張建國,邵擁軍,劉忠法,汪 程,鄒艷紅,李宏斌
(1. 中南大學 有色金屬成礦預測與地質環(huán)境監(jiān)測教育部重點實驗室,長沙 410083;2. 中南大學 地球科學與信息物理學院,長沙 410083;3. 有色金屬礦產地質調查中心,北京 100012)
河北平泉下金寶花崗斑巖鋯石U-Pb年代學、Hf同位素特征及其地質意義
張建國1, 2, 3,邵擁軍1, 2,劉忠法1, 2,汪 程1, 2,鄒艷紅1, 2,李宏斌1, 2
(1. 中南大學 有色金屬成礦預測與地質環(huán)境監(jiān)測教育部重點實驗室,長沙 410083;
2. 中南大學 地球科學與信息物理學院,長沙 410083;
3. 有色金屬礦產地質調查中心,北京 100012)
下金寶巖體位于永安-下營坊-毛家溝構造巖漿巖活動帶上,與本區(qū)金、銀、銅等多金屬成礦關系密切。對下金寶含礦花崗斑巖的鋯石進行LA-MC-ICP-MS U-Pb年代學和微量元素地球化學研究,巖體鋯石U-Pb年代學表明,鋯石206Pb/238U加權平均年齡為(158.0±2.5) Ma(1σ,MSWD為0.76,n=16),表明該巖體形成于燕山早期。鋯石 Ti溫度計計算結果顯示,下金寶巖體中鋯石的結晶溫度除一個測點小于 700 ℃外,其余測點溫度均大于700 ℃,表明鋯石結晶于形成深度較深、溫度較高的巖漿。鋯石εHf(t)為-10.913~-7.5828,均為負值,Hf同位素特征表明,下金寶巖體主要起源于下地殼巖石的部分熔融,形成于由擠壓向伸展轉換的大地構造環(huán)境中。其動力學機制如下:燕山早期華北地塊發(fā)生巖漿底侵作用,下地殼巖石重熔,并伴有部分地幔物質的參與,形成深部巖漿房,在深部壓力作用下,原始巖漿沿深斷裂上升,巖漿在演化過程中發(fā)生結晶分異作用,導致巖漿出溶流體,形成富水的巖漿熱液,在近地表伴隨溫度和壓力的降低,巖漿冷凝形成本區(qū)含礦斑巖體。
鋯石U-Pb年代學;鋯石Hf同位素;成巖過程;成巖動力學;下金寶巖體
下金寶礦床位于華北地臺北緣多金屬成礦集中區(qū)內,處于華北地臺北緣弧形斷裂帶與北北東向斷裂帶交匯部位。華北地臺北緣金礦床(點)星羅密布,作為我國金的重要產地,前人在成礦作用[1-3]、構造特征[4]、成礦規(guī)律[5]等方面做了大量研究工作,積累了豐富的資料,認為中生代以來的構造-巖漿活動與本區(qū)金的成礦作用有密切的聯(lián)系。盡管在大區(qū)域上積累豐富的資料,但對下金寶礦床的研究較少,主要集中于流體包裹體[6]、成礦作用[7]及礦床成因[8]等方面。區(qū)內巖漿巖發(fā)育,并且與成礦關系密切,但前人對巖體研究較少,關于本區(qū)與成礦關系密切的下金寶巖體的成巖年齡、成巖環(huán)境以及巖體成因,目前鮮見有報道。本文作者首次通過單顆粒鋯石LA-MC-ICP-MS 鋯石U-Pb定年及原位微區(qū) Hf同位素分析,對下金寶巖體的物源、形成環(huán)境、侵位時代及成巖機制進行探討,豐富本區(qū)的研究成果,為本區(qū)成巖成礦環(huán)境、成巖成礦時代及成礦動力學背景的研究提供新的參考。
下金寶金礦區(qū)位于華北地臺龍須門中生代次火山巖盆地的東北緣[6],是永安-下營坊-毛家溝構造巖漿活動帶的重要組成部分(見圖1)。礦區(qū)出露地層主要有太古界遷西群拉馬溝組灰綠色斜長角閃片麻巖;元古界長城系常州溝組(Chc)、大洪峪組(Chd)和高于莊組(Chg)石英砂巖、泥灰質白云巖、白云質灰?guī)r;元古界薊縣系霧迷山組(Jxw)及楊莊組(Jxy)碳酸鹽巖。礦區(qū)斷裂構造、褶皺構造和接觸帶構造極為發(fā)育,其中,斷裂構造可分為NE-NNE向、E-W向及S-N向3組,褶皺構造主要表現(xiàn)為太古界穹窿構造,層間滑脫帶發(fā)育,接觸帶構造主要發(fā)育與巖體與碳酸鹽地層接觸部位,以上各類型構造聯(lián)合控制了本區(qū)巖漿活動和礦化的分布。區(qū)內巖漿活動強烈,巖漿巖發(fā)育,其中礦區(qū)范圍內出露最大的巖體為下金寶花崗斑巖體,與金、銀、銅多金屬成礦關系密切。下金寶巖體及其與碳酸鹽巖的接觸帶控制了礦體的產狀、形態(tài)和規(guī)模。圍繞巖體與礦體,主要發(fā)育硅化、絹云母化、鉀化、鈉化、高嶺石化、矽卡巖化、碳酸鹽化及黃鐵礦化、方鉛-閃鋅礦化、銅鉬礦化等蝕變和礦化,其中硅化、絹云母化與成礦關系最為密切。
圖 1 河北平泉下金寶礦區(qū)地質簡圖[9](Q—第四系;J2—中侏羅統(tǒng);J1—下侏羅統(tǒng);T1—三疊系;O—奧陶系;QN—青白口系;JX—薊縣系;Chg—長城系高于莊組;Chch-d—長城系串嶺組-大洪峪組;Chc—長城系常州溝組;Ar—太古代片麻巖):1—滑脫構造面;2—逆斷層;3—實測或推測斷層;4—巖體;5—地質界限;6—不整合界限;7—地層走向線Fig. 1 Geological sketch map of Xiajinbao, Hebei province (Q—Quaternary; J2—Middle jurassic; J1—Lower Jurassic; T1—Lower triassic; O—Ordovician; QN—Qingbaikou system; JX—Jixian system; Chg—Gaoyuzhuang formation of Changcheng system;Chch-d—Chuanling-Dahong formation of Changcheng system; Chc—Changzhou formation of Changcheng system; Ar—Gneiss of archean)[9]: 1—Detachment structure; 2—Reverse fault; 3—Measured or inferred faults; 4—Rock body; 5—Geological boundary; 6 —Unconformity-bounded; 7—Direction of strata lines
