• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of Thermal Field Distribution in Winter over Beijing from1985 to 2015 Using Landsat Thermal Data

    2016-07-12 12:47:27ZHOUXueyingSUNLinWEIJingJIAShangfengTIANXinpengWUTong
    光譜學(xué)與光譜分析 2016年11期
    關(guān)鍵詞:熱場(chǎng)結(jié)果表明顆粒物

    ZHOU Xue-ying, SUN Lin, WEI Jing, JIA Shang-feng, TIAN Xin-peng, WU Tong

    Geomatics College, Shandong University of Science and Technology, Qingdao 266590, China

    Analysis of Thermal Field Distribution in Winter over Beijing from1985 to 2015 Using Landsat Thermal Data

    ZHOU Xue-ying, SUN Lin*, WEI Jing, JIA Shang-feng, TIAN Xin-peng, WU Tong

    Geomatics College, Shandong University of Science and Technology, Qingdao 266590, China

    Heat supply, automobile exhaust, industrial production and decrease of thermal inertia in winter caused by the decrease of vegetation coverage leads to an obvious difference in the distribution of the land thermal field in the winter compared with other seasons. The Urban thermal field distribution in the winter directly affects the spread of air pollutants, which has important implications for analyzing the contribution of the thermal field to particulate air pollution. Atmospheric transmissivity and atmospheric upwelling/downwelling radiance in simulations are first calculated using the moderate spectral resolution atmospheric transmittance algorithm and computer model (MODTRAN). Then, we solve the radiative transfer model of the thermal infrared band by constructing a look-up table. In addition, the accuracy estimation is performed using the simulated data, showing that when the error range of emissivity and water vapor content are confined to ±0.005 and ±0.6, respectively, the temperature retrieval error are less than 0.348 and 2.117 K, respectively indicating the high retrieval accuracy of the method. In addition, the long-term sequenced Landsat TM and ETM+ data were selected to retrieve land surface temperature (LST) during 1985-2015. The analysis of the temporal and spatial distribution of thermal fields in Beijing show that the spatial and temporal variations are observable. The spatial variation covers four levels: high temperature is distributed within the second ring, low temperature loops are distributed between the second and the fifth ring, high temperature is distributed in the outer suburb areas and the lowest temperature is distributed in the western mountainous areas. Meanwhile, the temporal variation of thermal field distribution changed a great deal during the rapid development in the past 3 decades: the low temperature loop expanded from the third to the sixth ring; the intensity and scope of the heat island effect within the second ring increased gradually.

    Beijing; Winter; Thermal field distribution; LST; Landsat

    Introduction

    The acceleration of urbanization in Beijing since the 1980s has greatly changed the city environment. This affects the urban thermal field distribution[1]and directly influences the spread of air pollutants. The temperature in Beijing’s surrounding regions in the winter is lower compared with the temperature in the summer, which is influenced by the heat supply and exhaust gas emissions, etc. High temperatures appear in central Beijing in the winter, leading to a lower atmospheric pressure and impeding the diffusion of pollutants[2]. Meanwhile, coal burning causes the volume of pollutants to float to the central city as village residents warms themselves in the winter. Therefore, the study of the thermal field distribution and its variation in Beijing in the winter has great significance for understanding of the contribution of urban heat island to air pollution.

    Remote sensing techniques play a crucial role in analyzing spatial temperature distributions. With the development of remote sensing technology, researches of urban thermal field distribution and variation have been widely performed using remote sensing techniques and multi-source remote sensing data. Gallo K P,et al. analyzed the thermal field distribution of 15 cities in Seattle using advanced very high resolution radiometer(VHRR) data of the NOAA satellite, which showed that the vegetation index has a strong relationship with the surface properties of suburb areas, and in the meantime, the urban heat island effect phenomenon has been evaluated using NDVI[3]; M. Stathopoulou et al. analyzed the urban heat island effect of coastal cities in Greece using AVHRR data from the NOAA satellite, which showed that port cities in Greece have obvious heat island effects caused by the dense population distribution, road network construction and frequent human activities[4]; Yang Yingbao et al. quantitatively analyzed the temporal and spatial characteristics of the heat island effect in Nanjing by combining Landsat TM data with MODIS data, which showed that the heat island effect is more apparent during the daytime and that the autumn the season has the strongest heat island effect while winter season has the weakest heat island effect[5]; U Rajasekar et al. monitored the strength of the heat island effect and spatial-temporal variation rules in Indianapolis by constructing a non-parametric model with TM and ETM+ data[6]; L Liu et al. performed a LST distribution retrieval in Hong Kong, indicating that the heat island effect primarily occurred in three suburb areas: Kowloon Island, northern Hong Kong Island and Hong Kong International Airport[7].

