• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of the Interaction between Perfluorododecanoic Acid and Human Serum Albumin by Multi-Spectroscopic and Molecular Modeling Techniques

    2016-07-12 12:53:02HUTaoyingWANGYirunZHOUShanshanLIUYing
    光譜學(xué)與光譜分析 2016年7期
    關(guān)鍵詞:中央民族大學(xué)全氟氟烷

    HU Tao-ying, WANG Yi-run, ZHOU Shan-shan,2, LIU Ying,2*

    1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China

    2. Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China

    Investigation of the Interaction between Perfluorododecanoic Acid and Human Serum Albumin by Multi-Spectroscopic and Molecular Modeling Techniques

    HU Tao-ying1, WANG Yi-run1, ZHOU Shan-shan1,2, LIU Ying1,2*

    1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China

    2. Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China

    Perfluorododecanoic acid (PFDoA) is the most toxic emerging environmental contaminant among the 8~12 carbon chain perfluoroalkyl acids (PFAAs). A large amount of knowledge in the field of environmental PFAAs has been accumulated so far, while we are still just at the beginning of research into the interaction between PFDoA and human serum albumin (HSA). The goal of this study was to comprehensively determinate the binding mechanism of PFDoA with HSA by using fluorescence quenching technique in combination with molecular modeling and circular dichroism (CD) spectroscopy under the simulative physiological conditions. The quenching of HSA fluorescence by PFDoA was found to be a result of the combination of dynamic quenching and the formation of PFDoA-HSA complex. The calculated binding distance (r=3.65 nm) indicated that the non-radioactive energy transfer came into being in the interaction between PFDoA (acceptor) and HSA (donor). By performing displacement measurements, the specific binding of PFDoA in the vicinity of site I of HSA was clarified. Furthermore, the binding details between PFDoA and HSA were further confirmed by molecular docking studies, which revealed that PFDoA was bound at subdomain IIA by multiple interactions, such as the interaction between O1 of PFDoA with Arg 257 and Ser 287 predominately through polar force. And the best calculated docking energy is -25.87 kJ·mol-1, this high negative value indicated that the PFDoA molecule exhibited large binding affinity towards HSA. The effects of PFDoA on the conformation of HSA were analyzed by synchronous fluorescence spectra and three-dimensional fluorescence spectra, and the results exhibited that the hydrophobicity of the microenvironment around tryptophan residue was increased and the conformation of HSA was altered after binding PFDoA. The CD spectra quantitatively calculated the protein secondary structure, which suggested a loss of helical stability after the PFDoA-HSA complex formation. The binding research presented in this paper enriches our knowledge of the interaction dynamics of perfluoroalkyl acids to the HSA and reveals the chemical essence of the interaction between biomacromolecule and ligand.

    Perfluorododecanoic acid; Human serum albumin; Fluorescence spectroscopy; Molecular modeling; Circular dichroism

    Introduction

    Protein-ligand interactions play a key role in the distribution and transportation of small molecules in the biological systems and processes. One plasma protein that has been extensively studied during such work is human serum albumin (HSA), it is responsible for distributing and metabolizing many endogenous and exogenous ligands, e.g. toxicants, fatty acids, drugs, dyes and polymers, frequently by the formation of non-covalent complexes, thereby affecting the metabolism and excretion of various substances and influencing the characteristics of their physiological effects[1]. Therefore, the study on the interaction of various ligands with HSA is of imperative and essential importance for life sciences, chemistry, and clinical medicine.

    Perfluorododecanoic acid (PFDoA) belongs to perfluoroalkyl acids (PFAAs) which are a class of highly stable compounds used widely in commercial and industrial applications as fire retardants, food packaging, polymer additives and water- and stain-resistant materials[2]. They have strong C-F bonds which enable them to resist biological and chemical degradation, leading to their wide global distribution, bioaccumulation and various toxicities. Interestingly, unlike other persistent organic pollutants, PFAAs do not preferentially accumulate in lipids and fatty tissue but rather in liver, kidney and serum[3]. PFDoA has been identified in water, soil, wildlife and humans, and animal experiments have demonstrated that PFDoA is the most toxic among the 8~12 carbon chain PFAAs[4]. There was only one report to study the specific site between PFDoA and HSA by fluorescence spectroscopy[5]. However, this study is insufficient in terms of the quenching mechanism of fluorescence, conformation and specific binding in detail, which are of great importance for perfectly demonstrating the interaction of PFDoA with HSA.

    The aim of this study was to learn the binding mechanism of PFDoA with HSA by using fluorescence, circular dichroism (CD) and molecular modeling. Special emphasis was to laid on determining the conformation and secondary structure changes of HSA by synchronous fluorescence, three-dimensional and CD spectra. Another object of this paper was to identify the PFDoA specific binding sites (site I or site II) on the HSA molecule through displacement experiments and molecular modeling, which can offer a molecular level explanation with the ability to estimate the participation of specific chemical groups of PFDoA and PFDoA-HSA interactions in complex stabilization. Finally, this work should give more understanding on realizing the transport and metabolism process of PFDoA and the chemical essence of the interaction between biomacromolecule and ligand.

    1 Materials and methods

    1.1 Materials

    HSA (Sigma, USA) working solution was prepared with the concentration of 2.0×10-5mol·L-1. PFDoA (Shanghai Aijie Biological Technology Co., Ltd., China) was dissolved and diluted to 5.0×10-4mol·L-1with ultrapure water. The stock solutions of phenylbutazone and ibuprofen were prepared to 5.0×10-4mol·L-1. All above solutions were kept in the dark at 0~4 ℃. Phosphate buffer solution (pH 7.40) and 1.0 mol·L-1NaCl solution were used. All reagents were of analytical reagent grade and Millipore-Q ultrapure water was used throughout the experiment.

