• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on Molecular Spectra of Interactions Between Salvianolic Acid A and Salvianolic Acid B with Insulin, and Effect of Glucose on the Binding

    2016-07-12 12:57:26YANGWenyueCUILinQULinglingXUNingHUANGYunCUILijianZHANWenhongZHAODing
    光譜學(xué)與光譜分析 2016年9期
    關(guān)鍵詞:藥學(xué)院酚酸醫(yī)科大學(xué)

    YANG Wen-yue, CUI Lin, QU Ling-ling, XU Ning, HUANG Yun,2*,CUI Li-jian, ZHAN Wen-hong, ZHAO Ding

    1.Pharmaceutical College, Hebei Medical University, Shijiazhuang 050017, China 2.Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China 3.Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang 050091, China

    Research on Molecular Spectra of Interactions Between Salvianolic Acid A and Salvianolic Acid B with Insulin, and Effect of Glucose on the Binding

    YANG Wen-yue1, CUI Lin1, QU Ling-ling1, XU Ning1, HUANG Yun1,2*,CUI Li-jian3*, ZHAN Wen-hong1, ZHAO Ding1

    1.Pharmaceutical College, Hebei Medical University, Shijiazhuang 050017, China 2.Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China 3.Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang 050091, China

    The interactions of Salvianolic acid A (SAA) and Salvianolic acid B (SAB) with insulin were studied by using fluorescence spectroscopy, UV-vis spectroscopy and ATR-FTIR spectroscopy in simulating physiological condition (pH 7.40).The fluorescence quenching of insulin by SAA and SAB were static quenching process.The results of synchronous fluorescence and three-dimensional fluorescence spectra suggested no obvious conformation changes of insulin after SAA or SAB binding.But ATR-FTIR spectra showed that SAA and SAB could change the secondary structures of insulin, of which β-turns decreased and random coil increased accompanied with α-helices and β-sheets no clear change.The glucose might influenced the the bioactivity of insulin in the SAA-insulin and SAB-insulin systems by changing the binding constants of SAA (or SAB) with insulin and exacerbating the changes of insulin conformation and relative contents of α-helices.

    Salvianolic acid A;Salvianolic acid B;Insulin;Glucose;Spectroscopy

    Introduction

    Danshen injection is a kind of traditional Chinese medicine (TCM) injections often used in clinical for the treatment of diabete complications including peripheral neuropathy and microangiopathy[1-2].Some researchs show that water-soluble phenolic acids compounds could prevent diabetic nephropathy, due to improving abnormal blood rheology of diabetes mellitus patients[3-4].Salvianolic acid A (SAA) which was demonstrated to have the function of cardiovascular protection and Salvianolic acid B (SAB) which was used in clinical practice for the treatments of myocardial infarction and coronary heart disease (Fig.1) are important water-soluble phenolic acid compounds[5-9]in DANSHEN injection.

    Diabetes mellitus is a serious pathological disease especially with various acute or chronic complications such as diabetic nephropathy, diabetic cardiopathy, and diabetic encephalopathy, which usually need intravenous therapy.But lots of normal saline (NS) infusion is liable to cause water-sodium retention and homeostasis disturbances when drugs are given via a peripheral venous access.In clinical, these patients are given drugs and insulin dispensed in 5% glucose injection through intravenous drip instead of NS[10].

    Insulin plays important roles in blood glucose, influences lipid metabolism, protein degradation, synthesis, and growth, which is a polypeptide hormones secreted by pancreatic β cell.It is composed of A peptide chain (21 amino acids) and B peptide chain (30 amino acids).The A peptide chain contains one random coil and two α-helices, the B peptide chain containing one α-helices and two β-turns.The complex biological function of insulin molecular is implemented through combining with its receptor.It showed that there is a hydrophobic region in insulin as the active site binding to receptor[11-12].The classical binding sites are situated in α-helices region, and in β-sheets region.The active binding sites and biological function of insulin might be affected if the contents of α-helices and β-sheets altered.

    Fig.1 Structures of compounds

    The technique of attenuated total reflectance (ATR) has revolutionized solid and liquid sample analyses[13], which has been implemented in biological studies in order to probe chemical reactions/structure at the solid/liquid interface.There are some vibration bands of protein and polypeptide in the IR region, only the amide I band proved to be significant information for the detailed characterization of protein secondary structure[14], such as α-helices, β-sheets, β-turns and random coil.The width of the contributing component bands is usually greater than the separation between the maximum of adjacent peaks.As a consequence, the individual component bands cannot be resolved in the experimental spectra.The Fourier deconvolution procedure, referred to as resolution enhancement involves narrowing the widths of infrared bands, allowing increased separation of the overlapping components present within the broad band envelope.The secondary structure content was calculated from the areas of the individual assigned bands.

    Synchronous fluorescence spectrum can simplify the spectrum, narrow band and reduce the spectral overlap.The change of the position of synchronous fluorescence reflects the change of surrounding microenvironment polarity of amino acid residues[15].Insulin molecule has 4 tyrosine residues, 3 of which are in the hydrophobic binding site.We determined the synchronous fluorescence spectra of insulin when Δλ=15 (Tyr residues).The conformation change of insulin can be speculated based on the peak shift.

    Thus, we explore whether the interactions between SAA or SAB and insulin occurred and the influence of glucose on them, and investigate the binding mechanism, the binding constant, the change of insulin secondary structure and the effect of glucose on the binding.The plasma free concentration of drug would be reduced if SAA or SAB combined with insulin.If the combination influences the α-helices and β-sheets in the secondary structure of insulin, the biological activity of insulin will may be further affected.The results may provide an important theoretical support for the use of DANSHEN injection in the treatment of diabetes and its complications.

    1 Materials and methods

    1.1 Materials and apparatus

    Insulin was purchased from Sigma (New York, USA) and Tris (99.0%) was from Shanghai Chemistry Reagent Company (Shanghai, China), Salvianolic acid A and Salvianolic acid B from National Institutes for Food and Drug Control (Beijing, China).All other chemicals were of analytical reagent grade.Double distilled water was used throughout the experiment.

