• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on Molecular Spectra of Interactions Between Salvianolic Acid A and Salvianolic Acid B with Insulin, and Effect of Glucose on the Binding

    2016-07-12 12:57:26YANGWenyueCUILinQULinglingXUNingHUANGYunCUILijianZHANWenhongZHAODing
    光譜學(xué)與光譜分析 2016年9期
    關(guān)鍵詞:藥學(xué)院酚酸醫(yī)科大學(xué)

    YANG Wen-yue, CUI Lin, QU Ling-ling, XU Ning, HUANG Yun,2*,CUI Li-jian, ZHAN Wen-hong, ZHAO Ding

    1.Pharmaceutical College, Hebei Medical University, Shijiazhuang 050017, China 2.Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China 3.Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang 050091, China

    Research on Molecular Spectra of Interactions Between Salvianolic Acid A and Salvianolic Acid B with Insulin, and Effect of Glucose on the Binding

    YANG Wen-yue1, CUI Lin1, QU Ling-ling1, XU Ning1, HUANG Yun1,2*,CUI Li-jian3*, ZHAN Wen-hong1, ZHAO Ding1

    1.Pharmaceutical College, Hebei Medical University, Shijiazhuang 050017, China 2.Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang 050017, China 3.Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang 050091, China

    The interactions of Salvianolic acid A (SAA) and Salvianolic acid B (SAB) with insulin were studied by using fluorescence spectroscopy, UV-vis spectroscopy and ATR-FTIR spectroscopy in simulating physiological condition (pH 7.40).The fluorescence quenching of insulin by SAA and SAB were static quenching process.The results of synchronous fluorescence and three-dimensional fluorescence spectra suggested no obvious conformation changes of insulin after SAA or SAB binding.But ATR-FTIR spectra showed that SAA and SAB could change the secondary structures of insulin, of which β-turns decreased and random coil increased accompanied with α-helices and β-sheets no clear change.The glucose might influenced the the bioactivity of insulin in the SAA-insulin and SAB-insulin systems by changing the binding constants of SAA (or SAB) with insulin and exacerbating the changes of insulin conformation and relative contents of α-helices.

    Salvianolic acid A;Salvianolic acid B;Insulin;Glucose;Spectroscopy

    Introduction

    Danshen injection is a kind of traditional Chinese medicine (TCM) injections often used in clinical for the treatment of diabete complications including peripheral neuropathy and microangiopathy[1-2].Some researchs show that water-soluble phenolic acids compounds could prevent diabetic nephropathy, due to improving abnormal blood rheology of diabetes mellitus patients[3-4].Salvianolic acid A (SAA) which was demonstrated to have the function of cardiovascular protection and Salvianolic acid B (SAB) which was used in clinical practice for the treatments of myocardial infarction and coronary heart disease (Fig.1) are important water-soluble phenolic acid compounds[5-9]in DANSHEN injection.

    Diabetes mellitus is a serious pathological disease especially with various acute or chronic complications such as diabetic nephropathy, diabetic cardiopathy, and diabetic encephalopathy, which usually need intravenous therapy.But lots of normal saline (NS) infusion is liable to cause water-sodium retention and homeostasis disturbances when drugs are given via a peripheral venous access.In clinical, these patients are given drugs and insulin dispensed in 5% glucose injection through intravenous drip instead of NS[10].

    Insulin plays important roles in blood glucose, influences lipid metabolism, protein degradation, synthesis, and growth, which is a polypeptide hormones secreted by pancreatic β cell.It is composed of A peptide chain (21 amino acids) and B peptide chain (30 amino acids).The A peptide chain contains one random coil and two α-helices, the B peptide chain containing one α-helices and two β-turns.The complex biological function of insulin molecular is implemented through combining with its receptor.It showed that there is a hydrophobic region in insulin as the active site binding to receptor[11-12].The classical binding sites are situated in α-helices region, and in β-sheets region.The active binding sites and biological function of insulin might be affected if the contents of α-helices and β-sheets altered.

    Fig.1 Structures of compounds

    The technique of attenuated total reflectance (ATR) has revolutionized solid and liquid sample analyses[13], which has been implemented in biological studies in order to probe chemical reactions/structure at the solid/liquid interface.There are some vibration bands of protein and polypeptide in the IR region, only the amide I band proved to be significant information for the detailed characterization of protein secondary structure[14], such as α-helices, β-sheets, β-turns and random coil.The width of the contributing component bands is usually greater than the separation between the maximum of adjacent peaks.As a consequence, the individual component bands cannot be resolved in the experimental spectra.The Fourier deconvolution procedure, referred to as resolution enhancement involves narrowing the widths of infrared bands, allowing increased separation of the overlapping components present within the broad band envelope.The secondary structure content was calculated from the areas of the individual assigned bands.

    Synchronous fluorescence spectrum can simplify the spectrum, narrow band and reduce the spectral overlap.The change of the position of synchronous fluorescence reflects the change of surrounding microenvironment polarity of amino acid residues[15].Insulin molecule has 4 tyrosine residues, 3 of which are in the hydrophobic binding site.We determined the synchronous fluorescence spectra of insulin when Δλ=15 (Tyr residues).The conformation change of insulin can be speculated based on the peak shift.

    Thus, we explore whether the interactions between SAA or SAB and insulin occurred and the influence of glucose on them, and investigate the binding mechanism, the binding constant, the change of insulin secondary structure and the effect of glucose on the binding.The plasma free concentration of drug would be reduced if SAA or SAB combined with insulin.If the combination influences the α-helices and β-sheets in the secondary structure of insulin, the biological activity of insulin will may be further affected.The results may provide an important theoretical support for the use of DANSHEN injection in the treatment of diabetes and its complications.

    1 Materials and methods

    1.1 Materials and apparatus

    Insulin was purchased from Sigma (New York, USA) and Tris (99.0%) was from Shanghai Chemistry Reagent Company (Shanghai, China), Salvianolic acid A and Salvianolic acid B from National Institutes for Food and Drug Control (Beijing, China).All other chemicals were of analytical reagent grade.Double distilled water was used throughout the experiment.