    F-4500 spectrophotometer (Hitachi, Japan), V-550 spectrophotometer (JASCO, Japan), J-815 CD spectrometer (JASCO, Japan).

    1.2 Methods

    Fluorescence spectroscopy, UV-Vis spectroscopy, elimination of the inner filter effects and molecular modeling are seen literature [6].

    The CD measurements were obtained over a wavelength range of 190~250 nm at 0.2 nm intervals using a 0.1 cm cell at room temperature. Each spectrum was the average of three successive scans and finally averaged for plots and analyses. In order to calculate the composition of secondary structure of the protein, CONTIN program was used to analyze CD spectra.

    2 Results and discussions

    2.1 Analysis of fluorescence quenching of HSA by PFDoA

    Generally, the fluorescence of HSA comes from tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe) residues, while the intrinsic fluorescence of HSA is almost attributed to Trp alone which is located in the 214 position. The fluorescence spectra of HSA in the presence of different concentrations of PFDoA are illustrated in Fig.1. As shown in Fig.1, the fluorescence intensity of HSA remarkably decreased with the addition of PFDoA at the excitation wavelength of 280 nm, and a slight blue shift (from 352 to 346 nm) was also observed for the maximum emission wavelength, indicating that the microenvironment around HSA changed after adding PFDoA and the formation of PFDoA-HSA complex occurred.

    Fluorescence quenching is usually classified as static quenching (formation of a ground-state complex) and dynamic quenching (collisional encounters). Generally, they can often be distinguished by their different dependence on temperature: the quenching constants decrease with increasing temperature for the static quenching, but the reversed effect is observed for the dynamic quenching[7]. To elucidate the quenching mechanism, the fluorescence quenching data were analyzed with the Stern-Volmer equation[8]

    (1)

    whereF,F0,KSV,kq,τ0and [Q] are seen literature [8]. Fig.2 displayed the Stern-Volmer plots for the quenching of HSA by PFDoA at three different temperatures. TheKSVandkqat different temperatures are listed in Table 1. As evident from Fig.2 and Table 1, theKSVvalues enhanced with increasing temperature, indicating that the predominant quenching process was dynamic quenching mechanism. However, the static quenching effect of complex formation could not be completely precluded in the present study. On the one hand, spectroscopic studies above have confirmed the formation of PFDoA-HSA complex. On the other hand, thekq(×1012L·mol-1·s-1) was greater than the maximum scattering collision quenching constant (2.0×1010L·mol-1·s-1)[9], suggesting a static quenching. Therefore, in conclusion, the fluorescence quenching mechanism of HSA by PFDoA was a combination of dynamic quenching with ground complex formation.

    Fig.1 Fluorescence emission spectra of PFDoA-HSA system

    cHSA=2.0×10-6mol·L-1;cPFDoA(×10-6mol·L-1)(1~7): 0, 1.6, 3.2, 4.8, 6.4, 8.0, 9.6; curve 8:cHSA=0,cPFDoA=1.6×10-6mol·L-1;T=298 K

    Fig.2 The Stern-Volmer plots for PFDoA-HSA system

    cPFDoA(×10-6mol·L-1)(1~7): 0, 1.6, 3.2, 4.8, 6.4, 8.0, 9.6;cHSA=2.0×10-6mol·L-1

    Table 1 Stern-Volmer quenching constants for interaction of PFDoA with HSA at different temperatures

    pHT/KKSV/(×104L·mol-1)kq/(×1012L·mol-1·s-1)RSD2987 747 740 99910 01127 403039 759 750 99660 026931010 8910 890 99900 0162

    2.2 Energy transfer from HSA to PFDoA

    According to F?ster non-radioactive energy transfer theory, the energy transfer efficiencyEis related not only to the distancerbetween the donor and acceptor, but also to the critical energy transfer distanceR0(when the transfer efficiency equals 50%)[10]

    (2)

    (3)

    (4)

    whereK2,N,φ,J,F(λ), andε(λ) are seen literature [10]. The overlap of the fluorescence emission spectra of HSA and the UV-Vis absorption spectra of PFDoA is represented in Fig.3. In the present case,K2=2/3,N=1.336 andφ=0.15 for HSA. From Eqs. (2)—(4), we can calculate thatR0=2.55 nm,E=0.10,J=9.93×10-15cm3·L·mol-1, andr=3.65 nm. The specific binding distance was smaller than 8 nm, which indicated that energy transfer between PFDoA and HSA can occur with high possibility. Furthermore, the larger distancer, compared to that ofR0, revealed that a static-type quenching mechanism occurs to a larger extent.

    Fig.3 Overlapping between the emission spectrum of HSAaand absorption spectrum of PFDoAb

    cHSA=cPFDoA=2.0×10-6mol·L-1

    2.3 Identification of the specific binding site

    To identify the binding site of PFDoA on HSA, the displacement experiments were carried out using the site markers of phenylbutazone for site Ⅰ and ibuprofen for site Ⅱ. The ratio of PFDoA to HSA was kept at 5∶1 to keep nonspecific binding markers to a minimum. The changes induced by the site markers are presented in Fig.4. The fluorescence of the complex was remarkably affected in presence of phenylbutazone, but remained invariant with ibuprofen. The observations demonstrated that phenylbutazone displaced PFDoA from the binding site, while ibuprofen had a little effect on the binding of PFDoA to HSA. Hence, it can be concluded that PFDoA was likely to be bound to site Ⅰ in the subdomain IIA of HSA.

