• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Overall Green Process from Preparation of FeCl3 Modified β Zeolites to Its Use in Catalyzing Direct Hydroxylation of Benzene with Hydrogen Peroxide

    2016-08-05 07:45:55ZHOUJianboFUZaihuiLIUYachunXUChao
    關(guān)鍵詞:苯酚分子篩

    ZHOU Jian-bo, FU Zai-hui, LIU Ya-chun, XU Chao

    (1. Basic Medical College of Changsha Medical University, Changsha 410219, China;2. College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China )

    ?

    An Overall Green Process from Preparation of FeCl3Modified β Zeolites to Its Use in Catalyzing Direct Hydroxylation of Benzene with Hydrogen Peroxide

    ZHOU Jian-bo1, FU Zai-hui2*, LIU Ya-chun2, XU Chao1

    (1. Basic Medical College of Changsha Medical University, Changsha 410219, China;2. College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China )

    AbstractFeCl3modifiedβzeolite catalyst was prepared by using a convenient solid-state ion exchange instead of a traditional ion exchange and characterized by XRD, TG-DSC, and low temperature N2adsorption methods. The catalyst is active and selective for the direct hydroxylation of benzene to phenol with hydrogen peroxide (H2O2). And its phenol selectivity can be further improved through tailoring its surface hydrophobicity/hydrophilicity with dimethyldiethoxysilane (DDS) to restrain the sequent oxidation of phenol. In addition, it can be recovered and reused for three times with little loss of reactivity. Hence, an overall green process from the preparation of the catalyst to its application in catalytic reaction has been establised here.

    Key wordsBenzene; FeCl3modifiedβzeolites; hydroxylation; phenol; solid-state ion exchange

    Phenol is a very important organic intermediate in the field of fine chemicals production[1]. Its traditional production process, so-called cumene process[2], is environmentally unacceptable because it generally involves multi-step syntheses and generates large quantities of waste products. Therefore, one of the foremost challenges currently facing the chemical industry is to look for a cleaner, safer, and more environmentally friendly one-step process to produce phenol. Nowadays, the methods for direct hydroxylation of benzene to phenol with H2O2in the liquid phase[3-4], with N2O[5]or O2[6]in vapor phase have attracted much attention. The methods possess the outstanding merits such as short synthesis route, higher atom efficiency and near non-pollution. So they are considered to be clean and environmentally friendly and likely replace the cumene method in the future. Among the processes, direct hydroxylation of benzene with H2O2to phenol is one of the most promising routes due to water as the only byproduct and the mature technology for production of H2O2[7]. At present, the main attention is focused on seeking the efficient oxidation catalyst for the process. Various catalysts can be applied to the process, mainly including TS zeolite and Cu, Fe, and V containing catalysts[8-10]. The Fe-containing catalyst for the process is of great interest because of its low cost and high efficiency[11].

    The preparation method of catalysts has a significant effect on the performance. The traditional methods such as the framework substitution[12], surface grafting[13], solution ion exchange[14]and impregnation[15]are usually employed to prepare transition metals modified zeolites. These methods commonly have some defects such as a tedious preparation process, low production efficiency and environmental pollution. The solid state dispersion or ion exchange of transition metal compounds on the porous metal oxides and zeolites, which has been widely reported[16], is a suitable preparation method for the unstable compounds in aqueous solution like some metal chlorides. And this modification method is convenient, efficient and environmentally friendly in comparison with the traditional methods. For example, ZnCl2modifiedβ-Al2O3and NaY catalysts prepared by this method were reported to be excellent for vapor phase O-alkylation of catechol with methanol and high regioselective Diels-Alder reaction of myrcene and acrolein, respectively[17].

    In addition, hydroxylation of benzene is a potentially successive reaction, in which phenol as primary target product is more susceptible to oxidation than the reactant benzene. As a result, the selectivity to phenol is reduced. Although the selectivity of the catalysts can often be enhanced by modification of their shape selectivity, this approach is generally ineffective in the hydroxylation of benzene. So, how to control the successive oxidation reactions to increase the phenol selectivity remains to be a challenge for chemists. A method of controlling the selectivity of a successive oxidation process, named chemical affinity selectivity, has been reported in the literature[18]. In this approach, the affinity of the catalyst surface to substrates is controlled by tailoring surface hydrophobicity/hydrophilicy, thereby enhancing the product selectivity. However, the number of related reports on this approach is still very limited.

    Tab.1 The preparation method of phenol

    In this paper, we report an overall green process, which involves the preparation of FeCl3modifiedβzeolites by use of the simple solid state reaction and their catalytic application in the direct hydroxylation of benzene with H2O2as an green oxidant, and explore to improve the selectivity for phenol through tailoring their surface’s hydrophobicity/hydrophilicity with dimethyldiethoxysilane (DDS) and check their catalytic stability by recycling tests.

    1Experimental

    1.1Catalysts preparation

    Hβzeolite support (the molar ratio of Si to Al for 30) was supplied by Changling Petroleum Chemical Engineering Company of Hunan Yueyang of China, and was first calcined in air at 500 ℃ for 6 h prior to use. FeCl3modifiedβcatalysts were prepared by solid state dispersion method with anhydrous ferric chloride (loading of FeCl3for 1.0 mmol.g-1) as the Fe(III) source. Mixing them up with mechanical grind, then calcining them in the nitrogen atmosphere at different temperature gave the modified catalysts (denoted as Fe-β(T)). After that, the Fe-β(500) catalyst calcined at 500 ℃ was further dealt with an appropriate amount of dimethyldiethoxysilane (DDS) in toluene solvent, and then extracted with toluene and washed with ethanol, with the obtained catalyst noted as Fe-β(500,SM).