    The fluorescence spectra were recorded on F-380 spectrofluorimeter (Gangdong, China).The absorption spectra were measured on TU-1901 spectrophotometer (Purkinje General, China).In addition, the ATR-FTIR spectra were measured on FTIR-8400S spectrometer (Shimadzu, Japan) with ATR accessory (PIKE, USA).Titrations were done manually by using trace syringes.

    1.2 Procedures

    Appropriate amounts of insulin were dissolved in Tris-HCl buffer solution (0.05 mol·L-1, pH 7.40, containing 0.10 mol·L-1NaCl) to prepare the stock solution (5×10-4mol·L-1), which was diluted to lower concentration (5×10-6mol·L-1) for actual use.SAA and SAB solutions (1×10-3mol·L-1) were prepared in double distilled water.

    2 mL insulin (5×10-6mol·L-1) was titrated with 0, 8, 16, 24, 32, 40, 48, 56 μL SAA or SAB (1×10-3mol·L-1).Titrations were done by using a micro-injector.The final concentrations of SAA or SAB varied from 0 to 28×10-6mol·L-1at an increment of 4×10-6mol·L-1.Another solution of insulin with the SAA (or SAB) in the presence of 5% glucose was prepared similarly.

    Fluorescence spectra were recorded at 298 and 310 K in the range from 285~350 nm at excitation wavelength 280 nm.The widths of excitation and emission slits were both set at 2.5 nm.The synchronous fluorescence spectra were recorded when Δλ=15 over the wavelength range of 280~350 nm.The three-dimensional fluorescence spectra were performed under the following conditions: emission wavelength from 250 to 350 nm, excitation wavelength from 240 to 300 nm with an increment of 2 nm.

    The UV absorption spectra of SAA (SAB, insulin, SAA-insulin or SAB-insulin) were recorded in the range of 200~350 nm.

    All FTIR spectra were taken via the ATR method with the resolution of 4 cm-1and 60 scans.The sample compartment was purged with dry air to eliminate the absorption of water vapour.The spectra of the buffer solution and insulin solution were firstly collected and then the spectrum of buffer was subtracted from that of insulin to obtain the pure insulin subtractive spectrum.The spectra of drug solution were subtracted from that of drug-insulin to obtain the insulin (after the drug was added) subtractive spectra.

    The subtractive spectra were performed two point baseline correction within the scope of 1 700~1 600 cm-1(amide Ⅰ band) and smoothed with a five-point Savitsky-Golay to remove the noise.The second derivative and Fourier deconvolution were applied to estimate the position of peaks and half-peak width.The spectra were fitted by the Gauss curve fitting, and the secondary structure contents of insulin were calculated from the areas of the individual assigned bands and their fraction of the total area in the amide Ⅰ region.

    The experimental date were analyzed and graphed by origin 9.0.The result data of ATR-FTIR curve-fitting differential spectra were expressed as mean±SD, and statistical analysis was performed with SPSS 13.0.Normality test and independent sample T test were used to compare the difference between the second structure of insulin with that after binding with SAA (SAB) or SAA-glucose (SAB-glucose).P values less than 0.05 were considered statistically significant.

    2 Results and discussion

    2.1 Effect of SAA and SAB on fluorescence spectra of insulin

    The fluorescence quenching spectra of insulin with different concentrations of SAA or SAB were shown in Fig.2.Insulin had a strong fluorescence emission peak at 308 nm and the fluorescence emission intensity of insulin decreased regularly with the increasing concentration of SAA or SAB, indicating SAA and SAB interacted with insulin and quenched its intrinsic fluorescence.

    2.2 The fluorescence quenching mechanism

    The different fluorescence quenching mechanisms are usually classified as either dynamic or static quenching.It is necessary to know quenching types for studying the mechanism of quenching.We use the quenching constants dependence on the temperature to elucidate the quenching mechanism.TheKSVvalue decreases with temperature increasing for static quenching, and the reverse results would be observed for dynamic quenching[16].

    Fig.2 Fluorescence quenching spectra of (a) SAA-insulin and (b) SAB-insulin (T=298 K)

    From curve 1→8,cInsulin=5×10-6mol·L-1,cSAA=cSAB=0, 4, 8, 12, 16, 20, 24 and 28×10-6mol·L-1, respectively

    In order to study the quenching mechanism, the procedure is assumed to be dynamic quenching.The Stern-Volmer equation is described by

    F0/F=1+Kqτ0[Q]=1+KSV[Q]

    (1)

    whereF0andFare the fluorescence intensities of biomolecule before and after the quencher added.Kqis the biomolecule quenching constant,τ0is average lifetime of the bio-molecular without quencher, [Q] is the concentration of quencher, andKSVis the dynamic quenching constant.

    Fig.3 showed the Stern-Volmer plots of the fluorescence quenching of insulin at different temperatures.TheKSVat different temperatures were shown in Table 1, suggesting the quenching mechanisms of SAA-insulin and SAB-insulin were static quenching since the quenching constants decrease with the rising temperature, which refers to the formation of fluorophore-quencher complex[17].

    UV absorption measurement is a simple but effective method which is often used to confirm the probable quenching mechanism between small molecules and proteins.The absorption spectra of insulin in the absence and presence of SAA or SAB were recorded by subtracting the corresponding spectra of SAA or SAB free form in the buffer from that of SAA (SAB)-insulin system.

    Fig.3 Stern-Volmer plots of (a) SAA-insulin and (b) SAB-insulin at different temperatures

    Table 1 Binding parameters of SAA (SAB)- insulin at different temperatures

    T/KStern-VolmerDoublelogarithmKSV/(L·mol-1)RKaRSAA-insulin2983102.23×1051.91×1050.9920.9937.79×1072.87×1070.9990.999SAB-insulin2983106.75×1046.42×1040.9940.9951.39×1060.61×1060.9990.995

    It was obvious that the spectra of insulin-SAA and insulin-SAB (Fig.4) were different from the differential spectrum, suggesting the quenching mechanism of insulin by SAA or SAB were static quenching procedure, because for static quenching, the ground-state of fluorophore can form the complexes with quencher that causes the absorption spectra of fluorophore changed[18].The above results were in agreement with the conclusions of fluorescence spectra.

    2.3 Binding constant

    The binding constant can be obtained by the following equation

    lg[(F0-F)/F]=lgKa+nlg[Q]

    (2)

    whereKais the binding constant.