    LST spatial distribution retrieval using remote sensing images in the thermal infrared band is a crucial method for analyzing the urban thermal field distribution. Presently, the complete algorithms of LST retrieval primarily include the single channel algorithm, multi-channel algorithm and multi-angle algorithm. The single channel algorithm refers to the acquisition of LST through radiant energy obtained by one thermal infrared channel on the satellite sensor, which is widely applied to the satellite sensor with only one thermal infrared band. With atmospheric vertical profile data (temperature, humidity and pressure profiles), this method can be used to determine the surface temperature through the use of an atmosphere transfer model. JC Price et al. firstly proposed a single channel formulation to standard meteorological soundings at a time near the overpass of an NOAA operational satellite, by which the retrieval accuracy of LST reached ±2~3 K[8]; Jiménez-Munoz presented an improved methodology to retrieve LST from AVHRR 4 and TM 6 using only water vapor as the input variable, and the results turned out that the mean RMSE was lower than 2 K for AVHRR channel 4 and 1.5 K for TM band 6[9]. A multi-channel algorithm is developed based on thermal data from several wavebands. Represented by the split-window algorithm, the algorithm was initially applied to AVHRR channels 4 and 5 to eliminate the atmospheric influence through radiant brightness differences of the two channels. First, Prabhakara proposed a split-window algorithm and applied it to the retrieval of sea surface temperatures[10]; later, this algorithm was amended and applied to the retrieval of LST; Rozenstein et al. applied the split-window algorithm to high-resolution Landsat 8 satellite[11]; Wan et al. modified the algorithm and applied it to the LST products of MODIS data[12]. A multi-angle algorithm means eliminating the atmospheric influence through various atmospheric paths under different observation angles. Chedin et al. simulated sea surface temperatures (SST) by a single-channel, double-viewing angle method using METEOSAT and TIROS-N and obtained a that the mean and the standard deviation between the retrieved and observed surface temperature of 0.2 and 1.2 K, respectively[13]; Sobrino et al. estimated the LST and SST using LOWTRAN-7 simulations from the Along-Track Scanning Radiometer (ATSR) data, and accuracies of approximately 1.5 K in LST are achievable[14]; He Liming et al. proposed that without atmospheric vertical profile data, the LST, which is retrieved by atmospheric-corrected AMTIS single-channel and multi-angle thermal infrared images, has a difference of 1K from the measured data[15].

    This paper analyzes the thermal field distribution over Beijing in the winter using sequenced, long-term and high-resolution Landsat data. Landsat data over the most recent 30 years was retrieved. The LST was based on a different temporal scale based on the thermal infrared radiative transfer model. The thermal field distribution of Beijing was finally analyzed.

    1 Data Sources

    The landsat series is a land satellite program of NASA, collecting images from approximately 705 km above the surface in a sun-synchronous orbit with a 16-day revisiting period. The primary sensors include MSS, TM, ETM+ and OLI, which contain several discrete spectral channels, of which the spatial resolution of multi spectral channel is 30 m. The spatial resolutions for different thermal infrared channels are distinct, in which TM and ETM+ are 120 and 60 m respectively. So far, the Landsat series has been widely used in the retrieval of agriculture, forestry, natural disaster and environmental pollution monitoring[16-19].

    In order to analyze the temporal and spatial variation rules of the thermal field distribution of Beijing in the winter from 1985 to 2015, this paper takes one Landsat image every five years as the research data. To guarantee its spatial integrity, images applied in this paper are of high quality. The cloud cover of the selected image is lower than 3% and Beijing is under free-cloud conditions. In addition, two of the high-quality images during December and the next January are selected to perform the experiment. Meanwhile, we try to maintain the same imaging time for the consistency of the phenological period over the 7 scenes from 1985 to 2015. Table 1 shows the specific data source information.

    Table 1 Data source information

    2 Surface Temperature Retrieval

    2.1 Retrieval principle

    The energy obtained by the thermal infrared radiation sensor includes three parts: the thermal radiance obtained by the sensor reflected by the land surface and then weakened by the atmosphere, the atmospheric downwelling radiance that is weakened again by the atmosphere after surface reflection, and the thermal radiance received by the sensor and atmospheric upwelling radiance. It can be derived from the equation

    (1)

    (2)

    2.2 Determination of surface emissivity

    The land surface can be simplified as a natural surface, urban area and water area, in which the natural surface is defined as composed of bare soil and vegetation. The emissivity of natural surface!pixelsεcan be calculated from the following equation[20]

    ε=PvRvεv+(1-Pv)Rsεs+dε

    (3)

    whereεvandεsare the land surface emissivity (LSE) of vegetation and bare soil on the corresponding bands, respectively. For Landsat TM and ETM+,εv=0.986 07 andεs=0.972 15;RvandRsare the temperature retios of vegetation and bare soil, respectively, which are defined as follows

    Rv=B6(Tv)/B6(Ts)

    RS=B6(Tbs)/B6(Ts)

    (4)

    whereB6(Tv) andB6(Tbs) are the thermal radiant energy of vegetation and bare soil for the thermal infrared band, respectively;B6(Ts) is the radiant energy emitted by the land surface under the average surface temperatureTs. Similarly, urban areas can be defined as a mixture of urban and vegetation, thus, the LSE estimation equation is defined as follows

    ε=PvRvεv+(1-Pv)Rmεm+dε

    (5)

    whereRmis the temperature ratio of construction. The temperature ratio of different land surface types can be calculated by the vegetation coverage as well

    Rv=0.933 2+0.058 5Pv

    (6)

    Rs=0.990 2+0.106 8Pv

    (7)

    Rm=0.988 6+0.128 7Pv

    (8)

    (9)

    wherePvis the vegetation coverage, which can be calculated by the Normalized Difference Vegetation Index (NDVI) . NDVIvand NDVISare NDVI of fully vegetation-covered pixels and bare soil pixels, valued at 0.7 and 0.05, respectively. Generally,dε=0 if the land surface is comparatively smooth; if the land surface has large altitude differences, the value ofdεcan be estimated according to the ratio of vegetation[21]. Water, whose emissivity is 0.995[22-23], is extracted through the modified normalized difference water index (MNDWI).

    2.3 The determination of atmospheric transmittance and upwelling/downwelling

    MODTRAN is adopted to simulate atmospheric upwelling/downwelling radiance and transmittance for the retrieval of LST. MODTRAN was developed jointly by the Air Force Research Laboratory/Space Vehicles Directorate and Spectral Sciences, Inc. using the FORTRAN language. It is mainly applied to accurately simulate of atmospheric transmittance and LST.

