• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      逆向求解估算熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)

      2016-07-15 01:22:02張雪飛劉顯茜何發(fā)權(quán)
      安徽農(nóng)業(yè)科學(xué) 2016年13期

      張雪飛,劉顯茜,何發(fā)權(quán)

      (昆明理工大學(xué)機(jī)電工程學(xué)院,云南昆明 650500)

      ?

      逆向求解估算熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)

      張雪飛,劉顯茜*,何發(fā)權(quán)

      (昆明理工大學(xué)機(jī)電工程學(xué)院,云南昆明 650500)

      摘要利用逆向求解Fick擴(kuò)散定律,比較胡蘿卜切片熱風(fēng)干燥試驗(yàn)數(shù)據(jù)與數(shù)值模擬計(jì)算結(jié)果,確定胡蘿卜切片試樣表層局部干基含水率,聯(lián)合平均值理論對(duì)不同溫度、不同相對(duì)濕度熱空氣及不同厚度胡蘿卜切片試樣條件下的熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)進(jìn)行迭代估算。結(jié)果表明:胡蘿卜切片試樣厚度、平均干基含水率、熱空氣溫度和相對(duì)濕度對(duì)胡蘿卜切片熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值大小幾乎沒有影響。干燥末期,胡蘿卜切片熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值出現(xiàn)陡增,這是由于在熱風(fēng)干燥末期,胡蘿卜切片試樣表層局部干基含水率接近其平衡干基含水率,測(cè)算公式中分母數(shù)值趨于0所致。

      關(guān)鍵詞對(duì)流傳質(zhì)系數(shù);逆向求解;熱風(fēng)干燥;胡蘿卜切片

      包括對(duì)流傳質(zhì)系數(shù)和水分?jǐn)U散系數(shù)在內(nèi)的多孔材料傳質(zhì)系數(shù)是計(jì)算、模擬多孔材料干燥和加工過程的重要傳質(zhì)特性參數(shù),準(zhǔn)確估算多孔材料傳質(zhì)系數(shù)對(duì)于傳熱傳質(zhì)過程新設(shè)備開發(fā)設(shè)計(jì)、已有設(shè)備性能改進(jìn)、工藝參數(shù)優(yōu)化以及加工產(chǎn)品質(zhì)量提高起著關(guān)鍵作用[1-2]。然而,對(duì)于多孔材料傳質(zhì)系數(shù)研究多集中于多孔材料水分?jǐn)U散系數(shù)的估算和分析[3-13]。熱空氣-多孔材料間對(duì)流傳質(zhì)系數(shù)估算,常常采用依賴于熱空氣物性和速度的無量綱經(jīng)驗(yàn)關(guān)系式計(jì)算熱空氣-多孔材料間對(duì)流傳熱系數(shù),然后通過熱量與質(zhì)量傳遞類比計(jì)算熱空氣-多孔材料間對(duì)流傳質(zhì)系數(shù)[14-16]。Dincer和Hussain[17]提出一個(gè)Bi-G關(guān)系式分析物料干燥試驗(yàn)數(shù)據(jù)估算熱空氣-多孔材料間對(duì)流傳質(zhì)系數(shù)和多孔材料內(nèi)部水分?jǐn)U散系數(shù)的方法。但是,這種源于指數(shù)函數(shù)的遲滯因子與干燥系數(shù)的Bi-G關(guān)系式估算得到的水分?jǐn)U散系數(shù)和對(duì)流傳質(zhì)系數(shù)并不可靠[18-19]。Markowski[20]假設(shè)干燥過程中試樣表層局部干基含水率等于其平均干基含水率,采用平均值理論對(duì)胡蘿卜切片試樣干燥初期的熱空氣-試樣間的對(duì)流傳質(zhì)系數(shù)進(jìn)行了計(jì)算,但是,干燥過程中,胡蘿卜切片表層局部干基含水率與胡蘿卜切片平均干基含水率之間差異較大,對(duì)于這種差異對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算造成的影響卻沒有進(jìn)一步分析。為進(jìn)一步分析試樣厚度、平均干基含水率以及熱空氣溫度和相對(duì)濕度對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)的影響,筆者利用逆向求解Fick擴(kuò)散定律,比較胡蘿卜切片熱風(fēng)干燥試驗(yàn)數(shù)據(jù)與數(shù)值模擬計(jì)算結(jié)果,確定胡蘿卜切片試樣表層局部含水率,聯(lián)合平均值理論對(duì)不同溫度、不同相對(duì)濕度熱空氣及不同厚度胡蘿卜切片試樣條件下的熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)進(jìn)行迭代估算,分析熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)變化影響因素,旨在為今后的研究提供參考。