    1.2Catalysts characterization

    The XRD measurements of the samples were carried out with a Dangong Y-2000 diffractometer with Cu Kα radiation (λ=1.541 75 ?) , a scan speed of 2°·min-1and a 0.06° step size from 4° to 40°. Their TG-DSC measurements were performed on a NETZSCH STA409PC from 25 ℃ to 1 000 ℃ with a heating rate of 10 ℃·min-1in the N2atmosphere (flow rate 20 mL/min). The specific surface area and pore volume of the samples were measured by MICROMERIPICS ASAP 2 400 low temperature N2adsorption apparatus on the basis of the China standard GB/T 5816-1995. The actual iron content of the calcined samples was measured by the chemical titration method.

    1.3Catalytic testing

    Hydroxylation of phenol was carried out in a 150 mL double-necked round-bottom flask fitted with a water condenser and kept in an oil bath. In a typical reaction, 0.025 g of catalysts, 2 mL (22.5 mmol) of benzene and 14 mL of acetonitrile were added successively into the reactor. After the mixture was heated to the reaction temperature (65 ℃) under vigorous magnetic stirring, 2.4 mL of 30 wt.% H2O2(22.5 mmol) was added into the reactor and the reaction was proceeded for 5 h. The reaction products were analyzed by Agilent 1 100 HPLC (Eclipse C18, 4.6×250 mm, eluent methanol/water 55/45, flow rate 0.8 mL/min, UV detectorλ272 and 254 nm).

    2Results and discussion

    2.1Catalyst characterization

    The effects of calcination temperature on the crystal structure and physical properties of parent zeolite were checked by use of XRD and low temperature N2adsorption, and the obtained results were shown in Fig.1 and Tab.2, respectively. Decreasing trends in the characteristic diffraction peaks or the relative crystal degree (see Fig.1 and Tab.2) and the specific area (Sg) and porous volume (PV) of the parent zeolite with the calcination temperature of Fe-βwere observed. For example, when the calcination temperature of Fe-βincreased from 400 ℃ to 600 ℃, the crystal degree of the parent zeolite was reduced by about 80%, which is in accordance with the decrease in itsSgandPV. This indicates that structure deterioration of the zeolite has occurred in the overall solid state reaction process, which is likely due to the formation of HCl in the solid ion exchange process. In addition, the changes in itsSgandPVbefore and after the modification of FeCl3clearly indicate that FeCl3has been introduced inside the pores of Hβ. However, at too high calcination temperature (more than 600 ℃), characteristic diffraction peaks of the parent zeolite (see the Fe-β(950)) have disappeared, indicating that its crystal structure has completely disrupted. This can be further confirmed from the results that the measuredSgandPVare abnormally low (see Tab.2). From the Table, it is found that the lattice volume of all the Fe-βsamples before collapse was larger than that of the Hβand it increased with the increasing calcination temperature. This should be due to the framework incorporation of iron ions, leading to the crystal cell expansion of Hβ.

    The solid state reaction of Hβwith FeCl3was further studied by use of TG-DSC apparatus.Typical TG-DSC curves of uncalcined Fe-βand Hβcalcined at 500 ℃ were presented in Fig. 2. The significant loss of weight in the TG-DSC curves of Fe-βcould be observed in 100~600 ℃, suggesting that the solid state reaction of Hβwith FeCl3mainly occured before 600 ℃. The curves could be clearly divided into three stages (denoted as a1-b1/ a-b, b1-c1/b-c and c1-d1/c-d stages). The first stage (a1-b1/ a-b) with about 5% loss of weight, which is the fast exothermal process, appears in the low temperature range less than the melting point of FeCl3(301 ℃), corresponding to the pure solid state ion exchange process. The second stage (b1-c1/b-c) with about 1% loss of weight, which is the exothermic-endothermic balance process, just appears in the melting range of FeCl3, indicating that the melting, dispersion and ion exchange processes of FeCl3inside the pores of Hβsimultaneously were taking place in this stage. The third stage has the biggest loss of weight (about 9%) and broader and stronger exothermic peak. In this stage, the most important modified process was happening, which corresponded to the melting state ion exchange process. However, after the temperature goes beyond 600 ℃, a broadest and strongest exothermic peak within 650~1 048 ℃ for the Fe-βand 800~1 129 ℃ for the Hβcan be observed in the DSC curves of two samples, and they should correspond to the framework collapse process of the zeolite. But this peak on the Fe-βbecame shifted to the lower temperature range compared to that of Hβ, further confirming that the introduction of FeCl3easily causes the framework collapse of Hβ. Therefore, it should be reasonable to conclude that a relative low calcination temperature (500 ℃) is needed to prepare the catalysts, which can not only enhance the solid state reaction but also efficiently reduce the drop in crystal degree of the Hβ.

    Fig.1    XRD patterns of Fe-β calcined at (a) 400 ℃,           Fig.2    The TG and DSC curves of Hβ (1-1 and 1-2) and    (b) 500 ℃, (c) 600 ℃ and (d) 950 ℃   uncalcined Fe-β (2-1 and 2-2)

    The measured actual iron contents of calcined catalysts are listed in Tab.2. The iron content of the catalyst decreased with the increase of calcination temperature, and the reason may be that FeCl3with a boiling point of 315℃ was volatile during the calcination process, especially when the calcination temperature became higher.