    An atmospheric model and the water vapor content are needed in the simulation. MODTRAN 4 supplies several atmospheric models, in which the mid-latitude winter atmosphere is selected in this paper according to the condition of the research area and data source. The water vapor abundance is obtained from the parameter calculation tool for atmospheric correction that is published by NASA, and was proposed by Barsi in 2003. The Atmospheric Correction Parameter Calculator uses the National Centers for Environmental Prediction (NCEP) modeled atmospheric global profiles for a particular date, time and location as input[24]. Although the available data provided by NASA begins from 2000, the water vapor content that cannot be obtained is replaced by that of the same date from the previous year because the influence of water vapor in the whole research area is synthetic, and the water vapor content in the winter has small variations.

    2.4 Accuracy validation

    The data used in this paper are previous images, and there is no measurement that corresponds to them. Validation of the LST retrieval accuracy is performed by simulating the theoretical error of retrieved LST within the possible error range of each parameter via the radiative transfer model. LST retrieval is primarily affected by the surface emissivity and atmospheric water vapor content. With the aim of simulating error of retrieved LST using the above two parameters, atmospheric parameters are first simulated with the MODTRAN model, which is used to build the look-up table. Then the radiance value is obtained with the corresponding temperature, water vapor content and emissivity value. The retrieval of the corresponding LST can be conducted through the radiative transfer model in combination with the obtained radiance, water vapor content and emissivity data. The retrieved LST data are finally compared with the original standard data.

    As major factors that affect retrieval accuracy, the influences of the emissivity and water vapor content on LST retrieval are analyzed separately. Taking emissivity as independent variable and confining it to an error range of ±0.005 with an interval of 0.001, the error range of LST is 0.068~0.348 K; taking the water vapor content as the independent variable and confining it to ±0.6 with an interval of 0.1, the LST error range is 0.318~2.117 K, indicating that the error range of the retrieved LST by the method is generally low.

    3 Thermal field distribution analysis over Beijing in winter

    Based on the above theories, this paper retrieves the winter LST from 1985 to 2015 in Beijing using Landsat TM/ETM+ data. Fig.1 is the spatial distribution of LST. The spatial distribution of the thermal field includes four parts: the western mountainous area, the suburbs, the area between the fifth and second ring and area within the second ring. The western, northwestern and northeastern parts of Beijing have lower temperatures because the vegetation coverage is relatively high. The suburb area has an overall higher land surface temperature, and an obvious annular belt of low temperature appears between the second and fifth ring. The LST of area within the central second ring is higher than that of the outer ring. Related studies prove that in an urban area, LST during the day is lower than in the suburb area in the winter, showing a distinct cold island effect[2]. In terms of time sequence, the LST of the western forest region increases during the early period of development. Owing to the measurements of returning farmland to forest and forest protection, the LST decreases gradually as the increase of forestland area yet when observing the overall variation, the annular belt of low temperature increases continuously with the expansion of the urban area.

    Fig.1 LST retrievals from 1985 to 2015 in Beijing

    The mountainous area has the lowest LST in Beijing; in addition, the heat distribution differs remarkably as time changes. The mountains inside Beijing are approximately 2 000 m above sea level. As air temperature decreases with the increase of vertical height (the temperature drops approximately 0.6 ℃ for every 100 m increase in altitude), the surface temperature of the mountain area is the lowest. Moreover, the temperature between sunny slopes and shady slopes is distinct. Temperature differences in the mountainous area increased during 1985—2004, and large-scale low temperatures decreased gradually as the total temperatures increased; from 2010 to 2015, the low-temperature area expands due to the implementation of Beijing-Tianjin Sandstorm Source Control project. During this period, the forest coverage rate in Beijing increased by 5.7% according to figures released by the Landscaping department.

    In order to analyze the temporal and spatial variation rules of the LST over central Beijing, the area between the ixth and the second ring is selected, as shown in Fig.2. Fig.3 shows the temperature distribution within the sixth ring, in which the blue outline marks the sixth and the second rings. The black area presents the region in which temperature is higher than average land temperature, while the white area presents the opposite. The red circle approximates the low temperature loop region, which gradually expands over the past 30 years, as is shown in Fig.3. Overall, the low temperature area is mainly distributed near the third ring in 1985 but expanded to the fifth ring in 2010 and the sixth ring in 2015 because of the accelerated urbanization process and continuous development of urban areas. Moreover, the low temperature area distributed radially in 2015, which was closely related to the construction of highway and railways and the surrounding economic development.

    Fig.2 Scope of the study area

    Fig.3 Distribution of low-LST urban areas in Beijing

    The area within the second ring is the developed area with the most intensive population and the most frequent human activity. As shown in Fig.3, the overall LST is higher than that of surrounding areas, except for the water area A. With the aim of at analyzing the thermal field variation rule within the second ring, we performed a quantitative analysis on the LST variation with the Thermal Field Variance Index (TFVI)[25].

    Table 2 Threshold division standard of the ecological evaluation index

    TFVI=(T-TMEAN)/TMEAN

    (10)

    whereTis the LST of a specific point in the remote sensing image, andTMEANis the average LST value of the research area. As shown in Table 2, TFVI is classified into six grades in accordance with the ecological evaluation index.

    Fig.4 shows the TFVI distribution within the second ring (the black outline) between 1985—2015, showing that the intensity of the heat island effect was lower before 1990; however, the weak heat island effect dominated until 2004 when a medium heat island effect appeared in the central region. Moreover, the medium and strong heat island effects emerged in 2010, and the total intensity continuously strengthened. A strong and powerful heat island effect continued in 2015, when an extremely strong heat island effect emerged. To give a more intuitive presentation of the variation trend of the heat island effect, Fig.5 gives the proportion of intensity within the second ring, in which none, weak and medium intensity is shown in the histogram since the proportion of other intensities is small. It is observed that the area with no heat island effect decreases gradually, from 91.80% to 41.81%; meanwhile, the area with a weak heat island effect increases from 8.05% to 33.96% and the area with medium heat island effect increases significantly, from 0.15% to 20.20%.

