 and 648 nm are observed. CeO2is a wide band gap compound semiconductor, whose gap is about 3 eV. The Ce 4f energy levels localize at the forbidden band and lie about 3 eV above the valence band (O 2p) with 1.2 eV width[20-23]. Usually, it is easy to observe the hopping from Ce 4f to O 2p (>3 eV). In addition, the defect levels localized between the Ce 4f band and the O 2p band can also lead to wider emission bands (<3 eV)[24]. So it can be concluded that the 373 nm emission peak related to the hopping from the localized Ce 4f state to the O 2p valence band. And the wide emission band ranging from 400 to 500 nm can be attributed to the hopping from different defect levels to the O 2p band[25]. The sample synthesized at pH=2 shows the higher intensity than the other two sample, this must be caused by the maximum concentration oxygen vacancy existed in the sample when pH=2, and the peak located at 565 and 648 nm can be attributed to the hopping between the defect levels.

    Fig.5 shows room temperature Raman spectra.Raman peak at 462.7 cm-1can be attributed to a symmetrical stretching mode of the Ce-8O vibrational unit corresponding to the triply degenerate mode of the fluorite crystal structure of CeO2, this mode should be very sensitive to any disorder in the oxygen sublattice resulting from thermal and doping or grain size induced non-stoichiometry[26]. In bulk CeO2this frequency is 465 cm-1. Several factors may have caused this slight red shift, including phonon confinement, strain, broadening associated with the size distribution, defects, and variations in phonon relaxation with particle size[27]. Based on the date of XRD and PL, it can be confirmed that it is the Ce3+ions and oxygen vacancies contribution to this change[28]. The peak near 589 cm-1can be attributed to oxygen vacancies and defects caused by small size effect[29-30]. The intensity increases with the increase of oxygen defects, so we can confirm that the sample synthesized at pH=2 has the maximum concentration oxygen vacancy and this is corresponding with the PL spectra. The second-order features at 1 172 cm-1are very prominent for the samples synthesized at pH value of 2 and 4, but it is hard to see this peak for sample synthesized at pH=6. It can be attributed to the second-order Raman mode of surface superoxide species (O2-), and has little additional contributions from F2gsymmetry[31]. As for the peak at 2 935 cm-1, this is a very interesting and novel phenomenon and needed further investigation.

    Fig.5 Room temperature Raman spectra of CeO2 nanoparticles synthesized at pH=2 (a), 4 (b), 6 (c)

    2.3Room temperature ferromagnetism

    Fig.6 shows the M-H curve of CeO2nanoparticles synthesized at pH=2. RTFM could be observed for the CeO2sample. It can be seen that the saturation magnetization (Ms) is about 1.58×10-3emu·g-1, residual magnetization (Mr) is 0.3×10-3emu·g-1and coercivity (Hc) is 190 Oe. The value ofHcis larger than those in previous reports[32]andMsandMrare smaller than those in previous reports[33-34]. According to the previous studies, it can be concluded that the presence of Ce3+ions and oxygen vacancies in CeO2nanoparticles enhanced the hybridization between Ce 4f and O 2p and results in the charge transfer transition between Ce 4f and O 2p bands through double-exchange mechanism, and this is FM order favored. Based on XRD and Raman analysis, it can be concluded that Ce3+and oxygen vacancy existed in CeO2deposits, and this must be the origin of the RTFM.

    Fig.6 Magnetic hysteresis loops of CeO2 nanoparticles synthesized at pH=2

    3Conclusions

    According to the XRD analysis, it can be seen that CeO2nanoparticles with fluorite structure have been successfully synthesized by a facile hydrothermal method under acidic condition. The pH value influences the crystallite size and lattice parameter of the samples. The samples are all ball-like, and the band gaps determined by the UV-Vis absorption increase with the increase of pH value. RTFM could be observed from the sample synthesized at pH=2, itsMs,MrandHcare about 1.58×10-3emu·g-1, 0.3×10-3emu·g-1and 190 Oe, respectively. Raman and PL show that the Ce3+ions and oxygen vacancies existed in the samples, and this is likely the origin of the RTFM.

    References:

    [1]SUJANA M G, CHATTOPADYAY K K, ANAND S. Characterization and optical properties of nano-ceria synthesized by surfactant-mediated precipitation technique in mixed solvent system[J]. Appl Surf Sci, 2008, 254 (22): 7405-7409.