    2.2Hydroxylation of benzene

    Hydroxylation of benzene with H2O2was employed to examine the catalytic property of FeCl3modified catalysts. The obtained results are shown in Tab.2. The pure Hβwas found to be inactive for this reaction, but, after the introduction of FeCl3, it became both reactive and selective to phenol, indicating that the iron site on the Fe-βplayed a key role in the hydroxylation of benzene. And the reactivity and selectivity of the Fe-βare dependent of its preparation temperature. Among them, Fe-βcalcined at 500 ℃ gave the highest reactivity (ETOF of the Fe-β(500) for 84). However, the catalysts prepared at the higher calcination temperature showed poor ETOFs, likely, due to the structure collapses of these samples to make iron active sites embedded, as shown by the above characterized peaks.

    Noteworthy, phenol selectivity is not very excellent over the Fe-βcatalyst because of its deep oxidation. In order to improve phenol selectivity, the Fe-β(500) was further treated with DDS. The results are shown in Tab.2 as well. An obviously improved performance, in which benzene conversion only slightly decreased but phenol selectivity increased about 15%, was observed over the Fe-β(500,SM), indicating that the increase in its surface hydrophobicity should have played a significant role in restraining the deep oxidation of phenol and improving phenol selectivity in agreement with the previous report[20].

    Tab.2 Characterized and benzene hydroxylation results of Hβ and FeCl3 modified catalysts

    2.3Effects of process parameters

    Fe-β(500,SM) with the maximum ETOF was employed to examine the impact of various process parameters such as its amount, molar ratio of benzene to oxidant, reaction temperature and addition of water on its catalytic properties. The results are presented in Tables 3 and 4. A general increasing trend in reactivity with catalyst and oxidant amounts, as well as temperature was observed. Too much catalyst or H2O2or too high temperature does not necessarily lead to the increase in reactivity.In some cases, they even inversely caused slightly worse results. The impact of catalyst amount and temperature on phenol selectivity has similar change patterns. That is, the selectivity firstly ascended and then descended as these process parameters were increased. This implies that these parameters all possess an optimal value (catalyst for 0.025 g and temperature for 65 ℃) for obtaining the highest phenol selectivity. And another decreasing trend in selectivity with increasing H2O2amount is observed. Considering phenol yield and H2O2effective conversion, H2O2amount with equal molar ratio to benzene is found to be suitable. Besides, the effect of adding water on benzene hydroxylation is apparent (shown as Tab.4), and it can result in an increase in conversion but it also lead to the decrease in phenol selectivity with a significant increase in catechol and hydroquinone formed by further hydroxylation of phenol. It is well known that the mechanism of aromatics hydroxylation over the transition metal iron catalysts is a typical free radical one[20], and water is an excellent solvent of phenol hydroxylation because it can play a key role in stabilizing the hydroxyl radicals (·OH) produced by H2O2. Therefore, this can easily be comprehended why adding water could considerably enhance the sequent hydroxylation of the formed phenol.

    Tab.3 Effects of Fe-β(500,SM) and H2O2 amounts as well as reaction temperature on benzene hydroxylation

    Tab.4 Effects of H2O2 amount on benzene hydroxylation over Fe-β(500,SM)a

    aThe typical reaction conditions described in the experimental section were employed for benzene hydroxylation, the obtained products mainly included the aimed product phenol and the by-products such as quinone derivatives, unidentified products and a trace amount of catechol and hydroquninone.

    Finally, the possibility of recycling Fe-β(500,SM) was also checked under the optimal reaction conditions with acetonitrile as solvent. The recycling results showed that about 36.1% of benzene conversion and 89.0% of phenol selectivity could be maintained after three cycles. These results are similar to those over the fresh catalyst, indicating that the active sites (iron ions) on the catalyst are very stable and their leaching occurs little. This could be proved by the measured iron contents of fresh catalyst (0.62 mmol/g) and recycled catalyst (0.60 mmol/g) nearly being the same. This also implies that FeCl3is mainly exchanged in the cationic sites inside the pores of H-βwith abundant exchanged cationic sites, and these exchanged iron ions are not easily washed away in the reaction process. As a result, it can be recovered and reused for three times without observable loss of reactivity.

    3Conclusions

    The solid state ion exchange method as a convenient, high-efficient and practical modification approach has been successfully employed to prepare the FeCl3modified beta zeolite catalyst (Fe-β). XRD, TG-DSC and low temperature N2adsorption measurements all confirmed that the key factor of preparing an excellent Fe-βcatalyst is to select a suitable calcination temperature. And the incorporation of iron ions into the framework ofβzeolite has occurred in the solid-state reaction process. These Fe-βcatalysts are reactive and selective in hydroxylation of benzene to phenol with H2O2. Among them, the Fe-βcalcined at 500 ℃ gives the highest ETOF (84), and its phenol selectivity can further be increased by about 15% after it is treated with DDS, suggesting that the increase in hydrophobicity on the DDS treated catalyst’s surface played a key role in restraining the successive oxidation of phenol and increasing its selectivity. Furthermore, the Fe-βcatalyst is very stable and its active iron sites are little leached away in the reaction process. As a result, it can be recovered and reused for three times without significant loss of reactivity.

    References:

    [1]HOCKING M B, INTIHAR D J. Oxidation of phenol by aqueous hydrogen peroxide catalyzed by ferric ion-catechol complexes [J]. J Chem Technol Biotechnol, 1985,35(7):365-381.

    [2]朱麗娜,李洪濤,姜道華,等.我國苯酚丙酮生產(chǎn)技術(shù)及市場[J].化工技術(shù)與開發(fā), 2014,43(1):35-37.

    [3]MIYAKE T, HAMADA M, SASAKI Y,etal. Direct synthesis of phenol by hydroxylation of benzene with oxygen and hydrogen [J]. Appl Catal A: Gen, 1995,131(1):3342.