    Fig.4 Effects of site markers on the fluorescence of PFDoA-HSA

    Fig.5 (a) The binding site of PFDoA on HSA. HSA is shown in cartoon and PFDoA is represented using spheres. (b) Enlarged binding mode between PFDoA and HSA. HSA is shown in cartoon, the interacting side chains of HSA are displayed in surface mode and PFDoA is represented using balls and sticks. (c) Molecular modeling of the interaction between PFDoA and HSA. The atoms of PFDoA are blue

    To further study the specific binding mode of PFDoA on HSA, we had run a docking program to simulate the binding mode between PFDoA and HSA. The crystal structure of HSA was taken from the Protein Data Bank (entry codes 2BXN). The best energy ranked result is shown in Fig.5, and the calculated docking energy is -25.87 kJ·mol-1. The inside wall of the pocket of subdomain IIA was formed by hydrophobic side chains, whereas the entrance to the pocket was surrounded by positively charged residues consisting of Lys 199, Phe 211, Trp 214, Ser 287 and Ala 291 [Fig.5(c)]. Thus we concluded that PFDoA was able to fit well within the hydrophobic cavity of subdomain IIA (site Ⅰ), which was consistent with the results observed in the displacement experiments. Table 2 showed the existence of polar force, hydrophobic interaction and halogen-bond between PFDoA and HSA. For example, O1 of PFDoA interacted with Arg 257 and Ser 287 through polar force.

    Table 2 The distances and driving forces between the PFDoA atoms and the atoms of residues obtained by molecular docking

    AtomoftheresidueAtomofPFDoADistance/?DrivingforceArg257(CB,CG,NE)O13 79polarSer287(OG)O13 79polarLeu219(CD2)C93 67hydrophobicLeu219(CD2)C83 83hydrophobicSer287(O)F273 44halogen?bondSer287(O)F263 20halogen?bondIle290(O)F253 57halogen?bondAla291(O)F233 35halogen?bondTrp214(CE3,CZ3)F183 63otherTrp214(CE3,CZ3)F163 11other

    2.4 Conformation investigation

    Synchronous fluorescence is a kind of simple and sensitive method to measure the fluorescence quenching. It can provide the characteristic information of polarity change around the chromophore micro-environment, and has several advantages, such as spectral simplification, reduction of the spectral bandwidth, and avoidance of different perturbing effects[11]. The synchronous fluorescence spectra of Tyr residues (Δλ=15 nm) and Trp residues (Δλ=60 nm) in HSA with addition of PFDoA were observed, as shown in Fig.6. It is apparent from Fig.6(a) that the emission peaks did not shift over the investigated concentration range with a little rise in fluorescence intensity, which indicated that PFDoA had little effect on the microenvironment of the Tyr residues in HSA. In Fig.6(b), the emission peaks of the Trp residues showed obvious reduction of fluorescence intensity with a slight blue shift (2 nm) upon the addition of PFDoA. This phenomenon expressed the conformational changes of the Trp residues, around which the polarity was decreased and the hydrophobicity was increased. These results confirmed that conformational and micro-environmental of HSA were changed in the presence of PFDoA, and the fluorescence quenching of HSA was mainly contributed to Trp residues.

    Fig.6 Synchronous fluorescence spectra of PFDoA-HSA system at Δλ=15 nm (a) and Δλ=60 nm (b)

    cHSA=2.0×10-6mol·L-1;cPFDoA(×10-6mol·L-1)(1~7): 0, 1.6, 3.2, 4.8, 6.4, 8.0 and 9.6;T=298 K

    Fig.7 Three-dimensional fluorescence contour spectra (a and b) and three-dimensional fluorescence spectra (c and d) of HSA before and after adding PFDoA

    2.5 Investigation on changes of HSA secondary structure

    To ascertain the possible influence of PFDoA binding on the secondary structure of HSA, CD measurements were carried out in the presence of different PFDoA concentrations (Fig.8). The α-helix contents were calculated from mean residue ellipticity (MRE) values at 209 nm using the following two equations[14]

    (5)

    (6)

    wherecp, n (n=585,forHSA), l,MRE209, 4 000,and33 000areseenliterature[14].ThequantitativeanalysisresultsofthesecondarystructureinHSAareshowedinTable3.Theα-helixdecreasedfrom47.3%to41.2%withthegraduallyincreasingconcentrationofPFDoA,whichshowedthattheinteractionbetweenPFDoAandHSAledtoachangeoftheprotein’ssecondarystructure,withthelossofhelicalstability.Furthermore,theCDspectraofHSAinthepresenceandabsenceofPFDoAwereobservedtobesimilarinshape,indicatingthatthestructureofHSAwasalsopredominantlyα-helix even after binding to PFDoA[15]. Therefore, we concluded that the binding of PFDoA to HSA induced some secondary structural changes in protein.