    [2]FU Y P, LIN C H, HSU C S. Preparation of ultrafine CeO2powders by microwave-induced combustion and precipitation[J]. J Alloy Compd, 2005, 391 (1/2): 110-114.

    [3]EGUCHI K. Ceramic materials containing rare earth oxides for solid oxide fuel cell[J]. J Alloys Compd, 1997, 250: 486-491.

    [4]INOUE T, OSONOE M, TOHDA H, et al. Low-temperature epitaxial growth of cerium dioxide layers on (111) silicon substrates[J]. J Appl Phys, 1991, 69 (12): 8313-8315.

    [5]STEELE B C H. Appraisal of Ce1-yGdyO2-y/2electrolytes for IT-SOFC operation at 500 ℃[J]. Solid State Ionics, 2000, 129 (1/2/3/4): 95-110.

    [6]ESPINAL L, SUIB S L, RUSLING J F. Electrochemical catalysis of styrene epoxidation with films of MnO2nanoparticles and H2O2[J]. J Am Chem Soc, 2004, 126 (24): 7676-7682.

    [7]ARMSTRONG A R, BRUCE P G. Synthesis of layered LiMnO2as an electrode for rechargeable lithium batteries[J]. Nature, 1996, 381 (6582): 499-500.

    [8]TSUNEKAWA S, SAHARA R, KAWAZOE Y, et al. Origin of the blue shift in ultraviolet absorption spectra of nanocrystalline CeO2-xparticle[J]. Mater Trans, 2000, 41 (8): 1104-1107.

    [9]GNANAM S, RAJENDRAN V. Synthesis of CeO2or alpha-Mn2O3nanoparticles via sol-gel process and their optical properties[J]. J Sol-Gel Sci Technol, 2011, 58 (1): 62-69.

    [10]MENG F M, WANG L N, CUI J B. Controllable synthesis and optical properties of nano-CeO2via a facile hydrothermal route[J]. J Alloy Compd, 2013, 556: 102-108.

    [11]CHANG H, CHEN H. Morphological evolution for CeO2nanoparticles synthesized by precipitation technique[J]. J Cryst Growth, 2005, 283 (3/4): 457-468.

    [12]MENG F M, WANG L N. Hydrothermal synthesis of monocrystalline CeO2nanopoles and their room temperature ferromagnetism[J]. Mater Lett, 2013, 100: 86-88.

    [13]DESHPANDE S, PATIL S, KUCHIBHATLA S V, et al. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide[J]. Appl Phys Lett, 2005, 87 (13): 133113-133116.

    [14]MURATA T, SATO M, YOSHIDA H, et al. Compositional dependence of ultraviolet fluorescence intensity of Ce3+in silicate, borate, and phosphate glasses[J]. J Non-Cryst Solids, 2005, 351 (4): 312-316.

    [15]WANG S F, GU F, LI C Z, et al. Shape-controlled synthesis of CeOHCO3and CeO2microstructures[J]. J Cryst Growth, 2007, 307 (2): 386-394.

    [16]LU X W, LI X Z, CHEN F, et al. Hydrothermal synthesis of prism-like mesocrystal CeO2[J]. J Alloys Compd, 2009, 476 (1/2): 958-962.

    [17]OREL Z Z, OREL B. Optical properties of pure CeO2and mixed CeO2/SnO2thin film coatings[J]. Phys Status Solidi B, 1994, 186 (1): k33-k36.

    [18]BARRECA D, GASPAROTTO A, TONDELLO E, et al. Nucleation and growth of nanophasic CeO2thin films by plasma-enhanced CVD 69[J]. Chemical Vapor Deposition, 2003, 9 (4): 199-206.

    [19]KOSACKI I, SUZUKI T, ANDERSON H U. Raman scattering and lattice defects in nanocrystalline CeO2thin films[J]. Solid State Ionics, 2002, 149 (1/2): 99-105.

    [20]SPANIER J E, ROBINSON R D, ZHANG F, et al. Size-dependent properties of CeO2-ynanoparticles as studied by Raman scattering[J]. Phys Rev B, 2001, 64 (24): 245407.