本次研究對象為與成礦關系密切的下金寶花崗斑巖體,該巖體位于礦區(qū)西部,主要侵位于太古界-侏羅系地層層位中,呈SE-NW向展布,出露面積約0.35 km2。研究樣品采集自下金寶新鮮巖體,巖石呈肉紅色-淺肉紅色,斑狀結構,塊狀構造。礦物成分主要為鉀長石、斜長石、石英和黑云母,少量的絹云母和高嶺石,副礦物主要為鋯石和磷灰石,斑晶主要為石英、鉀長石和少量的斜長石組成,基質由微-細粒鉀長石和石英組成。巖石中鉀長石含量 35%~40%左右(質量分數(shù),下同),斑晶呈半自形-自形板狀晶形,可見卡斯巴雙晶,環(huán)帶結構不可見,均發(fā)生不同程度的泥化;斜長石含量30%左右,斑晶為半自形板狀晶形,發(fā)育聚片雙晶和卡納復合雙晶,環(huán)帶結構少見,常發(fā)生不同程度的絹云母化和碳酸鹽化;石英占25%~30%,呈他形粒狀充填于其他礦物顆粒之間,粒徑 0.2~2 mm;黑云母部分蝕變?yōu)殁佽F質物質,含量3%左右;其他礦物含量不足2%。
從巖體到圍巖蝕變分帶依次為巖體-石英鉀長石化帶-石英絹云母化帶-泥化帶-矽卡巖化帶。金礦體的產出主要與石英絹云母化帶密切相關,石英絹云母化帶發(fā)育部位礦體厚大且品位較高。整體來看,礦化沒有超出蝕變帶的范疇,礦化帶的分布與巖體蝕變帶的分布基本一致,礦化與巖體表現(xiàn)出密切的成因聯(lián)系。
通過樣品中鋯石的陰極發(fā)光圖像,對樣品中鋯石進行仔細挑選,選擇晶形較好,呈柱狀,無裂隙,無包裹體,振蕩環(huán)帶發(fā)育的16顆鋯石,其中樣品K6中10顆鋯石,樣品Z176中6顆,對選擇的16顆鋯石進行U-Pb同位素定年和Hf同位素的打點測試,Hf同位素測試點的位置與 U-Pb同位素定年測試點的位置相同。
本次研究樣品中鋯石的陰極發(fā)光(CL)照相在JEOL-JXA-8100型電子探針儀上完成,工作時加速電壓15 kV,束電流2×10-8A,完成單位為北京鋯年領航科技有限公司。
LA-ICP-MS型鋯石U-Pb同位素定年和微量元素測試在中國冶金地質總局山東局測試中心實驗室完成。激光剝蝕等離子體質譜儀器型號為Thermo Xeries 2, 配 置Coherent公 司 生 產的COMPexPro CO2F Geolas 193nm ArF準分子激光剝蝕系統(tǒng),分析過程激光束斑直徑為30 μm,頻率為8 Hz,能量密度8.5 J/cm2,剝蝕時間110 s,其中前30 s為空白信號,中間55 s為剝蝕時間,后25 s為吹掃殘留信號時間。測試數(shù)據(jù)采用軟件 ICPMSDataCal[10]進行處理。
原位微區(qū)鋯石 Hf同位素比值測試在中國地質大學(武漢)地質過程與礦產資源國家重點實驗室完成,采用儀器為激光剝蝕多接收杯等離子體質譜儀(LA-MC-ICP-MS),激光剝蝕系統(tǒng)為 GeoLas 2005 (Lambda Physik公司,德國),MC-ICP-MS儀器為Neptune Plus(Thermo Fisher Scientific公司,德國)。分析時,使用氦氣作為載氣,采用單點剝蝕模式,激光波長193 nm,激光束直徑44 μm,激光輸出能量可以調節(jié),實際輸出能量密度為5.3 J/cm2。分析數(shù)據(jù)的離線處理(包括對樣品和空白信號的選擇、同位素質量分餾校正)同樣采用軟件ICPMSDataCal[10]完成。
圖2 鋯石陰極發(fā)光圖像及分析點位置、206Pb/238U年齡值Fig. 2 Cathodoluminescence images, location of U-Pb spot analyses and206Pb/238U ages of zircon in host granite-porphyry
4.1 鋯石成因及微量元素特征
巖漿鋯石一般具有特征的巖漿振蕩環(huán)帶,振蕩環(huán)帶的寬度可能與鋯石結晶時巖漿的溫度有關[11]。從鋯石的陰極發(fā)光圖像可以看出,本區(qū)鋯石均呈自形柱狀,振蕩環(huán)帶和韻律環(huán)帶發(fā)育,具有內核,為巖漿結晶的產物(見圖2),其環(huán)帶寬度較均勻,暗示巖漿中鋯石結晶時溫度變化較均勻。鋯石的粒徑為50~350 μm,長寬比為1:1~4:1,晶面和錐體形態(tài)較完好,沒有后期蝕變現(xiàn)象。
前人大量的研究表明,不同成因的鋯石其Th、U的含量及其比值不同。巖漿鋯石的Th和U的含量高,Th/U 值變化范圍多在 0.1~1.0之間[12-13],一般大于0.5[12];而變質鋯石的Th、U的含量低,Th/U的值一般小于0.1[14],多為0.01左右[15]。由鋯石微量元素測試結果(見表1)可知,樣品K6的10個測點中,Th的含量為84.62×10-6~237.68×10-6,平均值為156.39× 10-6。U的含量為170.96×10-6~363.60×10-6,平均值為266.98×10-6。其中Th/U的值為0.46~0.65,平均值為0.58;樣品Z176的 6個測點中,Th的含量為118.46×10-6~197.79×10-6,平均值為165.56×10-6。U 的含量為 218.64×10-6~294.58×10-6,平均值為264.07×10-6。其中Th/U的值為0.54~0.74,平均值為0.62。由此判斷,本區(qū)巖體鋯石為典型的巖漿鋯石。本次測試的樣品中,測點K6-07和K6-15 中La的含量低于儀器的檢測線,故不予統(tǒng)計。