    Fig.4 The absorption spectra of insulin

    Table 1 showed the values ofKa, which were 7.79×107(SAA) and 1.39×106(SAB).Ka(SAA)>Ka(SAB) at the same temperature, indicating the steric hindrance gave SAB a disadvantage to binding with insulin.The results demonstrated that the abilities of binding to insulin were related to the structures of the drugs.

    2.4 Binding forces

    Thermodynamic parameters for a binding interaction can be used as a main evidence to learn the nature of intermolecular forces between small molecule and biomacromolecule.According to thermodynamic equations

    ln(K2/K1)=(1/T1-1/T2)ΔH/R

    (3)

    ΔG=ΔH-TΔS

    (4)

    ΔG=-RTlnK

    (5)

    AccordingtothevaluesofΔHand ΔSin the process, the interaction mode can be determined as follows: ΔH>0 and ΔS>0 imply a hydrophobic interaction; ΔH<0 and ΔS<0 suggest the Vander Waals force and hydrogen bond; ΔH<0 and ΔS>0 reflect an electrostatic force[19].

    The thermodynamic parameters were shown in Table 2.The negative ΔHand ΔSindicated that the Vander Waals force and hydrogen bond played major roles in stabilizing the SAA-insulin and SAB-insulin complexes.The negative value of ΔGwas taken as the evidence for the spontaneity of the binding of SAA and SAB with insulin.

    Table 2 Thermodynamic parameters of interaction between SAA (SAB) and insulin

    2.5 Conformation investigation

    2.5.1 Synchronous fluorescence spectra

    The synchronous fluorescence spectra present the information about the molecular microenvironment in the vicinity of the fluorophore functional groups[20].

    The synchronous fluorescence spectra were measured when the Δλ=15 nm and shown in Fig.5.The emission maximum of tyrosine of insulin of the SAA-insulin system or SAB-insulin system has hardly any shift.It was demonstrated that the microenvironment and conformation of tyrosine of insulin had no obvious change after SAA or SAB was added.

    Fig.5 Synchronous fluorescence spectra of (a) SAA-insulin and (b) SAB-insulin (Δλ=15 nm)

    From curve 1→8,cInsulin=5×10-6mol·L-1,cSAA=cSAB=0, 4, 8, 12, 16, 20, 24 and 28×10-6mol·L-1, respectively

    2.5.2 Three-dimensional fluorescence spectroscopy

    In three-dimensional fluorescence spectra, the excitation wavelength, the emission wavelength and the fluorescence intensity are the main parameters.They can provide detailed fluorescence information of the protein, which makes the investigation of the conformational changes of insulin[21].

    Fig.6 presented the contour spectra of (a) insulin, (b) SAA-insulin, (c) SAA-insulin-glucose, (d) SAB-insulin and (e) SAB-insulin-glucose, and the related characteristic parameters were presented in Table 3.As we can see from the Fig.6, Peak 1 is the Rayleigh scattering peak (λex=λem) and Peak 2 the spectral behavior of Tyr residues.The intensity of peak 2 and the density of contour decreased obviously when the SAA and SAB were added.In addition, the fluorescence quenching extent of insulin by SAA was greater than that by SAB, suggesting the steric hindrance gave SAB a disadvantage to combining with insulin.But the Stokes shift had no significant change, which demonstrated that SAA and SAB had no significant affect on the polarity and hydrophilicity around Tyr microenvironment.The above results were similar to what is shown in the synchronous fluorescence spectra.

    Fig.6 Contour spectra of (a) insulin, (b) SAA-insulin, (c) SAA-insulin-glucose, (d) SAB-insulin and (e) SAB-insulin-glucose

    cInsulin=cSAA=cSAB=5×10-6mol·L-1,ωGlucose=5%

    Table 3 Contour spectra characteristics of insulin, SAA-insulin, SAB-insulin, SAA-insulin-glucose and SAB-insulin-glucose

    Peak2(λex/λem)IntensityInsulin276/303367Insulin-SAA276/303268Insulin-SAB276/303313Insulin-SAA-glucose278/305267Insulin-SAB-glucose278/305302

    2.5.3 ATR-FTIR spectra

    Infrared spectra of proteins represent different vibrations of the peptide.In general, the spectra range in 1 682~1 689 and 1 613~1 637 cm-1in amide Ⅰ bands can be attributed to β-sheets structure.The α-helices is in 1 645~1 662 cm-1region, and the position in the 1 662~1 682 and 1 637~1 645 cm-1region are regarded as β-turns and random coil structure, respectively[22].

    The ATR-FTIR spectrum of the buffer solution (Tris-HCl) and insulin were firstly collected and then subtracted the spectrum of buffer from that of insulin to get the ATR-FTIR differential spectrum of insulin.In the similar way, the spectra of SAA (SAB) and SAA (SAB)-insulin were collected, the latter spectra subtracted that of SAA (SAB) to obtain the differential spectra of insulin after binding with SAA or SAB.

    Fig.7 showed the ATR-FTIR differential spectra of insulin in Tris-HCl buffer and after binding with SAA or SAB.It could be seen that the peak position of the amide I band was at 1 649 cm-1and amide Ⅱ at 1 542 cm-1.The peak position did not change after SAA or SAB was added.

    Fig.7 ATR-FTIR differential spectra of (a) insulin, (b) (SAA-insulin)-SAA, (c) (insulin-SAA-glucose)-(SAA-glucose), (d) (SAB-insulin)-SAB and (e) (insulin-SAB-glucose)-(SAB-glucose) system

    A quantitative analysis of the protein secondary structure was given in Fig.8 and Table 4.The relative content of α-helices of insulin was 28.62%±0.41%, β-sheets 29.14%±1.21%, β-turns 30.62%±0.65%, and random coil 11.62%±0.59%.The contents of β-turns decreased and random coil increased markedly (p<0.05), while α-helices and β-sheets had no significant change (p>0.05) with the accession of SAA and SAB.The relative contents of different secondary structures of insulin changed, suggesting that SAA and SAB could influence the secondary structures of insulin.But the contents of α-helices and β-sheets had no significant change, suggesting that the active binding site of insulin might not be influenced by SAA and SAB, that is to say the change on biological function was not obvious when SAA or SAB binding to insulin.It also confirmed the results of synchronous fluorescence spectra and the three dimensional fluorescence spectra.