    [21]ASKRABIC S, DOHCEVICMITROVIC Z, KREMENOVIC A, et al. Oxygen vacancy-induced microstructural changes of annealed CeO2-xnanocrystals[J]. Journal of Raman Spectroscopy, 2012, 43 (1): 76-81.

    [22]ARAUJO V D, AVANSI W, CARVALHO H B, et al. CeO2nanoparticles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods[J]. CrystEngCommunity, 2012, 14 (3): 1150-1154.

    [23]WEBER W H, HASS K C, MCBRIDE J R. Raman study of CeO2: second-order scattering, lattice dynamics and particle-size effects[J]. Phys Rev B, 1993, 48 (1): 178-185.

    [24]MORKOC H. Comprehensive characterization of hydride VPE grown GaN layers and templates[J]. Mater Sci Eng R, 2001, 33 (5): 135-207.

    [25]KOELLING D D, BORING A M, WOOD J H. The electronic structure of CeO2and PrO2[J]. Solid State Commun, 1983, 47 (4): 227-232.

    [26]NIWANO M, SATO S, KOIDE T, et al. Optical properties of CeO2Crystal in the photon energy region of 2.5—40 eV[J]. J Phys Soc, 1988, 57 (4): 1489-1496.

    [27]HOGARTH C A, AL-DHHAN Z T. Optical absorption in thin films of cerium dioxide and cerium dioxide containing silicon monoxide[J]. Phys Status Solidi, 1986, 137 (2): k157-k160.

    [28]MENG F M, FAN Z H, SHI G L,et al. Hydrothermal synthesis and optical properties of CeO2microstructures[J]. Journal of Anhui University (Natural Science Edition), 2015, 39 (6): 37-44.

    [29]MARABELI F, WACHTER P. Covalent insulator CeO2: optical reflectivity measurements[J]. Phys Rev B, 1987, 36: 1238-1243.

    [30]CAI C L, YANG S Y, LIU Z K, et al. Violet/blue photoluminescence from CeO2thin film[J]. Chin Sci Bull, 2003, 48 (2): 1198-1200.

    [31]LU F, MENG F M, WANG L N, et al. Controlled synthesis and optical properties of CeO2na-noparticles by a N2H4·H2O-assisted hydrothermal method[J]. Micro Nano Lett, 2012, 7 (7): 624-627.

    [32]LI M J, GE S H, QIAO A W, et al. Relationship between the surface chemical states and magnetic properties of CeO2nanoparticles[J]. Appl Phys Lett, 2009, 94 (15): 152511-152514.

    [33]SUNDARESAN A, BHARGAVI R, RANGARAJAN N, et al. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides[J]. Phys Rev B, 2006, 74 (16): 161306-161312.

    [34]GE M Y, WANG H, LIU E Z, et al. On the origin of ferromagnetism in CeO2nanocubes[J]. Appl Phys Lett, 2008, 93 (6): 062505-062508.

    (責(zé)任編輯鄭小虎)

    doi:10.3969/j.issn.1000-2162.2016.04.007

    Received date:2015-12-19

    Foundation item:Supported by Anhui Provincial Natural Science Foundation (1508085SME219), College Students Innovation Training Program of Anhui University (201510357349,201510357125) of China

    CLC number:TQ174

    Document code:AArticle ID:1000-2162(2016)04-0037-07

    酸性水熱合成CeO2納米顆粒的光學(xué)和磁學(xué)性質(zhì)

    孟凡明,李慧杰,何廣遠(yuǎn),高鑫,劉道瑞

    (安徽大學(xué) 物理與材料科學(xué)學(xué)院,安徽 合肥 230601)

    摘要:以CeCl3·7H2O為鈰源、NH3·H2O為礦化劑、HCl為酸性調(diào)節(jié)劑,利用水熱法成功制備了二氧化鈰納米顆粒.采用X射線衍射儀(XRD)、掃描電子顯微鏡(SEM)、紫外-可見(jiàn)分光光度計(jì)(UV-Vis)、熒光分光光度計(jì)(PL)、拉曼光譜(Raman)和振動(dòng)樣品磁強(qiáng)計(jì)(VSM)等分析測(cè)試手段,對(duì)CeO2納米顆粒的晶相、形貌、光學(xué)和磁學(xué)性質(zhì)進(jìn)行了表征.XRD測(cè)試結(jié)果表明樣品的晶格參數(shù)略高于塊狀CeO2的,并隨著pH值的增大而減小.所有樣品的形貌均為球形.從紫外-可見(jiàn)吸收光譜中,估計(jì)出的樣品直接帶隙值小于塊狀CeO2的,且此值隨pH值的增加而增加.pH值為2時(shí)合成樣品具有室溫鐵磁性,此性質(zhì)的出現(xiàn)可能與Ce3+和氧空位的存在有關(guān).