兩個樣品中剩余的 14個測點,其稀土總量(∑REE)為 780.32× 10-6~1258.95×10-6,平均值為1067.90×10-6。LREE/HREE的值為0.05~0.09,平均值為0.071,輕稀土表現(xiàn)出明顯的虧損,重稀土表現(xiàn)出強烈的富集,并且表現(xiàn)出逐步富集的特征,由于Zr的離子半徑比輕稀土元素離子半徑要小,與重稀土元素離子半徑相當,因此,鋯石中相對富集重稀土,而虧損輕稀土元素。配分曲線與巖漿鋯石稀土元素特征基本一致[16]。從上述測試分析結果和稀土元素球粒隕石標準化圖(見圖3)中可以看出,樣品中Eu呈負異常,Eu值在0.25~0.36之間,平均值為0.31,這說明形成下金寶巖體的巖漿在演化過程中經過了斜長石的結晶分離,并且鋯石形成于結晶分異后的巖漿[15, 17]。Ce值為33.78~82.89,平均值為 59.95,在稀土元素球粒隕石標準化圖解(見圖3)中,顯示強正異常。由于鋯石中Ce4+的離子半徑更接近于Zr4+和Hf4+的,而Eu2+離子半徑較大,因此,鋯石中Ce4+更容易以類質同像進入鋯石晶格[15,18],造成Ce相對富集和Eu的相對虧損。
表1 下金寶巖體鋯石微量元素含量分析結果Table 1 Results of trace element for single-grain zircon of Xiajinbao rock body
圖3 鋯石的稀土元素球粒隕石標準化圖Fig. 3 Chondrite normalized REE patterns for zircon in host granite-porphyry of Xiajinbao
4.2 樣品中鋯石U-Pb年代學結果
本次研究對樣品中的16顆巖漿鋯石進行U-Pb同位素定年,所有測試經過校正后的結果見表3。從表3中可以看出下金寶巖體206Pb/238U 年齡區(qū)間為(156.7±3.1)~(173.9±3.7) Ma。本研究用ISOPLOT程序[19]對下金寶巖體 16顆鋯石進行了諧和曲線投影,并對206Pb/238U年齡進行了加權平均計算,下金寶巖體鋯石U-Pb年齡均在諧和線上及其附近(見圖4),其加權平均年齡為(158.0±2.5) Ma(1σ,MSWD為0.76,n=16),由于測試鋯石均為巖漿鋯石,其加權平均年齡代表了下金寶花崗斑巖體的結晶年齡,表明該巖體形成于燕山早期。
4.3 樣品中鋯石Hf同位素特征
巖體鋯石Hf同位素結果(見表2)顯示,兩件樣品中所有測試點的176Lu/177Hf比值為 7.74×10-4~1.561×10-3,均小于2×10-3,表現(xiàn)出非常低的比值,表明鋯石在結晶后基本沒有明顯的放射性成因 Hf的累積[20-21]。依據(jù)單顆粒鋯石年齡計算得出兩件樣品中16顆鋯石的176Hf/177Hf比值介于0.282372~ 0.282462,平均值為 0.282409;鋯石 εHf(t)介于-10.913~-7.5828之間,均為負值,表明下金寶巖體主要起源于地殼巖石的部分熔融[22-24]。下金寶巖體fLu/Hf值在-0.97669~-0.95298之間,平均值為-0.96137,小于硅鎂質地殼的 fLu/Hf值[25]和硅鋁質地殼的fLu/Hf值[26],二階段模式年齡更能反映其源區(qū)物質在地殼的平均存留年齡[16]。經計算得到下金寶巖體二階段模式年齡(TDM2)介于1496.638~1673.632 Ma之間。兩件樣品中的εHf(t)和Hf同位素地殼模式年齡均具有較小的變化范圍,暗示巖體的巖漿物質來源應該具有較為均一的鋯石Hf同位素組成[27]。下金寶巖體的鋯石Hf同位素組成在εHf(t)-t圖(見圖5)上,主要集中于下地殼的演化線上下很小的范圍內,也反映了下金寶巖體來源于地殼物質的部分熔融。巖體中鋯石 Hf同位素的二階段模式年齡(TDM2)接近于區(qū)域上長城系地層的年齡(約1400~1800 Ma),故認為下金寶巖體的巖漿物質極有可能來源于這個地殼源區(qū)。
圖4 下金寶巖體鋯石U-Pb年齡諧和圖Fig. 4 U-Pb Concordia diagram of zircon of Xiajinbao rock body
表2 下金寶巖體鋯石Hf同位素測試結果Table 2 Results of Hf isotope of Xiajinbao rock body
表3 下金寶巖體鋯石U-Pb年代學結果Table 3 Results of zircon U-Pb geochronology of Xiajinbao rock body
圖5 下金寶巖體鋯石Hf同位素組成及εHf-t圖解Fig. 5 Zircon Hf isotopic compositions and plots of εHf-t of Xiajinbao intrusion
5.1 鋯石微量元素組成對成巖過程的制約
利用WATSON等[28]推薦的鋯石Ti溫度計計算方程:lg(Ti,10-6)=6.01±0.03-(5080±30)/T(K),計算巖漿鋯石的結晶溫度TTiz(見表4),F(xiàn)ERRISS等[29]通過熱力學計算認為該方程在壓力大于3.5 GPa下不適用,由于本區(qū)下金寶花崗斑巖體為淺成巖,因此,該巖體鋯石在適用范圍內,計算出的結果可以代表鋯石結晶時的溫度。根據(jù)Ti含量估算的TTiz和Zr/Hf、Yb/Nd、Nb/Ta、Th /U值分別對應鋯石微區(qū)U-Pb年齡作圖(見圖6),從圖6中可以看出,樣品K6和樣品Z176的TTiz和Zr/Hf、Yb/Nd、Nb/Ta、Th /U值隨著鋯石U-Pb年齡的變小,呈現(xiàn)出不太一樣的變化規(guī)律。樣品 K6隨著鋯石U-Pb年齡的變小,Yb/Nd和TTiz先升高再震蕩降低,但Yb/Nd值的變化幅度較小,Nb/Ta、Th /U總體變化規(guī)律不明顯,Zr/Hf整體呈下降趨勢;樣品Z176隨著鋯石U-Pb年齡的變小,Yb/Nd值整體呈升高趨勢,TTiz和Th /U值整體呈降低趨勢,Zr/Hf早期的變化規(guī)律不明顯,但后期的有急劇降低的趨勢,Nb/Ta值先升高再震蕩降低,其變化幅度很小。鋯石樣品K6和鋯石樣品Z176采自同一巖體的不同部位,但是在這兩件樣品中,鋯石的微量元素卻表現(xiàn)出不盡相同的地球化學行為。這可能由于花崗質巖漿的黏度較大,再加上巖漿結晶過程中溫度的降低,使得某些元素在巖漿中流動性變差,所以在巖漿結晶過程中不同部位的元素變現(xiàn)出的地球化學行為是不盡相同。