    Fig.8 ATR-FTIR curve-fitting figures of differential spectra: (a) insulin, (b) (SAA-insulin)-SAA, (c) (insulin-SAA-glucose)-(SAA-glucose), (d) (SAB-insulin)-SAB and (e) (insulin-SAB-glucose)-(SAB-glucose) system

    Table 4 The relative contents of different secondary structures

    *p<0.05 compared with insulin system

    2.6 Influence of glucose on binding constants and conformation

    The influence of glucose on the interactions between insulin and SAA or SAB was further studied.The binding constants of the SAA (SAB)-insulin-glucose system were listed in Table 5.Obviously, the binding constant of SAA-insulin system with glucose was decreased from 7.79×107to 0.30×107, indicating glucose could lower the binding of SAA to insulin.But the binding constant of SAB-insulin system with glucose was increased from 1.39×106to 6.34×106, demonstrating glucose could accelerate the binding of SAB to insulin.By decreasing the binding constants of SAA and increasing of SAB with insulin, the free concentration of SAA was reduced and SAB increased, which was advantage over SAA but adverse to SAB to keep plasma drug concentration.

    Table 5 Binding constant and the number of binding sites of SAA-insulin-glucose and SAB-insulin-glucose

    KaRInsulin-SSA-glucose0.30×1070.998Insulin-SSB-glucose6.34×1060.999

    The contour fluorescence spectra and related characteristic parameters of SAA-insulin or SAB-insulin in the absence and presence of glucose were shown in Fig.6(c, e) and Table 3.With comparison and analysis, the Stokes shift had some changes in SAA(SAB)-glucose system, demonstrating that glucose might have some affect the polarity and hydrophobicity around Tyr microenvironment.

    The ATR-FTIR Gauss curve-fitting figures after insulin binding with SAA-glucose (SAB-glucose) were shown in Fig.8(c, e) and contents of secondary structure listed in Table 4.It was obviously that the contents of α-helices and β-turns changed significantly while the changes of β-sheets and random coil had no statistically significant.It indicated that the bioactivity of insulin might be influenced after binding with SAA-glucose or SAB-glucose.

    3 Conclusions

    This paper presents the interactions of SAA or SAB with insulin and effect of glucose on the binding.SAA and SAB quenched the intrinsic fluorescence of insulin by static quenching process.The extent of insulin fluorescence quenching by SAA was greater than that by SAB at 298 K, suggesting the steric hindrance gave SAB a disadvantage to combining with insulin.The conformation has hardly any change after SAA and SAB binding with insulin.SAA and SAB could not affect the secondary structure of α-helices and β-sheets of insulin by ATR-FTIR.The results of second structure and conformation of insulin showed the biological activity was maybe not obviously changed after SAA or SAB binding to insulin.The binding constant of SAA-insulin system with glucose was decreased, while SAB-insulin system increased, which indicated glucose was an advantage over SAA but adverse to SAB keeping the plasma drug concentration.And the contents of α-helices changed significantly suggested that the bioactivity of insulin might be influenced after the accession of glucose.

    The study results show that SAA and SAB could combine with insulin in glucose injection, by which free drug concentrations of DANSHEN injection were decreased.And the activity site of insulin might be changed after binding with glucose, by which the efficacy of insulin might be influenced.The above results provided an important theoretical research for glucose injection in combination of DANSHEN injection with insulin in the treatment of diabetes mellitus.

    [1] Zhang Mei, Li Xu, Qiu Genquan, et al.Jorunal of Chinese Medicinal Materials,2005, 28(6): 529.

    [2] Rong Xiuhua, Han Xuewen.Jorunal of Binzhou Medical College,1996, 19(6): 539.

    [3] Zhao Ling.Journal of Zhejiang College of Traditional Chinese Medicine,2009, 33(1): 82.

    [4] Wang Xiaomei, Zhen Zhuoli, Chen Xiaofen, et al.Journal of Hebei Medicine,2005, 11(9): 769.

    [5] Hye Sook Kang, Hae Young Chung, Dae Seok Byun, et al.Arehievs of Pharmacal Researeh,2003, 26(1): 24.

    [6] Fan Huaying, Fu Fenghua, Yang Mingyan, et al.Thrombosis Research,2010, 126(1): 17.

    [7] Huang Z S, Zeng C L, Zhu L J, et al.Journal of Thrombosis and Haemostasis,2010, 8(6): 1383.

    [8] Wang Shoubao, Tian Shuo, Fan Yang, et al.European Journal of Pharmacology,2009, 615(1-3): 125.

    [9] Guo Yongxue, Xiu Zhilong, Zhang Daijia, et al.Joumal of Pharmaceutical and Biomedical Analysis,2007, 43(4): 1249.

    [10] Yang Yanyi, Tian Ying, Tian Yanjiao, et al.Chinese Journal of Geriatric Care,2010, 8(4): 22.

    [11] Ye Yunhua.University Chemistry,2010, 25: 19.

    [12] Pullen R A, Lindsay D G, Stephen P Wood, et al.Nature, 1976, 259(5542): 369.

    [13] Kazarian S G, Chan K L A.Biochimica Et Biophysica Acta-Biomembranes,2006, 1758(7):858.

    [14] Hua Shi, Ling Xiong, Yang Kunyun, et al.Journal of Molecular Structure,1998, 446: 137.

    [15] Cui Fengling, Qin Lixia, Zhang Guisheng, et al.Journal of Pharmaceutical and Biomedical Analysis,2008, 48: 1029.

    [16] Li Qiang, Yang Wenyue, Qu Lingling, et al.Journal of Spectroscopy,2014, 834501:7.

    [17] Huang Yun, Cui Lijian, Wang Jianming, et al.Journal of Luminescence,2012, 132: 357.

    [18] Yang Jie, Qu Lingling, Yang Wenyue, et al.Journal of Spectroscopy,2014, 386586:9.

    [19] Huang Yun, Cui Lijian, Chen Chen, et al.Chinese Pharmacological Bulletin,2010, 26(6): 754.

    [20] Cui Fengling, Qin Lixia, Hu Xing, et al.Journal of Pharmaceutical and Biomedical Analysis,2008, 48: 1029.