    關(guān)鍵詞:CeO2;納米顆粒;酸性環(huán)境;光學(xué)性質(zhì);磁性

    Author’s brief:MENG Fanming (1966-), male, born in Hefei of Anhui province, professor of Anhui University, E-mail: mrmeng@ahu.edu.cn.

    2021天堂中文幕一二区在线观| 欧美成人a在线观看| 亚洲欧美激情综合另类| 欧美高清成人免费视频www| 欧美三级亚洲精品| 99久久精品热视频| 免费人成视频x8x8入口观看| 久久精品国产99精品国产亚洲性色| 亚洲av成人精品一区久久| h日本视频在线播放| 欧美又色又爽又黄视频| 亚洲av免费在线观看| 在线观看午夜福利视频| 国内久久婷婷六月综合欲色啪| 欧美精品啪啪一区二区三区| 久久精品久久久久久噜噜老黄 | 看十八女毛片水多多多| 搡女人真爽免费视频火全软件 | 国产亚洲av嫩草精品影院| 免费黄网站久久成人精品| 特级一级黄色大片| 五月伊人婷婷丁香| 色播亚洲综合网| 久久草成人影院| 日韩一区二区视频免费看| 999久久久精品免费观看国产| 一进一出好大好爽视频| 精品久久久久久久末码| 亚洲精品乱码久久久v下载方式| 成人欧美大片| 欧美激情国产日韩精品一区| 欧美日本亚洲视频在线播放| 99热网站在线观看| www.www免费av| 国产精品永久免费网站| 亚洲精品一卡2卡三卡4卡5卡| 黄片wwwwww| 国产黄色小视频在线观看| 色视频www国产| 亚洲精华国产精华液的使用体验 | 亚洲av.av天堂| 中国美白少妇内射xxxbb| 99久国产av精品| 丝袜美腿在线中文| 免费人成视频x8x8入口观看| 日韩亚洲欧美综合| 成年女人毛片免费观看观看9| 国产在线精品亚洲第一网站| 搞女人的毛片| 色哟哟哟哟哟哟| 18禁黄网站禁片免费观看直播| 日日啪夜夜撸| 国产又黄又爽又无遮挡在线| 日日夜夜操网爽| 国产久久久一区二区三区| 国产在线男女| 一级黄色大片毛片| 日韩欧美 国产精品| 麻豆成人av在线观看| 国产爱豆传媒在线观看| 日韩精品有码人妻一区| 噜噜噜噜噜久久久久久91| 在线观看午夜福利视频| 成年人黄色毛片网站| 亚洲av二区三区四区| 窝窝影院91人妻| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久久久久久免| 久久久久久久亚洲中文字幕| 日日摸夜夜添夜夜添av毛片 | 精品人妻视频免费看| 久久精品影院6| 亚洲七黄色美女视频| 久久久国产成人免费| 欧美色视频一区免费| 色视频www国产| 国产久久久一区二区三区| 亚洲,欧美,日韩| 一区二区三区高清视频在线| 国产免费av片在线观看野外av| 亚洲精品成人久久久久久| 长腿黑丝高跟| 变态另类丝袜制服| 久久久色成人| 老女人水多毛片| 亚洲av五月六月丁香网| 国产三级在线视频| 噜噜噜噜噜久久久久久91| 久久亚洲真实| 99在线视频只有这里精品首页| 成人二区视频| 国产 一区 欧美 日韩| 老司机深夜福利视频在线观看| 中国美白少妇内射xxxbb| 国产精品嫩草影院av在线观看 | 一边摸一边抽搐一进一小说| 性色avwww在线观看| 最近在线观看免费完整版| 91精品国产九色| 成人欧美大片| 中文亚洲av片在线观看爽| 精品人妻1区二区| 我的女老师完整版在线观看| 日韩欧美免费精品| 午夜精品久久久久久毛片777| 欧美国产日韩亚洲一区| 18+在线观看网站| av.