    The fluorescence spectra were recorded on F-380 spectrofluorimeter (Gangdong, China).The absorption spectra were measured on TU-1901 spectrophotometer (Purkinje General, China).In addition, the ATR-FTIR spectra were measured on FTIR-8400S spectrometer (Shimadzu, Japan) with ATR accessory (PIKE, USA).Titrations were done manually by using trace syringes.

    1.2 Procedures

    Appropriate amounts of insulin were dissolved in Tris-HCl buffer solution (0.05 mol·L-1, pH 7.40, containing 0.10 mol·L-1NaCl) to prepare the stock solution (5×10-4mol·L-1), which was diluted to lower concentration (5×10-6mol·L-1) for actual use.SAA and SAB solutions (1×10-3mol·L-1) were prepared in double distilled water.

    2 mL insulin (5×10-6mol·L-1) was titrated with 0, 8, 16, 24, 32, 40, 48, 56 μL SAA or SAB (1×10-3mol·L-1).Titrations were done by using a micro-injector.The final concentrations of SAA or SAB varied from 0 to 28×10-6mol·L-1at an increment of 4×10-6mol·L-1.Another solution of insulin with the SAA (or SAB) in the presence of 5% glucose was prepared similarly.

    Fluorescence spectra were recorded at 298 and 310 K in the range from 285~350 nm at excitation wavelength 280 nm.The widths of excitation and emission slits were both set at 2.5 nm.The synchronous fluorescence spectra were recorded when Δλ=15 over the wavelength range of 280~350 nm.The three-dimensional fluorescence spectra were performed under the following conditions: emission wavelength from 250 to 350 nm, excitation wavelength from 240 to 300 nm with an increment of 2 nm.

    The UV absorption spectra of SAA (SAB, insulin, SAA-insulin or SAB-insulin) were recorded in the range of 200~350 nm.

    All FTIR spectra were taken via the ATR method with the resolution of 4 cm-1and 60 scans.The sample compartment was purged with dry air to eliminate the absorption of water vapour.The spectra of the buffer solution and insulin solution were firstly collected and then the spectrum of buffer was subtracted from that of insulin to obtain the pure insulin subtractive spectrum.The spectra of drug solution were subtracted from that of drug-insulin to obtain the insulin (after the drug was added) subtractive spectra.

    The subtractive spectra were performed two point baseline correction within the scope of 1 700~1 600 cm-1(amide Ⅰ band) and smoothed with a five-point Savitsky-Golay to remove the noise.The second derivative and Fourier deconvolution were applied to estimate the position of peaks and half-peak width.The spectra were fitted by the Gauss curve fitting, and the secondary structure contents of insulin were calculated from the areas of the individual assigned bands and their fraction of the total area in the amide Ⅰ region.

    The experimental date were analyzed and graphed by origin 9.0.The result data of ATR-FTIR curve-fitting differential spectra were expressed as mean±SD, and statistical analysis was performed with SPSS 13.0.Normality test and independent sample T test were used to compare the difference between the second structure of insulin with that after binding with SAA (SAB) or SAA-glucose (SAB-glucose).P values less than 0.05 were considered statistically significant.

    2 Results and discussion

    2.1 Effect of SAA and SAB on fluorescence spectra of insulin

    The fluorescence quenching spectra of insulin with different concentrations of SAA or SAB were shown in Fig.2.Insulin had a strong fluorescence emission peak at 308 nm and the fluorescence emission intensity of insulin decreased regularly with the increasing concentration of SAA or SAB, indicating SAA and SAB interacted with insulin and quenched its intrinsic fluorescence.

    2.2 The fluorescence quenching mechanism

    The different fluorescence quenching mechanisms are usually classified as either dynamic or static quenching.It is necessary to know quenching types for studying the mechanism of quenching.We use the quenching constants dependence on the temperature to elucidate the quenching mechanism.TheKSVvalue decreases with temperature increasing for static quenching, and the reverse results would be observed for dynamic quenching[16].

    Fig.2 Fluorescence quenching spectra of (a) SAA-insulin and (b) SAB-insulin (T=298 K)

    From curve 1→8,cInsulin=5×10-6mol·L-1,cSAA=cSAB=0, 4, 8, 12, 16, 20, 24 and 28×10-6mol·L-1, respectively

    In order to study the quenching mechanism, the procedure is assumed to be dynamic quenching.The Stern-Volmer equation is described by

    F0/F=1+Kqτ0[Q]=1+KSV[Q]

    (1)

    whereF0andFare the fluorescence intensities of biomolecule before and after the quencher added.Kqis the biomolecule quenching constant,τ0is average lifetime of the bio-molecular without quencher, [Q] is the concentration of quencher, andKSVis the dynamic quenching constant.

    Fig.3 showed the Stern-Volmer plots of the fluorescence quenching of insulin at different temperatures.TheKSVat different temperatures were shown in Table 1, suggesting the quenching mechanisms of SAA-insulin and SAB-insulin were static quenching since the quenching constants decrease with the rising temperature, which refers to the formation of fluorophore-quencher complex[17].

    UV absorption measurement is a simple but effective method which is often used to confirm the probable quenching mechanism between small molecules and proteins.The absorption spectra of insulin in the absence and presence of SAA or SAB were recorded by subtracting the corresponding spectra of SAA or SAB free form in the buffer from that of SAA (SAB)-insulin system.

    Fig.3 Stern-Volmer plots of (a) SAA-insulin and (b) SAB-insulin at different temperatures

    Table 1 Binding parameters of SAA (SAB)- insulin at different temperatures

    T/KStern-VolmerDoublelogarithmKSV/(L·mol-1)RKaRSAA-insulin2983102.23×1051.91×1050.9920.9937.79×1072.87×1070.9990.999SAB-insulin2983106.75×1046.42×1040.9940.9951.39×1060.61×1060.9990.995

    It was obvious that the spectra of insulin-SAA and insulin-SAB (Fig.4) were different from the differential spectrum, suggesting the quenching mechanism of insulin by SAA or SAB were static quenching procedure, because for static quenching, the ground-state of fluorophore can form the complexes with quencher that causes the absorption spectra of fluorophore changed[18].The above results were in agreement with the conclusions of fluorescence spectra.

    2.3 Binding constant

    The binding constant can be obtained by the following equation

    lg[(F0-F)/F]=lgKa+nlg[Q]

    (2)

    whereKais the binding constant.