    Fig.8 The CD spectra of HSA in the absence and presence of PFDoA

    cHSA=2.0×10-6mol·L-1; molar ratiosnPFDoA∶nHSAfrom 1 to 3∶0∶1, 10∶1, 20∶1

    Table 3 Secondary structure of HSA in the absence and presence of PFDoA determined by CONTIN

    3 Conclusions

    This task portrays an integrated experimental and computational modeling approach of the complexation of PFDoA with HSA at simulative physiological conditions (pH 7.40). PFDoA quenched the intrinsic fluorescence of HSA through a combined process of dynamic and static quenching mechanisms. The distance (r) of 3.65 nm between the donor and acceptor suggested that there was a high possibility of energy transfer from Trp-214 to PFDoA. The displacement experiments indicated that PFDoA was bound to subdomain IIA which was the same as site Ⅰ. The molecular modeling further confirmed the specific binding site of PFDoA on HSA. The conformation and microenvironment of HSA were changed after the addition of PFDoA through synchronous fluorescence and three-dimensional fluorescence spectra. As further revealed by CD spectra, the presence of PFDoA resulted in reduction ofα-helix but augment of random, which displayed that PFDoA induced the unfolding of the polypeptide of HSA. The binding study of PFDoA with HSA is of great importance in pharmacy, pharmacology and biochemistry and it will not only help understand the transportation and distribution of PFDoA in blood but also elucidate the mechanism.

    [1] Memarpoor-Yazdi M, Mahaki H. J. Lumin.,2013, 136: 150.

    [2] Stahl L L, Snyder B D, Olsen A R, et al. Sci. Total Environ.,2014, 499: 185.

    [3] Zafeiraki E, Costopoulou D, Vassiliadou I, et al. Chemosphere, 2014, 94: 169.

    [4] Kennedy Jr. G L, Butenhoff J L, Olsen G W, et al. Crit. Rev. Toxicol.,2004, 34(4): 351.

    [5] Chen Y M, Gao L H. Arch. Toxicol.,2009, 83(3): 255.

    [6] Dong C Y, Ma S Y, Liu Y. Spectrochim. Acta A, 2013, 103: 179.

    [7] Zhang J, Yan Q S, Liu J P, et al. J. Lumin.,2013, 134: 747.

    [8] Deng F Y, Dong C Y, Liu Y. Mol. Biosyst.,2012, 8(5): 1446.

    [9] Markarian S A, Aznauryan M G. Mol. Biol. Rep.,2012, 39(7): 7559.

    [10] Naik P N, Chimatadar S A, Nandibewoor S T. Spectrochim. Acta A, 2009, 73(5): 841.

    [11] Hu Y J, Liu Y, Wang J B, et al. J. Pharm. Biomed. Anal.,2004, 36(4): 915.

    [12] Sun H W, Wu Y J, Xia X H, et al. J. Lumin.,2013, 134: 580.

    [13] Roy A S, Tripathy D R, Chatterjee A, et al. Spectrochim. Acta A, 2013, 102: 393.

    [14] Matei I, Hillebrand M. J. Pharm. Biomed. Anal.,2010, 51(3): 768.

    [15] Cheng Z J. Spectrochim. Acta A, 2012, 93: 321.

    *通訊聯(lián)系人

    O657.3

    A

    多光譜和分子模擬技術(shù)研究全氟十二酸與人血清白蛋白的相互作用

    胡濤英1,王藝潤(rùn)1,周珊珊1,2,劉 穎1,2*

    1. 中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院,北京 100081

    2. 中央民族大學(xué)北京市食品環(huán)境與健康工程技術(shù)研究中心,北京 100081

    全氟十二酸(PFDoA)是8~12個(gè)碳鏈的全氟烷酸(PFAAs)中毒性最強(qiáng)的新型環(huán)境污染物。已有大量研究表明PFAAs在環(huán)境中廣泛積累,但對(duì)PFDoA與HSA的相互作用還處于起步階段。本研究力爭(zhēng)在模擬生理?xiàng)l件下,采用熒光猝滅法、分子模擬技術(shù)和圓二色譜確定HSA與PFDoA的相互作用機(jī)理。研究結(jié)果表明,PFDoA對(duì)HSA的猝滅是動(dòng)態(tài)猝滅與形成PFDoA-HSA基態(tài)復(fù)合物引起的猝滅共同作用的結(jié)果。計(jì)算得到的結(jié)合距離(r=3.65 nm)表明,PFDoA(受體)與HSA(供體)之間的相互作用發(fā)生了非輻射能量轉(zhuǎn)移。取代反應(yīng)結(jié)果表明,PFDoA鍵合在HSA的site Ⅰ位點(diǎn)上。分子對(duì)接進(jìn)一步研究了PFDoA與HSA作用的詳細(xì)結(jié)合情況,表明PFDoA通過多種作用力結(jié)合在HSA的亞域IIA內(nèi),例如,PFDoA上的O 1原子主要通過極性鍵與HSA上的Arg 257和Ser 287殘基結(jié)合。計(jì)算得到的最優(yōu)對(duì)接能量為-25.87 kJ·mol-1,表明PFDoA對(duì)HSA有較大的結(jié)合親和力。同步熒光光譜和三維熒光光譜研究了PFDoA對(duì)HSA構(gòu)象的影響,結(jié)果顯示,與PFDoA結(jié)合后,色氨酸的微環(huán)境疏水性增加,HSA的構(gòu)象也發(fā)生改變。PFDoA與HSA作用前后圓二色譜二級(jí)結(jié)構(gòu)的定量分析結(jié)果表明,PFDoA-HSA復(fù)合物的形成使螺旋穩(wěn)定性降低。該研究結(jié)果為全氟烷酸與HSA的動(dòng)力學(xué)研究提供了理論依據(jù)和可靠數(shù)據(jù),并揭示了生物大分子與配體相互作用的化學(xué)本質(zhì)。

    全氟十二酸; 人血清白蛋白; 熒光光譜; 分子模擬; 圓二色譜

    2015-04-07,

    2015-08-22)