      1理論基礎(chǔ)

      1.1理論模型熱風(fēng)干燥是一個(gè)涉及傳熱傳質(zhì)的復(fù)雜過程。干燥過程中,濕物料表面受熱后,表層水分蒸發(fā)向熱空氣擴(kuò)散,局部干基含水率降低,在濕物料表層與其內(nèi)層形成濕度梯度,濕物料內(nèi)部水分不斷向表層擴(kuò)散遷移;同時(shí),熱量由熱空氣對(duì)流傳熱至濕物料表面,濕物料表層溫度升高,熱量再由濕物料表面?zhèn)鲗?dǎo)至內(nèi)部。由于濕胡蘿卜切片熱傳導(dǎo)系數(shù)遠(yuǎn)大于水分?jǐn)U散系數(shù),且胡蘿卜切片較薄,忽略熱傳導(dǎo)對(duì)熱風(fēng)干燥過程影響,根據(jù)濕物料內(nèi)部水分?jǐn)U散及其表層與熱空氣間對(duì)流傳質(zhì)條件,胡蘿卜切片熱風(fēng)對(duì)流干燥過程可描述為:

      (1)

      t=0,0≤z≤h,m=m0

      (2)

      z=h,t>0,J=hm(ms-me)

      (3)

      (4)

      若胡蘿卜切片體積為V,胡蘿卜切片-熱空氣對(duì)流傳質(zhì)面面積為S。干燥過程中胡蘿卜切片水分變化還可表示為:

      (5)

      應(yīng)用平均值理論,式(5)可變?yōu)椋?/p>

      (6)

      聯(lián)合式(3)與式(6),則有胡蘿卜切片-熱空氣間對(duì)流傳質(zhì)系數(shù):

      (7)

      若胡蘿卜切片平均干基含水率M,以六階多項(xiàng)式對(duì)胡蘿卜切片干燥試驗(yàn)數(shù)據(jù)擬合:

      M=p1t6+p2t5+p3t4+p4t3+p5t2+p6t+p7

      (8)

      則胡蘿卜切片試樣干燥速率為:

      (9)

      式中,m為胡蘿卜切片的局部干基含水率,kg (水)/kg(絕干物料),簡寫為kg/kg;t為干燥時(shí)間,s;z為胡蘿卜切片厚度方向坐標(biāo),mm;Deff為胡蘿卜切片水分有效擴(kuò)散系數(shù),m2/s;h為胡蘿卜切片厚度,mm;m0為胡蘿卜的初始干基含水率,kg/kg;J為對(duì)流傳質(zhì)率,kg/(m2·s);hm為胡蘿卜切片表面與熱空氣間的對(duì)流傳質(zhì)系數(shù),m/s;ms為胡蘿卜切片表面干基含水率,kg/kg;me為胡蘿卜切片平衡干基含水率,kg/kg;p1~p6為試驗(yàn)干基含水率和干燥時(shí)間擬合的系數(shù)。