    Fig.4 The absorption spectra of insulin

    Table 1 showed the values ofKa, which were 7.79×107(SAA) and 1.39×106(SAB).Ka(SAA)>Ka(SAB) at the same temperature, indicating the steric hindrance gave SAB a disadvantage to binding with insulin.The results demonstrated that the abilities of binding to insulin were related to the structures of the drugs.

    2.4 Binding forces

    Thermodynamic parameters for a binding interaction can be used as a main evidence to learn the nature of intermolecular forces between small molecule and biomacromolecule.According to thermodynamic equations

    ln(K2/K1)=(1/T1-1/T2)ΔH/R

    (3)

    ΔG=ΔH-TΔS

    (4)

    ΔG=-RTlnK

    (5)

    AccordingtothevaluesofΔHand ΔSin the process, the interaction mode can be determined as follows: ΔH>0 and ΔS>0 imply a hydrophobic interaction; ΔH<0 and ΔS<0 suggest the Vander Waals force and hydrogen bond; ΔH<0 and ΔS>0 reflect an electrostatic force[19].

    The thermodynamic parameters were shown in Table 2.The negative ΔHand ΔSindicated that the Vander Waals force and hydrogen bond played major roles in stabilizing the SAA-insulin and SAB-insulin complexes.The negative value of ΔGwas taken as the evidence for the spontaneity of the binding of SAA and SAB with insulin.

    Table 2 Thermodynamic parameters of interaction between SAA (SAB) and insulin

    2.5 Conformation investigation

    2.5.1 Synchronous fluorescence spectra

    The synchronous fluorescence spectra present the information about the molecular microenvironment in the vicinity of the fluorophore functional groups[20].

    The synchronous fluorescence spectra were measured when the Δλ=15 nm and shown in Fig.5.The emission maximum of tyrosine of insulin of the SAA-insulin system or SAB-insulin system has hardly any shift.It was demonstrated that the microenvironment and conformation of tyrosine of insulin had no obvious change after SAA or SAB was added.

    Fig.5 Synchronous fluorescence spectra of (a) SAA-insulin and (b) SAB-insulin (Δλ=15 nm)

    From curve 1→8,cInsulin=5×10-6mol·L-1,cSAA=cSAB=0, 4, 8, 12, 16, 20, 24 and 28×10-6mol·L-1, respectively

    2.5.2 Three-dimensional fluorescence spectroscopy

    In three-dimensional fluorescence spectra, the excitation wavelength, the emission wavelength and the fluorescence intensity are the main parameters.They can provide detailed fluorescence information of the protein, which makes the investigation of the conformational changes of insulin[21].

    Fig.6 presented the contour spectra of (a) insulin, (b) SAA-insulin, (c) SAA-insulin-glucose, (d) SAB-insulin and (e) SAB-insulin-glucose, and the related characteristic parameters were presented in Table 3.As we can see from the Fig.6, Peak 1 is the Rayleigh scattering peak (λex=λem) and Peak 2 the spectral behavior of Tyr residues.The intensity of peak 2 and the density of contour decreased obviously when the SAA and SAB were added.In addition, the fluorescence quenching extent of insulin by SAA was greater than that by SAB, suggesting the steric hindrance gave SAB a disadvantage to combining with insulin.But the Stokes shift had no significant change, which demonstrated that SAA and SAB had no significant affect on the polarity and hydrophilicity around Tyr microenvironment.The above results were similar to what is shown in the synchronous fluorescence spectra.

    Fig.6 Contour spectra of (a) insulin, (b) SAA-insulin, (c) SAA-insulin-glucose, (d) SAB-insulin and (e) SAB-insulin-glucose

    cInsulin=cSAA=cSAB=5×10-6mol·L-1,ωGlucose=5%

    Table 3 Contour spectra characteristics of insulin, SAA-insulin, SAB-insulin, SAA-insulin-glucose and SAB-insulin-glucose

    Peak2(λex/λem)IntensityInsulin276/303367Insulin-SAA276/303268Insulin-SAB276/303313Insulin-SAA-glucose278/305267Insulin-SAB-glucose278/305302

    2.5.3 ATR-FTIR spectra

    Infrared spectra of proteins represent different vibrations of the peptide.In general, the spectra range in 1 682~1 689 and 1 613~1 637 cm-1in amide Ⅰ bands can be attributed to β-sheets structure.The α-helices is in 1 645~1 662 cm-1region, and the position in the 1 662~1 682 and 1 637~1 645 cm-1region are regarded as β-turns and random coil structure, respectively[22].

    The ATR-FTIR spectrum of the buffer solution (Tris-HCl) and insulin were firstly collected and then subtracted the spectrum of buffer from that of insulin to get the ATR-FTIR differential spectrum of insulin.In the similar way, the spectra of SAA (SAB) and SAA (SAB)-insulin were collected, the latter spectra subtracted that of SAA (SAB) to obtain the differential spectra of insulin after binding with SAA or SAB.

    Fig.7 showed the ATR-FTIR differential spectra of insulin in Tris-HCl buffer and after binding with SAA or SAB.It could be seen that the peak position of the amide I band was at 1 649 cm-1and amide Ⅱ at 1 542 cm-1.The peak position did not change after SAA or SAB was added.

    Fig.7 ATR-FTIR differential spectra of (a) insulin, (b) (SAA-insulin)-SAA, (c) (insulin-SAA-glucose)-(SAA-glucose), (d) (SAB-insulin)-SAB and (e) (insulin-SAB-glucose)-(SAB-glucose) system

    A quantitative analysis of the protein secondary structure was given in Fig.8 and Table 4.The relative content of α-helices of insulin was 28.62%±0.41%, β-sheets 29.14%±1.21%, β-turns 30.62%±0.65%, and random coil 11.62%±0.59%.The contents of β-turns decreased and random coil increased markedly (p<0.05), while α-helices and β-sheets had no significant change (p>0.05) with the accession of SAA and SAB.The relative contents of different secondary structures of insulin changed, suggesting that SAA and SAB could influence the secondary structures of insulin.But the contents of α-helices and β-sheets had no significant change, suggesting that the active binding site of insulin might not be influenced by SAA and SAB, that is to say the change on biological function was not obvious when SAA or SAB binding to insulin.It also confirmed the results of synchronous fluorescence spectra and the three dimensional fluorescence spectra.