    [4]ANTONYCAJ A, SRINIVASAN K. One-step hydroxylation of benzene to phenol over layered double hydroxides and their derived forms[J] .Catal Surv Asia, 2013,17(2):47-70.

    [5]YURANOV I, BULUSHEV D A, RENKEN A,etal. Benzene to phenol hydroxylation with N2O over Fe-Beta and Fe-ZSM-5: Comparison of activity per Fe-site[J]. Appl Catal A: Gen, 2007,319(1):128-136.

    [6]GE H Q , LENG Y, ZHOU C J,etal. Direct hydroxylation of benzene to phenol with molecular oxygen over phase transfer catalysts: cyclodextrins complexes with vanadium-substituted heteropoly acids[J]. Catal Lett, 2008,124(3):324-329.

    [7]RENUKA N K. A green approach for phenol synthesis over Fe3+/MgO catalysts using hydrogen peroxide[J].Mol Catal A: Chem, 2010,316(1-2):126-130.

    [8]KROMER A, RODUNER E. Catalytic oxidation of benzene on liquid ion-exchanged Cu,H(Na)/ZSM-5 and Cu,H(Na)/Y zeolites: spin trapping of transient radical intermediates[J]. Chem Plus Chem, 2013,78(3):268-273.

    [9]GOPALAKRISHNAN S, ZAMPIERI A, W. Schwieger.Mesoporous ZSM-5 zeolites via alkali treatment for the direct hydroxylationof benzene to phenol with N2O[J]. Catalysis, 2008,260(1): 193-197.

    [10]高丙瑩,吳娟,何紅運. 新型 Ti-Co-β沸石的合成、表征及催化性能的研究[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報, 2014,37(2):40-46.

    [11]IMRE B, HALASZ J, FREY K,etal. Oxidative hydroxylation of benzene and toluene by nitrous oxide over Fe-containing ZSM-5 zeolites[J]. React Kinet Catal Lett, 2001,74(2):377-383.

    [13]GANESAN V, PAL M, TIWARI M. Manganese-Schiff base complex immobilized silica materials for electrocatalytic oxygen reduction[J]. Bull Mater Sci, 2014,37(3):623-628.

    [14]SHERRY H S, WALTON H F. The ion-exchange properties of zeolites. II. Ion exchange in the synthetic zeolite Linde 4A[J]. J Phys Chem, 1967, 71(5):1457-1465.

    [15]DORADO F, ROMERO R, CANIZARES P,etal. Influence of palladium incorporation technique onn-butane hydroisomerization over HZSM-5/bentonite catalysts[J]. Appl Catal A: Gen, 2004,274(1/2):79-85.

    [16]DIMITROVA R, NEINSKA Y, MIHLYI M,etal. Reductive solid-state ion exchange as a way to vanadium introduction in BZSM and BBeta zeolites[J]. Appl Catal A: Gen, 2004,266(1):123-127.

    [17]FU Z H, YU Y, YIN D L,etal.Vapor-phase highly selective O-methylation of catechol with methanol over ZnCl2modifiedγ-Al2O3catalysts[J]. Mol Catal A Chem, 2005,232(1):69-75 .

    [18]HE J, GUO Z Y, MA H,etal. Enhancing the selectivity of benzene hydroxylation by tailoring the chemical affinity of the MCM-41 catalyst surface for the reactive molecules[J].J Catal, 2002,212(1):22-32.

    [19]FUJIMOTO K, TOKUDA Y, AEKAWA M,etal. ChemInform abstract: selective and one-pot formation of phenols by anodic oxidation[J].Tetrahedron, 1996,52(11):3889-3896

    [20]LIU C B, SHAN Y K, YANG X G,etal. Iron(II)-8-quinolinol/MCM-41-catalyzed phenol hydroxylation and reaction mechanism[J]. J Catal, 1997,168(1):35-41.

    (編輯WJ)

    DOI:10.7612/j.issn.1000-2537.2016.04.007

    收稿日期:2016-05-03

    基金項目:湖南省自然科學(xué) 項目(10JJ2007;11JJ6008);湖南省教育廳自然科學(xué) 項目(13C1127)

    *通訊作者,E-mail:fzhhnu@tom.com

    中圖分類號TQ203.2;O643.32

    文獻標(biāo)識碼A

    文章編號1000-2537(2016)04-0041-06

    FeCl3改性β沸石的制備過程及在苯的羥基化催化反應(yīng)的應(yīng)用研究

    周建波1, 伏再輝2*, 劉亞純2, 徐超1

    (1.長沙醫(yī)學(xué)院基礎(chǔ)醫(yī)學(xué)院,中國 長沙410219;2.湖南師范大學(xué)化學(xué)化工研究院,中國 長沙410081)

    摘要利用固態(tài)離子交換的方法制備出FeCl3改性的β沸石固相催化劑.采用XRD, TG-DSC及低溫N2吸附法對所制的催化劑進行了表征.用H2O2作氧化劑將苯催化氧化成苯酚考察了催化劑的催化活性和選擇性.通過調(diào)節(jié)二甲基二乙氧基硅烷(DDS)表面的親水基和疏水基可以阻止苯酚進一步發(fā)生氧化反應(yīng)從而提高催化反應(yīng)的選擇性.此外,在催化劑的回收實驗中發(fā)現(xiàn)催化劑可以重復(fù)使用3次,而其催化活性沒有太大的變化.所以從催化劑的制備到催化劑的催化過程都是綠色環(huán)保的.