      1.2對(duì)流傳質(zhì)系數(shù)估算具體步驟為:①以六階多項(xiàng)式[式(8)]對(duì)熱風(fēng)對(duì)流干燥胡蘿卜切片試樣平均干基含水率隨時(shí)間變化試驗(yàn)數(shù)據(jù)進(jìn)行擬合,然后通過式(9)獲得胡蘿卜切片試樣干燥速率;②以胡蘿卜切片試樣初始干基含水率作為試樣表層局部干基含水率,聯(lián)合步驟①計(jì)算得到胡蘿卜切片試樣初始時(shí)刻的干燥速率,代入式(7),計(jì)算熱風(fēng)對(duì)流干燥胡蘿卜切片試樣初始時(shí)刻對(duì)流傳質(zhì)系數(shù);③將步驟②計(jì)算熱風(fēng)對(duì)流干燥胡蘿卜切片試樣初始時(shí)刻對(duì)流傳質(zhì)系數(shù)代入式(3),聯(lián)合式(1)、(2)、(3)和(4)數(shù)值求解胡蘿卜切片試樣下一干燥時(shí)刻局部干基含水率和平均干基含水率;④若數(shù)值求解計(jì)算胡蘿卜試樣下一干燥時(shí)刻平均干基含水率與試驗(yàn)實(shí)測(cè)平均干基含水率之差,|Mnum-Mexp|>10-4,在Mnum-Mexp>10-4時(shí),調(diào)高式(1)中有效水分?jǐn)U散系數(shù),在Mnum-Mexp<-10-4時(shí),調(diào)低式(1)中有效水分?jǐn)U散系數(shù),重復(fù)步驟③;⑤若數(shù)值求解計(jì)算胡蘿卜試樣下一干燥時(shí)刻平均干基含水率與試驗(yàn)實(shí)測(cè)胡蘿卜平均干基含水率之差,|Mnum-Mexp|≤10-4,將步驟③計(jì)算得到的胡蘿卜切片試樣表層局部干基含水率聯(lián)合步驟①計(jì)算得到的胡蘿卜切片試樣干燥速率代入式(7),計(jì)算熱風(fēng)對(duì)流干燥胡蘿卜切片試樣下一干燥時(shí)刻對(duì)流傳質(zhì)系數(shù);⑥將步驟⑤計(jì)算熱風(fēng)對(duì)流干燥胡蘿卜切片試樣下一時(shí)刻對(duì)流傳質(zhì)系數(shù)替換步驟②計(jì)算熱風(fēng)干燥胡蘿卜切片試樣初始對(duì)流傳質(zhì)系數(shù),重復(fù)步驟③~⑤,直至胡蘿卜切片試樣干燥結(jié)束。

      2結(jié)果與分析

      2.1熱空氣溫度對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)的影響由圖1可以看出,在胡蘿卜切片試樣平均干基含水率>1.00 kg/kg時(shí),3種不同溫度條件下熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值隨胡蘿卜切片試樣平均干基含水率變化曲線幾乎重疊在一起,這表明熱空氣溫度對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)大小沒有影響。然而,隨著胡蘿卜切片試樣平均干基含水率的進(jìn)一步降低,3種不同溫度條件下的熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值出現(xiàn)了差異,熱空氣溫度35 ℃條件下的胡蘿卜切片試樣在平均干基含水率降至0.50 kg/kg左右時(shí),熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值隨著胡蘿卜切片平均干基含水率的進(jìn)一步降低而急劇增大;而熱空氣溫度分別為45 ℃和55 ℃條件下的胡蘿卜切片試樣則是在平均干基含水率分別降至0.35和0.15 kg/kg時(shí),熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值隨著胡蘿卜切片平均干基含水率的進(jìn)一步降低而急劇增大。造成熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值隨著胡蘿卜切片平均干基含水率降低出現(xiàn)不同陡變趨勢(shì)的原因可能有2種:一種可能是隨著胡蘿卜切片試樣平均干基含水率的降低,胡蘿卜切片試樣表層局部干基含水率也進(jìn)一步降低,當(dāng)胡蘿卜切片試樣表層局部干基含水率接近其該溫度下的平衡干基含水率時(shí),在估算熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)模型[式(7)]中,分母趨近于0,導(dǎo)致熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值隨著胡蘿卜切片試樣平均干基含水率降低,其表層局部干基含水率接近胡蘿卜切片試樣該溫度時(shí)的平衡干基含水率時(shí)而急劇增大;另一種可能是胡蘿卜切片試樣在周圍環(huán)境空氣相對(duì)濕度不變的情況下,隨著熱空氣溫度升高其平衡干基含水率降低,故而熱風(fēng)對(duì)流干燥胡蘿卜切片試樣時(shí),熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值隨胡蘿卜切片試樣平均干基含水率變化曲線重疊在一起,低溫干燥時(shí),熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值在胡蘿卜切片試樣平均干基含水率較高時(shí)出現(xiàn)陡增現(xiàn)象,而在較高溫度干燥時(shí),熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值在胡蘿卜切片試樣平均干基含水率較低時(shí)出現(xiàn)陡增。