    [21] Huang Yun, Cui Lijian, Wang Jianming, et al.European Journal of Medicinal Chemistry,2011, 46: 6039.

    [22] Zhang Xuan, Huang Lixin, Nie Songqing, et al.Journal of Chinese Pharmaceutical Sciences,2003, 12(1): 11.

    *通訊聯(lián)系人

    O446.1

    A

    丹參酚酸A和丹參酚酸B與胰島素相互作用的分子光譜學(xué)研究以及葡萄糖的影響

    楊文月1, 崔 琳1,渠玲玲1, 許 寧1, 黃 蕓1,2*, 崔力劍3*, 詹文紅1,趙 丁1

    1.河北醫(yī)科大學(xué)藥學(xué)院,河北 石家莊 050017 2.河北醫(yī)科大學(xué)中西醫(yī)結(jié)合研究所,河北 石家莊 050017 3.河北中醫(yī)學(xué)院藥學(xué)院,河北 石家莊 050091

    采用紫外-可見光譜、熒光光譜和傅里葉變換衰減全反射紅外光譜等技術(shù),研究在模擬人體生理Ph值條件下,丹參酚酸A(或丹參酚酸B)與胰島素分子之間的結(jié)合作用,以及丹參酚酸A(或丹參酚酸B)對(duì)胰島素二級(jí)結(jié)構(gòu)的影響,并考察葡萄糖對(duì)它們的影響。實(shí)驗(yàn)結(jié)果表明,丹參酚酸A和丹參酚酸B均能導(dǎo)致胰島素內(nèi)源性熒光靜態(tài)猝滅;同步熒光和三維熒光譜圖表明胰島素與丹參酚酸A(或丹參酚酸B)結(jié)合后,構(gòu)象沒有發(fā)生明顯變化。紅外光譜研究表明,胰島素與丹參酚酸A(或丹參酚酸B)結(jié)合后二級(jí)結(jié)構(gòu)發(fā)生了一些改變,β-轉(zhuǎn)角和無(wú)規(guī)則卷曲的相對(duì)含量略有增加,α-螺旋和β-折疊沒有發(fā)生明顯改變。葡萄糖的加入會(huì)改變丹參酚酸A(或丹參酚酸B)與胰島素的結(jié)合程度,并加劇胰島素構(gòu)象變化以及二級(jí)結(jié)構(gòu)中α-螺旋相對(duì)含量改變,從而影響丹參酚酸A(或丹參酚酸B)-胰島素體系中胰島素的生物活性。

    丹參酚酸A;丹參酚酸B;胰島素;葡萄糖;光譜

    2015-05-06,

    2015-09-17)

    Foundation item:the HEBEI Province Science and Technology Support Program (142777114D),College Students’ Innovative Entrepreneurial Training Programs (USIP201525A)

    10.3964/j.issn.1000-0593(2016)09-3053-09

    Received:2015-05-06; accepted:2015-09-17

    Biography:YANG Wen-yue, (1989—), female, postgraduate student, Pharmaceutical College of Hebei Medical University *Corresponding authors e-mail: huangyun9317@126.com; cuilijianzy@126.com