    Fig.8 ATR-FTIR curve-fitting figures of differential spectra: (a) insulin, (b) (SAA-insulin)-SAA, (c) (insulin-SAA-glucose)-(SAA-glucose), (d) (SAB-insulin)-SAB and (e) (insulin-SAB-glucose)-(SAB-glucose) system

    Table 4 The relative contents of different secondary structures

    *p<0.05 compared with insulin system

    2.6 Influence of glucose on binding constants and conformation

    The influence of glucose on the interactions between insulin and SAA or SAB was further studied.The binding constants of the SAA (SAB)-insulin-glucose system were listed in Table 5.Obviously, the binding constant of SAA-insulin system with glucose was decreased from 7.79×107to 0.30×107, indicating glucose could lower the binding of SAA to insulin.But the binding constant of SAB-insulin system with glucose was increased from 1.39×106to 6.34×106, demonstrating glucose could accelerate the binding of SAB to insulin.By decreasing the binding constants of SAA and increasing of SAB with insulin, the free concentration of SAA was reduced and SAB increased, which was advantage over SAA but adverse to SAB to keep plasma drug concentration.

    Table 5 Binding constant and the number of binding sites of SAA-insulin-glucose and SAB-insulin-glucose

    KaRInsulin-SSA-glucose0.30×1070.998Insulin-SSB-glucose6.34×1060.999

    The contour fluorescence spectra and related characteristic parameters of SAA-insulin or SAB-insulin in the absence and presence of glucose were shown in Fig.6(c, e) and Table 3.With comparison and analysis, the Stokes shift had some changes in SAA(SAB)-glucose system, demonstrating that glucose might have some affect the polarity and hydrophobicity around Tyr microenvironment.

    The ATR-FTIR Gauss curve-fitting figures after insulin binding with SAA-glucose (SAB-glucose) were shown in Fig.8(c, e) and contents of secondary structure listed in Table 4.It was obviously that the contents of α-helices and β-turns changed significantly while the changes of β-sheets and random coil had no statistically significant.It indicated that the bioactivity of insulin might be influenced after binding with SAA-glucose or SAB-glucose.

    3 Conclusions

    This paper presents the interactions of SAA or SAB with insulin and effect of glucose on the binding.SAA and SAB quenched the intrinsic fluorescence of insulin by static quenching process.The extent of insulin fluorescence quenching by SAA was greater than that by SAB at 298 K, suggesting the steric hindrance gave SAB a disadvantage to combining with insulin.The conformation has hardly any change after SAA and SAB binding with insulin.SAA and SAB could not affect the secondary structure of α-helices and β-sheets of insulin by ATR-FTIR.The results of second structure and conformation of insulin showed the biological activity was maybe not obviously changed after SAA or SAB binding to insulin.The binding constant of SAA-insulin system with glucose was decreased, while SAB-insulin system increased, which indicated glucose was an advantage over SAA but adverse to SAB keeping the plasma drug concentration.And the contents of α-helices changed significantly suggested that the bioactivity of insulin might be influenced after the accession of glucose.

    The study results show that SAA and SAB could combine with insulin in glucose injection, by which free drug concentrations of DANSHEN injection were decreased.And the activity site of insulin might be changed after binding with glucose, by which the efficacy of insulin might be influenced.The above results provided an important theoretical research for glucose injection in combination of DANSHEN injection with insulin in the treatment of diabetes mellitus.

    [1] Zhang Mei, Li Xu, Qiu Genquan, et al.Jorunal of Chinese Medicinal Materials,2005, 28(6): 529.

    [2] Rong Xiuhua, Han Xuewen.Jorunal of Binzhou Medical College,1996, 19(6): 539.

    [3] Zhao Ling.Journal of Zhejiang College of Traditional Chinese Medicine,2009, 33(1): 82.

    [4] Wang Xiaomei, Zhen Zhuoli, Chen Xiaofen, et al.Journal of Hebei Medicine,2005, 11(9): 769.

    [5] Hye Sook Kang, Hae Young Chung, Dae Seok Byun, et al.Arehievs of Pharmacal Researeh,2003, 26(1): 24.

    [6] Fan Huaying, Fu Fenghua, Yang Mingyan, et al.Thrombosis Research,2010, 126(1): 17.

    [7] Huang Z S, Zeng C L, Zhu L J, et al.Journal of Thrombosis and Haemostasis,2010, 8(6): 1383.

    [8] Wang Shoubao, Tian Shuo, Fan Yang, et al.European Journal of Pharmacology,2009, 615(1-3): 125.

    [9] Guo Yongxue, Xiu Zhilong, Zhang Daijia, et al.Joumal of Pharmaceutical and Biomedical Analysis,2007, 43(4): 1249.

    [10] Yang Yanyi, Tian Ying, Tian Yanjiao, et al.Chinese Journal of Geriatric Care,2010, 8(4): 22.

    [11] Ye Yunhua.University Chemistry,2010, 25: 19.

    [12] Pullen R A, Lindsay D G, Stephen P Wood, et al.Nature, 1976, 259(5542): 369.

    [13] Kazarian S G, Chan K L A.Biochimica Et Biophysica Acta-Biomembranes,2006, 1758(7):858.

    [14] Hua Shi, Ling Xiong, Yang Kunyun, et al.Journal of Molecular Structure,1998, 446: 137.

    [15] Cui Fengling, Qin Lixia, Zhang Guisheng, et al.Journal of Pharmaceutical and Biomedical Analysis,2008, 48: 1029.

    [16] Li Qiang, Yang Wenyue, Qu Lingling, et al.Journal of Spectroscopy,2014, 834501:7.

    [17] Huang Yun, Cui Lijian, Wang Jianming, et al.Journal of Luminescence,2012, 132: 357.

    [18] Yang Jie, Qu Lingling, Yang Wenyue, et al.Journal of Spectroscopy,2014, 386586:9.

    [19] Huang Yun, Cui Lijian, Chen Chen, et al.Chinese Pharmacological Bulletin,2010, 26(6): 754.

    [20] Cui Fengling, Qin Lixia, Hu Xing, et al.Journal of Pharmaceutical and Biomedical Analysis,2008, 48: 1029.

    [21] Huang Yun, Cui Lijian, Wang Jianming, et al.European Journal of Medicinal Chemistry,2011, 46: 6039.