    關(guān)鍵詞苯;FeCl3改性的β分子篩;羥基化;苯酚;固態(tài)離子交換

    猜你喜歡
    苯酚分子篩
    沸石分子篩發(fā)展簡述
    云南化工(2021年10期)2021-12-21 07:33:24
    5種沸石分子篩的吸附脫碳對比實驗
    煤氣與熱力(2021年9期)2021-11-06 05:22:56
    毛細(xì)管氣相色譜法測定3-氟-4-溴苯酚
    云南化工(2020年11期)2021-01-14 00:50:54
    亞洲將引領(lǐng)全球苯酚產(chǎn)能增長
    負(fù)載型催化劑(CuO/TUD-1,CuO/MCM-41)的制備及其在一步法氧化苯合成苯酚中的應(yīng)用
    煅燒高嶺土吸附Zn2+/苯酚/CTAB復(fù)合污染物的研究
    ZSM-5分子篩膜制備方法的研究進展
    簡述ZSM-5分子篩水熱合成工藝
    SAPO-56分子篩的形貌和粒徑控制
    4-(2,4-二氟苯基)苯酚的合成新工藝
    超碰成人久久| 亚洲午夜理论影院| 成人18禁在线播放| 精品一区二区三区四区五区乱码| 国产精品久久久久久人妻精品电影 | 精品国产超薄肉色丝袜足j| 精品卡一卡二卡四卡免费| 搡老乐熟女国产| 婷婷丁香在线五月| 日本wwww免费看| 大香蕉久久成人网| 久久久国产成人免费| 操出白浆在线播放| 汤姆久久久久久久影院中文字幕| 69av精品久久久久久 | 久久热在线av| 国产精品一区二区在线不卡| 欧美日韩亚洲国产一区二区在线观看 | 曰老女人黄片| 亚洲色图综合在线观看| 国产亚洲午夜精品一区二区久久| 91麻豆av在线| 国产成人一区二区三区免费视频网站| 嫁个100分男人电影在线观看| 欧美精品一区二区大全| 国产精品久久久久久人妻精品电影 | 丰满迷人的少妇在线观看| 夫妻午夜视频| 国产成人欧美在线观看 | 亚洲一区二区三区欧美精品| 电影成人av| 精品国产乱码久久久久久男人| 女人久久www免费人成看片| 国产欧美日韩一区二区三| 丝瓜视频免费看黄片| 久久久精品区二区三区| 在线观看www视频免费| 亚洲熟女毛片儿| 国产日韩欧美视频二区| 亚洲精品一卡2卡三卡4卡5卡| 老司机深夜福利视频在线观看| 丁香六月欧美| 精品高清国产在线一区| 国产免费视频播放在线视频| 国产精品电影一区二区三区 | 成年女人毛片免费观看观看9 | 三上悠亚av全集在线观看| 亚洲成人手机| 国产精品久久电影中文字幕 | 久久精品国产亚洲av高清一级| 精品国产一区二区三区久久久樱花| 国产精品.久久久| 国产av一区二区精品久久| avwww免费| 美女午夜性视频免费| 搡老岳熟女国产| 亚洲美女黄片视频| 亚洲一区中文字幕在线| 一级片'在线观看视频| 国产精品亚洲av一区麻豆| 久久久久久亚洲精品国产蜜桃av| 热99re8久久精品国产| 嫁个100分男人电影在线观看| 亚洲国产欧美一区二区综合| 成人免费观看视频高清| 亚洲成av片中文字幕在线观看| 亚洲精品一二三| 99re在线观看精品视频| 免费少妇av软件| 国产精品久久久av美女十八| 丁香欧美五月| 免费黄频网站在线观看国产| 日本五十路高清| 成人av一区二区三区在线看| 老熟妇仑乱视频hdxx| 丰满饥渴人妻一区二区三| 一区二区三区激情视频| 亚洲欧美日韩另类电影网站| 亚洲专区国产一区二区| av免费在线观看网站| 亚洲中文字幕日韩| 老熟妇乱子伦视频在线观看| 热99国产精品久久久久久7| 精品卡一卡二卡四卡免费| 天天躁日日躁夜夜躁夜夜| 在线观看免费高清a一片| 日本av手机在线免费观看| 亚洲精品久久午夜乱码| 青青草视频在线视频观看| 人人妻人人添人人爽欧美一区卜| 国产精品欧美亚洲77777| 久久这里只有精品19| 精品一区二区三区四区五区乱码| 中文字幕人妻熟女乱码| 在线观看免费午夜福利视频| 男人操女人黄网站| 中文字幕人妻熟女乱码| 别揉我奶头~嗯~啊~动态视频| 久久午夜亚洲精品久久| 久久精品亚洲av国产电影网| 青草久久国产| 18在线观看网站| av福利片在线| av片东京热男人的天堂| 别揉我奶头~嗯~啊~动态视频| 99热国产这里只有精品6| 极品人妻少妇av视频| 首页视频小说图片口味搜索| 女警被强在线播放| 午夜老司机福利片| 熟女少妇亚洲综合色aaa.