熔體中含Al 礦物含量的增加可以引起鋯石Zr/Hf值的增大[30-32]。導致Zr/Hf減小的原因可能是在巖漿結晶的過程中,有貧Al物質的加入,或者富含Al礦物的晶出[33]。巖漿演化過程中造巖礦物長石的結晶分離會導致熔體Eu呈現(xiàn)出負異常,本研究的鋯石中,
Eu均呈現(xiàn)出負異常,說明鋯石結晶的同時,也有長石的結晶,長石是富Al的硅酸鹽礦物,長石的結晶是導致Zr/Hf比值減小的原因。樣品Z176中的Yb/Nd值的增大,代表鋯石輕稀土減少、重稀土增加,代表上地?;蛳碌貧の镔|的混入,TTiz具有先上升后下降的趨勢也說明了更深、溫度更高的上地幔物質混入,李應栩等[33]也認為TTiz的升高應與上涌的玄武質上地?;蛳碌貧の镔|補充進巖漿房中有關;Nb/Ta的值的變化幅度均比較小,暗示在巖漿結晶過程中,導致Yb/Nd的值增大的原因并非是由于圍巖的同化混染,而是與富LREE物質的結晶有關。MILLER等[34]研究認為,Th/U的值對巖漿富水環(huán)境有一定的指示意義。黃勇 等[35]在研究西藏雄村斑巖銅金礦床斑巖體研究時發(fā)現(xiàn),石英閃長斑巖晚期階段 Th/U比值增大范圍明顯大于角閃石英閃長玢巖的 Th/U比值增大范圍,認為石英閃長斑巖巖漿更富水,本區(qū)下金寶巖體Th/U比值隨巖漿的演化整體呈增加趨勢,表明下金寶巖體鋯石是在富水的環(huán)境中結晶的?;◢徺|巖漿富水,說明熔體出溶了流體[33],表明巖漿在演化過程中經歷了巖漿-流體的演化過程。
表4 下金寶巖體鋯石結晶溫度的計算結果Table 4 Calculation results of crystallization temperature of zircon in host Xiajinbao intrusion
圖6 下金寶巖體鋯石TTiz與鋯石U-Pb年齡關系及微量元素比值和與鋯石U-Pb年齡關系圖Fig. 6 TTizvs U-Pb age diagrams(a)and trace element ratio versus U-Pb age diagrams (b)~(e) of zircon of Xiajinbao rock body
綜上所述,鋯石的微量元素特征顯示,下金寶花崗斑巖體是下地殼物質重熔的產物,在巖漿形成的過程中可能有少量上地幔物質的混入,巖漿在演化過程中經歷了結晶分異作用,上地殼物質的同化混染作用不明顯,并且存在巖漿-流體的演化過程,在近地表伴隨溫度和壓力的降低,巖漿冷凝形成巖體,流體冷卻成礦物質沉淀,形成本區(qū)含礦斑巖體。
5.2 鋯石U-Pb、Hf同位素對成巖動力學的制約
翁文灝于75年前認識和提出了燕山運動,并把燕山運動分為A幕(175~160 Ma)、B幕(156~139 Ma)和中間幕(165~156 Ma)[36]。劉洪濤等[37]認為在160 Ma以前的中生代早-中期,華北克拉通北緣地區(qū)的地殼仍處于加厚和隆升過程之中,而沒有發(fā)生明顯的地殼減薄,相當于燕山造山作用的早期,這和燕山運動的A幕在時間上有很好的對應。馬君[38]通過對區(qū)域上馬蘭峪隆起核部的高鍶花崗巖(都山巖體(220 Ma)、肖營子巖體(179.5 Ma)、高家店巖體(195 Ma)、賈家山巖體(199 Ma)、低鍶花崗巖(如青山口巖體(199.1±2 Ma)、茅山巖體(170 Ma)、王坪石巖體(163±1.3 Ma)等)和強過鋁質花崗巖(以麻地巖體(166.3 Ma)為代表)的研究認為,在220~160 Ma期間,該地區(qū)正處在地殼強烈加厚的時期。馬蘭峪隆起核部的中酸性侵入巖均形成于強烈加厚地殼的底部,馬蘭峪隆起核部的高鍶花崗巖和低鍶花崗巖雖然形成的條件有所差別,但仍均屬于加厚地殼的產物。本研究的下金寶巖體的鋯石U-Pb年齡為158 Ma,比上述區(qū)域上巖體的結晶時間稍晚,時間正處于劉洪濤等[37]提出的華北克拉通北緣地區(qū)中生代重大構造轉折發(fā)生的時間區(qū)間內(160~150 Ma),大地構造環(huán)境處于由擠壓環(huán)境向伸展環(huán)境演化階段,這個時間段相當于燕山運動的中間幕[36]。馬強等[39]對區(qū)域上(北京西山、內蒙古寧城道、冀北承德,遼寧北票、凌源等地)出露的藍旗組(髫髻山組)火山巖的年齡進行了統(tǒng)計,認為區(qū)域上藍旗組(髫髻山組)的形成時代介于 166~153Ma之間,主要集中于159~157Ma之間,統(tǒng)計結果與本研究的下金寶巖體的鋯石U-Pb年齡(158.0±2.5 Ma)接近。邱家鑲等[40]、李伍平等[41-44]、彭艷東等[45]、馬強等[39]研究認為區(qū)域上藍旗組(髫髻山組)火山巖是陸內巖石圈擠壓造山作用的產物,巖石發(fā)生熔融的原因可能與地幔巖漿的底侵作用有關。楊蔚[46]認為在166~148 Ma間,遼西地區(qū)發(fā)生規(guī)模較大的玄武巖底侵作用,來自上地慢熔融產生的基性巖漿(玄武質熔體)侵入到下地殼,并導致下地殼巖石部分熔融。