    Fig.4 Distribution of urban heat island intensity in the second ring area of Beijing from 1985 to 2015

    Fig.5 Area proportion of heat island effect intensity

    4 Conclusion

    This paper calculates three key atmospheric parameters using the MODTRAN atmospheric the radiative transfer model and solves radiative transfer equation of thermal infrared band by building a look-up table. The theoretical accuracy is evaluated through a simulation method, indicating the high retrieval accuracy and stability of the algorithm. We process Landsat TM/ETM+ data over the past 30 years for Beijing and perform LST retrieval based on a thermal infrared radiative transfer model. Then, we analyze the spatial distribution rule over Beijing in the winter, and the results show that the thermal field spatial distribution covers four parts: the area within the second ring has the highest temperature, resulting in the obvious heat island effect; the area between the fifth and second ring has an obvious low temperature loop; the temperature of the suburb area is high, and the temperature in the western mountainous area is the lowest. In addition, the temporal distribution rule indicates that the low temperature loop expands from the third to the sixth ring with the development of urbanization; in general, the intensity of the heat island effect within the second ring becomes stronger. Considering the long time span of the selected data and the difficulties in obtaining the measured LST data, this paper only evaluates the theoretical accuracy of the algorithm. Further research work will be focused on a more objective and reliable accuracy validation method.

    [1] Wang Y, Xiao Y. Remote Sensing for Land & Resources, 2014, 26(3): 146.

    [2] Wang J, Wang K, Wang P, Journal of Remote Sensing, 2007, 11(3): 330.

    [3] Gallo K P, Mcnab A L, Karl T R, et al. Journal of Applied Meteorology, 2010, 325(5):899.

    [4] Stathopoulou M, Cartalis C, Keramitsoglou I. International Journal of Remote Sensing, 2004, 25(12): 2301.

    [5] Yang Y, Su W, Jiang N. Remote Sensing Technology & Application, 2006, 21(6): 488.

    [6] Rajasekar U, Weng Q. International Journal of Remote Sensing, 2009, 30(30): 3531.

    [7] Liu L, Zhang Y. Remote Sensing, 2011, 3(7): 1535.

    [8] Price J C. Remote Sensing of Environment, 1983, 13(4): 353.

    [10] Prabhakara C, Dalu G, Kunde V G. Journal of Geophysical Research, 1974, 79(33): 5039.

    [11] Rozenstein O, Qin Z, Derimian Y, et al. Sensors, 2014, 14(4): 5768.

    [12] Wan Z, Dozier J. IEEE Transactions on Geoscience & Remote Sensing, 1996, 34(4): 892.

    [13] Chedin A, Scott N A, Berroir A. Journal of Applied Meteorology, 1982, 21(4): 613.

    [14] Sobrino J A, Li Z L, Stoll M P, et al. International Journal of Remote Sensing, 1996, 17(11): 2089.

    [15] He L, Yan G, Li X, et al. Journal of Infrared Millimeter Waves, 2006, 25(6): 429.

    [16] Cristóbal J, Jiménez-Muoz J C, Sobrino J A, et al. Journal of Geophysical Research Atmospheres, 2009, 114(D8).

    [17] Sun L, Wei J, Bilal M, et al. Remote Sensing, 2016.

    [18] Chen Q, Zhang J, Zhang L. Journal of Agricultural Science, 2012, 4(3): 563.

    [19] Sun L, Wei J, Duan D H, et al. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 142: 43.

    [20] Qin Z, Li W, Gao M, et al. Proceedings of SPIE—The International Society for Optical Engineering, 2006, 6366: 636618-636618-8.

    [21] Song T, Duan Z, Liu J, et al. Journal of Remote Sensing, 2015, 19(3): 1993.

    [22] Xu H. Journal of Remote Sensing, 2005.

    [23] Qin Z, Li W,Xu B, et al. Remote Sensing for Land & Resources, 2004.

    [24] Barsi J A, Barker J L, Schott J R. An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument[C]//Geoscience and Remote Sensing Symposium, 2003. IGARSS ’03. Proceedings. 2003 IEEE International. IEEE, 2003,5: 3014-3016.

    [25] Zhang Y, Yu T, Gu X, et al. Journal of Remote Sensing, 2006, 10(5): 789-797.

    *通訊聯(lián)系人

    TP79

    A

    利用Landsat熱紅外數(shù)據(jù)研究1985年—2015年北京市冬季熱場(chǎng)分布

    周雪瑩,孫 林*,韋 晶,夾尚豐,田信鵬,吳 桐

    山東科技大學(xué)測(cè)繪科學(xué)與工程學(xué)院,山東 青島 266590

    由于北京城市中心區(qū)冬季供暖、汽車(chē)尾氣、工業(yè)生產(chǎn)等因素的影響,以及冬季植被覆蓋減少導(dǎo)致地表熱慣量降低,致使北京市冬季地表熱場(chǎng)與其他季節(jié)差異明顯。冬季城市熱場(chǎng)分布直接影響冬季大氣顆粒物等污染物的擴(kuò)散速度,因此,研究熱場(chǎng)分布對(duì)了解城市熱場(chǎng)在大氣顆粒物污染中的貢獻(xiàn)具有重要的意義。首先利用MODTRAN大氣輻射傳輸模型計(jì)算大氣透過(guò)率、大氣上行輻射與大氣下行輻射三個(gè)關(guān)鍵參數(shù),通過(guò)構(gòu)建查找表解算熱紅外波段輻射傳輸方程。使用數(shù)據(jù)模擬的手段評(píng)價(jià)了該方法的精度,結(jié)果表明,當(dāng)比輻射率和水汽分別在±0.005和±0.6的誤差范圍內(nèi)波動(dòng)時(shí),溫度反演的誤差分別小于0.348和2.117 K,表明該方法可達(dá)到較高的反演精度。選擇長(zhǎng)時(shí)間序列Landsat TM、ETM+數(shù)據(jù),進(jìn)行地表溫度反演,得到1985年—2015年北京市的地表溫度?;诜囱莸牡乇頊囟确治隽吮本┦袩釄?chǎng)的時(shí)空分布。結(jié)果表明,北京冬季熱場(chǎng)分布在空間上可分為四個(gè)層次: 北京市二環(huán)內(nèi)溫度較高、二環(huán)到五環(huán)內(nèi)低溫環(huán)狀特征明顯、外圍郊區(qū)溫度高以及北京西部的山區(qū)溫度最低;隨著近30年來(lái)北京市的快速發(fā)展,熱場(chǎng)分布在長(zhǎng)時(shí)間序列中發(fā)生了明顯的改變: 隨著北京城市的不斷擴(kuò)張,環(huán)狀低溫區(qū)域也不斷擴(kuò)大,從三環(huán)擴(kuò)展到六環(huán);城市二環(huán)以?xún)?nèi)熱島效應(yīng)隨時(shí)間推移而增強(qiáng),且分布范圍擴(kuò)大。