    Foundation item: The National Natural Science Foundation of China (21177163), 111 Project B08044, First-class University First Class Academic Program of Minzu University of China (YLDX01013), Coordinate Development of First-Class and First-Class University Discipline Construction Funds(10301-0150200604), The Academic Team Construction Project of Minzu University of China (2015MDTD25C&13C), First-class Universities and First-class Discipline Construction Transitional Funds Under Special Funding (10301-01404031, 2015), Graduate Student Scientific Research Innovation Project of Minzu University of China (K2014042),2015MDTD08C

    10.3964/j.issn.1000-0593(2016)07-2330-07

    Received: 2015-04-07; accepted: 2015-08-22

    Biography: HU Tao-ying, (1989—), Master of College of Life and Environmental Science, Minzu University of China e-mal: hty0945020@163.com *Corresponding author e-mal: liuying4300@163.com

    猜你喜歡
    中央民族大學(xué)全氟氟烷
    全氟烷基化合物暴露與成年人抑郁癥間的關(guān)系:基于NHANES 2005~2018
    中央民族大學(xué)
    地氟烷與七氟烷用于兒科麻醉的術(shù)后恢復(fù)效果分析
    地氟烷麻醉期間致Q-T間期延長(zhǎng)一例
    氟烷紅外光譜的研究
    ??? ?? ??? ??? ‘? ??’?????? ????
    1種制備全氟聚醚羧酸的方法
    1種制備全氟烯醚磺酰氟化合物的方法
    七氟烷對(duì)幼鼠MAC的測(cè)定及不同腦區(qū)PARP-1的影響
    健康體檢數(shù)據(jù)分析肥胖及相關(guān)疾病——以中央民族大學(xué)退休教工為例
    哪里可以看免费的av片| 国产在视频线在精品| 久久久久九九精品影院| 狂野欧美激情性xxxx在线观看| 久久久久久大精品| 久久久成人免费电影| 99久久久亚洲精品蜜臀av| 国产伦一二天堂av在线观看| 精品久久久久久久人妻蜜臀av| 看片在线看免费视频| 看片在线看免费视频| 国产成人一区二区在线| 国产精品久久久久久久电影| 人人妻人人看人人澡| 亚洲成人av在线免费| 一区二区三区高清视频在线| 国产一区亚洲一区在线观看| 久久午夜福利片| 色视频www国产| 国产精品一区二区免费欧美| 欧美日韩综合久久久久久| 此物有八面人人有两片| 麻豆国产97在线/欧美| 免费大片18禁| 国产精品三级大全| 久久久久久伊人网av| 亚洲中文日韩欧美视频| 插阴视频在线观看视频| 免费观看的影片在线观看| 国产中年淑女户外野战色| 蜜桃亚洲精品一区二区三区| 欧美成人免费av一区二区三区| 十八禁国产超污无遮挡网站| 久久久久免费精品人妻一区二区| 日韩,欧美,国产一区二区三区 | 久久久精品94久久精品| 男女视频在线观看网站免费| 国产人妻一区二区三区在| 晚上一个人看的免费电影| 少妇的逼水好多| 久久精品国产亚洲av涩爱 | 精品一区二区三区视频在线观看免费| 我的老师免费观看完整版| 成人三级黄色视频| 久久精品国产清高在天天线| 在线观看美女被高潮喷水网站| 亚洲国产精品成人久久小说 | 欧美潮喷喷水| 变态另类成人亚洲欧美熟女| 午夜福利18| 国产高清视频在线观看网站| 男女边吃奶边做爰视频| 亚洲高清免费不卡视频| 精品人妻熟女av久视频| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久久成人| 国产高清视频在线播放一区| 色噜噜av男人的天堂激情| 欧美性感艳星| 国产精品一区www在线观看| 直男gayav资源| 国产精品亚洲美女久久久| 三级国产精品欧美在线观看| 国产不卡一卡二| 久久人人爽人人爽人人片va| 欧美性感艳星| 一本一本综合久久| 极品教师在线视频| 欧美潮喷喷水| 亚洲,欧美,日韩| 亚洲av五月六月丁香网| 人妻夜夜爽99麻豆av| 久久欧美精品欧美久久欧美| www日本黄色视频网| 精品一区二区免费观看| 别揉我奶头~嗯~啊~动态视频| 久久久精品大字幕| 精品人妻偷拍中文字幕| 欧美日韩乱码在线| 特大巨黑吊av在线直播| 99视频精品全部免费 在线| 久久久久久伊人网av| 男插女下体视频免费在线播放| 又黄又爽又刺激的免费视频.