在线天堂| 少妇被粗大猛烈的视频| 我要看日韩黄色一级片| 成熟少妇高潮喷水视频| 变态另类成人亚洲欧美熟女| 亚洲国产欧美人成| 成人鲁丝片一二三区免费| 伊人久久精品亚洲午夜| 热99在线观看视频| 禁无遮挡网站| 亚洲无线观看免费| 久久精品国产清高在天天线| 午夜激情欧美在线| 特级一级黄色大片| 日本精品一区二区三区蜜桃| 国产69精品久久久久777片| 国内精品一区二区在线观看| 久久婷婷人人爽人人干人人爱| 亚洲va在线va天堂va国产| 日韩大尺度精品在线看网址| 亚洲欧美日韩无卡精品| 日本一二三区视频观看| 国产伦一二天堂av在线观看| 久久中文看片网| 成人无遮挡网站| 国产精品一区www在线观看 | 一区二区三区免费毛片| 国产成人影院久久av| 国产成人aa在线观看| 欧美极品一区二区三区四区| 国产伦在线观看视频一区| 伦理电影大哥的女人| 97碰自拍视频| 欧美精品国产亚洲| 一区二区三区免费毛片| 女的被弄到高潮叫床怎么办 | 国产国拍精品亚洲av在线观看| 国产黄色小视频在线观看| 男插女下体视频免费在线播放| 老司机午夜福利在线观看视频| 人妻丰满熟妇av一区二区三区| 一个人看的www免费观看视频| 最好的美女福利视频网| 亚洲av一区综合| 美女 人体艺术 gogo| 成人综合一区亚洲| 成人特级黄色片久久久久久久| 男人舔女人下体高潮全视频| 欧美性猛交╳xxx乱大交人| 好男人在线观看高清免费视频| 老师上课跳d突然被开到最大视频| 国内精品一区二区在线观看| 村上凉子中文字幕在线| 嫩草影院精品99| 观看美女的网站| 国产精品1区2区在线观看.| 一区二区三区激情视频| 五月伊人婷婷丁香| 国产欧美日韩精品亚洲av| 色精品久久人妻99蜜桃| 国产v大片淫在线免费观看| 日韩在线高清观看一区二区三区 | 在线观看一区二区三区| 我要搜黄色片| 久久久久性生活片| 国产欧美日韩精品一区二区| 999久久久精品免费观看国产| 丰满人妻一区二区三区视频av| 欧美激情在线99| 欧美成人免费av一区二区三区| 欧美+日韩+精品| 国产免费av片在线观看野外av| 成人性生交大片免费视频hd| 白带黄色成豆腐渣| 淫秽高清视频在线观看| 九色国产91popny在线| 国产高清视频在线播放一区| 69av精品久久久久久| 淫妇啪啪啪对白视频| 久久人人精品亚洲av| 亚洲精华国产精华精| 日韩一区二区视频免费看| 欧美日韩精品成人综合77777| 免费观看的影片在线观看| 91在线观看av| 国产亚洲91精品色在线| 亚洲人成网站在线播| 一个人看视频在线观看www免费| 美女黄网站色视频| 99久国产av精品| 不卡一级毛片| 嫩草影院入口| 免费人成在线观看视频色| 欧美日韩精品成人综合77777| 国内精品宾馆在线| 精品福利观看| 一级毛片久久久久久久久女| 日日摸夜夜添夜夜添小说| 亚洲精品成人久久久久久| 好男人在线观看高清免费视频| 久久精品国产亚洲av涩爱 | 国产主播在线观看一区二区| 成年免费大片在线观看| av在线蜜桃| 99九九线精品视频在线观看视频| 又黄又爽又刺激的免费视频.| av天堂在线播放| 午夜福利在线观看吧| 亚洲精华国产精华液的使用体验 | 黄片wwwwww| 99精品久久久久人妻精品| 亚洲,欧美,日韩| 欧美黑人欧美精品刺激| 久久久久久久久久久丰满 | 国产亚洲精品久久久com| 国产伦一二天堂av在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲图色成人| 国产 一区精品| 国产淫片久久久久久久久| 国产精品一区二区三区四区免费观看 | 欧美日韩瑟瑟在线播放| 综合色av麻豆| 可以在线观看毛片的网站| 国产精品av视频在线免费观看| 