    北京;冬季;熱場(chǎng)分布;地表溫度;Landsat

    2016-04-17,

    2016-08-21)

    Foundation item: National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2012BAH27B00), National Science Foundation for Distinguished Young Scholars of Shandong Province(JQ201211)

    10.3964/j.issn.1000-0593(2016)11-3772-08

    Received: 2016-04-17,accepted: 2016-08-21

    Biography: ZHOU Xue-ying,(1992—),postgraduate of Geomatics College, Shandong University of Science and Technology e-mail: zhouxueying666@hotmail.com *Corresponding author e-mail: sunlin6@126.com

    猜你喜歡
    熱場(chǎng)結(jié)果表明顆粒物
    動(dòng)力系統(tǒng)永磁同步電動(dòng)機(jī)流體和熱場(chǎng)的計(jì)算分析
    熱場(chǎng)中Cu-Nb-C球磨納米粉的尺寸生長(zhǎng)與合金化研究
    云南化工(2021年6期)2021-12-21 07:30:54
    專(zhuān)利名稱(chēng):一種藍(lán)寶石晶體生長(zhǎng)爐的鎢鉬熱場(chǎng)防短路裝置
    南平市細(xì)顆粒物潛在來(lái)源分析
    用于高品質(zhì)發(fā)動(dòng)機(jī)的熱場(chǎng)集成模擬方法
    錯(cuò)流旋轉(zhuǎn)填料床脫除細(xì)顆粒物研究
    多層介質(zhì)阻擋放電處理柴油機(jī)尾氣顆粒物
    發(fā)達(dá)國(guó)家顆粒物污染防治經(jīng)驗(yàn)對(duì)我國(guó)的啟示
    體育鍛煉也重要
    闊世瑪與世瑪用于不同冬小麥品種的安全性試驗(yàn)
    国产成人福利小说| 亚洲精品久久久久久婷婷小说| 国产亚洲5aaaaa淫片| 日韩伦理黄色片| 久久久久久久久久黄片| 国产精品一区二区三区四区久久| 亚洲内射少妇av| 精品一区二区三区视频在线| 成年人午夜在线观看视频 | 国产亚洲精品久久久com| 亚洲av免费高清在线观看| av国产久精品久网站免费入址| 街头女战士在线观看网站| 国产免费一级a男人的天堂| 欧美最新免费一区二区三区| 国产成人freesex在线| 欧美不卡视频在线免费观看| 一个人看视频在线观看www免费| 欧美潮喷喷水| 久久久久国产网址| 久久这里只有精品中国| 男女国产视频网站| 青春草国产在线视频| 成人午夜精彩视频在线观看| 国产黄色免费在线视频| 青春草亚洲视频在线观看| 精品人妻熟女av久视频| 午夜免费男女啪啪视频观看| 久久99蜜桃精品久久| 噜噜噜噜噜久久久久久91| 国产精品美女特级片免费视频播放器| 亚洲人成网站在线观看播放| av在线蜜桃| 国产一区亚洲一区在线观看| 国产片特级美女逼逼视频| 国产一区有黄有色的免费视频 | 色综合站精品国产| 人妻系列 视频| 午夜视频国产福利| 亚洲自拍偷在线| av在线天堂中文字幕| 秋霞在线观看毛片| 精品少妇黑人巨大在线播放| 黄片无遮挡物在线观看| 欧美一区二区亚洲| 啦啦啦啦在线视频资源| 亚洲,欧美,日韩| 久久99蜜桃精品久久| 99九九线精品视频在线观看视频| 女的被弄到高潮叫床怎么办| 一个人看的www免费观看视频| 最新中文字幕久久久久| 午夜福利视频精品| av在线老鸭窝| 欧美精品一区二区大全| 噜噜噜噜噜久久久久久91| 99热全是精品| 成人高潮视频无遮挡免费网站| 国产真实伦视频高清在线观看| av在线天堂中文字幕| 国产精品一二三区在线看| 国产精品不卡视频一区二区| 3wmmmm亚洲av在线观看| 成人无遮挡网站| 日日啪夜夜爽| 日韩欧美 国产精品| 亚洲熟妇中文字幕五十中出| 水蜜桃什么品种好| 亚洲,欧美,日韩| 97人妻精品一区二区三区麻豆| 观看美女的网站| 超碰97精品在线观看| 人妻一区二区av| 欧美日韩在线观看h| 午夜亚洲福利在线播放| 直男gayav资源| 国产老妇女一区| 国产精品一及| 国内精品宾馆在线| 免费av观看视频| 国产亚洲5aaaaa淫片| 深爱激情五月婷婷| 中文字幕制服av| 久久久久久久久久久免费av| 爱豆传媒免费全集在线观看| 久99久视频精品免费| 美女被艹到高潮喷水动态| 久久热精品热| 噜噜噜噜噜久久久久久91| 色视频www国产| 一个人看视频在线观看www免费| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 