    [22] Zhang Xuan, Huang Lixin, Nie Songqing, et al.Journal of Chinese Pharmaceutical Sciences,2003, 12(1): 11.

    *通訊聯(lián)系人

    O446.1

    A

    丹參酚酸A和丹參酚酸B與胰島素相互作用的分子光譜學(xué)研究以及葡萄糖的影響

    楊文月1, 崔 琳1,渠玲玲1, 許 寧1, 黃 蕓1,2*, 崔力劍3*, 詹文紅1,趙 丁1

    1.河北醫(yī)科大學(xué)藥學(xué)院,河北 石家莊 050017 2.河北醫(yī)科大學(xué)中西醫(yī)結(jié)合研究所,河北 石家莊 050017 3.河北中醫(yī)學(xué)院藥學(xué)院,河北 石家莊 050091

    采用紫外-可見光譜、熒光光譜和傅里葉變換衰減全反射紅外光譜等技術(shù),研究在模擬人體生理Ph值條件下,丹參酚酸A(或丹參酚酸B)與胰島素分子之間的結(jié)合作用,以及丹參酚酸A(或丹參酚酸B)對(duì)胰島素二級(jí)結(jié)構(gòu)的影響,并考察葡萄糖對(duì)它們的影響。實(shí)驗(yàn)結(jié)果表明,丹參酚酸A和丹參酚酸B均能導(dǎo)致胰島素內(nèi)源性熒光靜態(tài)猝滅;同步熒光和三維熒光譜圖表明胰島素與丹參酚酸A(或丹參酚酸B)結(jié)合后,構(gòu)象沒有發(fā)生明顯變化。紅外光譜研究表明,胰島素與丹參酚酸A(或丹參酚酸B)結(jié)合后二級(jí)結(jié)構(gòu)發(fā)生了一些改變,β-轉(zhuǎn)角和無(wú)規(guī)則卷曲的相對(duì)含量略有增加,α-螺旋和β-折疊沒有發(fā)生明顯改變。葡萄糖的加入會(huì)改變丹參酚酸A(或丹參酚酸B)與胰島素的結(jié)合程度,并加劇胰島素構(gòu)象變化以及二級(jí)結(jié)構(gòu)中α-螺旋相對(duì)含量改變,從而影響丹參酚酸A(或丹參酚酸B)-胰島素體系中胰島素的生物活性。

    丹參酚酸A;丹參酚酸B;胰島素;葡萄糖;光譜

    2015-05-06,

    2015-09-17)

    Foundation item:the HEBEI Province Science and Technology Support Program (142777114D),College Students’ Innovative Entrepreneurial Training Programs (USIP201525A)

    10.3964/j.issn.1000-0593(2016)09-3053-09

    Received:2015-05-06; accepted:2015-09-17

    Biography:YANG Wen-yue, (1989—), female, postgraduate student, Pharmaceutical College of Hebei Medical University *Corresponding authors e-mail: huangyun9317@126.com; cuilijianzy@126.com