| 老司机福利观看| 美女扒开内裤让男人捅视频| 欧美精品av麻豆av| 国产高清激情床上av| 国产无遮挡羞羞视频在线观看| 国产精品一区二区精品视频观看| 色老头精品视频在线观看| 在线观看66精品国产| 国产精品亚洲一级av第二区| 亚洲专区国产一区二区| 在线观看66精品国产| 欧美日韩黄片免| 亚洲专区中文字幕在线| 日韩欧美国产一区二区入口| 国产成人欧美| 午夜视频精品福利| 999精品在线视频| 亚洲av成人不卡在线观看播放网| 三上悠亚av全集在线观看| 在线观看人妻少妇| 午夜福利视频在线观看免费| 免费黄频网站在线观看国产| 国产又爽黄色视频| 久热这里只有精品99| 久久中文看片网| 亚洲中文av在线| 免费高清在线观看日韩| 91av网站免费观看| 免费女性裸体啪啪无遮挡网站| cao死你这个sao货| 制服诱惑二区| 18禁黄网站禁片午夜丰满| 精品久久久久久电影网| 国产成人欧美在线观看 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产熟女午夜一区二区三区| 女人精品久久久久毛片| 国产激情久久老熟女| 午夜成年电影在线免费观看| 啦啦啦中文免费视频观看日本| 美女福利国产在线| 免费日韩欧美在线观看| 侵犯人妻中文字幕一二三四区| 日本黄色视频三级网站网址 | www.自偷自拍.com| 久久狼人影院| 久久久水蜜桃国产精品网| 男女之事视频高清在线观看| 十八禁人妻一区二区| 欧美一级毛片孕妇| 成人18禁高潮啪啪吃奶动态图| 国产av国产精品国产| 香蕉久久夜色| 亚洲熟女毛片儿| 国产xxxxx性猛交| 久久久国产精品麻豆| 亚洲av欧美aⅴ国产| 香蕉国产在线看| 国产精品秋霞免费鲁丝片| √禁漫天堂资源中文www| 久久久久久久久免费视频了| 午夜福利影视在线免费观看| 不卡av一区二区三区| 亚洲成人免费电影在线观看| 亚洲全国av大片| 在线观看免费视频网站a站| 国产欧美亚洲国产| 一级片免费观看大全| 18禁黄网站禁片午夜丰满| 男女高潮啪啪啪动态图| 中文字幕av电影在线播放| 久久国产亚洲av麻豆专区| 又黄又粗又硬又大视频| 欧美成人午夜精品| 午夜福利视频在线观看免费| 欧美老熟妇乱子伦牲交| 国产免费视频播放在线视频| 亚洲国产欧美一区二区综合| 一级,二级,三级黄色视频| 国产精品美女特级片免费视频播放器 | 人人澡人人妻人| 色播在线永久视频| 国产精品一区二区精品视频观看| 色视频在线一区二区三区| 久久国产亚洲av麻豆专区| 日韩中文字幕视频在线看片| 免费av中文字幕在线| 国产av国产精品国产| 国产精品熟女久久久久浪| 日韩制服丝袜自拍偷拍| 国产精品香港三级国产av潘金莲| 美女高潮到喷水免费观看| 亚洲av国产av综合av卡| 亚洲精品乱久久久久久| 成人18禁高潮啪啪吃奶动态图| 757午夜福利合集在线观看| 亚洲精品在线观看二区| 国产精品免费一区二区三区在线 | 免费看a级黄色片| av欧美777| 精品久久久久久久毛片微露脸| 视频在线观看一区二区三区| 色综合欧美亚洲国产小说| 99国产精品99久久久久| 午夜两性在线视频| 国产又爽黄色视频| 香蕉丝袜av| 18禁黄网站禁片午夜丰满| 丰满人妻熟妇乱又伦精品不卡| 91九色精品人成在线观看| 少妇粗大呻吟视频| av视频免费观看在线观看| 国产男女超爽视频在线观看| 国产av又大| svipshipincom国产片| 99九九在线精品视频| 另类精品久久| 日韩视频在线欧美| 黄色视频,在线免费观看| 久久午夜亚洲精品久久| 色尼玛亚洲综合影院| 激情在线观看视频在线高清 | 午夜激情av网站| 男人舔女人的私密视频| 在线观看免费视频网站a站| 国产在线免费精品| 免费看十八禁软件| 在线av久久热| 少妇猛男粗大的猛烈进出视频| 黄色视频在线播放观看不卡| 亚洲伊人色综图| 欧美黄色片欧美黄色片| 久久天躁狠狠躁夜夜2o2o| 少妇的丰满在线观看| 日本av手机在线免费观看| 黄网站色视频无遮挡免费观看| 国产xxxxx性猛交| 亚洲性夜色夜夜综合| 欧美精品一区二区免费开放| 欧美成人免费av一区二区三区 | bbb黄色大片| 日韩有码中文字幕| 男女高潮啪啪啪动态图| 黄色a级毛片大全视频| 国产亚洲精品一区二区www | 又黄又粗又硬又大视频| 久久人人97超碰香蕉20202| 国产精品.久久久| 午夜精品久久久久久毛片777| 黑人欧美特级aaaaaa片| 亚洲成人免费电影在线观看| 日本精品一区二区三区蜜桃| 人成视频在线观看免费观看| 精品久久蜜臀av无| 91九色精品人成在线观看| 动漫黄色视频在线观看| 亚洲av美国av| 啪啪无遮挡十八禁网站| 国产精品亚洲av一区麻豆| 国产免费视频播放在线视频| 国产无遮挡羞羞视频在线观看| 国产91精品成人一区二区三区 | 丰满少妇做爰视频| 嫩草影视91久久| 精品少妇黑人巨大在线播放| 一边摸一边抽搐一进一小说 | 亚洲国产中文字幕在线视频| 我要看黄色一级片免费的| 久久人人97超碰香蕉20202| 一进一出好大好爽视频| 国产有黄有色有爽视频| 国产精品亚洲av一区麻豆| 欧美 亚洲 国产 日韩一| 日本一区二区免费在线视频| 老司机福利观看| 美女国产高潮福利片在线看| 亚洲精品一二三| 亚洲天堂av无毛| 人人妻人人添人人爽欧美一区卜| 亚洲专区字幕在线| 亚洲国产毛片av蜜桃av| 