联通29元200g的流量卡| 亚洲精品,欧美精品| 综合色丁香网| 尤物成人国产欧美一区二区三区| 国产成人精品久久久久久| 国产精品一区二区三区四区久久| 成年免费大片在线观看| 国产探花极品一区二区| 精华霜和精华液先用哪个| 色播亚洲综合网| 别揉我奶头 嗯啊视频| 欧美区成人在线视频| 日韩三级伦理在线观看| 麻豆精品久久久久久蜜桃| 搞女人的毛片| 久久久成人免费电影| 久久久久九九精品影院| 亚洲人成网站在线观看播放| 中文欧美无线码| 最近视频中文字幕2019在线8| 成年免费大片在线观看| 插逼视频在线观看| 综合色av麻豆| 极品教师在线视频| 肉色欧美久久久久久久蜜桃 | 能在线免费观看的黄片| 少妇熟女aⅴ在线视频| 亚洲欧洲国产日韩| 简卡轻食公司| 岛国毛片在线播放| 国产 亚洲一区二区三区 | 亚洲欧美清纯卡通| 日韩在线高清观看一区二区三区| 精品久久久久久电影网| 免费黄色在线免费观看| 国产成人一区二区在线| 97超视频在线观看视频| 建设人人有责人人尽责人人享有的 | 亚洲精品久久久久久婷婷小说| 超碰av人人做人人爽久久| 亚洲精品国产av蜜桃| 亚洲成人av在线免费| 国产精品一区二区三区四区久久| 婷婷六月久久综合丁香| 国产人妻一区二区三区在| 国产亚洲精品av在线| 日韩中字成人| 亚洲欧美中文字幕日韩二区| 岛国毛片在线播放| 国产亚洲午夜精品一区二区久久 | 80岁老熟妇乱子伦牲交| 亚洲自拍偷在线| 亚洲婷婷狠狠爱综合网| 久久久精品免费免费高清| 国产黄频视频在线观看| 毛片一级片免费看久久久久| 成人欧美大片| 亚洲欧洲国产日韩| 一级黄片播放器| 大香蕉久久网| 国产精品人妻久久久影院| 最近的中文字幕免费完整| 十八禁网站网址无遮挡 | 天堂网av新在线| 国产极品天堂在线| 最后的刺客免费高清国语| 大又大粗又爽又黄少妇毛片口| 久久久亚洲精品成人影院| 一区二区三区四区激情视频| 欧美潮喷喷水| 精品一区二区免费观看| 久久精品国产亚洲网站| av.在线天堂| 乱人视频在线观看| 国产成人精品一,二区| 亚洲精品日韩在线中文字幕| 毛片一级片免费看久久久久| 欧美97在线视频| 亚洲欧美精品专区久久| 2021少妇久久久久久久久久久| kizo精华| 国产伦精品一区二区三区视频9| 国产精品熟女久久久久浪| 亚洲欧美成人精品一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 如何舔出高潮| 国产精品一区二区性色av| 深爱激情五月婷婷| 国产亚洲av片在线观看秒播厂 | 午夜福利视频1000在线观看| 免费看光身美女| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲图色成人| 国产黄频视频在线观看| 亚洲国产色片| 一个人看的www免费观看视频| 色哟哟·www| 特大巨黑吊av在线直播| 婷婷色麻豆天堂久久| 久久韩国三级中文字幕| 97超碰精品成人国产| 99久久精品热视频| 亚洲人与动物交配视频| 一个人看的www免费观看视频| 麻豆国产97在线/欧美| 91精品国产九色| 亚洲av日韩在线播放| 亚洲精品久久午夜乱码| 免费人成在线观看视频色| 亚洲成人中文字幕在线播放| 最近的中文字幕免费完整| 久久久久久久久久久免费av| 国产精品日韩av在线免费观看| 亚洲久久久久久中文字幕| 1000部很黄的大片| 91在线精品国自产拍蜜月| 日韩视频在线欧美| 亚洲av男天堂| 国产乱来视频区| 国产男女超爽视频在线观看| 综合色av麻豆| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 国产人妻一区二区三区在| 国产白丝娇喘喷水9色精品| 日韩av免费高清视频| 国产精品蜜桃在线观看| 亚洲激情五月婷婷啪啪| 久久国内精品自在自线图片| 色综合色国产| 乱人视频在线观看| 国产成人精品一,二区| 亚洲成人中文字幕在线播放| 韩国av在线不卡| 精品国产露脸久久av麻豆 | 久久这里有精品视频免费| 26uuu在线亚洲综合色| 国产成人aa在线观看| .国产精品久久| 狂野欧美激情性xxxx在线观看| 伊人久久国产一区二区| 精品久久久久久久久亚洲| 午夜精品在线福利| 三级男女做爰猛烈吃奶摸视频| 91久久精品国产一区二区三区| 国产在视频线在精品| 久久99精品国语久久久| 国产精品一区www在线观看| 人人妻人人澡人人爽人人夜夜 | 亚洲三级黄色毛片| 日韩大片免费观看网站| 亚洲精品中文字幕在线视频 | 97热精品久久久久久| 久久亚洲国产成人精品v| 免费不卡的大黄色大毛片视频在线观看 | av.