而且本研究結果也顯示,巖漿結晶過程中沒有地殼物質的混入,TTiz的震蕩性升高應該與脈動性上涌的玄武質上地幔物質的底侵有關,那么有理由相信當時區(qū)域上的大地構造環(huán)境正處于造山運動擠壓環(huán)境向伸展環(huán)境轉變過程中。對于花崗質巖石來說,其來源主要是古老或新生的地殼巖石的部分熔融,且主要起源于(正?;蚣雍竦模┑貧さ闹邢虏浚?7]。引起地殼深部的巖石發(fā)生熔融的原因有以下3點:1)溫度的升高;2) 揮發(fā)分的加入;3) 壓力的降低[48]。而花崗質的巖漿通常都是水不飽和的[49],那么引起深部地殼的熔融的原因除了溫度升高外,應該有降壓作用的參與。本研究的下金寶巖體形成于擠壓環(huán)境向伸展環(huán)境轉換的大地構造環(huán)境中,這個轉換過程是一個巖石圈深部降壓的過程,引起下地殼物質發(fā)生部分熔融的原因是巖石圈深部降壓,下地殼物質在 160 Ma以前的擠壓環(huán)境下初步加熱的基礎上,又經歷了來自地幔巖漿的底侵作用和由擠壓—伸展環(huán)境過渡時期的減壓作用,在二者共同作用下,下地殼巖石部分熔融形成本區(qū)原始巖漿。
1) 下金寶花崗斑巖體鋯石具明顯的環(huán)帶結構和韻律結構,Th/U為 0.46~0.74,為典型的巖漿鋯石,Ce正異常和Eu負異常明顯;鋯石U-Pb加權平均年齡為158.0±2.5 Ma(1σ,MSWD為0.81,n=16),形成于燕山早期。
2) 鋯石εHf(t)介于-10.913~-7.5828之間,均為負值,表明下金寶巖體主要起源于地殼巖石的部分熔融;Hf同位素的二階段模式年齡(TDM2)接近于區(qū)域上長城系地層的年齡(約1400~1800 Ma),因此,形成下金寶巖體的物源極有可能來源于這個地殼源區(qū)。
3) 下金寶金礦花崗斑巖中鋯石的微量元素和 Hf同位素研究結果顯示,花崗斑巖形成于由擠壓環(huán)境向伸展環(huán)境轉換的大地構造環(huán)境中,巖漿起源于長城系的下地殼物質的熔融。由于燕山期華北地塊的巖漿底侵作用,下地殼巖石重熔,在巖漿形成的過程中有少量上地幔物質的混入,巖漿在演化過程中,由于發(fā)生結晶分異作用,導致巖漿出溶流體,形成巖漿和流體的巖漿熱液,在近地表伴隨溫度和壓力的降低,巖漿冷凝形成巖體,流體冷卻成礦物質沉淀,形成本區(qū)含礦斑巖體。
REFERENCES
[1]鄧晉福, 馮艷芳, 劉 翠, 肖慶輝, 蘇尚國, 周 肅, 高延光.太行-燕遼地區(qū)燕山期造山過程、巖漿源區(qū)與成礦作用[J]. 中國地質, 2009, 36(3): 623-633. DENG Jin-fu, FENG Yan-fang, LIU Cui, XIAO Qing-hui, SU Shang-guo, ZHOU Su, GAO Yan-guang. Yanshanian (Juurassic-Cretaceous) orogenic processes, magma sources and metallogenesis as well as coal formation in the Taihangshan-Yanshan-West Liaoning region[J]. Geology in China, 2009,36(3): 623-633.
[2]賈三石, 王恩德, 付建飛, 宋建潮, 席曉鳳. 冀東-遼西主要金礦礦集區(qū)地質特征的差異性與成礦作用的統(tǒng)一性探析[J].地質學報, 2011, 85(9): 1493-1506. JIA San-shi, WANG En-de, FU Jian-fei, SONG Jian-chao, XI Xiao-feng. Geological differences and mineralization unity of the key gold ore concentrated regions in Eastern Hebei and Western Liaoning Provinces[J]. Acta Geologica Sinica, 2011,85(9): 1493-1506.
[3]康 明, 楊 柳, 王 豐, 李 振, 王璐陽, 何 祎. 渣爾泰山地區(qū)白堊紀酸性火山巖地質特征及成礦作用[J]. 巖石學報,2014, 30(12): 3681-3692. KANG Ming, YANG Liu, WANG Feng, LI Zhen, WANG Lu-yang, HE Wei. Geological characteristics and mineralization of Cretaceous acid volcanic rock in the Zha'ertaishan area, Inner Mongolia[J]. Actor Petrologica Sinica, 2014, 30(12):3681-3692.
[4]牛樹銀, 王寶德, 張建珍, 馬寶軍, 孫愛群, 聶鳳軍, 江思宏,陳 超. 內蒙古金廠溝梁金礦的構造特征及深部找礦預測[J].大地構造與成礦學, 2011, 35(3): 348-354. NIU Shu-yin, WANG Bao-de, ZHANG Jian-zhen, MA Bao-jun,SUN Ai-qun, NIE Feng-jun, JIANG Si-hong, CHEN Chao. Structural controls on the Jinchanggouliang gold deposit in Inner Mongolia and ore prospecting at depth[J]. Geotectonica et Metallogenia, 2011, 35(3): 348-354.