久99久视频精品免费| 亚洲经典国产精华液单| 男女之事视频高清在线观看| 亚洲成av人片在线播放无| 日日撸夜夜添| 男人狂女人下面高潮的视频| 国产精品久久久久久亚洲av鲁大| 国产淫片久久久久久久久| 国产白丝娇喘喷水9色精品| 日韩强制内射视频| av专区在线播放| 九九久久精品国产亚洲av麻豆| x7x7x7水蜜桃| 日韩人妻高清精品专区| 亚洲av免费高清在线观看| 天天一区二区日本电影三级| 精品久久国产蜜桃| 男女那种视频在线观看| 美女大奶头视频| 熟女人妻精品中文字幕| 在线天堂最新版资源| 校园人妻丝袜中文字幕| 久久久久免费精品人妻一区二区| 久久久久久国产a免费观看| 国内久久婷婷六月综合欲色啪| 国产男靠女视频免费网站| 亚洲av免费高清在线观看| 免费无遮挡裸体视频| 综合色av麻豆| 人妻丰满熟妇av一区二区三区| 日本 av在线| 欧美色欧美亚洲另类二区| 欧美日韩黄片免| 久久亚洲真实| 日韩精品中文字幕看吧| 69人妻影院| 中文字幕高清在线视频| 亚洲精品色激情综合| 亚洲欧美精品综合久久99| 亚洲精品亚洲一区二区| 简卡轻食公司| 99久久久亚洲精品蜜臀av| 欧美成人一区二区免费高清观看| 亚洲av五月六月丁香网| 亚洲av熟女| 在线播放无遮挡| 国产国拍精品亚洲av在线观看| 精品人妻一区二区三区麻豆 | 精品午夜福利在线看| 欧洲精品卡2卡3卡4卡5卡区| 一a级毛片在线观看| 久久精品国产亚洲网站| 国内少妇人妻偷人精品xxx网站| 久久久久九九精品影院| 免费无遮挡裸体视频| 亚洲av一区综合| 波多野结衣巨乳人妻| 97超视频在线观看视频| 久久人妻av系列| 一级a爱片免费观看的视频| 99久久无色码亚洲精品果冻| 亚洲国产欧洲综合997久久,| 久久人人精品亚洲av| 精品久久久久久,| 国国产精品蜜臀av免费| 国产美女午夜福利| 亚洲国产精品合色在线| 欧美+亚洲+日韩+国产| 久久精品综合一区二区三区| 欧美中文日本在线观看视频| 三级男女做爰猛烈吃奶摸视频| 国产免费av片在线观看野外av| 能在线免费观看的黄片| 国产伦在线观看视频一区| 99久久精品热视频| 久99久视频精品免费| 不卡视频在线观看欧美| 国产精品福利在线免费观看| 亚洲性夜色夜夜综合| 亚洲一区高清亚洲精品| 成年版毛片免费区| 亚州av有码| bbb黄色大片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲综合色惰| 午夜爱爱视频在线播放| 黄色配什么色好看| 丰满人妻一区二区三区视频av| 99热6这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久伊人网av| 可以在线观看的亚洲视频| 欧美绝顶高潮抽搐喷水| 色吧在线观看| 99热6这里只有精品| 亚洲av五月六月丁香网| 变态另类丝袜制服| 免费看av在线观看网站| 久久香蕉精品热| 国产精品女同一区二区软件 | 国内精品宾馆在线| 天堂影院成人在线观看| 夜夜看夜夜爽夜夜摸| 亚洲无线在线观看| 一级av片app| 不卡一级毛片| 男女之事视频高清在线观看| 天堂影院成人在线观看| 一区二区三区高清视频在线| 亚洲av第一区精品v没综合| 乱码一卡2卡4卡精品| 国产三级中文精品| 少妇高潮的动态图| 久久精品国产亚洲av香蕉五月| 国产精品一区www在线观看 | 久久精品综合一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 1000部很黄的大片| 噜噜噜噜噜久久久久久91| 色尼玛亚洲综合影院| 22中文网久久字幕| 国产精品女同一区二区软件 | 