| 亚洲中文字幕日韩| 有码 亚洲区| 热99re8久久精品国产| 午夜日韩欧美国产| 亚洲精品在线观看二区| 日日摸夜夜添夜夜爱| 精品午夜福利视频在线观看一区| 婷婷亚洲欧美| 亚洲av成人av| 夜夜夜夜夜久久久久| 国产探花极品一区二区| 99热网站在线观看| 国产麻豆成人av免费视频| 91在线观看av| 99久久精品热视频| 成人av在线播放网站| 看片在线看免费视频| 婷婷精品国产亚洲av在线| 中文字幕熟女人妻在线| 最新在线观看一区二区三区| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| 国产麻豆成人av免费视频| 欧美日本视频| 亚洲美女视频黄频| 国产片特级美女逼逼视频| a级一级毛片免费在线观看| 男人舔奶头视频| 舔av片在线| 性欧美人与动物交配| 特级一级黄色大片| 亚洲一级一片aⅴ在线观看| 最近在线观看免费完整版| 麻豆一二三区av精品| 日本五十路高清| 天美传媒精品一区二区| 99热这里只有是精品50| 国产男靠女视频免费网站| 两个人视频免费观看高清| 蜜桃久久精品国产亚洲av| 插逼视频在线观看| 欧美性猛交黑人性爽| 99热这里只有是精品在线观看| 欧美激情国产日韩精品一区| 亚洲一级一片aⅴ在线观看| av女优亚洲男人天堂| 国产大屁股一区二区在线视频| 日韩精品中文字幕看吧| 哪里可以看免费的av片| 成人午夜高清在线视频| 麻豆国产av国片精品| 波多野结衣巨乳人妻| 日韩欧美精品v在线| 日韩av在线大香蕉| 国产大屁股一区二区在线视频| 成人av一区二区三区在线看| 亚洲av成人av| 国产欧美日韩一区二区精品| 又黄又爽又刺激的免费视频.| 精品人妻视频免费看| 国产探花极品一区二区| av.在线天堂| 免费观看在线日韩| 日本五十路高清| АⅤ资源中文在线天堂| 97热精品久久久久久| 久久精品夜色国产| 精品国内亚洲2022精品成人| 小说图片视频综合网站| 男女做爰动态图高潮gif福利片| 午夜亚洲福利在线播放| 久久久久性生活片| 波多野结衣巨乳人妻| 免费在线观看影片大全网站| 久久精品国产清高在天天线| 一个人观看的视频www高清免费观看| 欧美成人精品欧美一级黄| 91狼人影院| 欧美又色又爽又黄视频| 久久久久久国产a免费观看| 老司机影院成人| 亚洲一区高清亚洲精品| 日韩欧美在线乱码| 亚洲精品日韩在线中文字幕 | 在线观看一区二区三区| 校园人妻丝袜中文字幕| 男人的好看免费观看在线视频| 久久久久精品国产欧美久久久| h日本视频在线播放| 日韩精品有码人妻一区| 日韩av在线大香蕉| 久久久久久久久久久丰满| 又黄又爽又免费观看的视频| 国产精品无大码| 日本免费a在线| 成年免费大片在线观看| 日韩精品中文字幕看吧| 丰满的人妻完整版| 亚洲高清免费不卡视频| 中文在线观看免费www的网站| 国产黄片美女视频| 久久久久久伊人网av| 午夜精品在线福利| 麻豆一二三区av精品| 免费在线观看影片大全网站| 色哟哟·www| 国产精品一区www在线观看| 国产亚洲精品综合一区在线观看| 亚洲乱码一区二区免费版| 欧美性感艳星| 一级黄片播放器| 欧美人与善性xxx| 成人国产麻豆网| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久久久久| 白带黄色成豆腐渣| 精品人妻视频免费看| 日韩欧美免费精品| 国产69精品久久久久777片| 国产成人freesex在线 | 又爽又黄无遮挡网站| 国产亚洲精品综合一区在线观看| 自拍偷自拍亚洲精品老妇| 深爱激情五月婷婷| 欧美成人免费av一区二区三区| 亚洲欧美日韩东京热| 欧美日本亚洲视频在线播放| 天美传媒精品一区二区| 简卡轻食公司| 97人妻精品一区二区三区麻豆| 观看美女的网站| 午夜精品在线福利| 成人欧美大片| 欧美最新免费一区二区三区| 精品乱码久久久久久99久播| 好男人在线观看高清免费视频| 欧美潮喷喷水| 国产三级中文精品| 精品一区二区免费观看| 99久国产av精品| 成年av动漫网址| 国产老妇女一区| 久久久久久久久久黄片| 好男人在线观看高清免费视频| 午夜精品国产一区二区电影 | 亚洲18禁久久av| av女优亚洲男人天堂| 真人做人爱边吃奶动态| 日韩人妻高清精品专区| 国产一区二区在线av高清观看| 美女 人体艺术 gogo| 中国美白少妇内射xxxbb| 成人三级黄色视频| 色播亚洲综合网| 精品99又大又爽又粗少妇毛片| 99久久九九国产精品国产免费| 精品国产三级普通话版| 插阴视频在线观看视频| 丝袜喷水一区| 天天一区二区日本电影三级| 成人综合一区亚洲| 亚洲精品日韩在线中文字幕 | 亚洲精品一区av在线观看| 精品免费久久久久久久清纯| 免费观看的影片在线观看| 老师上课跳d突然被开到最大视频| 人人妻人人澡人人爽人人夜夜 | 国产精品三级大全| 久久99热6这里只有精品| 色5月婷婷丁香| 97人妻精品一区二区三区麻豆| 美女内射精品一级片tv| 国产在线精品亚洲第一网站| 身体一侧抽搐| 97在线视频观看| 免费看av在线观看网站| 