在线天堂| 国产高清有码在线观看视频| 中国美白少妇内射xxxbb| 97超视频在线观看视频| 中文字幕免费在线视频6| 久久久午夜欧美精品| 插阴视频在线观看视频| 搞女人的毛片| 色哟哟·www| 极品少妇高潮喷水抽搐| 久久久久精品久久久久真实原创| 超碰97精品在线观看| 91久久精品电影网| 日韩欧美精品免费久久| 国产白丝娇喘喷水9色精品| 青春草亚洲视频在线观看| 黄色欧美视频在线观看| 日韩大片免费观看网站| 亚洲精品一区蜜桃| 26uuu在线亚洲综合色| 韩国av在线不卡| 亚洲av日韩在线播放| 六月丁香七月| 大香蕉久久网| 两个人视频免费观看高清| 小蜜桃在线观看免费完整版高清| 九色成人免费人妻av| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩无卡精品| 韩国av在线不卡| 麻豆久久精品国产亚洲av| 一个人观看的视频www高清免费观看| 免费av观看视频| 国产亚洲91精品色在线| 一级爰片在线观看| 美女国产视频在线观看| 亚洲av电影不卡..在线观看| 91av网一区二区| 51国产日韩欧美| 亚洲欧美精品自产自拍| 嫩草影院精品99| 国产日韩欧美在线精品| 亚洲av免费在线观看| 免费黄网站久久成人精品| 国产黄频视频在线观看| 天堂俺去俺来也www色官网 | 精品一区二区三区视频在线| 日本黄大片高清| 国产精品久久视频播放| 国产白丝娇喘喷水9色精品| 午夜亚洲福利在线播放| 搞女人的毛片| av一本久久久久| 免费观看精品视频网站| 高清日韩中文字幕在线| videos熟女内射| 亚洲美女视频黄频| 免费黄网站久久成人精品| 亚洲欧美日韩无卡精品| 欧美3d第一页| 亚洲欧美精品专区久久| 干丝袜人妻中文字幕| 亚洲av中文av极速乱| av女优亚洲男人天堂| 免费观看av网站的网址| 大香蕉97超碰在线| 亚洲欧美一区二区三区黑人 | 日韩精品青青久久久久久| 男人和女人高潮做爰伦理| 欧美最新免费一区二区三区| 好男人视频免费观看在线| 黄色一级大片看看| 国产免费视频播放在线视频 | 高清欧美精品videossex| 免费av不卡在线播放| 日日摸夜夜添夜夜爱| 特级一级黄色大片| 久久99热这里只频精品6学生| 欧美日本视频| 一级毛片久久久久久久久女| 高清视频免费观看一区二区 | 黄色日韩在线| 亚洲高清免费不卡视频| 成人亚洲欧美一区二区av| 久久97久久精品| 国产精品99久久久久久久久| 视频中文字幕在线观看| 内射极品少妇av片p| 嫩草影院精品99| 亚洲人成网站在线观看播放| or卡值多少钱| 亚洲性久久影院| 18禁在线播放成人免费| av在线亚洲专区| 精品一区在线观看国产| 欧美高清成人免费视频www| 国产亚洲午夜精品一区二区久久 | 九九爱精品视频在线观看| 两个人的视频大全免费| 1000部很黄的大片| 亚洲国产日韩欧美精品在线观看| 国产 亚洲一区二区三区 | 久久久久网色| 免费大片黄手机在线观看| av免费在线看不卡| 在线免费十八禁| 亚洲成色77777| 97在线视频观看| 女人被狂操c到高潮| 人人妻人人澡欧美一区二区| 国产单亲对白刺激| 男人舔女人下体高潮全视频| 99久久人妻综合| av免费观看日本| 国产v大片淫在线免费观看| 97人妻精品一区二区三区麻豆| 亚洲精品中文字幕在线视频 | 欧美xxxx性猛交bbbb| 在线观看av片永久免费下载| 三级毛片av免费| 男女边摸边吃奶| 午夜激情欧美在线| 亚洲自拍偷在线| 又爽又黄无遮挡网站| 国产三级在线视频| 特大巨黑吊av在线直播| 亚洲国产av新网站| 免费黄频网站在线观看国产| 欧美精品国产亚洲| 成人午夜精彩视频在线观看| 成人漫画全彩无遮挡| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 久久鲁丝午夜福利片| 久久99热这里只频精品6学生| 亚洲最大成人中文| 18禁在线无遮挡免费观看视频| 亚洲经典国产精华液单| 日本一二三区视频观看| 91久久精品电影网| 青春草国产在线视频| 国产三级在线视频| 18禁动态无遮挡网站| 精品国产三级普通话版| 久久久a久久爽久久v久久| 国产欧美另类精品又又久久亚洲欧美| 国产淫语在线视频| 我要看日韩黄色一级片| 99re6热这里在线精品视频| 久久精品久久精品一区二区三区| 国产精品一区二区在线观看99 | 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 国产成人精品福利久久| 国语对白做爰xxxⅹ性视频网站| 亚洲国产高清在线一区二区三| 国产精品嫩草影院av在线观看| 三级国产精品欧美在线观看| 国产麻豆成人av免费视频| 国产极品天堂在线| 中文字幕制服av| 亚洲国产av新网站| 成人美女网站在线观看视频| 男女国产视频网站| 天天一区二区日本电影三级| 97热精品久久久久久| 肉色欧美久久久久久久蜜桃 | 久久久精品免费免费高清| 国产精品爽爽va在线观看网站| 亚洲性久久影院| 成人午夜高清在线视频| 最近中文字幕2019免费版| 99久国产av精品国产电影| 边亲边吃奶的免费视频| 青春草国产在线视频| av免费观看日本| 丝瓜视频免费看黄片| 我的女老师完整版在线观看| 十八禁国产超污无遮挡网站| 成人特级av手机在线观看| 麻豆成人av视频| 国产免费视频播放在线视频 | 免费在线观看成人毛片| av免费观看日本| 99久久人妻综合| 亚洲精品色激情综合| 