    猜你喜歡
    藥學(xué)院酚酸醫(yī)科大學(xué)
    廣州醫(yī)科大學(xué)
    《遵義醫(yī)科大學(xué)學(xué)報(bào)》2022年第45卷第2期英文目次
    《福建醫(yī)科大學(xué)學(xué)報(bào)》第七屆編委會(huì)
    蘭州大學(xué)藥學(xué)院簡(jiǎn)介
    雙咖酚酸在小鼠體內(nèi)的藥物代謝動(dòng)力學(xué)與組織分布
    丹參中丹酚酸A轉(zhuǎn)化方法
    中成藥(2018年9期)2018-10-09 07:19:04
    川芎總酚酸提取工藝的優(yōu)化
    中成藥(2018年7期)2018-08-04 06:04:02
    醫(yī)科大學(xué)總醫(yī)院
    一株真菌所產(chǎn)環(huán)縮酚酸肽類化合物的分離和鑒定
    HSCCC-ELSD法分離純化青葙子中的皂苷
    午夜久久久在线观看| 激情五月婷婷亚洲| 午夜91福利影院| 丰满饥渴人妻一区二区三| 一区福利在线观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲av成人精品一二三区| 久久ye,这里只有精品| 国产精品久久久久久精品电影小说| 涩涩av久久男人的天堂| 肉色欧美久久久久久久蜜桃| 亚洲精品乱久久久久久| 女性被躁到高潮视频| 日韩制服丝袜自拍偷拍| 国产av精品麻豆| 亚洲色图 男人天堂 中文字幕| 午夜激情久久久久久久| 国产 精品1| tube8黄色片| 欧美最新免费一区二区三区| 日韩伦理黄色片| 91老司机精品| 老汉色∧v一级毛片| 秋霞伦理黄片| 最新的欧美精品一区二区| 黑人猛操日本美女一级片| 日韩欧美精品免费久久| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕另类日韩欧美亚洲嫩草| xxx大片免费视频| 亚洲国产最新在线播放| 丝袜喷水一区| 永久免费av网站大全| 精品久久蜜臀av无| 五月天丁香电影| 丝袜喷水一区| 天天躁夜夜躁狠狠久久av| 亚洲综合色网址| 中文字幕高清在线视频| 丁香六月天网| 高清黄色对白视频在线免费看| 爱豆传媒免费全集在线观看| 免费日韩欧美在线观看| av视频免费观看在线观看| 亚洲av欧美aⅴ国产| 亚洲综合色网址| 久久精品亚洲熟妇少妇任你| 人妻 亚洲 视频| 午夜福利网站1000一区二区三区| 国产视频首页在线观看| 日韩一区二区三区影片| 欧美黄色片欧美黄色片| 国产极品粉嫩免费观看在线| 卡戴珊不雅视频在线播放| 飞空精品影院首页| 成人亚洲精品一区在线观看| 十分钟在线观看高清视频www| 9191精品国产免费久久| 亚洲第一av免费看| 天天操日日干夜夜撸| 色综合欧美亚洲国产小说| 亚洲欧美清纯卡通| 人妻 亚洲 视频| 亚洲激情五月婷婷啪啪| 国产日韩一区二区三区精品不卡| 久久久久久久大尺度免费视频| 国产成人精品福利久久| 七月丁香在线播放| 亚洲欧美中文字幕日韩二区| 亚洲第一青青草原| 亚洲精品,欧美精品| 亚洲情色 制服丝袜| 热re99久久精品国产66热6| 亚洲,欧美精品.| 只有这里有精品99| 嫩草影院入口| 亚洲欧美色中文字幕在线| 一级毛片黄色毛片免费观看视频| 日本猛色少妇xxxxx猛交久久| 男人爽女人下面视频在线观看| 日韩精品免费视频一区二区三区| av在线观看视频网站免费| 成人漫画全彩无遮挡| 啦啦啦啦在线视频资源| 亚洲在久久综合| 哪个播放器可以免费观看大片| 久久久久久久精品精品| 亚洲精品中文字幕在线视频| 国产精品一区二区在线观看99| 性少妇av在线| 9热在线视频观看99| h视频一区二区三区| 久久天躁狠狠躁夜夜2o2o | 亚洲美女视频黄频| www日本在线高清视频| 巨乳人妻的诱惑在线观看| 成人毛片60女人毛片免费| 午夜久久久在线观看| 亚洲精品成人av观看孕妇| 亚洲男人天堂网一区| 国产 一区精品| 久久韩国三级中文字幕| 午夜影院在线不卡| 亚洲精品,欧美精品| 综合色丁香网| 久久久精品区二区三区| 岛国毛片在线播放| 可以免费在线观看a视频的电影网站 | 一边摸一边做爽爽视频免费| 91精品三级在线观看| 欧美日韩一级在线毛片| 亚洲精品国产av成人精品| 男人添女人高潮全过程视频| 午夜av观看不卡| 日日摸夜夜添夜夜爱| 99久久人妻综合| 香蕉丝袜av| 中文精品一卡2卡3卡4更新| 亚洲欧美中文字幕日韩二区| 亚洲,欧美精品.| 亚洲一卡2卡3卡4卡5卡精品中文| 不卡av一区二区三区| 秋霞伦理黄片| 日本一区二区免费在线视频| 不卡av一区二区三区| 久久久精品免费免费高清| 最新的欧美精品一区二区| 搡老乐熟女国产| 韩国av在线不卡| 一区二区日韩欧美中文字幕| 夫妻性生交免费视频一级片| 日韩,欧美,国产一区二区三区| 亚洲成人av在线免费| 日本av免费视频播放| 国产精品免费大片| 国产精品国产三级国产专区5o| 在线精品无人区一区二区三| 国产欧美日韩综合在线一区二区| 9191精品国产免费久久| 亚洲国产看品久久| 亚洲av中文av极速乱| 日本av手机在线免费观看| 免费黄网站久久成人精品| 丝袜美腿诱惑在线| 亚洲精品国产一区二区精华液| 亚洲欧美激情在线| 亚洲精品美女久久av网站| 亚洲美女视频黄频| 日本欧美国产在线视频| 欧美变态另类bdsm刘玥| 午夜av观看不卡| 亚洲欧美一区二区三区久久| 国产淫语在线视频| 中文欧美无线码| 国产1区2区3区精品| 午夜福利视频在线观看免费| 母亲3免费完整高清在线观看| 两个人看的免费小视频| 熟妇人妻不卡中文字幕| av.在线天堂| 欧美另类一区| 国产无遮挡羞羞视频在线观看| 久久精品人人爽人人爽视色| av又黄又爽大尺度在线免费看| 少妇人妻精品综合一区二区| 日韩,欧美,国产一区二区三区| 成人国产av品久久久| 国产伦人伦偷精品视频| 免费av中文字幕在线| 国产无遮挡羞羞视频在线观看| 国产成人精品在线电影| 国产男人的电影天堂91| 一区二区三区激情视频| 亚洲成色77777| 亚洲综合色网址| 热re99久久精品国产66热6| 黑丝袜美女国产一区| 免费久久久久久久精品成人欧美视频| 建设人人有责人人尽责人人享有的| 岛国毛片在线播放| 日韩中文字幕视频在线看片| 欧美成人午夜精品| 女人久久www免费人成看片| 亚洲国产av新网站| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩一区二区三区在线| 人人妻人人添人人爽欧美一区卜| 日韩中文字幕欧美一区二区 | 老司机在亚洲福利影院| 国产精品国产av在线观看| 一级,二级,三级黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 大片电影免费在线观看免费| 日韩大片免费观看网站| 国产成人a∨麻豆精品| 亚洲三区欧美一区| 久久精品熟女亚洲av麻豆精品| 90打野战视频偷拍视频| 69精品国产乱码久久久| 两个人看的免费小视频| 一边摸一边做爽爽视频免费| 蜜桃在线观看..