亚洲一码二码三码区别大吗| av网站在线播放免费| 一本大道久久a久久精品| 国产亚洲精品第一综合不卡| 久久人妻福利社区极品人妻图片| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区乱码不卡18| 丁香六月天网| 欧美日韩亚洲综合一区二区三区_| 麻豆国产av国片精品| 99国产精品99久久久久| 国产男靠女视频免费网站| 俄罗斯特黄特色一大片| av网站在线播放免费| 亚洲一区中文字幕在线| h视频一区二区三区| 夜夜爽天天搞| 中文字幕最新亚洲高清| 亚洲成人免费电影在线观看| 国产欧美日韩精品亚洲av| 日本av免费视频播放| 脱女人内裤的视频| 午夜精品国产一区二区电影| 国产午夜精品久久久久久| 波多野结衣一区麻豆| 中文字幕av电影在线播放| 狠狠精品人妻久久久久久综合| 视频区欧美日本亚洲| 亚洲人成电影免费在线| 精品卡一卡二卡四卡免费| 亚洲欧美色中文字幕在线| 99国产精品一区二区蜜桃av | 亚洲成a人片在线一区二区| 咕卡用的链子| 天天躁狠狠躁夜夜躁狠狠躁| 久久中文字幕一级| 国产亚洲欧美精品永久| 777久久人妻少妇嫩草av网站| 欧美黑人精品巨大| 中文欧美无线码| 国产精品电影一区二区三区 | 国产男靠女视频免费网站| 免费女性裸体啪啪无遮挡网站| 在线av久久热| 亚洲va日本ⅴa欧美va伊人久久| 男女无遮挡免费网站观看| 中亚洲国语对白在线视频| 国产高清videossex| 12—13女人毛片做爰片一| 老司机影院毛片| 欧美另类亚洲清纯唯美| 久久久久久免费高清国产稀缺| 天天操日日干夜夜撸| 成人影院久久| 美女视频免费永久观看网站| 日韩三级视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 欧美 亚洲 国产 日韩一| 久久毛片免费看一区二区三区| 成人黄色视频免费在线看| 黄色毛片三级朝国网站| 天天影视国产精品| 男女边摸边吃奶| 黄色毛片三级朝国网站| 亚洲成人免费av在线播放| 高清黄色对白视频在线免费看| 久久国产精品人妻蜜桃| 日韩制服丝袜自拍偷拍| 国产精品av久久久久免费| 熟女少妇亚洲综合色aaa.| 欧美亚洲日本最大视频资源| 精品久久久久久久毛片微露脸| 美女扒开内裤让男人捅视频| 婷婷成人精品国产| 欧美激情高清一区二区三区| 亚洲avbb在线观看| 久久久久久免费高清国产稀缺| 成人免费观看视频高清| av网站在线播放免费| 久久国产精品影院| 在线天堂中文资源库| 久久久久国产一级毛片高清牌| 成人特级黄色片久久久久久久 | 91国产中文字幕| 亚洲国产欧美网| 人妻 亚洲 视频| 美女主播在线视频| 中文字幕精品免费在线观看视频| 人妻 亚洲 视频| 中文字幕人妻熟女乱码| 老司机深夜福利视频在线观看| 亚洲精品久久成人aⅴ小说| 99热国产这里只有精品6| 99国产精品一区二区三区| 亚洲精品一二三| 操美女的视频在线观看| 欧美日韩av久久| 男女床上黄色一级片免费看| 夜夜夜夜夜久久久久| av免费在线观看网站| 欧美日本中文国产一区发布| 国产区一区二久久| 国产日韩欧美视频二区| 亚洲性夜色夜夜综合| 多毛熟女@视频| 午夜视频精品福利| 男女免费视频国产| 国产99久久九九免费精品| 天天影视国产精品| 中文欧美无线码| 一本大道久久a久久精品| 十八禁网站网址无遮挡| 18禁裸乳无遮挡动漫免费视频| 少妇 在线观看| 成人免费观看视频高清| 亚洲avbb在线观看| 纯流量卡能插随身wifi吗| 老鸭窝网址在线观看| 日日爽夜夜爽网站| 久久精品国产亚洲av香蕉五月 | 国产日韩欧美在线精品| 久久性视频一级片| 99九九在线精品视频| 国产一卡二卡三卡精品| 日本vs欧美在线观看视频| 麻豆乱淫一区二区| 亚洲人成77777在线视频| 欧美另类亚洲清纯唯美| 12—13女人毛片做爰片一| 久久精品国产亚洲av高清一级| 看免费av毛片| h视频一区二区三区| 性少妇av在线| 蜜桃国产av成人99| 久久精品国产亚洲av高清一级| svipshipincom国产片| 大型黄色视频在线免费观看| 亚洲黑人精品在线| 色综合婷婷激情| 欧美老熟妇乱子伦牲交| 国产97色在线日韩免费| 超碰97精品在线观看| 中文字幕人妻丝袜制服| 精品一区二区三区av网在线观看 | 天天添夜夜摸| 国产精品一区二区在线不卡| 精品亚洲成a人片在线观看| 黄片大片在线免费观看| 麻豆国产av国片精品| www.精华液| 亚洲专区中文字幕在线| 又大又爽又粗| 香蕉久久夜色| 亚洲熟妇熟女久久| 国产精品欧美亚洲77777| www.