美女黄网站色视频| 免费在线观看成人毛片| 人人妻人人澡欧美一区二区| 国产单亲对白刺激| 美女免费视频网站| 成熟少妇高潮喷水视频| 热99在线观看视频| 亚洲天堂国产精品一区在线| 亚洲精品色激情综合| 最近最新中文字幕大全电影3| 黄色女人牲交| 真实男女啪啪啪动态图| 免费高清视频大片| 窝窝影院91人妻| 床上黄色一级片| 免费观看精品视频网站| 成人特级av手机在线观看| 免费一级毛片在线播放高清视频| 亚洲av日韩精品久久久久久密| 看片在线看免费视频| 久久精品综合一区二区三区| 亚洲成av人片在线播放无| 嫩草影院精品99| 91在线观看av| 日本a在线网址| 伊人久久精品亚洲午夜| 夜夜爽天天搞| 欧美日韩综合久久久久久 | 久久久久国产精品人妻aⅴ院| 精品免费久久久久久久清纯| 免费无遮挡裸体视频| 性插视频无遮挡在线免费观看| 成人国产综合亚洲| 成人无遮挡网站| 国产亚洲精品久久久久久毛片| 男插女下体视频免费在线播放| 动漫黄色视频在线观看| 在线免费十八禁| ponron亚洲| 乱系列少妇在线播放| 久久热精品热| 麻豆av噜噜一区二区三区| 国产午夜精品久久久久久一区二区三区 | 国产精品精品国产色婷婷| 日韩欧美在线乱码| 一夜夜www| 伦理电影大哥的女人| 国产精品久久视频播放| 中文亚洲av片在线观看爽| 毛片女人毛片| 久久精品人妻少妇| 又爽又黄无遮挡网站| 日韩中字成人| 亚洲天堂国产精品一区在线| 十八禁网站免费在线| 日韩一区二区视频免费看| 亚洲无线在线观看| 亚洲性久久影院| 嫩草影院新地址| 白带黄色成豆腐渣| 成人无遮挡网站| 精品一区二区三区视频在线观看免费| 亚洲五月天丁香| 不卡视频在线观看欧美| 91久久精品国产一区二区三区| 老师上课跳d突然被开到最大视频| 精品久久久久久久久亚洲 | 国产一区二区三区av在线 | 91麻豆精品激情在线观看国产| 欧美成人免费av一区二区三区| 久久热精品热| 久久午夜福利片| 亚洲无线观看免费| 99在线人妻在线中文字幕| 亚洲男人的天堂狠狠| 最好的美女福利视频网| 亚洲国产色片| 日韩中文字幕欧美一区二区| 欧美xxxx黑人xx丫x性爽| 欧美精品啪啪一区二区三区| 国产精品自产拍在线观看55亚洲| 大又大粗又爽又黄少妇毛片口| 亚洲av.av天堂| 亚洲五月天丁香| 99精品久久久久人妻精品| 黄色一级大片看看| 色哟哟·www| 观看免费一级毛片| 午夜影院日韩av| 最近在线观看免费完整版| 三级男女做爰猛烈吃奶摸视频| 欧美成人性av电影在线观看| 国产精品人妻久久久久久| 亚洲18禁久久av| 久久精品国产鲁丝片午夜精品 | 亚洲精品久久国产高清桃花| 国产午夜精品论理片| 国国产精品蜜臀av免费| 亚洲在线观看片| 午夜福利在线在线| 国产高清有码在线观看视频| 亚洲,欧美,日韩| 最近视频中文字幕2019在线8| 免费看光身美女| 波多野结衣高清作品| 久久人妻av系列| 久久精品国产清高在天天线| 亚洲不卡免费看| 久久亚洲精品不卡| 如何舔出高潮| 精品久久久久久,| 久久久国产成人精品二区| 午夜影院日韩av| 日本撒尿小便嘘嘘汇集6| 亚洲电影在线观看av| 日韩高清综合在线| 熟女电影av网| 国产成人影院久久av| 在线观看66精品国产| 少妇裸体淫交视频免费看高清| 国产激情偷乱视频一区二区| 88av欧美| 级片在线观看| 草草在线视频免费看| 色av中文字幕| 亚洲国产精品sss在线观看| aaaaa片日本免费| 亚洲精品亚洲一区二区| 成人性生交大片免费视频hd| 身体一侧抽搐| 一本一本综合久久| 亚洲第一区二区三区不卡| 高清毛片免费观看视频网站| av福利片在线观看| 