| 汤姆久久久久久久影院中文字幕| 精品一区二区三区av网在线观看 | 黄色 视频免费看| 91精品三级在线观看| av免费观看日本| 91老司机精品| 飞空精品影院首页| 啦啦啦 在线观看视频| 99精品久久久久人妻精品| 国产成人免费无遮挡视频| 免费黄网站久久成人精品| 久久国产精品大桥未久av| 亚洲国产av新网站| 国产在视频线精品| 九九爱精品视频在线观看| 日韩,欧美,国产一区二区三区| 一区二区av电影网| 97人妻天天添夜夜摸| 女人久久www免费人成看片| 国产精品 欧美亚洲| 熟妇人妻不卡中文字幕| 亚洲激情五月婷婷啪啪| 99九九在线精品视频| 免费看不卡的av| 桃花免费在线播放| 国产精品国产三级国产专区5o| 精品国产露脸久久av麻豆| 国产人伦9x9x在线观看| videos熟女内射| 国产精品成人在线| 高清欧美精品videossex| 在线精品无人区一区二区三| 亚洲av福利一区| 晚上一个人看的免费电影| 精品一区二区三卡| 哪个播放器可以免费观看大片| av女优亚洲男人天堂| 久久精品人人爽人人爽视色| 国产人伦9x9x在线观看| 久久久国产欧美日韩av| 亚洲精品日韩在线中文字幕| netflix在线观看网站| 久久天堂一区二区三区四区| 久久久久精品久久久久真实原创| 丝袜脚勾引网站| 国产精品一区二区在线观看99| 国产精品欧美亚洲77777| 五月天丁香电影| 一区福利在线观看| 国产精品一国产av| 啦啦啦在线免费观看视频4| 久久人人97超碰香蕉20202| 精品国产乱码久久久久久男人| 人人妻人人澡人人看| 我要看黄色一级片免费的| 在线精品无人区一区二区三| 亚洲国产中文字幕在线视频| 黑人巨大精品欧美一区二区蜜桃| 丝袜人妻中文字幕| 亚洲成人手机| 人妻一区二区av| 国产精品人妻久久久影院| 狠狠精品人妻久久久久久综合| 国产精品 国内视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲在久久综合| 多毛熟女@视频| 91成人精品电影| 中文字幕人妻熟女乱码| 水蜜桃什么品种好| 免费观看av网站的网址| 91精品国产国语对白视频| 久久毛片免费看一区二区三区| 国产精品亚洲av一区麻豆 | e午夜精品久久久久久久| 999精品在线视频| 国产精品久久久久久人妻精品电影 | 一区二区日韩欧美中文字幕| 女人精品久久久久毛片| 女人被躁到高潮嗷嗷叫费观| 一级,二级,三级黄色视频| 中文字幕精品免费在线观看视频| 欧美激情极品国产一区二区三区| 制服人妻中文乱码| 日韩精品免费视频一区二区三区| 操美女的视频在线观看| 18禁动态无遮挡网站| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久成人av| 看十八女毛片水多多多| 两个人看的免费小视频| 午夜福利乱码中文字幕| 十分钟在线观看高清视频www| 亚洲国产成人一精品久久久| 亚洲精品久久久久久婷婷小说| 欧美国产精品va在线观看不卡| 性高湖久久久久久久久免费观看| 9色porny在线观看| 久久久精品免费免费高清| 日韩中文字幕视频在线看片| 亚洲av成人不卡在线观看播放网 | 久久免费观看电影| 国产精品熟女久久久久浪| 午夜福利免费观看在线| 久久青草综合色| 欧美老熟妇乱子伦牲交| 国产男女内射视频| 在线观看人妻少妇| 99热国产这里只有精品6| 亚洲精品在线美女| 亚洲一区二区三区欧美精品| a级毛片黄视频| 国产精品av久久久久免费| 在线观看免费高清a一片| 欧美人与善性xxx| 伦理电影免费视频| 秋霞伦理黄片| 又粗又硬又长又爽又黄的视频| 精品人妻一区二区三区麻豆| 在线观看免费午夜福利视频| 婷婷色av中文字幕| 午夜日本视频在线| 老司机在亚洲福利影院| 久久精品国产亚洲av高清一级| 久久精品国产综合久久久| 国产在线免费精品| 久久综合国产亚洲精品| 亚洲欧美成人精品一区二区| 黑人猛操日本美女一级片| 日韩 欧美 亚洲 中文字幕| 18禁裸乳无遮挡动漫免费视频| 亚洲图色成人| 免费在线观看黄色视频的| 婷婷色av中文字幕| 国产精品偷伦视频观看了| 99热全是精品| 日韩av在线免费看完整版不卡| 色婷婷久久久亚洲欧美| 叶爱在线成人免费视频播放| 亚洲婷婷狠狠爱综合网| videosex国产| 国产免费视频播放在线视频| 在线精品无人区一区二区三| 黑人欧美特级aaaaaa片| a级片在线免费高清观看视频| 激情五月婷婷亚洲| 午夜福利一区二区在线看| 国产男女内射视频| 欧美av亚洲av综合av国产av | 亚洲欧美一区二区三区国产| 日韩,欧美,国产一区二区三区| 精品午夜福利在线看| 久久久久久久国产电影| 国产黄频视频在线观看| 日韩中文字幕欧美一区二区 | 欧美久久黑人一区二区| 宅男免费午夜| 国产人伦9x9x在线观看| 1024香蕉在线观看| 成人影院久久| 国产又色又爽无遮挡免| 欧美精品av麻豆av| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| 秋霞伦理黄片| 欧美中文综合在线视频| 国产精品香港三级国产av潘金莲 | 久久久久网色| 亚洲欧美一区二区三区黑人| 国产精品久久久久成人av| 免费女性裸体啪啪无遮挡网站| 一本久久精品| av.在线天堂| 2021少妇久久久久久久久久久| 精品国产露脸久久av麻豆| 日韩欧美精品免费久久| 丝袜美腿诱惑在线| 亚洲精品国产av成人精品| 欧美激情高清一区二区三区 | av在线观看视频网站免费| 亚洲三区欧美一区| 91国产中文字幕| 激情视频va一区二区三区| 国产黄频视频在线观看| 国产精品久久久久久精品古装| 久久性视频一级片| 亚洲成人一二三区av| 国产精品无大码| 超碰97精品在线观看| 午夜av观看不卡| 女人被躁到高潮嗷嗷叫费观| 久久精品久久久久久噜噜老黄| 伊人久久大香线蕉亚洲五| 精品国产一区二区久久| 日韩制服丝袜自拍偷拍| 99久久精品国产亚洲精品| 精品人妻一区二区三区麻豆| 亚洲成国产人片在线观看| 在线观看一区二区三区激情| 久久久久国产一级毛片高清牌| 国产免费又黄又爽又色| 熟女少妇亚洲综合色aaa.