[5]張 璟. 遼西地區(qū)金礦成礦規(guī)律及成礦預測[D]. 長春: 吉林大學, 2012. ZHANG Jing. Metallogenic regularity and prediction to gold deposits in Western Liaoning Province[D]. Changchun: Jilin University, 2012.
[6]欒文樓, 于耀先. 河北平泉下營坊金礦床流體包裹體地球化學及其找礦意義[J]. 貴金屬地質, 1995, 4(3): 161-167. LUO Wen-lou, YU Yao-xian. Geochemistry of fluid inclusion of Xiayingfang gold deposit in Pingquan of Hebei Province and ore-searching signification[J]. Journal of Precious Metallic Geology, 1995, 4(3): 161-167.
[7]袁萬明, 于耀先, 欒文樓, 王寶德, 雷世和, 李紅陽. 河北下營坊花崗斑巖銅成礦作用標志[J]. 河北地質學院學報, 1996,19(3/4): 47-253. YUAN Wan-ming, YU Yao-xian, LUAN Wen-lou, WANG Bao-de, LEI Shi-he, LI Hong-yang. Minerallzing featrues of Xiayingfang granite-porphyry in Nirthen Hebei, China[J]. Journal of Hebei College of Geology, 1996, 19(3/4): 47-253.
[8]葉美林. 河北平泉下營坊金礦礦床成因淺析[J]. 工程設計與研究, 2013(135): 6-9. YE Mei-lin. The genesis of Xiayingfang in Pingquan, Hebei Province[J]. Engineering Design and Research, 2013(135): 6-9.
[9]雷世和, 李云懷, 胡 軍. 河北平泉下營坊不對稱褶曲的厘定及控巖控礦意義[J]. 現(xiàn)代地質, 1995, 9(4): 459-466. LEI Shi-he, LI Yun-huai, HU Jun. Identification of S-type asymmetrical fold and its action on controlling magmatism and mineralization in Xiayingfang district, Pingquan, Hebei Province[J]. Geoscience, 1995, 9(4): 459-466.
[10]LIU Y S, GAO S, HU Z C. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zicons from mantle xenoliths[J]. J Petrology, 2010, 51(1/2):537-571.
[11]吳元保, 鄭永飛. 鋯石成因礦物學研究及其對 U-Pb 年齡解釋的制約[J]. 科學通報, 2004, 49(16): 1589-1604. WU Yuan-bao, ZHENG Yong-fei. Zircon genetic mineralogy constraints on the explaining of the U-Pb age[J]. Chinese and its Science Bulletin, 2004, 49(16): 1589-1604.
[12]HOSKIN P W O, BLACK L P. Metamorphic zircon formation bysolid-state recrystallization of protolith igneous zircon[J]. J Meta Geol, 2000, 18: 423-439.
[13]BELOUSOVA E A, GRIFFIN W L, O' REILLY S Y, FISHER N L. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology,2002, 143(5): 602-622.
[14]M?LLER A, O' BRIEN P J, KENNEDY A. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland (SW Norway)[J]. Geological Society (London) Special Publications, 2003, 220: 65-81.
[15]HOSKIN P W O, SCHALTEGGER U. The composition of zircon and igneous metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
[16]郭 波, 朱賴民, 李 犇, 弓虎軍, 王建其. 華北陸塊南緣華山和合峪花崗巖巖體鋯石U-Pb年齡、Hf同位素組成與成巖動力學背景[J]. 巖石學報, 2009, 25(2): 265-281. GUO Bo, ZHU Lai-min, LI Ben, GONG Hu-jun, WANG Jian-qi. Zircon U-Pb age and Hf isotope composition of the Huashan and Heyu granite plutons at the Southern margin of North China Craton: Implications for geodynamic setting[J]. Acta Petrologica Sinica, 2009, 25(2): 265-281.
[17]CLAIBORNE L, MILLER C, WOODEN J. Trace element composition of igneous zircon: A thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada[J]. Contributions to Mineralogy and Petrology, 2010, 160(4): 511-531.
[18]SHANNON R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767.
[19]LUDWING K R. Isotope 3.0: A geochronological toolkit for Microsoft Excel[M]. Berkeley: Special Publication, 2003, 4:1-70.
[20]楊進輝, 吳福元, 邵濟安, 謝烈文, 柳小明. 冀北張宣地區(qū)后城組、張家口組火山巖鋯石U-Pb年齡和Hf同位素[J]. 地球科學, 2006, 31(1): 71-80. YANG Jin-hui, WU Fu-yuan, SHAO Ji-an, XIE Lie-wen, LIU Xiao-ming. In-situ U-Pb dating and Hf isotopic analyses of zircons from volcanic rocks of the Houcheng and Zhangjiakou formations in the Zhang-Xuan Area, Northeast China[J]. Earth Science, 2006, 31(1): 71-80.
[21]吳福元, 李獻華, 鄭永飛, 高 山. Lu-Hf同位素體系及其巖石學應用[J]. 巖石學報, 2007, 23(2): 185-220. WU Fu-yuan, LI Xian-hua, ZHENG Yong-fei, GAO Shan. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220.
[22]汪 相, GRIFFIN W L, 王志成, 周新民, 汪傳勝. 湖南丫江橋花崗巖中鋯石的 Hf同位素地球化學[J]. 科學通報, 2003,48(4): 379-382. WANG Xiang, GRIFFIN W L, WANG Zhi-cheng, ZHOU Xin-min, WANG Chuan-sheng. The zircon Hf isotope geochemistry of Yajiang granite, Hunan Province[J]. Chinese and its Science Bulletin, 2003, 48(4): 379-382.
[23]VERVOORT J D, PATCHETT P J, ALBARèDE F BLICHERT-TOFT J, RUDNICK R, DOWNES H. Hf-Nd isotopic evolution of the lower crust[J]. Earth and Planerary Science Letters, 2000, 181: 115-129.