可以在线观看毛片的网站| 国产精品爽爽va在线观看网站| 亚洲在久久综合| 色播亚洲综合网| 欧美日韩一区二区视频在线观看视频在线 | 国产黄色小视频在线观看| 亚洲色图av天堂| 亚洲欧美清纯卡通| 午夜福利高清视频| 国产精品久久久久久久久免| 亚洲av.av天堂| 一级毛片aaaaaa免费看小| 国产高清国产精品国产三级 | 久久久欧美国产精品| 亚洲av一区综合| 久久久久久久久久久免费av| 嘟嘟电影网在线观看| 三级经典国产精品| 老司机影院成人| 亚洲av中文av极速乱| 91精品国产九色| 精品一区二区免费观看| 成人欧美大片| 69人妻影院| 老司机影院毛片| 成年人午夜在线观看视频 | 国产淫片久久久久久久久| 日产精品乱码卡一卡2卡三| 国产精品蜜桃在线观看| 黑人高潮一二区| 免费人成在线观看视频色| 舔av片在线| 大香蕉久久网| 在线 av 中文字幕| 黄片无遮挡物在线观看| 天堂影院成人在线观看| 成人特级av手机在线观看| 少妇熟女aⅴ在线视频| 插阴视频在线观看视频| 亚洲av中文av极速乱| 久久久久久久大尺度免费视频| 美女国产视频在线观看| 欧美变态另类bdsm刘玥| 日韩av在线大香蕉| 大话2 男鬼变身卡| 又爽又黄无遮挡网站| 色综合亚洲欧美另类图片| 可以在线观看毛片的网站| 日本免费a在线| 久久久久久久久久人人人人人人| 最近2019中文字幕mv第一页| 国产一区二区在线观看日韩| 黄色欧美视频在线观看| 一个人免费在线观看电影| 美女脱内裤让男人舔精品视频| 最近2019中文字幕mv第一页| 在线观看一区二区三区| 精品一区二区三卡| 日本爱情动作片www.在线观看| 国产熟女欧美一区二区| 国产精品国产三级国产专区5o| 久久精品久久久久久噜噜老黄| 午夜精品一区二区三区免费看| 偷拍熟女少妇极品色| 久久久久久久久久人人人人人人| 少妇人妻精品综合一区二区| 搡女人真爽免费视频火全软件| 国产淫语在线视频| 两个人视频免费观看高清| 亚洲欧美精品自产自拍| 又爽又黄无遮挡网站| 国产 亚洲一区二区三区 | 99久久精品一区二区三区| 日日干狠狠操夜夜爽| 日本-黄色视频高清免费观看| 久久精品国产亚洲网站| 99热网站在线观看| 亚洲精品一二三| av国产久精品久网站免费入址| 中文字幕av成人在线电影| 亚洲国产成人一精品久久久| 国产国拍精品亚洲av在线观看| 国产成人freesex在线| 亚洲最大成人手机在线| av播播在线观看一区| 国产综合懂色| 又粗又硬又长又爽又黄的视频| 免费观看精品视频网站| 久久久久久国产a免费观看| 免费看不卡的av| 舔av片在线| 少妇的逼水好多| 噜噜噜噜噜久久久久久91| 中国美白少妇内射xxxbb| 高清日韩中文字幕在线| 欧美3d第一页| 一级毛片 在线播放| kizo精华| 国精品久久久久久国模美| 亚洲成色77777| 禁无遮挡网站| 哪个播放器可以免费观看大片| 久久久久久久亚洲中文字幕| 少妇裸体淫交视频免费看高清| 日本-黄色视频高清免费观看| 超碰97精品在线观看| 亚洲18禁久久av| 国产成人freesex在线| 久久久久网色| 男女下面进入的视频免费午夜| 秋霞伦理黄片| 天天躁日日操中文字幕| 久久久午夜欧美精品| 乱码一卡2卡4卡精品| 免费大片18禁| 国产一级毛片七仙女欲春2| 久久草成人影院| 久久人人爽人人爽人人片va| 欧美不卡视频在线免费观看| 三级毛片av免费| 美女国产视频在线观看| 国产伦在线观看视频一区| 99久国产av精品国产电影| 美女主播在线视频| 国产伦精品一区二区三区四那| 嫩草影院入口| 久久久午夜欧美精品| 在线观看人妻少妇| 搡老妇女老女人老熟妇| 91久久精品电影网| 国产在线一区二区三区精| 91久久精品国产一区二区三区| 最近中文字幕2019免费版| 欧美丝袜亚洲另类| 国产成人91sexporn| 色5月婷婷丁香| 久久久色成人| 成人国产麻豆网| 亚洲精品一二三| 毛片女人毛片| 26uuu在线亚洲综合色| 国产午夜精品一二区理论片| 国产精品久久视频播放| 国产三级在线视频| 国产色婷婷99| 91精品伊人久久大香线蕉| 久久久午夜欧美精品| 又黄又爽又刺激的免费视频.| 视频中文字幕在线观看| 国产精品综合久久久久久久免费| 国产在线一区二区三区精| 深爱激情五月婷婷| 纵有疾风起免费观看全集完整版 | 亚洲欧美精品专区久久| 中文字幕久久专区| 欧美成人a在线观看| 国产黄频视频在线观看| 免费观看精品视频网站| 亚洲高清免费不卡视频| 亚洲自拍偷在线| 成人一区二区视频在线观看| 国产精品久久视频播放| 精品人妻视频免费看| 午夜免费观看性视频| 丰满少妇做爰视频| 亚洲国产精品sss在线观看| 久久这里有精品视频免费| 午夜亚洲福利在线播放| 九九在线视频观看精品| 亚洲国产色片| 久久国产乱子免费精品| 亚洲成人一二三区av| 亚洲av成人精品一二三区| 黄色欧美视频在线观看| 乱人视频在线观看| 国产精品.久久久| 男人和女人高潮做爰伦理| 亚洲av中文av极速乱| 中文字幕亚洲精品专区| 日韩欧美三级三区| 国产伦一二天堂av在线观看|