自偷自拍.com| 国产成人影院久久av| 久久精品亚洲精品国产色婷小说| 免费在线观看完整版高清| 狂野欧美激情性xxxx| 亚洲精品中文字幕在线视频| 亚洲国产欧美一区二区综合| 欧美日韩国产mv在线观看视频| 国产精品二区激情视频| 免费久久久久久久精品成人欧美视频| 成人国产一区最新在线观看| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品一区二区www | 亚洲男人天堂网一区| 2018国产大陆天天弄谢| 自线自在国产av| 免费人妻精品一区二区三区视频| 老熟妇乱子伦视频在线观看| 黑丝袜美女国产一区| 国产精品电影一区二区三区 | 国产一卡二卡三卡精品| 国产成人欧美在线观看 | 热re99久久精品国产66热6| 91av网站免费观看| 亚洲色图综合在线观看| 18禁国产床啪视频网站| 亚洲第一欧美日韩一区二区三区 | 岛国毛片在线播放| 中文字幕最新亚洲高清| 国产又爽黄色视频| 黄色片一级片一级黄色片| av免费在线观看网站| 久久人妻熟女aⅴ| av国产精品久久久久影院| 国产精品久久久人人做人人爽| 一本—道久久a久久精品蜜桃钙片| 男人舔女人的私密视频| 国产成人影院久久av| 欧美精品啪啪一区二区三区| 久久国产精品大桥未久av| 丁香六月欧美| 一本一本久久a久久精品综合妖精| 亚洲avbb在线观看| 欧美av亚洲av综合av国产av| 久久这里只有精品19| 久久婷婷成人综合色麻豆| 亚洲一区二区三区欧美精品| 夜夜骑夜夜射夜夜干| 成人亚洲精品一区在线观看| 精品国产乱子伦一区二区三区| 午夜福利一区二区在线看| 国产成人欧美在线观看 | 丝瓜视频免费看黄片| 后天国语完整版免费观看| 国产日韩欧美视频二区| 欧美精品一区二区大全| 国产精品熟女久久久久浪| 99精国产麻豆久久婷婷| 国产免费视频播放在线视频| 日本黄色日本黄色录像| 国产日韩一区二区三区精品不卡| 在线观看免费视频网站a站| 首页视频小说图片口味搜索| 亚洲专区中文字幕在线| 久久性视频一级片| 侵犯人妻中文字幕一二三四区| 免费女性裸体啪啪无遮挡网站| 9191精品国产免费久久| 国产三级黄色录像| 9色porny在线观看| 国产免费av片在线观看野外av| 熟女少妇亚洲综合色aaa.| 啦啦啦免费观看视频1| av片东京热男人的天堂| www.自偷自拍.com| 国产极品粉嫩免费观看在线| 12—13女人毛片做爰片一| 欧美日韩视频精品一区| 麻豆乱淫一区二区| 久久精品91无色码中文字幕| 手机成人av网站| 日本a在线网址| 无限看片的www在线观看| 国产av精品麻豆| 91精品国产国语对白视频| 国产欧美日韩精品亚洲av| 淫妇啪啪啪对白视频| 人人妻人人爽人人添夜夜欢视频| 正在播放国产对白刺激| 少妇被粗大的猛进出69影院| 欧美中文综合在线视频| 精品视频人人做人人爽| 精品午夜福利视频在线观看一区 | 91av网站免费观看| 亚洲av片天天在线观看| 国产一区二区激情短视频| xxxhd国产人妻xxx| 精品人妻熟女毛片av久久网站| 国产片内射在线| 精品人妻在线不人妻| 多毛熟女@视频| 国产高清激情床上av| 成人18禁在线播放| 国产精品久久久人人做人人爽| 夫妻午夜视频| 国产真人三级小视频在线观看| 可以免费在线观看a视频的电影网站| 国产高清激情床上av| 桃红色精品国产亚洲av| 久热爱精品视频在线9| 丝袜人妻中文字幕| 老司机在亚洲福利影院| 国产精品久久久久久人妻精品电影 | 天天添夜夜摸| 一级片'在线观看视频| 免费黄频网站在线观看国产| 国产精品亚洲av一区麻豆| 国产男靠女视频免费网站| 十分钟在线观看高清视频www| 黑人巨大精品欧美一区二区蜜桃| 无人区码免费观看不卡 | 天天操日日干夜夜撸| 亚洲午夜精品一区,二区,三区| 男女边摸边吃奶| 午夜激情av网站| 人成视频在线观看免费观看| 老司机在亚洲福利影院| 日韩人妻精品一区2区三区| 国产精品一区二区精品视频观看| 男女边摸边吃奶| 亚洲欧美激情在线| 欧美乱妇无乱码| 成人av一区二区三区在线看| 人人妻人人澡人人看| 国产日韩欧美亚洲二区| 18禁裸乳无遮挡动漫免费视频| 亚洲第一av免费看| 午夜成年电影在线免费观看| 久久天堂一区二区三区四区| 黄色怎么调成土黄色| 日韩三级视频一区二区三区| 91精品国产国语对白视频| 露出奶头的视频| 一本综合久久免费| 亚洲人成77777在线视频| 一本久久精品| 在线看a的网站| 黄色成人免费大全| 久久精品亚洲av国产电影网| 蜜桃国产av成人99| 亚洲熟女精品中文字幕| 国产无遮挡羞羞视频在线观看| cao死你这个sao货| 亚洲欧美一区二区三区久久| 久久精品aⅴ一区二区三区四区| 99热国产这里只有精品6| 国产精品99久久99久久久不卡| 亚洲中文av在线| 国产高清国产精品国产三级| 波多野结衣av一区二区av| 国产精品美女特级片免费视频播放器 | 国产精品一区二区在线观看99| 热99国产精品久久久久久7| 电影成人av| 日韩中文字幕欧美一区二区| 免费在线观看黄色视频的| 在线观看一区二区三区激情| 2018国产大陆天天弄谢|