[24]GRIFFIN W L, BELOUSOVA E A, SHEE S R. Crustal evolution in the northern Yilarn Craton; U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 2004,131 (3/4): 231-282.
[25]AMELIN Y, LEE D C, HALLIDAY A N. Earlv-Middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta,2000, 64: 4205-4225.
[26]VERVOORT J D, PACHELT P J, GEHRELS G E, NUTMAN A P. Constraintson early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379: 624-627.
[27]關俊雷, 耿全如, 王國芝, 彭智敏, 張 璋, 叢 峰, 李 娜.北岡底斯帶日松花崗巖體的鋯石U-Pb測年和Hf同位素組成[J]. 地質學報, 2014, 88(1): 26-52. GUAN Jun-lei, GENG Quan-ru, WANG Guo-zhi, PENG Zhi-min, ZHANG Zhang, CONG Feng, LI Na. Zircon U-Pb and Hf isotope compositions of the Risong Granite in North Gangdese, Tibet[J]. Acta Geologica Sinica, 2014, 88(1): 26-52.
[28]WATSON E B, HARRISON T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005,308: 841-844.
[29]FERRISS E D A, ESSENE E J, BECKER U. Computational study of the effect of pressure on the Ti-in-zircon geochermometer[J]. Europan Journal of Mineralogy, 2008, 20(5):745-755.
[30]LINNEN R L, KEPPLER H. Melt composition control of Zr/Hf fractionation in magmatic processes[J]. Geochimica et Cosmochimica Acta, 2002, 66: 3293-3301.
[31]CLAIBORNE L L, MILLER C F, WALKER A B, WOODEN J L,MAZDAB F K, BEA F. Tracking magmatic processes through Zr /Hf ratios in rocksand Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada[J]. Mineralogical Magazine, 2006, 70(5): 517-543.
[32]ZARAISKY G P, AKSYUK A M, DEVYATOVA V N,UDORATINA O V, CHEVYCHELOV V Y. The Zr/Hf ratio as a fractionation indicator of rare-metal granites[J]. Petrology, 2009,17(1): 25-45.
[33]李應栩, 謝玉玲, 陳 偉, 唐燕文, 李光明, 張 麗, 劉云飛,柳小明. 西藏恰功鐵礦二長花崗斑巖鋯石的U-Pb年代學與地球化學特征及意義[J]. 巖石學報, 2011, 27(7): 2023-2033. LI Ying-xu, XIE Yu-ling, CHEN Wei, TANG Yan-wen, LI Guang-ming, ZHANG Li, LIU Yun-fei, LI Xiao-ming. U-Pb age and geochemical characteristics of zircon in monzogranite porphyry from Qiagong deposit, Tibet, and geological implication[J]. Acta Petrologica Sinica, 2011, 27(7): 2023-2033.
[34]MILLER C, THFNI M, FRANK W, SCHUSTER R, MELCHER F, MEISEL T. Geochemistry and tectono-magmatic affinity of the Yungbwaophiolite, SW Tibet[J]. Lithos, 2003, 66: 155-172.
[35]黃 勇, 唐菊興, 張 麗, 郎興海. 西藏雄村斑巖銅金礦床III號礦體巖漿巖鋯石U-Pb年齡、Hf同位素及微量元素組成[J].礦床地質, 2014, 33(2): 361-372. HUANG Yong, TANG Ju-xing, ZHANG Li, LANG Xing-hai. Zircon U-Pb dating and Hf isotopic and trace element composition of intrusions from No. Ⅲ orebody of Xiongcun porphyry copper-gold deposit, Tibet[J]. Mineral Deposits, 2014,33(2): 361-372.
[36]趙 越, 張拴宏, 徐 剛, 楊振宇, 胡健民. 燕山板內變形帶侏羅紀主要構造事件[J]. 地質通報, 2004, 23(9/10): 854-863. ZHAO Yue, ZHANG Shuan-hong, XU Gang, YANG Zhen-yu,HU Jian-min. The Jurassic major tectonic events of Yanshanianin traplate deformation belt[J]. Geological Bulletin of China, 2004,23(9/10): 854-863.
[37]劉洪濤, 翟明國, 劉建明, 孫世華. 華北克拉通北緣中生代花崗巖: 從碰撞后到非造山[J]. 巖石學報, 2002, 18(4): 433-448. LIU Hong-tao, ZHAI Ming-guo, LIU Jian-ming, SUN Shi-hua. The Mesozoic granitoids in the northern marginal region of North China Craton: Evolution from post-collisional to anorogenic settings[J]. Acta Petrologica Sinica, 2002, 18(4):433-448.
[38]馬 君. 冀東馬蘭峪隆起核部中生代中酸性侵入巖巖石地球化學特征及構造意義[D]. 北京: 中國地質大學, 2009: 1-91. MA Jun. Geochemical characteristics and mesozoic intermediate and felsic plutons in Malanyu Uplift, Eastern Hebei Province,and it's tectonic implications[D]. Beijing: China University of Geosciences, 2009: 1-91.
[39]馬 強, 鄭建平. 遼西北票藍旗組火山巖鋯石 U_Pb年齡和Hf同位素組成[J]. 巖石學報, 2009, 25(12): 3287-3297. MA Qiang, ZHENG Jian-ping. In-situ U-Pb dating and Hf isotope analyses of zircons in the volcanic rock of the Lanqi formation in the Beipiao area, western Liaoning Province[J]. Acta Petrologica Sinica, 2009, 25(12): 3287-3297.
[40]邱家驤, 廖群安. 北京地區(qū)中元古代與中生代火山巖的酸度、系列、構造環(huán)境及巖漿成因[J]. 巖石礦物學雜志, 1998, 17(2):104-117. QIU Jia-xiang, LIAO Qun-an. The acidity, series, tectonic settings and magmatic origin of middle proterozoic and mesozoic volcanic rocks from Beijing area[J]. Acta Petrologica et Mineralogica, 1998, 17(2): 104-117.
[41]李伍平. 遼西中侏羅統(tǒng)海房溝組火山巖的地球化學特征[J].地球科學, 2013, 38(6): 1153-1168. LI Wu-ping. Geochemical characteristics of the middle Jurassic volcanic rocks of Haifanggou formation, Western Liaoning Province, North China[J]. Earth Science, 2013, 38(6):1153-1168.