亚洲色图av天堂| 美女黄网站色视频| 国产精品美女特级片免费视频播放器| 91狼人影院| 国产蜜桃级精品一区二区三区| 日韩av在线大香蕉| 亚洲国产精品国产精品| 精品一区二区三区视频在线观看免费| 男女边吃奶边做爰视频| 麻豆av噜噜一区二区三区| 国产精品国产高清国产av| 一a级毛片在线观看| videossex国产| 十八禁国产超污无遮挡网站| 在线观看av片永久免费下载| 俄罗斯特黄特色一大片| 免费看av在线观看网站| 成人精品一区二区免费| 久久国产乱子免费精品| 国产成人a∨麻豆精品| 国产av一区在线观看免费| 成人亚洲欧美一区二区av| 精品乱码久久久久久99久播| 国产精华一区二区三区| 天堂av国产一区二区熟女人妻| 2021天堂中文幕一二区在线观| 狠狠狠狠99中文字幕| 久久精品国产鲁丝片午夜精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲内射少妇av| 99热这里只有是精品在线观看| 一个人看视频在线观看www免费| 男女做爰动态图高潮gif福利片| 欧美色视频一区免费| 久久亚洲国产成人精品v| 久久这里只有精品中国| 麻豆国产av国片精品| 麻豆一二三区av精品| 久久久午夜欧美精品| 成年女人永久免费观看视频| 22中文网久久字幕| 激情 狠狠 欧美| 精品99又大又爽又粗少妇毛片| 人人妻人人澡人人爽人人夜夜 | 国产一区二区三区av在线 | 最近在线观看免费完整版| 亚洲无线观看免费| 一a级毛片在线观看| 久久久国产成人免费| 精品少妇黑人巨大在线播放 | 99久久精品一区二区三区| 久久国产乱子免费精品| 亚洲欧美清纯卡通| 亚洲国产日韩欧美精品在线观看| 日韩欧美一区二区三区在线观看| 可以在线观看的亚洲视频| 少妇熟女aⅴ在线视频| 黑人高潮一二区| 热99re8久久精品国产| 久久久久国产网址| 我的女老师完整版在线观看| 在线观看午夜福利视频| 欧美潮喷喷水| 亚洲成人中文字幕在线播放| 男插女下体视频免费在线播放| 午夜日韩欧美国产| 国产高清激情床上av| 亚洲欧美中文字幕日韩二区| 国产免费男女视频| 国产私拍福利视频在线观看| 99热全是精品| av天堂中文字幕网| 国产精品日韩av在线免费观看| 亚洲国产精品久久男人天堂| 亚洲激情五月婷婷啪啪| 国产精品久久久久久av不卡| 国产精品野战在线观看| 美女免费视频网站| 亚洲欧美日韩高清专用| 欧美激情国产日韩精品一区| 亚洲自偷自拍三级| 亚洲精品456在线播放app| 日本-黄色视频高清免费观看| 日本爱情动作片www.在线观看 | 精品久久国产蜜桃| 女的被弄到高潮叫床怎么办| 日本成人三级电影网站| 国产一区亚洲一区在线观看| 亚洲人与动物交配视频| 99久久精品一区二区三区| 91av网一区二区| 男人的好看免费观看在线视频| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久 | 91麻豆精品激情在线观看国产| 能在线免费观看的黄片| 老熟妇仑乱视频hdxx| 好男人在线观看高清免费视频| 日本-黄色视频高清免费观看| 俺也久久电影网| 一级黄色大片毛片| 日本一二三区视频观看| 国产女主播在线喷水免费视频网站 | 中文字幕人妻熟人妻熟丝袜美| 波多野结衣高清无吗| 美女内射精品一级片tv| 成人永久免费在线观看视频| 亚洲无线在线观看| 国产伦在线观看视频一区| 欧美性感艳星| 成人高潮视频无遮挡免费网站| 淫秽高清视频在线观看| 国产成人一区二区在线| 亚洲欧美日韩卡通动漫| 啦啦啦观看免费观看视频高清| 婷婷色综合大香蕉| 亚洲五月天丁香| 精品一区二区三区av网在线观看| 日日啪夜夜撸| 嫩草影院精品99| 亚洲人成网站高清观看| 亚洲精品一区av在线观看| 18禁裸乳无遮挡免费网站照片| 成人一区二区视频在线观看| 日韩中字成人| 久久久国产成人免费| 白带黄色成豆腐渣| 淫秽高清视频在线观看| 天堂av国产一区二区熟女人妻| 五月伊人婷婷丁香| 给我免费播放毛片高清在线观看| 人人妻人人看人人澡| 久久精品久久久久久噜噜老黄 | 搡老岳熟女国产| 狂野欧美白嫩少妇大欣赏| 一个人看的www免费观看视频| 99在线人妻在线中文字幕| 国产精品久久久久久久久免| 国产免费一级a男人的天堂| 女人十人毛片免费观看3o分钟| 赤兔流量卡办理| 精品乱码久久久久久99久播| 校园春色视频在线观看| 欧美日韩在线观看h| 成人二区视频| 男人舔女人下体高潮全视频| 乱码一卡2卡4卡精品| 日本精品一区二区三区蜜桃| 午夜视频国产福利| 日韩成人av中文字幕在线观看 | 给我免费播放毛片高清在线观看| ponron亚洲| 久久久久性生活片| 看非洲黑人一级黄片| 精品久久久久久成人av| 久久精品国产清高在天天线| 国产精品电影一区二区三区| 国产一区二区三区在线臀色熟女| 国产精品乱码一区二三区的特点| 亚洲婷婷狠狠爱综合网| 三级国产精品欧美在线观看| 欧美xxxx性猛交bbbb| 2021天堂中文幕一二区在线观| 久久草成人影院| 男人舔女人下体高潮全视频| 乱码一卡2卡4卡精品| 国产欧美日韩精品亚洲av| 看片在线看免费视频| 俄罗斯特黄特色一大片| 国产白丝娇喘喷水9色精品| 91午夜精品亚洲一区二区三区| 久99久视频精品免费| 97碰自拍视频| 亚洲av不卡在线观看| 婷婷六月久久综合丁香| 男女那种视频在线观看| 91久久精品国产一区二区三区| 国产精品亚洲美女久久久| 丝袜美腿在线中文| 午夜福利在线观看免费完整高清在 | 国产真实乱freesex| 日韩一本色道免费dvd| 在线看三级毛片| 久久国产乱子免费精品| 中文字幕人妻熟人妻熟丝袜美| 久久精品影院6| 91在线观看av| 免费搜索国产男女视频| 国产极品精品免费视频能看的| 乱系列少妇在线播放| 亚洲乱码一区二区免费版| 成年av动漫网址| 亚洲av美国av| 欧美潮喷喷水| 日本爱情动作片www.