      注:熱空氣相對(duì)濕度為40%,風(fēng)速為0.2 m/s。Note:Relative humidity of hot air was 40%,wind speed was 0.2 m/s.圖1 熱空氣溫度對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)的影響Fig.1 The effect of temperature on convective mass transfer coefficient of hot air drying

      注:熱空氣溫度為35 ℃,風(fēng)速為0.2 m/s,相對(duì)濕度為40%。Note:Hot air temperature was 35 ℃,wind speed was 0.2 m/s, relative humidity was 40%.圖2 熱空氣相對(duì)濕度對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)的影響Fig.2 The effect of relative humidity on convective mass transfer coefficient of hot air drying

      2.2熱空氣相對(duì)濕度對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)的影響由圖2可以看出,在胡蘿卜切片試樣平均干基含水率>0.70 kg/kg時(shí),3種不同相對(duì)濕度熱空氣條件下的熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值隨胡蘿卜切片試樣平均干基含水率變化曲線重疊在一起,這表明熱空氣相對(duì)濕度和胡蘿卜切片試樣平均干基含水率對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)變化幾乎沒有影響。但是,隨著胡蘿卜切片試樣平均干基含水率的進(jìn)一步降低,不同相對(duì)濕度熱空氣下的熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值隨胡蘿卜切片試樣平均干基含水率變化出現(xiàn)差異,熱空氣相對(duì)濕度40%條件下的熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值在胡蘿卜切片試樣平均干基含水率降至0.20 kg/kg時(shí),隨著胡蘿卜切片試樣平均干基含水率進(jìn)一步降低首先出現(xiàn)陡增,緊接著熱空氣相對(duì)濕度55%和70%條件下的熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值在胡蘿卜切片試樣平均干基含水率分別降至0.19和0.18 kg/kg時(shí)隨著胡蘿卜切片試樣平均干基含水率進(jìn)一步降低也相繼出現(xiàn)了陡增。熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值陡增及其在3種不同熱空氣相對(duì)濕度條件下的變化差異的原因可能是熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值在胡蘿卜切片試樣平均干基含水率降低至某一水平,隨著其進(jìn)一步降低出現(xiàn)陡增,如同前面不同溫度下胡蘿卜切片試樣熱風(fēng)對(duì)流干燥,也是因?yàn)楹}卜切片試樣表層局部含水率接近其平衡干基含水率,估算熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)模型[式(7)]分母趨近于0所致。熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值隨著熱空氣相對(duì)濕度的增大出現(xiàn)陡增時(shí)的胡蘿卜切片試樣平均干基含水率減小的原因是,在相同溫度下,胡蘿卜切片內(nèi)部水分向表層擴(kuò)散的速率相同,而在試樣表層局部干基含水率相同的情況下,熱空氣相對(duì)濕度大,試樣表層與熱空氣間對(duì)流傳質(zhì)驅(qū)動(dòng)力小,由試樣表層水分?jǐn)U散到熱空氣的速率低,相對(duì)于相對(duì)濕度較低熱空氣干燥時(shí)試樣內(nèi)部水分分布更為均勻,在試樣表層局部干基含水率降至其平衡干基含水率時(shí),較高相對(duì)濕度熱空氣條件下的胡蘿卜切片試樣由于其內(nèi)部水分分布相對(duì)較為均勻致使其平均干基含水率低,而較低相對(duì)濕度熱空氣條件下的胡蘿卜切片試樣由于其表層與熱空氣間對(duì)流傳質(zhì)驅(qū)動(dòng)力大,其表層水分?jǐn)U散到熱空氣的速率高,試樣內(nèi)部水分補(bǔ)體度高,致使其表層局部干基含水率降至其平衡干基含水率時(shí)平均干基含水率高。2.3胡蘿卜切片試樣厚度對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)的影響由圖3可知,在胡蘿卜切片試樣平均干基含水率>1.00 kg/kg時(shí),3種不同厚度胡蘿卜切片試樣熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值隨其平均干基含水率變化曲線相互重疊。這表明胡蘿卜切片試樣厚度對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)無影響。隨著胡蘿卜切片試樣平均含水率的進(jìn)一步降低,厚度為4、7、9 mm 的胡蘿卜切片試樣在其平均干基含水率分別降至0.20、0.35和0.70 kg/kg時(shí),熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)均出現(xiàn)了陡增。熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值陡增原因與前述不同溫度和相對(duì)濕度條件下情況一樣,均是胡蘿卜切片試樣表層局部干基含水率接近其平衡干基含水率,熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算模型[式(7)]分母趨近于0所致。不同厚度的胡蘿卜切片試樣熱風(fēng)干燥至不同平均干基含水率時(shí)出現(xiàn)陡增則是因?yàn)樵嚇颖韺泳植扛苫式抵疗淦胶飧苫蕰r(shí),不同厚度試樣的平均干基含水率不同,并且試樣厚度越大其內(nèi)部水分梯度越大,試樣平均干基含水率越大,致使厚度為4、7、9 mm 的胡蘿卜切片試樣在其平均干基含水率分別降至0.20、0.35和0.70 kg/kg時(shí)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值發(fā)生陡增。