[42]李伍平, 李獻華, 路鳳香. 遼西中侏羅世高 S低型火山巖的成因及其地質意義[J]. 巖石學報, 2001, 17(4): 523-532. LI Wu-ping, LI Xian-hua, LU Feng-xiang. Genesis and geological significance for the middle Jurassic high Sr and low Y type volcanic rocks in Fuxin area of west Liaoning, North Eastern China[J]. Acta Petorlgica Sinica, 2001, 17(4): 523-532.
[43]李伍平, 路鳳香, 李獻華. 北京西山晚侏羅世粗安巖的成因及其地質意義[J]. 巖石礦物學雜志, 2001, 20(3): 247-254. LI Wu-ping, LU Feng-xiang, LI Xian-hua. Genesis of Late Jurassic trachyandesite in Western Hills of Beijing and its geological implications[J]. Acta Petrologica et Mineralogica,2001, 20(3): 247-254.
[44]李伍平, 路鳳香, 李獻華, 周瑤琪, 孫善平, 李家振, 章大港.北京西山髫髻山組火山巖的地球化學特征與巖漿起源[J]. 巖石礦物學雜志, 2001, 20(2): 123-133. LI Wu-ping, LU Feng-xiang, LI Xian-hua, ZHOU Yao-qi, SUN Shan-ping, LI Jia-zhen, ZHANG Da-gang. Geochemical features and origin of volcanic rocks of Tiaojishan formation in Western Hills of Beijing[J]. Acta Petrologica et Mineralogica, 2001, 20(2):123-133.
[45]彭艷東, 張東立, 張長捷. 遼西北票、義縣地區(qū)髫髻山旋回火山巖的地球化學特征[J]. 地質與資源, 2003, 12(3): 177-184. PENG Yan-dong, ZHANG Li-dong, ZHANG Chang-jie. Chemistry of volcanic rocks of Tiaojishan formation in Beipiao-Yixian, Western Liaoning, China[J]. Geology and Resources, 2003, 12(3): 177-184.
[46]楊 蔚. 遼西中生代火山巖年代學及地球化學研究:對華北克拉通巖石圈減薄機制的制約[D]. 合肥: 中國科技大學,2007: 1-121. YANG Wei. Geochronology and geochemistry of the Mesozosic volcanic rocks in Western Liaoning: Constraints on mechanism for the lithospheric thinning in the North China Craton[D]. Hefei:University of Science and Technology of China, 2007: 1-121.
[47]BROWN M. The generation, segregation, ascent and emplacement of granite magma: The migmatite-tocrustallyderived granite connection in thickened origens[J]. Earth Science Reviews, 1994, 36: 83-130.
[48]吳福元, 李獻華, 楊進輝, 鄭永飛. 花崗巖成因研究的若干問題[J]. 巖石學報, 2007, 23(6): 1217-1238. WU Fu-yuan, LI Xian-hua, YANG Jin-hui, ZHENG Yong-fei. Discussions onthe Petrogenesis of granites[J]. Acta Petrolgoica Sinica, 2007, 23(6): 1217-1238.
[49]THOMPSON A B. Sometime-space relationships for crustal melting and granitic intrusion at various depths[J]. Geological Society, 1999, 168: 7-25.
(編輯 王 超)
Zircon U-Pb geochronology and Hf isotope characteristics of Xiaojinbao granite-porphyry body, Hebei Province,and its geological significance
ZHANG Jian-guo1, 2, 3, SHAO Yong-jun1, 2, LIU Zhong-fa1, 2,WANG Chen1, 2, ZOU Yan-hong1, 2, LI Hong-bin1, 2
(1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitor,Ministry of Education, Central South University, Changsha 410083, China;
2. School of Geoscience and Info-Physics, Central South University, Changsha 410083, China;
3. China Non-ferrous Metals Resource Geological Survey, Beijing 100012, China)
Xiajinbao granite-porphyry body is located in Yong'an-Xiayingfang-Maojinggou tectono -magmatite zone,which is closely related to Au, Ag and Cu polymetallic metallogenic. Zircon U-Pb geochronology and trance element geochemistry of the ore-bearing granite porphyry in the Xiaojinbao was studied first time. The weighted average of206Pb/238U age of (158.0±2.5) Ma (1σ, MSWD is 0.76, n=16), the result shows that Xiajinbao granite-porphyry body forms in early Yanshanian. Using zircon Ti thermometer, the forming temperature of zircon was calculated and all of them more than 700 ℃ except one point, it shows that zircon crystallized in deep and high temperature magma. The εHf(t)values of zircon ranging from -10.9130 to -7.5828, and all of them are less than 0. The characteristics of Hf isotope show that Xiajinbao granite-porphyry body originates from the partial melting of lower crust, and the formation environment is conversion environment from compression to extension. The geodynamic mechanisms of Xiajinbao granite-porphyry body formation were proposed based on the zircon U-Pb geochronology and trace element. The lower crust remelted under the magma under plating of the North China block in early Yanshanian, at the same time, involving in part of mantle material. Primary magma increases along the deep fault based on the deep pressure, showing a crystallization differentiation. The exsolution fluid from magma forms the water-rich magmatic hydrothermal. The ore-bearing granite porphyry is a product form by condensation of magmatic hydrothermal under the lower temperature and pressure of near-surface.
zircon U-Pb geochronology; zircon Hf isotope; diagenesis; diagenetic geodynamic; Xiajinbao rock body
Project (41472302) supported by the National Natural Science Foundation of China; Project supported by Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, China
date: 2015-04-19; Accepted data: 2015-07-02
LIU Zhong-fa; Tel: +86-13574886497;E-mail:liuzf61521@csu.edu.cn
1004-0609(2016)-01-0137-12
P588.13;P597.3
A
國家自然基金資助項目(41472302);中南大學有色金屬成礦預測與地質環(huán)境監(jiān)測教育部重點實驗室發(fā)展基金資助項目(2008)
2015-04-19;
2015-07-02
劉忠法,講師,博士;電話:13574886497;E-mail:liuzf61521@csu.edu.cn