    猜你喜歡
    藥學(xué)院酚酸醫(yī)科大學(xué)
    廣州醫(yī)科大學(xué)
    《遵義醫(yī)科大學(xué)學(xué)報(bào)》2022年第45卷第2期英文目次
    《福建醫(yī)科大學(xué)學(xué)報(bào)》第七屆編委會(huì)
    蘭州大學(xué)藥學(xué)院簡(jiǎn)介
    雙咖酚酸在小鼠體內(nèi)的藥物代謝動(dòng)力學(xué)與組織分布
    丹參中丹酚酸A轉(zhuǎn)化方法
    中成藥(2018年9期)2018-10-09 07:19:04
    川芎總酚酸提取工藝的優(yōu)化
    中成藥(2018年7期)2018-08-04 06:04:02
    醫(yī)科大學(xué)總醫(yī)院
    一株真菌所產(chǎn)環(huán)縮酚酸肽類化合物的分離和鑒定
    HSCCC-ELSD法分離純化青葙子中的皂苷
    成年版毛片免费区| 熟女人妻精品中文字幕| 亚洲第一电影网av| 欧美区成人在线视频| 村上凉子中文字幕在线| 国产精品爽爽va在线观看网站| 久久韩国三级中文字幕| 日韩 亚洲 欧美在线| 在现免费观看毛片| 干丝袜人妻中文字幕| 国产在线男女| 神马国产精品三级电影在线观看| 麻豆国产97在线/欧美| 欧美成人a在线观看| 色视频www国产| 欧美最黄视频在线播放免费| 12—13女人毛片做爰片一| 国产高清激情床上av| 免费观看人在逋| 热99re8久久精品国产| 成人综合一区亚洲| 欧美一区二区精品小视频在线| 免费电影在线观看免费观看| 禁无遮挡网站| 国产精品一区二区免费欧美| 不卡一级毛片| 天堂√8在线中文| 插阴视频在线观看视频| 久久精品国产亚洲av天美| 免费看光身美女| av中文乱码字幕在线| 免费高清视频大片| 久久午夜亚洲精品久久| 国产色爽女视频免费观看| 婷婷精品国产亚洲av| 少妇人妻一区二区三区视频| 成人午夜高清在线视频| 九九爱精品视频在线观看| 欧美日韩国产亚洲二区| 2021天堂中文幕一二区在线观| 国产一区二区亚洲精品在线观看| 日韩 亚洲 欧美在线| 国产乱人偷精品视频| 欧美+日韩+精品| 91午夜精品亚洲一区二区三区| 久久精品国产清高在天天线| 91久久精品国产一区二区成人| 国产精品一二三区在线看| 日日摸夜夜添夜夜添小说| 国产成人精品久久久久久| 国产精品国产三级国产av玫瑰| 在线观看午夜福利视频| 国产色婷婷99| 两个人的视频大全免费| 久久久精品94久久精品| 国产69精品久久久久777片| 麻豆一二三区av精品| 色哟哟哟哟哟哟| 香蕉av资源在线| 六月丁香七月| 亚洲精品乱码久久久v下载方式| 亚洲国产精品合色在线| 久久精品夜夜夜夜夜久久蜜豆| 在线观看美女被高潮喷水网站| 热99re8久久精品国产| 日日摸夜夜添夜夜添小说| 精品人妻偷拍中文字幕| 嫩草影院精品99| 秋霞在线观看毛片| 两性午夜刺激爽爽歪歪视频在线观看| 少妇丰满av| 99国产精品一区二区蜜桃av| 精品人妻一区二区三区麻豆 | 99热只有精品国产| 午夜爱爱视频在线播放| 国产午夜精品论理片| 最好的美女福利视频网| 美女xxoo啪啪120秒动态图| 久久久久性生活片| 国内精品一区二区在线观看| eeuss影院久久| 欧美在线一区亚洲| 国产高清三级在线| 身体一侧抽搐| 天堂√8在线中文| 可以在线观看的亚洲视频| 成人一区二区视频在线观看| 国产精品无大码| 免费观看人在逋| 精品日产1卡2卡| 黄色一级大片看看| 久久精品国产清高在天天线| 亚洲精品久久国产高清桃花| 国产精品一区二区免费欧美| 神马国产精品三级电影在线观看| 欧美在线一区亚洲| av女优亚洲男人天堂| 精品久久久噜噜| 国产免费一级a男人的天堂| 日本 av在线| 国产成人a∨麻豆精品| 国产精品伦人一区二区| 亚洲经典国产精华液单| 精品乱码久久久久久99久播| 久99久视频精品免费| 少妇的逼水好多| 日韩精品青青久久久久久| 露出奶头的视频| a级毛色黄片| 内射极品少妇av片p| 一级a爱片免费观看的视频| 有码 亚洲区| 久久久久国内视频| 男人狂女人下面高潮的视频| 美女被艹到高潮喷水动态| 国产精品综合久久久久久久免费| 久久久久久久午夜电影| 成人亚洲精品av一区二区| 伦精品一区二区三区| 97人妻精品一区二区三区麻豆| 国产高清有码在线观看视频| 久久人妻av系列| 三级国产精品欧美在线观看| 在线观看美女被高潮喷水网站| 人妻久久中文字幕网| 波野结衣二区三区在线| 国产一区亚洲一区在线观看| 99热这里只有是精品在线观看| 国产精品99久久久久久久久| 97超视频在线观看视频| 99热这里只有是精品在线观看| 人妻制服诱惑在线中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 一级毛片aaaaaa免费看小| 大型黄色视频在线免费观看| 欧美日韩乱码在线| 国产av一区在线观看免费| 日本-黄色视频高清免费观看| 国产一区二区激情短视频| 99热全是精品| 91狼人影院| 国产av在哪里看| 3wmmmm亚洲av在线观看| 少妇的逼水好多| 黄色日韩在线| 色在线成人网| 99热只有精品国产| videossex国产| 久久久国产成人精品二区| 天堂av国产一区二区熟女人妻| 国产精品亚洲一级av第二区| 一级a爱片免费观看的视频| 国产国拍精品亚洲av在线观看| 99riav亚洲国产免费| 国产久久久一区二区三区| 国产精品国产高清国产av| 亚洲精品在线观看二区| 久久这里只有精品中国| 十八禁网站免费在线| 久久久精品欧美日韩精品| 六月丁香七月| 欧美潮喷喷水| 男女下面进入的视频免费午夜| 国产成人影院久久av| 赤兔流量卡办理| 搡老岳熟女国产| 一边摸一边抽搐一进一小说| 国产伦在线观看视频一区| 成人国产麻豆网| 午夜福利视频1000在线观看| 国产免费男女视频| 亚洲精品色激情综合| 麻豆国产av国片精品| 日韩在线高清观看一区二区三区| 国产一区二区三区av在线 | 国内精品美女久久久久久| a级毛片a级免费在线| 国产麻豆成人av免费视频| av在线亚洲专区| 国产不卡一卡二| 中国美女看黄片| 色av中文字幕| 我的老师免费观看完整版| 久久精品影院6| 成年免费大片在线观看| 少妇熟女aⅴ在线视频| 久久久久久伊人网av| 久久国内精品自在自线图片| 午夜视频国产福利| 国产精品av视频在线免费观看| 国产精品久久视频播放| 人人妻人人看人人澡| 男人舔女人下体高潮全视频| 别揉我奶头~嗯~啊~动态视频| 天堂av国产一区二区熟女人妻| 国产一区二区在线观看日韩| 麻豆国产av国片精品| 亚洲成av人片在线播放无| 精品国产三级普通话版| 成人性生交大片免费视频hd| 欧美日本视频| 国产精品久久久久久精品电影| 一本久久中文字幕| 午夜日韩欧美国产| www.