在线观看 | 欧美xxxx性猛交bbbb| 精品人妻视频免费看| 国产精品永久免费网站| 国产成人福利小说| 不卡视频在线观看欧美| 一级毛片我不卡| 国产免费一级a男人的天堂| 韩国av在线不卡| 看非洲黑人一级黄片| 国产色爽女视频免费观看| 久久久久久久午夜电影| 成人高潮视频无遮挡免费网站| 性色avwww在线观看| 22中文网久久字幕| 晚上一个人看的免费电影| 色吧在线观看| 亚洲成av人片在线播放无| 69av精品久久久久久| 亚洲电影在线观看av| 美女 人体艺术 gogo| 欧美日韩精品成人综合77777| 国产aⅴ精品一区二区三区波| 99在线人妻在线中文字幕| 国产午夜精品论理片| 亚洲五月天丁香| 国产高潮美女av| 国产单亲对白刺激| 免费不卡的大黄色大毛片视频在线观看 | 亚洲美女视频黄频| 欧美潮喷喷水| 成人午夜高清在线视频| 国产一级毛片七仙女欲春2| 欧美色欧美亚洲另类二区| 少妇丰满av| 黄色欧美视频在线观看| 日本免费a在线| 熟女电影av网| a级毛色黄片| 菩萨蛮人人尽说江南好唐韦庄 | 韩国av在线不卡| 日本 av在线| 国产探花在线观看一区二区| 超碰av人人做人人爽久久| 欧美日韩综合久久久久久| 精品人妻熟女av久视频| 男女下面进入的视频免费午夜| 亚洲人成网站高清观看| 日韩欧美免费精品| 你懂的网址亚洲精品在线观看 | 国产真实乱freesex| 久久国产乱子免费精品| 国产成人a区在线观看| 舔av片在线| 变态另类成人亚洲欧美熟女| 久久精品夜色国产| 久久精品国产亚洲av香蕉五月| 成人欧美大片| 色播亚洲综合网| 老熟妇仑乱视频hdxx| 欧美成人免费av一区二区三区| 国产成年人精品一区二区| 亚洲性久久影院| 国模一区二区三区四区视频| 人人妻,人人澡人人爽秒播| 国产精品永久免费网站| 露出奶头的视频| 欧美最新免费一区二区三区| 一级黄片播放器| 菩萨蛮人人尽说江南好唐韦庄 | 99热这里只有是精品在线观看| 色综合亚洲欧美另类图片| 美女被艹到高潮喷水动态| 欧美zozozo另类| 国产高清视频在线播放一区| 国产91av在线免费观看| 久久精品综合一区二区三区| 欧美最新免费一区二区三区| 久久人人爽人人片av| 精品一区二区免费观看| 亚洲欧美成人精品一区二区| 午夜免费激情av| 村上凉子中文字幕在线| 99热这里只有是精品50| 嫩草影院新地址| 两个人的视频大全免费| 亚洲人成网站在线播| 亚洲国产欧美人成| 波野结衣二区三区在线| 少妇熟女欧美另类| 久久中文看片网| 久久久久久久久久成人| 1024手机看黄色片| 午夜a级毛片| 美女被艹到高潮喷水动态| 卡戴珊不雅视频在线播放| 日韩av不卡免费在线播放| 色尼玛亚洲综合影院| 狂野欧美激情性xxxx在线观看| 一级黄色大片毛片| 美女高潮的动态| 五月玫瑰六月丁香| 久久久久国产精品人妻aⅴ院| 能在线免费观看的黄片| 精品一区二区免费观看| 91狼人影院| 亚洲av免费高清在线观看| 3wmmmm亚洲av在线观看| 看片在线看免费视频| 国模一区二区三区四区视频| 欧美日本亚洲视频在线播放| 天堂网av新在线| 欧美在线一区亚洲| 亚洲激情五月婷婷啪啪| 一本精品99久久精品77| 男女之事视频高清在线观看| 成人毛片a级毛片在线播放| 亚洲精品乱码久久久v下载方式| 狂野欧美激情性xxxx在线观看| 国产熟女欧美一区二区| 亚洲一区高清亚洲精品| АⅤ资源中文在线天堂| 亚洲经典国产精华液单| 一级黄片播放器| 国产精品国产三级国产av玫瑰| 国产探花极品一区二区| 国产精品美女特级片免费视频播放器| 丰满的人妻完整版| 特级一级黄色大片| 人妻少妇偷人精品九色| 香蕉av资源在线| 一个人看视频在线观看www免费| 国产真实乱freesex| 精品一区二区免费观看| 熟妇人妻久久中文字幕3abv| av女优亚洲男人天堂| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av不卡在线观看| 成人特级av手机在线观看| 成人二区视频| 国产成人福利小说| 国产老妇女一区| 国产精品久久久久久久久免| 色综合站精品国产| 欧美日韩一区二区视频在线观看视频在线 | 能在线免费观看的黄片| 免费av毛片视频| 看片在线看免费视频| 国产高清有码在线观看视频| 日本黄色视频三级网站网址| 国产成人aa在线观看| 国产午夜精品久久久久久一区二区三区 | 级片在线观看| 欧美性猛交黑人性爽| 伦理电影大哥的女人| 99久国产av精品国产电影| 国产三级在线视频| 日韩欧美国产在线观看| 成人特级av手机在线观看| 白带黄色成豆腐渣| 麻豆国产av国片精品|