欧美黑人巨大hd| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩卡通动漫| 黄色配什么色好看| 两个人视频免费观看高清| 欧美激情国产日韩精品一区| 国内毛片毛片毛片毛片毛片| 亚洲,欧美,日韩| 国产伦人伦偷精品视频| 九九在线视频观看精品| 午夜激情福利司机影院| 久久这里只有精品中国| 看片在线看免费视频| 成人午夜高清在线视频| 国产免费一级a男人的天堂| 美女高潮的动态| 国产私拍福利视频在线观看| 在线播放无遮挡| 久久午夜福利片| 又粗又爽又猛毛片免费看| 91麻豆av在线| 天堂√8在线中文| 国产精品亚洲美女久久久| 成人无遮挡网站| 免费黄网站久久成人精品| 欧美成人免费av一区二区三区| av在线观看视频网站免费| 国产91精品成人一区二区三区| 桃红色精品国产亚洲av| 久久精品91蜜桃| 午夜福利视频1000在线观看| 永久网站在线| 久久九九热精品免费| 精品一区二区三区人妻视频| 亚洲国产色片| 日韩一本色道免费dvd| 热99re8久久精品国产| 欧美+亚洲+日韩+国产| x7x7x7水蜜桃| 久久国产乱子免费精品| 亚洲人成网站在线播| 亚洲综合色惰| 国产精品一区二区免费欧美| 五月玫瑰六月丁香| 国产伦精品一区二区三区四那| 九九热线精品视视频播放| 国产精品人妻久久久久久| 制服丝袜大香蕉在线| 黄色日韩在线| 一个人免费在线观看电影| 亚洲最大成人中文| 一级毛片久久久久久久久女| 国产精品不卡视频一区二区| 色综合站精品国产| 国产欧美日韩精品一区二区| 色综合站精品国产| 春色校园在线视频观看| 露出奶头的视频| 波多野结衣高清无吗| 日韩精品青青久久久久久| 久久久久久久午夜电影| 在线播放国产精品三级| av国产免费在线观看| 99热6这里只有精品| 国产极品精品免费视频能看的| 国产高清有码在线观看视频| av专区在线播放| 免费不卡的大黄色大毛片视频在线观看 | 看片在线看免费视频| 色综合亚洲欧美另类图片| 国产成人av教育| 亚洲色图av天堂| 我的女老师完整版在线观看| 色视频www国产| 99视频精品全部免费 在线| 女生性感内裤真人,穿戴方法视频| 两人在一起打扑克的视频| 一进一出抽搐gif免费好疼| 男人的好看免费观看在线视频| 黄色一级大片看看| 在线观看美女被高潮喷水网站| 亚洲中文日韩欧美视频| 免费高清视频大片| 在线播放国产精品三级| 国产精品免费一区二区三区在线| 九九爱精品视频在线观看| 色噜噜av男人的天堂激情| 国产精品久久久久久久久免| 成人三级黄色视频| 无人区码免费观看不卡| 免费在线观看影片大全网站| 亚洲最大成人手机在线| 在线观看免费视频日本深夜| 亚洲精品国产成人久久av| a级一级毛片免费在线观看| 有码 亚洲区| 久久久久久久亚洲中文字幕| 搡女人真爽免费视频火全软件 | 免费搜索国产男女视频| 国产探花极品一区二区| 一级毛片久久久久久久久女| 91狼人影院| 在线观看美女被高潮喷水网站| 中国美白少妇内射xxxbb| 舔av片在线| 国产精品亚洲美女久久久| 99九九线精品视频在线观看视频| 伊人久久精品亚洲午夜| 欧美激情在线99| 看十八女毛片水多多多| 最近最新免费中文字幕在线| 婷婷精品国产亚洲av| 一边摸一边抽搐一进一小说| 不卡一级毛片| 一进一出抽搐动态| 精品人妻1区二区| 性欧美人与动物交配| 精品久久久久久,| 久久草成人影院| 最新中文字幕久久久久| 欧美日韩亚洲国产一区二区在线观看| 美女免费视频网站| 如何舔出高潮| 久久久成人免费电影| 最近最新中文字幕大全电影3| 91麻豆精品激情在线观看国产| 国产综合懂色|