色视频.com| 久久韩国三级中文字幕| 国产亚洲欧美98| 亚洲第一电影网av| 国产精品亚洲美女久久久| 国产高清激情床上av| 美女cb高潮喷水在线观看| 精品久久久久久久久久免费视频| 亚洲激情五月婷婷啪啪| 亚洲精品影视一区二区三区av| 免费黄网站久久成人精品| 91在线观看av| 亚洲成人中文字幕在线播放| av卡一久久| 中文字幕久久专区| 国产三级在线视频| 99久久精品国产国产毛片| 国产精品电影一区二区三区| 在线观看一区二区三区| 一进一出抽搐动态| 精品不卡国产一区二区三区| a级毛片a级免费在线| av黄色大香蕉| 国产男靠女视频免费网站| 一边摸一边抽搐一进一小说| 色5月婷婷丁香| 日韩三级伦理在线观看| 性欧美人与动物交配| 午夜福利在线观看免费完整高清在 | 国产aⅴ精品一区二区三区波| 婷婷精品国产亚洲av在线| 狠狠狠狠99中文字幕| av专区在线播放| 2021天堂中文幕一二区在线观| 日本一二三区视频观看| 97超碰精品成人国产| 久久热精品热| 在线观看美女被高潮喷水网站| 欧美色欧美亚洲另类二区| 亚洲成人av在线免费| 国产成人福利小说| 久久久精品大字幕| 精华霜和精华液先用哪个| 精品一区二区三区视频在线| 不卡视频在线观看欧美| 一级毛片电影观看 | 国产精品三级大全| 国产综合懂色| 国产精品福利在线免费观看| 99久久精品国产国产毛片| 尾随美女入室| 国产av不卡久久| 夜夜夜夜夜久久久久| 插逼视频在线观看| 免费观看人在逋| 欧美潮喷喷水| 99久久久亚洲精品蜜臀av| 亚洲av熟女| 淫妇啪啪啪对白视频| 国产午夜精品久久久久久一区二区三区 | 一个人观看的视频www高清免费观看| 精品久久久久久久久久久久久| 蜜臀久久99精品久久宅男| 少妇猛男粗大的猛烈进出视频 | 看十八女毛片水多多多| 欧美性猛交╳xxx乱大交人| 国产 一区 欧美 日韩| 男人舔奶头视频| 最近手机中文字幕大全| 看黄色毛片网站| 我的女老师完整版在线观看| 欧美中文日本在线观看视频| 一进一出抽搐gif免费好疼| 日本爱情动作片www.在线观看 | 色哟哟·www| 九九爱精品视频在线观看| 色哟哟哟哟哟哟| 久久天躁狠狠躁夜夜2o2o| 免费一级毛片在线播放高清视频| 国产私拍福利视频在线观看| 欧美3d第一页| 国产av在哪里看| 色播亚洲综合网| 波多野结衣巨乳人妻| 看非洲黑人一级黄片| 色播亚洲综合网| av专区在线播放| 91久久精品电影网| 亚洲国产精品成人久久小说 | 日日摸夜夜添夜夜添小说| 全区人妻精品视频| 国产精品久久久久久精品电影| 听说在线观看完整版免费高清| 99热6这里只有精品| 美女高潮的动态| 性欧美人与动物交配| 久久久久精品国产欧美久久久| 又黄又爽又刺激的免费视频.| 中出人妻视频一区二区| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩东京热| 亚洲av中文av极速乱| 国产精品人妻久久久影院| 欧美性猛交╳xxx乱大交人| 精品欧美国产一区二区三| 99热全是精品| 国产综合懂色| 亚洲成av人片在线播放无| 22中文网久久字幕| 2021天堂中文幕一二区在线观| АⅤ资源中文在线天堂| 深夜精品福利| 亚洲五月天丁香| av在线播放精品| 久久人人爽人人片av| 又爽又黄a免费视频| 国产 一区 欧美 日韩| 亚洲色图av天堂| 亚洲中文字幕一区二区三区有码在线看| 久久精品国产自在天天线| 嫩草影院新地址| 在线免费观看不下载黄p国产| 久久人妻av系列| 九九爱精品视频在线观看| 亚洲av中文字字幕乱码综合| 午夜免费男女啪啪视频观看 | 丰满乱子伦码专区| 春色校园在线视频观看| 欧美成人免费av一区二区三区| 亚洲三级黄色毛片| 国产亚洲精品av在线| 一级a爱片免费观看的视频| 免费搜索国产男女视频| 欧美国产日韩亚洲一区| 亚洲中文字幕一区二区三区有码在线看| 亚洲内射少妇av| 国产麻豆成人av免费视频| 国产成人freesex在线 | 国产精品一二三区在线看| 特级一级黄色大片| 美女大奶头视频| 男人的好看免费观看在线视频| 尤物成人国产欧美一区二区三区| 成人特级黄色片久久久久久久| 嫩草影院精品99| 99热这里只有精品一区| 色综合色国产| 亚洲熟妇熟女久久| 国内精品久久久久精免费| 国产私拍福利视频在线观看| 欧美极品一区二区三区四区| 搡女人真爽免费视频火全软件 | 国产熟女欧美一区二区| av卡一久久| 精品福利观看| 亚洲七黄色美女视频| 熟妇人妻久久中文字幕3abv| or卡值多少钱| 18+在线观看网站| 国产在视频线在精品| avwww免费| 免费黄网站久久成人精品| 自拍偷自拍亚洲精品老妇| 97超级碰碰碰精品色视频在线观看| 国产一级毛片七仙女欲春2| 久久韩国三级中文字幕| 黄色配什么色好看| 黄色视频,在线免费观看| 看片在线看免费视频| 我的女老师完整版在线观看| av在线老鸭窝| 免费av毛片视频| 欧美国产日韩亚洲一区| 日韩欧美一区二区三区在线观看| 亚洲av免费高清在线观看| 国产老妇女一区| 国国产精品蜜臀av免费| 日本三级黄在线观看| 国产精品综合久久久久久久免费| 国产真实乱freesex| 黄色配什么色好看| 欧美在线一区亚洲| 黄色配什么色好看| 卡戴珊不雅视频在线播放| 看黄色毛片网站| 国产精品爽爽va在线观看网站| 联通29元200g的流量卡| 久久久久久久久大av| 午夜福利成人在线免费观看| 91午夜精品亚洲一区二区三区| 国产成人aa在线观看| 黄色一级大片看看| 久久天躁狠狠躁夜夜2o2o| 