| 国产淫语在线视频| av一本久久久久| 国产又色又爽无遮挡免| 国产精品女同一区二区软件| 18禁动态无遮挡网站| 久久久久精品久久久久真实原创| 国产在线一区二区三区精| 99热网站在线观看| 波多野结衣av一区二区av| 亚洲综合色网址| 秋霞伦理黄片| 国产日韩一区二区三区精品不卡| 高清视频免费观看一区二区| 高清不卡的av网站| 国产高清不卡午夜福利| 2021少妇久久久久久久久久久| 国产成人精品无人区| 黄色视频在线播放观看不卡| 免费高清在线观看视频在线观看| 亚洲精品中文字幕在线视频| 99精品久久久久人妻精品| 老熟女久久久| 成人国产av品久久久| 18禁裸乳无遮挡动漫免费视频| 国产又爽黄色视频| 欧美中文综合在线视频| 欧美激情 高清一区二区三区| 黄片播放在线免费| 亚洲中文av在线| 99九九在线精品视频| 51午夜福利影视在线观看| 久久久久网色| 亚洲人成电影观看| 国产精品蜜桃在线观看| 极品人妻少妇av视频| 午夜影院在线不卡| 男女国产视频网站| 亚洲久久久国产精品| 久久韩国三级中文字幕| 狠狠婷婷综合久久久久久88av| 老司机影院成人| 美女大奶头黄色视频| 免费看不卡的av| 亚洲av福利一区| 热99久久久久精品小说推荐| 观看美女的网站| av有码第一页| 老司机亚洲免费影院| 亚洲国产欧美一区二区综合| 妹子高潮喷水视频| 久久久精品国产亚洲av高清涩受| 国产精品麻豆人妻色哟哟久久| 夫妻午夜视频| 看免费成人av毛片| av电影中文网址| 电影成人av| 超碰97精品在线观看| 久久久精品国产亚洲av高清涩受| 精品国产一区二区三区四区第35| 久久久久人妻精品一区果冻| 啦啦啦 在线观看视频| 一区二区三区乱码不卡18| 亚洲精品aⅴ在线观看| 亚洲熟女毛片儿| av福利片在线| 久久国产精品男人的天堂亚洲| 久久久精品94久久精品| 在线天堂中文资源库| av电影中文网址| 日韩一本色道免费dvd| 国产成人欧美| 中国三级夫妇交换| 考比视频在线观看| 啦啦啦视频在线资源免费观看| 国产av码专区亚洲av| 国产黄色视频一区二区在线观看| 欧美人与性动交α欧美精品济南到| 久久精品国产a三级三级三级| 又粗又硬又长又爽又黄的视频| 欧美黄色片欧美黄色片| netflix在线观看网站| 男的添女的下面高潮视频| 啦啦啦啦在线视频资源| 七月丁香在线播放| 亚洲视频免费观看视频| 国产免费视频播放在线视频| 亚洲精品aⅴ在线观看| 免费看av在线观看网站| 日韩大片免费观看网站| 宅男免费午夜| 亚洲国产最新在线播放| 亚洲av国产av综合av卡| av线在线观看网站| 黑人猛操日本美女一级片| 国产欧美亚洲国产| www日本在线高清视频| 汤姆久久久久久久影院中文字幕| 国产在线一区二区三区精| 欧美中文综合在线视频| 国产成人精品福利久久| 一边摸一边抽搐一进一出视频| 国产 一区精品| 午夜福利视频在线观看免费| 久久影院123| 久久精品人人爽人人爽视色| 黄色视频在线播放观看不卡| 在线观看免费午夜福利视频| 男女无遮挡免费网站观看| xxxhd国产人妻xxx| 久久精品国产亚洲av高清一级| 精品国产超薄肉色丝袜足j| 国产一区二区在线观看av| 日韩一区二区视频免费看| 啦啦啦中文免费视频观看日本| 男女之事视频高清在线观看 | 伊人久久国产一区二区| √禁漫天堂资源中文www| 亚洲国产日韩一区二区| 成年人午夜在线观看视频| 两性夫妻黄色片| 一个人免费看片子| 久久综合国产亚洲精品| 免费女性裸体啪啪无遮挡网站| 天堂俺去俺来也www色官网| 亚洲国产av影院在线观看| 日韩一区二区视频免费看| 中文字幕av电影在线播放| 亚洲精品aⅴ在线观看| 欧美 日韩 精品 国产| 亚洲综合色网址| 国产一区二区三区综合在线观看| 国产精品熟女久久久久浪| 国产精品一国产av| 美女午夜性视频免费| 啦啦啦中文免费视频观看日本| 满18在线观看网站| 国产欧美日韩一区二区三区在线| 亚洲国产中文字幕在线视频| videosex国产| 亚洲五月色婷婷综合| 亚洲av成人精品一二三区| 80岁老熟妇乱子伦牲交| 亚洲成人手机| 国产极品天堂在线| 十八禁高潮呻吟视频| 久久影院123| 精品国产乱码久久久久久男人| 久久精品久久久久久久性| 日韩大片免费观看网站| 亚洲久久久国产精品| 免费日韩欧美在线观看| 中文字幕人妻熟女乱码| 久久精品aⅴ一区二区三区四区| 国产免费视频播放在线视频| 日韩一本色道免费dvd| 亚洲av在线观看美女高潮| 搡老乐熟女国产| 欧美激情高清一区二区三区 | 十分钟在线观看高清视频www| 国产伦理片在线播放av一区| 一本大道久久a久久精品| 国产 一区精品| 久久精品熟女亚洲av麻豆精品| 卡戴珊不雅视频在线播放| 亚洲精品自拍成人| 国产野战对白在线观看| 人人妻人人添人人爽欧美一区卜| 男女下面插进去视频免费观看| 18禁观看日本| 国产人伦9x9x在线观看| 精品国产乱码久久久久久男人| 国产精品久久久久久精品古装| 大片电影免费在线观看免费| 国产免费现黄频在线看| 韩国av在线不卡| 少妇的丰满在线观看| 亚洲成av片中文字幕在线观看| 国产老妇伦熟女老妇高清| 少妇被粗大猛烈的视频| 另类亚洲欧美激情| 日韩欧美精品免费久久| 国产 一区精品| 午夜福利乱码中文字幕| 亚洲欧美一区二区三区久久| 国产精品无大码| 日韩精品免费视频一区二区三区| 色播在线永久视频| 黄片无遮挡物在线观看| 国产淫语在线视频| netflix在线观看网站| 国产一区二区三区av在线| 精品国产一区二区三区四区第35| 中文字幕高清在线视频| 国产黄频视频在线观看| 国产淫语在线视频| 国产免费一区二区三区四区乱码| 欧美精品一区二区免费开放| 一区福利在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲色图 男人天堂 中文字幕| 日韩一区二区视频免费看| 女人爽到高潮嗷嗷叫在线视频| 日本色播在线视频| 少妇被粗大的猛进出69影院| 欧美人与性动交α欧美软件| 操出白浆在线播放| 欧美激情 高清一区二区三区| 国产片特级美女逼逼视频| 亚洲伊人久久精品综合| 精品人妻熟女毛片av久久网站| 9热在线视频观看99|