      注:熱空氣溫度為35 ℃,風(fēng)速為0.2 m/s,相對(duì)濕度為40%。Note:Hot air temperature was 35 ℃,wind speed was 0.2 m/s,relative humidity was 40%.圖3 胡蘿卜切片試樣厚度對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)的影響Fig.3 The effect of carrot slice thickness on convective mass transfer coefficient of hot air drying

      3結(jié)論

      利用逆問題數(shù)值求解Fick定律計(jì)算胡蘿卜切片表層局部干基含水率,聯(lián)合平均值理論對(duì)不同溫度、不同相對(duì)濕度熱空氣及不同厚度胡蘿卜試樣條件下的熱風(fēng)對(duì)流干燥胡蘿卜切片試樣對(duì)流傳質(zhì)系數(shù)進(jìn)行了迭代估算。估算結(jié)果表明,熱空氣溫度、相對(duì)濕度及胡蘿卜切片試樣厚度和平均干基含水率對(duì)熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值大小無明顯影響。熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)估算值在胡蘿卜切片試樣平均含水率較低情況下出現(xiàn)陡增現(xiàn)象是由于胡蘿卜切片試樣表層局部干基含水率接近其平衡干基含水率,平均值理論計(jì)算熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)模型分母趨于0所致。

      參考文獻(xiàn)

      [1] AKBARI H,KARIMI K,LUNDIN M,et al.Optimization of baker’s yeast drying in industrial continuous fluidized bed dryer[J].Food and bioproduct processing,2012,90(1):52-57.

      [2] 常劍,尤長靜,楊德勇.多層帶式干燥機(jī)干燥過程優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(8):148-154.

      [3] CHEN D Y,LI K,ZHU X F.Determination of effective moisture diffusivity and activation energy for drying of powdered peanut shell under isothermal conditions[J].Bioresources,2012,7(3):3670-3678.

      [4] BAL L M,KAR A,SATYA S,et al.Drying kinetics and effective moisture diffusivity of bamboo shoot slices undergoing microwave drying[J].International journal of food science and technology,2010,45(11):2321-2328.

      [5] GAWARE T J,SUTAR N,THORAT B N.Drying of tomato using different methods:Comparison of dehydration and rehydration kinetics[J].Drying technology,2010,28(5):651-658.

      [6] GOOSSENS E L J,ZANDEN A J J,SPOEL W H.The measurement of the moisture transfer properties of paint films using the cup method[J].Progress in organic coatings,2004,49(3):270-274.

      [7] STRANDBERG-DE B P,JOHANSSON P.Moisture transport properties of lime-hemp concrete determined over the complete moisture range[J].Biosystems engineering,2004,122(6):31-41.

      [8] TORKI-HARCHEGANI M,GHANBARIAN D,SADEGHI M.Estimation of whole lemon mass transfer parameters during hot air drying using different modeling methods[J].Heat and mass transfer,2015,51(8):1121-1129.

      [9] 胡順軍,李修倉,田長彥,等.阿拉爾綠洲灌區(qū)棉田土壤水分?jǐn)U散率的測(cè)定[J].干旱區(qū)地理,2009,32(6):912-916.

      [10] 談云志,劉曉玲.修正的土體等溫水分?jǐn)U散系數(shù)求解方法探討[J].合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,33(7):1042-1044.