国产精品国产高清国产av| 夜夜爽天天搞| 色综合色国产| 男人的好看免费观看在线视频| 免费观看在线日韩| 高清毛片免费观看视频网站| 夜夜看夜夜爽夜夜摸| 日韩av在线大香蕉| 国产精品亚洲美女久久久| 久久精品综合一区二区三区| 看片在线看免费视频| 亚洲内射少妇av| 亚洲人成网站在线观看播放| 观看美女的网站| 欧美人与善性xxx| 日韩成人av中文字幕在线观看 | 超碰av人人做人人爽久久| 搡老熟女国产l中国老女人| a级毛片免费高清观看在线播放| 直男gayav资源| 日韩精品有码人妻一区| 少妇熟女欧美另类| 日韩一本色道免费dvd| 1024手机看黄色片| 悠悠久久av| 精品一区二区三区视频在线| 波多野结衣高清无吗| 国产真实乱freesex| 日韩av不卡免费在线播放| 在线免费十八禁| 日韩av不卡免费在线播放| 亚洲成人久久爱视频| 国产精品久久久久久亚洲av鲁大| 狂野欧美白嫩少妇大欣赏| 亚洲乱码一区二区免费版| 国产精品一二三区在线看| 嫩草影视91久久| 99热全是精品| 午夜影院日韩av| 免费看av在线观看网站| av国产免费在线观看| 国产69精品久久久久777片| 亚洲成人精品中文字幕电影| 精品午夜福利视频在线观看一区| 久久欧美精品欧美久久欧美| 一进一出抽搐动态| 无遮挡黄片免费观看| 又爽又黄无遮挡网站| 亚洲美女视频黄频| 日本一本二区三区精品| 九色成人免费人妻av| 日韩欧美在线乱码| 日韩成人av中文字幕在线观看 | 中国国产av一级| 国产探花极品一区二区| 亚洲av熟女| 在线观看66精品国产| 日韩欧美精品免费久久| av在线蜜桃| 亚洲av免费高清在线观看| 22中文网久久字幕| a级毛色黄片| 3wmmmm亚洲av在线观看| 日本在线视频免费播放| 亚洲av成人av| 麻豆一二三区av精品| 在线观看美女被高潮喷水网站| 网址你懂的国产日韩在线| 亚洲高清免费不卡视频| 91久久精品电影网| 国产麻豆成人av免费视频| 美女免费视频网站| 六月丁香七月| 精品福利观看| 男人和女人高潮做爰伦理| 日韩一本色道免费dvd| 久久精品国产亚洲网站| 美女免费视频网站| 色av中文字幕| 国产精品国产三级国产av玫瑰| 天堂网av新在线| 淫秽高清视频在线观看| 熟妇人妻久久中文字幕3abv| 久久久久九九精品影院| 亚洲av五月六月丁香网| 给我免费播放毛片高清在线观看| 亚洲真实伦在线观看| 亚洲国产精品成人久久小说 | av中文乱码字幕在线| 干丝袜人妻中文字幕| 婷婷六月久久综合丁香| 午夜久久久久精精品| 国内少妇人妻偷人精品xxx网站| 别揉我奶头~嗯~啊~动态视频| 亚洲电影在线观看av| 在线免费观看不下载黄p国产| 亚洲精品在线观看二区| 国产综合懂色| 国产 一区精品| 久久久国产成人精品二区| 国产成人91sexporn| 午夜精品一区二区三区免费看| 久久亚洲精品不卡| 亚洲久久久久久中文字幕| 亚洲综合色惰| 99热这里只有是精品50| 舔av片在线| 国产伦在线观看视频一区| 日韩高清综合在线| 亚洲第一区二区三区不卡| 国产精品一二三区在线看| 精品久久久久久久久亚洲| 又黄又爽又刺激的免费视频.| 精品久久久久久久久亚洲| 国产色爽女视频免费观看| 国产精品国产三级国产av玫瑰| 99久久精品一区二区三区| 精品久久国产蜜桃| 免费一级毛片在线播放高清视频| 女人十人毛片免费观看3o分钟| 亚洲专区国产一区二区| 久久人人爽人人片av| av国产免费在线观看| 欧美一级a爱片免费观看看| 狂野欧美激情性xxxx在线观看| 国产午夜精品论理片| 国模一区二区三区四区视频| 99久久久亚洲精品蜜臀av| 男人狂女人下面高潮的视频| 亚州av有码| 真人做人爱边吃奶动态| 亚洲精品影视一区二区三区av| 久久久久久九九精品二区国产| 国产美女午夜福利| 国产高清激情床上av| 国产精品电影一区二区三区| 一级毛片久久久久久久久女| 国产亚洲精品久久久久久毛片| 午夜激情福利司机影院| 村上凉子中文字幕在线| 国产又黄又爽又无遮挡在线| 亚洲av成人av| 久久鲁丝午夜福利片| 毛片女人毛片| 男人舔奶头视频| 久久精品国产亚洲av天美| 亚洲综合色惰| 亚洲精华国产精华液的使用体验 | 长腿黑丝高跟| 久久精品国产亚洲av涩爱 | 日韩高清综合在线| 国产三级在线视频| 天堂影院成人在线观看| 少妇的逼好多水| 看十八女毛片水多多多| 国产精品嫩草影院av在线观看| 18禁黄网站禁片免费观看直播| 国产成人a区在线观看| 久久久久久久午夜电影| 亚洲成人av在线免费| 久久久久国内视频| 亚洲精品日韩在线中文字幕 | 少妇熟女aⅴ在线视频| 久久6这里有精品| 成人特级黄色片久久久久久久| 男人狂女人下面高潮的视频| 亚洲真实伦在线观看| 国产乱人偷精品视频| 欧美性感艳星| 看免费成人av毛片| 成人性生交大片免费视频hd| 成人国产麻豆网| 日韩欧美在线乱码| 女人十人毛片免费观看3o分钟| 国产高清视频在线播放一区| 性欧美人与动物交配| 国产高清视频在线观看网站| 国产精品不卡视频一区二区| 亚洲最大成人手机在线| 亚洲成人中文字幕在线播放| 精品久久久久久久久久免费视频| 久久久精品欧美日韩精品| 婷婷精品国产亚洲av| 99热6这里只有精品| 国产精品无大码| 国产在线精品亚洲第一网站| 一区二区三区四区激情视频 | 午夜影院日韩av| 亚洲在线自拍视频| 国产一区二区在线av高清观看| 日韩成人伦理影院| 久久九九热精品免费| 日本五十路高清| 99热这里只有精品一区| 欧美精品国产亚洲| 国产亚洲精品av在线| 毛片女人毛片| 国产一区二区在线观看日韩| 99热精品在线国产| 亚洲婷婷狠狠爱综合网| 亚洲激情五月婷婷啪啪| 国产大屁股一区二区在线视频| 超碰av人人做人人爽久久| 免费观看在线日韩| 老司机福利观看| 在线免费观看的www视频| 久久久久国产精品人妻aⅴ院| 国产黄色视频一区二区在线观看 | 欧美最新免费一区二区三区| 热99re8久久精品国产| 最好的美女福利视频网| 十八禁国产超污无遮挡网站| 91在线精品国自产拍蜜月| 人妻夜夜爽99麻豆av| 亚洲精品乱码久久久v下载方式| 偷拍熟女少妇极品色| 亚洲成人av在线免费| 欧美成人精品欧美一级黄|