      [11] 許學(xué)勤,BROYART BERTRAND,BONAZZI CATHERINE.明膠凝膠水分?jǐn)U散系數(shù)的數(shù)值法估計(jì)[J].無錫輕工大學(xué)學(xué)報(bào),2003,22(7):45-48.

      [12] 張鵬,趙鐵軍,WITTMANN F H,等.基于反向分析計(jì)算水泥基體的濕擴(kuò)散系數(shù)[J].水利學(xué)報(bào),2010,41(1):55-60.

      [13] LIU X X,CHEN J R,HOU H Y.Theoretical analysis of water diffusivity estimated by Crank’s equation[J].Chemical engineering and processing,2012,55(5):24-28.

      [14] GIANFRANCO C,DAMIANO V D M.Heat and mass transfer analogy applied to condensation in the presence of noncondensable gases inside inclined tubes[J].International journal of heat and mass transfer,2014,68:401-414.

      [15] TSILINGIRIS P T.The application and experimental validation of a heat and mass transfer analogy model for the prediction of mass transfer in solar distillation systems[J].Applied thermal engineering,2013,50(1):422-428.

      [16] DEFRAEYE T,HOUVENAGHEL G,CARMELIET J,et al.Numerical analysis convective drying of gypsum boards[J].International journal of heat and mass transfer,2012,55(9/10):2590-2600.

      [17] DINCER I,HUSSAIN M.Development of a new Biot number and lag factor correlation for drying applications[J].International journal of heat and mass transfer,2004,47(4):653-658.

      [18] 劉顯茜,侯宏英,陳君若,等.生物介質(zhì)傳質(zhì)系數(shù)Bi-G模型可靠性實(shí)驗(yàn)測(cè)定[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):249-253.

      [19] LIU X X,HOU H Y,CHEN J R.Applicability of moisture transfer parameters estimated by correlation between Biot number and lag factor(Bi-G correlation)for convective drying of eggplant slices[J].Heat and mass transfer,2013,49(11):1595-1601.

      [20] MARKOWSKI M.Air drying of vegetables:Evaluation of mass transfer coefficient[J].Journal of food engineering,1997,34(1):55-62.

      基金項(xiàng)目國家自然科學(xué)基金資助項(xiàng)目(51566006)。

      作者簡介張雪飛(1988- ),女,山西大同人,碩士研究生,研究方向:食品干燥。*通訊作者,副教授,博士,從事多孔材料傳熱傳質(zhì)耦合機(jī)理及數(shù)值模擬研究。

      收稿日期2016-04-15

      中圖分類號(hào)TQ 028.6+3

      文獻(xiàn)標(biāo)識(shí)碼A

      文章編號(hào)0517-6611(2016)13-287-03

      Estimation of Hot Air Drying Convective Mass Transfer Coefficient by the Inverse Solution Method

      ZHANG Xue-fei, LIU Xian-xi*, HE Fa-quan

      (Faculty of Mechanical & Electrical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500)

      AbstractFick diffusion law is solved as a inverse problem, comparing the numerical simulation results to the hot air drying test data, the surface local moisture content of carrot slice samples were determined. Combined with the average theory, the convective mass transfer coefficients were iteratively estimated under different temperature, relative humidity of hot air and different thickness of carrot slice samples. The results showed that the thickness and the moisture content of carrot slice, temperature and relative humidity of hot air have hardly effect on the estimated values of the convective mass transfer coefficients. At the end of drying, the estimated values of the convective mass transfer coefficients increased sharply due to the surface local moisture content of carrot slice samples close to their equilibrium moisture content, resulting in the value of the denominator close to zero in the estimated equation.

      Key wordsConvective mass transfer coefficient; Inverse solution; Hot air drying; Carrot slice

      和林格尔县| 赣州市| 康定县| 玉门市| 哈巴河县| 乌海市| 资兴市| 萍乡市| 东明县| 凌云县| 宜城市| 越西县| 当雄县| 延川县| 桐梓县| 合阳县| 类乌齐县| 云阳县| 南召县| 宜黄县| 晋江市| 屏东县| 洛南县| 电白县| 杨浦区| 太谷县| 太原市| 西畴县| 沁阳市| 阿鲁科尔沁旗| 盖州市| 桃园县| 神农架林区| 漠河县| 定边县| 新野县| 彭州市| 元氏县| 凤山县| 台南县| 蚌埠市|